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ABSTRACT The economic and social impact of poor air quality in towns and cities is increasingly being 

recognised, together with the need for effective ways of creating awareness of real-time air quality levels 

and their impact on human health. With local authority maintained monitoring stations being 

geographically sparse and the resultant datasets also featuring missing labels, computational data-driven 

mechanisms are needed to address the data sparsity challenge. In this paper, we propose a machine 

learning-based method to accurately predict the Air Quality Index (AQI), using environmental monitoring 

data together with meteorological measurements. To do so, we develop an air quality estimation framework 

that implements a neural network that is enhanced with a novel Non-linear Autoregressive neural network 

with exogenous input (NARX) model, especially designed for time series prediction. The framework is 

applied to a case study featuring different monitoring sites in London, with comparisons against other 

standard machine-learning based predictive algorithms showing the feasibility and robust performance of 

the proposed method for different kinds of areas within an urban region. 

INDEX TERMS Air Quality Estimation, Air Pollution, Machine Learning Prediction, Neural Network  

I.    INTRODUCTION 
With the growing population of the world and the migration 

of people to urban areas [1], it becomes imperative to create 

an intelligent and sustainable environment that offers 

citizens a high quality of life and is geared towards 

supporting their well-being. The direct effect of this urban 

drift has had profound effects on social, economic and 

ecological systems, causing stresses on the environment 

and society. The social and economic implications include 

impacts from human activities such as transport, 

industrialization, combustion, construction etc., all of which 

have a direct or indirect bearing on the environment. These 

pollution sources have led to release of pollutants such as 

Nitrogen dioxide (NO2), Particulate Matter (PM), Sulphur 

dioxide (SO2) etc. into the atmosphere. 

It is recognized that air pollution is influenced by urban 

dynamics [2]. Recent media reports
1
 have highlighted the 

                                                 
1  https://www.theguardian.com/environment/2018/aug/28/too-dirty-to-

breathe-can-london-clean-up-its-toxic-air 

links between road traffic and large-scale construction 

activities with toxic air in towns and cities across the UK. 

Poor air quality has clear public health impacts, with 40,000 

deaths annually in the UK (9,500 in London) directly 

attributable to air pollution and exacerbating health 

conditions with those with heart or lung conditions [3]. 

Spikes in air pollution levels have also been directly linked 

with increased hospital and GP visits [4], pointing to 

additional costs faced by the public health service in treating 

conditions exacerbated by poor air quality. This calls for 

effective ways of creating awareness of real-time air quality 

levels and their impact on human health. 

Since air pollution is highly location dependent [2] and air 

quality monitoring sensors installed at fixed-site stations, 

though very accurate, have high installation costs, are bulky 

and geographically sparse (the UK’s DEFRA Automatic 

Urban and Rural Monitoring Network (AURN) has 168 sites 

covering the entire UK [5]), this poses challenges for 

evidence-based real-time air quality-related decision making, 

both for city authorities and citizens. Secondly, the data from 
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these monitoring stations has lots of missing labels due to the 

maintenance schedules of the devices in the station [6]. 

Since there are a large number of air pollutants, which can 

combine actively or reactively to form secondary pollutants, 

countries have adopted the Air Quality Index (AQI) as a 

measure of pollutants in the air. It is an easily understandable 

value that shows how polluted the air is or how polluted it 

will be in future. This information can be used to warn the 

public or sensitive groups about the state of pollution of the 

environment.  

Beginning with the first use in Toronto in 1969, AQI 

calculation and prediction has gained popularity and is 

widely adopted by many countries [7]. The complexity and 

number of factors affecting the AQI has motivated the use of 

computational intelligence techniques in the prediction of air 

quality, achieving higher accuracy than statistical methods 

such as moving average or linear or Gaussian interpolation 

[8]. The emerging paradigm of urban computing [9], which 

aims to analyse the correlations and patterns from urban big 

data to infer unknown knowledge [10], has researched 

various aspects of air pollution, for instance, by employing 

data-informed air quality prediction algorithms (to mitigate 

the data sparsity challenge [11]), with the developed 

Machine-Learning (ML)-based algorithms achieving a high 

performance in terms of the prediction accuracy and 

efficiency [8, 12, 13]. Most of these research works 

implement techniques to predict and identify patterns 

relevant to individual pollutant concentrations, for example, 

PM2.5 [6, 14], Carbon Monoxide (CO) [12, 13, 15], PM10 [8, 

16] and Nitrogen Oxides (NOx) [8, 15-17]. Other allied 

works seek to employ supervised methods that take into 

account historical AQI values in order to perform short-term 

predictions of AQI measures for the same or neighbouring 

regions [18, 19].  

