Project Overview

Uses LSTM autoencoders with surrogate models and SHAP explanations to interpret anomaly detection decisions on IoT sensor data.

The project trains LSTM autoencoders on the SWaT dataset, then explains detected anomalies via random-forest surrogate models and SHAP visualisations. A dashboard answers when, how, what, and why questions for different personas.

Team

Outcomes

Poster

Explainable Sensor Data-Driven Anomaly Detection in Internet of Things Systems

Moaz Tajammal Hussain and Charith Perera,

IEEE/ACM IoTDI 2022.