However, it has been noted that there should be three 

stages involved in predicting AQI [20]: 1) establishment of 

an Air quality model, 2) identification of meteorology factors 

and forecast, and 3) doing the actual AQI forecast and 

estimation based on identified algorithms. The AQI 

calculation model choice is important since pollutants vary 

from place to place, for example, an urban area may be 

concerned about NO2 because of large vehicular presence, an 

industrialized area might want to monitor SO2 and a city like 

Madrid may be interested in pollen because of its prevalence 

in this region. Thus, the AQI model needs to consider 

individual pollutants or a combination of them. Meteorology 

is an influencing factor since it has been established that 

factors such as temperature, atmospheric pressure, relative 

humidity, wind speed and wind direction are dominant 

factors that influence pollutant concentration and by 

extension AQI [16]. 

To implement the requisite three phases and to address the 

data sparsity and unlabeled data challenges, this paper sets 

out a comprehensive air quality estimation framework that 

implements an AQI model encompassing a predictive 

algorithm for air quality index, given pollutant and 

meteorology data. The novel predictive method applies the 

Non-linear Autoregressive neural network with exogenous 

input (NARX) time series prediction model that considers 

meteorological inputs and previous pollutant values. The 

selected AQI calculation model also proposes and evaluates 

two approaches for AQI characterization and prediction: the 

first of which trains the NARX algorithm directly on the 

calculated historical AQI values, and the second predicts 

individual pollutant values before feeding them into the AQI 

calculation model. Evaluations based on a real-world dataset, 

and comparison to the state-of-the-art methods in terms of 

standard evaluation metrics, i.e., Root Mean Squared Error, 

Mean Absolute Percentage Error, and Band Accuracy, show 

the feasibility and performance improvements achieved from 

the proposed approach.  

The rest of the paper is organised as follows. Section 2 

provides a review of the related work and techniques for AQI 

and pollutant estimation. The details of the AQI calculation 

model and meteorology factors characteristics are described 

in Section 3. Section 4 presents the AQI estimation 

framework, including algorithmic details of the NARX 

predictive model. Section 5 presents the experiments 

performed on a dataset collected from a real-world 

deployment of monitoring sites across several boroughs of 

the city of London and also discusses the evaluation results 

based on the standard metrics by comparing to existing 

methods. Section 6 concludes the paper and outlines the 

future research directions. 

II. RELATED WORK 
Prediction of air quality levels is important for 

communicating pollution risks and exposure level. However, 

it is a complex measure to calculate since the form and 

dispersal patterns of pollutants are affected by environmental 

and meteorological factors. The early approach was human-

centred, where data collected from different monitoring 

stations were evaluated based on human experience; hence, 

making it unreliable. Currently, computational intelligence 

approaches involve use of smart algorithms such as decision 

trees, neural networks, self-organizing maps, support vector 

machines etc. in predicting air quality. This method is 

advantageous because of its high accuracy and computational 

efficiency [21]. 

Zhang et al [22] identified the major techniques for AQI 

forecasting to include simple empirical approach and 

statistical approach. The empirical approach is based on 

persistence, which factors in current AQI into the prediction 

of future AQI since it assumes that the current pollutant value 

has a direct effect on tomorrow’s predicted value. This 

approach is simple and good for stationary conditions but 

can’t handle sudden changes in pollutant and weather. 

Statistical approach relies on the fact that weather and 

pollutant concentrations are related statistically i.e. there is 

correlation between these two elements and therefore 
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regression and trained neural network functions are 

employed to forecast pollutant concentration.  

Machine learning-based approaches: Zhang et al. [22] 

mention the common algorithms to include Classification 

And Regression Tree (CART), Artificial Neural Network 

(ANN), and fuzzy logic. Their work noted that ANN has fast 

computational speed and an ability to learn and adapt itself to 

new instances. Moustris et al. [15] applied an ANN model 

for short-term forecasting of SO2, NO2, Ozone (O3) and CO 

levels across seven monitoring sites in Athens, with 

evaluation statistics showing a good agreement between 

predicted and observed pollutant values. The study 

concluded that ANN can be used effectively for time series 

prediction and is optimized for problems with big state 

variables or large dimensions. Hourly concentration of NO2 

and NO and meteorology were used in [17] to forecast their 

values using neural network and Support Vector Machine 

(SVM), with SVM’s ability to set the size of the hidden 

layers automatically providing better performance than ANN. 

Another finding from this was that factor-less prediction i.e. 

prediction without external variables, is fine but additional 

external variables greatly improve prediction. The downside 

of this is that if the external variables are predicted, then it 

could worsen the performance of the algorithm due to 

accumulated prediction error. The use of ANN for hourly 

prediction of pollutants was also demonstrated in [16], with 

known pollutant concentration values at 1, 2 and 3 hour, 

respectively, prior to the prediction, used to approximate the 

impact of background factors such as industrial, restaurant 

and resident emissions. This method was used to predict 

pollutant concentrations an hour in advance. Comparison of 

this ANN-based method with multiple linear regression 

models shows that regression models perform better for 

predicting CO and PM10 values, with mixed results for NO2 

(comparable performance) and O3 (ANN performs markedly 

better). The authors also introduced an ‘unknown-

background’ ANN method, where the predicted 

concentrations were used as background factors for the 

following hour prediction, resulting in improved performance 

for the ANN method. Grid-based forecasting of PM10 levels 

using ANN for a spatial classifier that co-trains a semi-

supervised model with spatial features such as points-of-

interest density and highway length, was used in [8]. This 

was extended with a temporal classifier based on conditional 

random field that considered temporal features such as traffic 

and meteorology. To address the problem of data sparsity 

from geographically sparse air quality monitoring stations 

installed by government agencies, HazeEst [13] and the work 

in [12] combined the data from static sites with mobile sensor 

data to forecast CO values for the metropolitan area of 

Sydney by training and evaluating a number of regression 

models. Their findings show that SVR has the same 

estimation accuracy as decision tree regression, but higher 

than multi-layer perceptron and linear regression.  

Deep Learning approaches: Recent studies [6, 14] have 

investigated the use of different deep learning neural 

networks to perform forecasting of pollutant concentrations. 

The Deep Air Learning (DAL) model [6] uses a sparse auto-

encoder to impose sparsity constraints on the input units to 

enable the irrelevant input features to be ignored and the 

main features relevant to the target to be explicitly revealed 

for association analysis. The deep neural network-based 

approach in [14] uses a spatial transformation component for 

spatial correlation and a distributed fusion network to merge 

all the influential factors for PM2.5 forecasting. 

Urban Computing approaches: Allied research on 

transport-related themes has considered the impact of 

weather changes on predicting traffic levels at different 

points in a city [23], and predicting transport carbon 

emissions within a city [24]. Recent studies have explored 

urban models to predict air quality in city districts by 

considering a range of spatio-temporal urban big data sources 

such as meteorology, vehicular traffic and points of interest 

(POI) [2]. It is worth noting that different cities and their 

public spaces are characterised differently based on their 

specific natural and built environment [23], which needs to 

be considered while calculating and predicting the pollution 

index and discovering the latent temporal and spatial 

patterns. 

From the review of existing works, it is apparent that 

several authors have used neural networks in their work to 

model and predict air quality and pollutant concentration. 

The choice of this machine learning algorithm is strongly 

based on its fast-computational attributes and its ability to 

learn and adapt to new instances. Hassan et al. [25] noted that 

air quality prediction has complex and non-linear patterns. 

These patterns of data can be efficiently handled by neural 

networks. Additional features in air quality prediction 

increase the dimension of data, and Hassan et al. stated that 

ANN is naturally suited for problems with large number of 

state variables. Neural networks’ ability to make 

generalizations given an input and its non-mapping capability 

makes it a good tool for time series prediction. Thus, in this 

work, we explore a neural network-based algorithm and 

incorporate a time delay to take into account prior pollutant 

concentrations into the prediction of future AQIs. Compared 

to the existing works, our work considers all individual 

pollutant concentrations to provide a comprehensive AQI 

characterisation and prediction framework. 

III.    BACKGROUND 
In this section, we first establish the adopted AQI calculation 

model, setting out how to calculate Air Quality Index (AQI) 

based on the collected dataset. The characteristics of the 

sensing sites that are used as the data sources are then 

presented and analysed. Then we present the statistics of the 

collected meteorological and pollution data. 

 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2884647, IEEE Access

 

VOLUME XX, 2017 4 

A.     AQI CALCULATION 
This section sets out the adopted AQI calculation model, 

which is the first stage for AQI estimation for an urban 

region. 

Choosing an appropriate model for representing AQI is 

challenging. A common and widely used model is that by the 

United States (US) Environmental Protection Agency (EPA), 

which identifies six major pollutants as AQI indicators. 

These include NO2, CO, O3, SO2, PM2.5 and PM10. The EPA 

model has widely been adopted by many countries, with 

slight modifications on the pollutant threshold level. The 

Department of Environmental and Food Research Agency 

(DEFRA) model is only applicable in the United Kingdom as 

it does not factor in CO in the AQI calculation. This is 

because of the steady decrease in carbon monoxide emissions 

in the UK over the past decade, due to decrease in CO 

emission sources such as road transport, iron and steel 

production and in the domestic sector as well [26]. On the 

other hand, the Common Air Quality Index (CAQI) proposed 

for use in Europe, which uses the same interpolation formula 

as the EPA model for calculating the individual AQI of 

pollutants, has a low tolerance of pollutants. This limits its 

applicability to serve as the basis of a warning system in 

countries outside Europe. 

In this paper, we adopt the EPA model for AQI 

calculation. This is because it can be applied across diverse 

regions, with a single pollutant concentration or a 

combination of two or more of these enough to compute 

AQI. As a result, the model enables the pollutants of interest 

in an area to be considered and also allows for different 

pollutants to form the key determinant for the AQI of that 

region, which may be the case due to the specific natural and 

built environment of that region. 

To compute AQI using the EPA model, the concentration 

of pollutants is measured and their Individual Air Quality 

Index (IAQI) is computed using the formula in equation 1, as 

given in [27]. The highest IAQI value becomes the AQI and 

the pollutant with the highest AQI becomes the key pollutant: 

( )Hi Lo
p P Lo Lo

Hi Lo

I I
AQI C BP I

BP BP

−= × − +
−

 (1) 

where pAQI is the index for pollutant p, PC is the truncated 

concentration of pollutant p, HiBP is the concentration 

breakpoint that is greater than or equal to PC , LoBP is the 

concentration breakpoint that is less than or equal to PC , 

HiI  and LoI are the AQI values corresponding to HiBP  and 

LoBP respectively. 

This model further converts the pollutant concentrations to 

a number on a scale of 0 to 500. Any number in excess of 

100 is considered unhealthy. This is further subdivided into 

six categories namely “0-50”, “51-100”, “101-200”, “201-

300”, “301-400”, “401-500”, with different countries having 

slight differences in the breakpoints for the above categories, 

which denote different levels of health concerns, ranging 

from Good (0-50) to Hazardous (>301). 

B.     AIR QUALITY MONITORING SITE 
CHARACTERISTICS 
LondonAir

2
, the London Air Quality Network (LAQN) 

website, provides the datasets from the large-scale 

deployment of air pollution monitoring sites across London. 

Sensing sites are deployed on different kinds of areas, with 

the designated types covering: Urban Background, Industrial, 

Rural, Suburban, and Kerbside. As different kinds of sites 

measure different observations, the sites in Table I are 

selected as both pollution and meteorological data are 

monitored and accessible from these sites. These seven 

selected monitoring sites are located in five boroughs of 

London. The framework developed in this paper has been 

applied to real data sources obtained in London, UK, and 

contains the following datasets: meteorological: temperature, 

wind speed, wind direction, rainfall, humidity, solar radiation 

and barometric pressure, collected every hour; air pollutants: 

real valued concentrations of six kinds of pollutants, 

consisting of NO2, PM10, PM2.5, CO, SO2 and O3, reported by 

                                                 
2 https://www.londonair.org.uk/LondonAir/Default.aspx 

TABLE I 

INFORMATION OF SENSING SITES 

Borough Site Site Type 

Barking and Dagenham Rush Green Suburban 

Bexely 
Belvedere West Urban Background 

Erith Industrial 

Reigate and Banstead 
Horley Suburban 

Poles Lane Rural 

Richmond Upon Thames Ntl Physical Lab Suburban 

Westminster Marylebone Road Kerbside 

 

TABLE II 

DATA STATISTICS OF SENSING SITES 

Site 

Meteorological Data Pollutant Data 
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NO2 100 14

Belvedere West Y Y Y 
 

Y 
  

Y Y Y Y 
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Y Y 
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PM10 90 50
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the ground-based monitoring stations every hour. The 

datasets were collected over a number of years (2013-17), 

covering the first five months of the year, i.e. January to end 

of May (inclusive), since we found these months to have the 

most complete datasets. 

As shown in Table II, all the monitoring sites report data 

for temperature, wind speed, wind direction, and NO2. The 

other observations are measured by some of the sites. The 

dominant pollutants are NO2, O3, and PM10 across the 

different sites. The dominant rate is derived by calculating 

the percentage of how many times the pollutant dominates in 

the calculation of the AQI of the area over the total number 

of measured records. It is apparent from the statistics in 

Table II that the datasets have missing records, for 

simplification, these rows are removed during the data 

cleaning stage of the experiments. However, this approach 

may result in some meaningful data being omitted. To 

overcome this problem, missing data estimation approaches, 

as proposed in our previous work [11], can be applied at the 

pre-processing step to obtain a complete dataset. Our 

approach simply assumes this step has already been done and 

the training dataset is ready to be processed by the approach.  

C.     POLLUTANTS AND METEOROLOGY 
Figure 1 shows the boxplots of the meteorological data of the 

different sensing sites. Except for the monitoring site of 

Horley, the temperature data shows a similar pattern for the 

different areas even in different years. This shows that there 

are small variations in temperature values in the inner 

boroughs of London, where the monitoring sites are located, 

over the winter and spring seasons for the evaluated years. 

The temperature data for Horley shows a median higher than 

that recorded at the other sites, but also contains extremely 

low minimum temperature values of -20 
◦

C, which might be 

attributed to the data containing outliers. Wind speed does 

not vary too much, with the median range from 1 to 2 m/s. 

However, the Poles Lane monitoring site reported some wind 

speed measurements much higher than that from the other 

sites. A possible reason for this is that the site is a rural area 

and may not have a substantial built environment near the 

site, which can act as an obstacle to the wind. Wind direction 

shows stable distributions across all sites. Wind direction was 

measured within a 360
◦

 angle (i.e. all directions) and the 

 

FIGURE 2.     Boxplot Showing the Distribution of Individual Pollutant 
Concentrations for the Different London Monitoring Stations. 

 

 

FIGURE 1.     Boxplot Comparing the Distribution of Different Meteorological 
Features for the London Monitoring Stations. 
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measurements were mostly dominated by one direction, i.e. 

around 200
◦

 to the north. Rainfall is reported by only two of 

the selected sites in the datasets. Most of the data is 

composed of 0 values and several of them are 1, 2, 3, and 4 

mm. Humidity is also measured by two sites; however, there 

is a large difference in the measured values, with the ‘urban 

background’ site of Belvedere West reporting higher 

humidity values than that of the suburban site in Horley. 

Solar radiation and pressure are only available for the Rush 

Green site; thus, it cannot be compared to the others. 

Figure 2 provides the boxplots of the measured pollutants 

values. NO2 is reported by all of the selected sites. NO2 

values at the kerbside site of Marylebone Road are much 

larger than those from the other sites. This is because NO2 is 

mostly generated by road traffic and corresponds to the 

kerbside location of this sensing site and the urban nature of 

this location. On the contrary, Marylebone Road has lower 

O3 values than those reported at the other sites, pointing to a 

possible inverse correlation; because O3 is a secondary 

pollutant formed by the reaction of NOx with hydrocarbons 

under ultraviolet light. The other observations of PM10 and 

PM2.5 show similar distributions but differences in the 

extreme values. For example, Marylebone Road contains 

high PM10 values, while Erith has large values reported for 

PM10 and PM2.5, pointing to a link to its industrial location. 

CO and SO2 are only measured at the Marylebone Road site 

in our datasets. These two pollutants show low 

concentrations at this site and are not considered the main 

source of pollution in London. 

Figure 3 shows the AQI distributions of the different 

sensing sites. Calculated AQI values of Rush Green and 

Horley show low values throughout, with more than 75% 

falling within the ‘Good’ band and the maximum AQI value 

in the Moderate band. The AQIs of Belvedere West, Erith, 

Poles Lane, and Ntl Physical Lab show a larger variance than 

the previous two sites. Although most of them are within the 

ranges of the Moderate and Good bands, some values are 

high and extend to the ‘Unhealthy’ and ‘Very Unhealthy’ 

bands. For the kerbside Marylebone Road site, most values 

are Good or Moderate, but the maximum calculated AQI 

reaches the ‘Hazardous’ range. 

 

FIGURE 3.     Boxplot Comparing the Air Quality Index Distributions for 
the Different London Monitoring Stations. 

IV.     AIR QUALITY ESTIMATION FRAMEWORK 
Figure 4 presents the proposed air quality estimation 

framework, which combines meteorological data as well as 

pollutant data with a one-step temporal delay to provide 

estimates of AQI values. The two approaches developed in 

this work are shown in Figure 4. Both approaches begin with 

a data cleaning phase. The left-hand side of Fig. 4, which 

depicts the first approach developed in this work for AQI 

estimation, AQIPredict, computes AQIs based on the original 

pollutant concentrations. It then trains a prediction model that 

applies meteorological data and the previously calculated 

AQIs to predict AQIs. On the other hand, the right-hand side 

of Fig. 4, which shows the second approach being proposed 

in this work, Pollutant2AQI, trains a prediction model 

directly with the meteorological data and the previous 

pollutant values to predict pollutant values. The individually 

predicted pollutant values are then used to compute the final 

estimates of AQI values.  

 

FIGURE 4.     Air Quality Estimation Framework. 

 

The Learning Model in the framework applies a Nonlinear 

Autoregressive Neural network with eXogenous input 

(NARX) [28, 29] to provide time series pollution data/AQI 

prediction with meteorological data as exogenous input. 

NARX is based on recurrent dynamic neural network, which 

has a memory of its previous state. The NARX will learn a 

function of equation: 

( ) ( , )t dy t f y −= meteorologicalx  (2) 

where t dy − is the previous value of y and d is the output time 

delay (1 in our experiments), meteorologicalx is a vector of 

meteorological data. 

The NARX can be trained by steepest descent algorithm, 

Newton’s method as well as Levenberg Marquardt (LM) 

algorithm [30, 31]. LM algorithm is applied in our 

framework and introduced below. The aim of the training is 

to get the weights for least square error. The sum of squared 
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error of NARX is defined as a function ( )E ω  of weights 

vector ω  with N samples. 

( )2

1

1
( ) ( )

2

N

q

E e
=

= ∑ω ω  (3) 

The Gauss-Newton method provides a solution of 

changing weights ∆ω  for a step as follows: 

1
2 ( ) ( )E E

−
 ∆ = − ∇ ∇ ω ω ω  (4) 

where 
2 ( )E∇ ω  is the Hessian matrix and ( )E∇ ω  is the 

gradient, which can be calculated by following equations: 

2 ( ) ( ) ( ) ( )T
E J J S∇ = +ω ω ω ω  (5) 

( ) ( ) ( )T
E J e∇ =ω ω ω  (6) 

where ( )J ω  is the Jacobian matrix of size N P× , P being 

the size of ω ; 

1 1 1

1

1

1

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

p P

q q q

p P

N N N

p P

e e e

e e e
J

e e e

ω ω ω

ω ω ω

ω ω ω

∂ ∂ ∂ 
 ∂ ∂ ∂
 
 
 ∂ ∂ ∂ =  ∂ ∂ ∂
 
 
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

ω ω ω

ω ω ω

ω

ω ω ω

L L

M O M O M

L L

M O M O M

L L

 (7) 

and 

2

1

( ) ( ) ( )
N

q q

q

S e e
=

= ∇∑ω ω ω  (8) 

Gauss-Newton method assumes ( ) 0S ≈ω , thus,  

1

( ) ( ) ( ) ( )T TJ J J e
−

 ∆ =  ω ω ω ω ω  (9) 

while the LM algorithm makes the following modification to 

it: 

1

( ) ( ) ( ) ( )T TJ J I J eµ
−

 ∆ = + ω ω ω ω ω   (10) 

where I is an identity unit matrix and µ  is a parameter 

controlling the size of the trust region. When µ  is large, the 

method turns into a steepest descent method with a small 

step size 1 µ , whereas it turns into Gauss-Newton method 

when 0µ = . If one step reduces overall error, µ  is 

divided by a factor β . Otherwise, µ  is multiplied by the 

factor. By defining 
( )

'( )
qk k

i ik

i

e
f net

net
δ

∂
= =

∂
ω

, the 

elements in Jacobian matrix can be written as  

,

, ,

( ) ( ) ( ) k
q q q ki

q p i jk k k

p i j i i j

e e e net
J o

net
δ

ω ω ω
∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂
ω ω ω

  (11) 

where q is the q
th
 sample, p is the p

th
 weight, ,

k

i jω  indicates 

the weight connects unit j to unit i in the k
th
 layer, 

k

inet is the 

input of unit i in the k
th
 layer, and jo  is the output of unit i 

from unit j in the (k-1)
th
 layer. The relations of them are: 

1

1

,

kM
k k k k

i i j j i

j

net o bω
−

−= +∑   (12) 

where 
1k

M −  is the number of units in layer k-1; 

and 

( )
k k

i io f net=   (13) 

This can be computed by backpropagation algorithm 

'( )
T

f=k k k+1 k+1
δ net ω δ   (14) 

Algorithm 1. LM Training 

 

1. INPUT: Training dataset d 

2. OUTPUT: Converged network net  

 

3. Compute outputs of the network net based on the inputs in d 

using Equations (12) and (13) 

4. Compute the sum of squared errors E of net using Equation (3) 

5. Compute the Jacobian matrix J using Equations (15) (14) (11) 

and (7) 

6. Get changing of weights ∆ω  using Equation (10) 

7. Compute sum of squared errors Enew of a network using new 

weights = + ∆newω ω ω   

8. IF Enew < E 

9.     Reduce µ  in Equation (10) by β  

10.     Apply newω  to net 

11.     IF converged 

12.         Stop and return net 

13.     ELSE 
14.         Repeat from Line 3 

15.     END IF 

16. ELSE 

17.     Increase µ  by β ,  

18.     Repeat from Line 6 

19. END IF 

20. The algorithm is converged when the norm of the gradient 

( )E∇ ω  (Equation (6)) is less than a predefined value, or 

when the sum of squared errors E has been reduced to a certain 

error goal. 
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where '( )f
knet  is the derivative of function in of a unit in 

layer k with respect to its input, with a modification at the 

final layer. 

'( )L L
fδ = − net   (15) 

where L indicates the final layer. 

Algorithm 1. LM Training describes the process of 

training a neural network with LM algorithms. Given a 

Training dataset d, LM algorithm iteratively adapts weights 

in the network until it is converged. In the first iteration, it 

calculates outputs of an initial network net based on 

Equations (12), (13), and inputs in d (Line 3). With those 

outputs and original outputs in d, the sum of squared errors E 

can be obtained according to Equation (3) (Line 4). The 

algorithm then computes the Jacobian matrix and gets 

changing of weights of net (Line 5-6). New weights are 

calculated and applied to a network to compute sum of 

squared errors Enew based on d (Line 7). If Enew < E, µ in 

Equation (10) is reduced by β, the new weights are applied to 

the net to continue the next iteration (from Line 3); otherwise 

µ in Equation (10) is increased by β, the algorithm re-

computes (from Line 6) changing of weights of net and 

compares new errors with E (Line 8-19). During this check, 

if the algorithm converges under the condition at Line 20, the 

final trained net is returned. 

 

V.     EXPERIMENTS AND RESULTS 
To evaluate our proposed AQI estimation methods, we 

design experiments to compare the two proposed approaches 

for AQI prediction introduced in Figure 4 with different 

learning algorithms, i.e., Linear Regression (LR) [32], 

Logistic Regression (LoR) [33], SVR [34, 35], and NARX 

[30, 31], with the datasets described in Section III. The 

algorithms are implemented using the Statistics and Machine 

Learning Toolbox and Deep Learning Toolbox in Matlab 

R2017b. The NARX neural network applies 10 hidden 

layers. The meteorological data are set without any time 

delay while the pollution data/AQIs are set with one-step 

time delay. The experiments randomly choose 75% data for 

training and 15% for testing. For the proposed NARX-based 

method, another 15% are used for validation. All the methods 

are performed 10 times and evaluated by using the mean 

values of the following evaluation metrics: Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and band accuracy. RMSE and MAPE are 

calculated as per equations 16 and 17, and band accuracy is 

the percentage of how many predicted AQIs are in the same 

band of actual AQIs over the total number of data points in 

the test set.  

2

1

1
ˆ( )

n

i

RMSE
i in

y y
=

= −∑   (16) 

1

ˆ100 n
i i

i i

y y
MAPE

n y=

−= ∑   (17) 

where n is the number of data points in the test set; ˆ
i

y is the 

predicted value for the ith input, and yi is the corresponding 

target value. 

A.     AQI PREDICTION: RESULTS AND DISCUSSION 
In the results’ diagrams, we use AQIPredict to indicate 

Approach 1 that uses meteorological data and historical 

values of AQI (calculated from the individual pollutants’ 

concentrations using Eq. 1, prior to training) to predict future 

AQI values. We use Pollutant2AQI to present Approach 2 

that uses meteorological data and the historical pollutants 

values to predict individual pollutant values and then 

computes the AQIs based on predicted values, using Eq. 1.  

(a) Root Mean Squared Error (RMSE) 

 
(b) Mean Absolute Percentage Error (MAPE) 

 

 
(c) Heatmap of Band Accuracy 

FIGURE 5.     Results of AQI Prediction of Different ML Approaches. 
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Figure 5 (a), (b) and (c) show the results for RMSE, 

MAPE and band accuracy, respectively, for the predicted 

AQI values. It is clear that the results vary a lot across the 

different sensing sites. This is because firstly, the different 

monitoring sites are sited differently (e.g. kerbside vs. rural 

location) and located in different kinds of areas which have 

different meteorological and pollution characteristics. 

Secondly, these sensing sites measure different 

meteorological and pollution data, thus features of the model 

are different between different sites. Thirdly, pollutants’ 

concentrations are dispersed differently and dominate 

different areas, depending upon on a number of factors such 

as industrial activities, vehicular emissions, human activities 

such as construction, etc.  

According to Table II, Rush Green is a site recording six 

kinds of meteorological data but only one type of pollution 

data: NO2. Its AQI in Fig. 3 shows that the pollution values 

range from 0 to around 100 and most of them are below 25, 

i.e., the AQIs are always in the ‘Good’ band. For these 

reasons, all the methods perform well on this dataset 

achieving a band accuracy of close to 100% (over 99.6%, see 

Fig. 5c). With respect to RMSE and MAPE, the proposed 

NARX methods perform the best on both approaches. It is 

worth noting that even though the RMSE values do not show 

much difference between the evaluated machine learning 

algorithms, the MAPE values of LoR on both AQIPredict 

and Pollutant2AQI are much worse than the others. This is 

due to the fact that the AQI data values from Rush Green are 

small, hence, a small number of errors may not reflect much 

on the RMSE value but may show up in the MAPE which is 

significantly affected when the calculation involves the ratio 

of small actual values.  

Another similar sensing site is Horley, which records four 

meteorological features and two pollutants’ data: NO2 and 

PM10 (with PM10 the dominant pollutant). The mean values 

of AQIs of this site are slightly higher than that of Rush 

Green, nevertheless, almost all the AQIs fall within the 

‘Good’ band. Hence, the band accuracies of predicted values 

from this site are also close to 100 percent (over 99.1%, see 

Fig. 5c). RMSE and MAPE values are low for all the 

methods. RMSE values are close to each other as shown in 

Fig. 5a, but the MAPE results of the Pollutant2AQI methods 

are less than those of AQIPredict methods. Among them, the 

proposed Pollutant2AQI NARX method performs the best 

for both evaluations. For band accuracy, Pollutant2AQI 

NARX reaches an accuracy of 99.13%, slightly less than the 

best achieved result of 99.42% obtained by Pollutant2AQI 

LR and Pollutant2AQI LoR.  

Belvedere West is a site with four meteorological features 

and four kinds of pollution data: NO2, PM10, O3 (dominant 

pollutant), and PM2.5. AQIs of this site ranges from 0 to 

around 250, covering five bands. Most of the AQIs are 

located in the Good and Moderate bands. With regards to the 

evaluation results for this site, Pollutant2AQI NARX 

performs the best for all three metrics. 

The Erith sensing site monitors three meteorological 

features and three kinds of pollutants: NO2, PM10 (dominant), 

and PM2.5. The AQIs of this site range from 0 to around 170, 

covering four bands, with the majority of the AQI values 

falling within the Good and Moderate bands. The AQIPredict 

LR method performs the best for RMSE (Fig. 5a) and band 

accuracy (Fig. 5c), while the Pollutant2AQI SVR performs 

the best for MAPE (Fig. 5b). Overall, the Pollutant2AQI 

methods have higher RMSE values but lower MAPEs. This 

shows that Pollutant2AQI methods can perform accurate 

predictions when the actual values are small; however, for 

points where actual values are large, the predicted values of 

Pollutant2AQI methods are further from the actual values 

than those of other methods, which results in large RMSE 

values but still small MAPE values. 

Poles Lane and Ntl Physical Lab are two similar sites, 

which monitor the same three meteorological features and 

two kinds of pollution data: NO2 and O3 (dominant). Boxplot 

figures in Figure 3 show that their AQIs’ distributions are 

also similar. Compared to the other sites, RMSEs of these 

two sites are larger, band accuracies are smaller, but MAPEs 

do not show much difference. An interesting finding is that 

AQIPredict NARX performs the best for the RMSE and 

MAPE evaluations for both sites, but Pollutant2AQI NARX 

has a better band accuracy than AQIPredict NARX. For 

Poles Lane, Pollutant2AQI NARX achieves the best band 

accuracy, while for Ntl Physical Lab, band accuracy is about 

5% lower than those of Poles Lane, and Pollutant2AQI SVR 

achieves the best band accuracy.  

The Marylebone Road kerbside site measures three 

meteorological features and five kinds of pollution data: NO2 

(dominant), PM10, O3, CO and SO2. The majority of the AQI 

values of this site are close to 50, which is the boundary 

between the Good and Moderate band. However, the 

maximum AQI values reach the Hazardous band, i.e., the 

values cover the entire range of the 6 AQI bands; from Good 

to Hazardous. For the prediction performance for this site, 

AQIPredict NARX achieves the best RMSE, Pollutant2AQI 

NARX achieves the best MAPE, while AQIPredict LoR 

achieves the best band accuracy.  

To summarise, for RMSE, Pollutant2AQI NARX and 

AQIPredict NARX perform the best on datasets from three 

sites each, with AQIPredict LR showing the best 

performance on the seventh case. For MAPE values (see Fig. 

5b), Pollutant2AQI NARX performs the best on datasets 

from four sites, AQIPredict NARX performs the best on two, 

and Pollutant2AQI SVR performs the best on one. It is a 

mixed picture for band accuracy as shown in Fig. 5c, with 

Pollutant2AQI NARX showing the best performance for 

three datasets, AQIPredict LR, AQIPredict LoR, and 

Pollutant2AQI SVR separately showing the best performance 

on one dataset each, and Pollutant2AQI LR and 

Pollutant2AQI LoR tied in for similar accuracies on the last 

one. Taking into account all the datasets from the seven sites, 

Pollutant2AQI NARX performs the best on most of the 
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datasets, and provides competitive results for the rest. This 

indicates that Pollutant2AQI NARX has robust performance 

for different kinds of datasets and can be recommended for 

AQI prediction.  

B.     POLLUTANT PREDICTION: RESULT AND 
DISCUSSION 
In addition to AQI prediction, we also compared MAPEs for 

the prediction of the individual pollutant values (as part of 

the Pollutant2AQI approach) by the different methods, i.e., 

LR, LoR, SVR, and NARX. The results are presented in 

Figure 6. We get the worst performance with LoR as the 

training algorithm across most of the datasets, with the only 

exception being the MAPE results for PM10 data from Horley 

and the CO data from Marylebone Road (second lowest 

MAPE value). For NO2, the proposed NARX approach 

performs the best for 6 sites, while SVR performs the best on 

data from Belvedere West. Both SVR and NARX get the 

same MAPE on NO2 data from Marylebone Road. However, 

the NARX method does not appear to be the best one for 

predicting PM10 data. Among the four sites monitoring PM10 

concentrations, LR achieves the two best MAPEs, while LoR 

and SVR achieving the best MAPE values on one dataset 

each. For O3 data, NARX performs the best for two datasets, 

with LR and SVR performing well on one each. SVR also 

performs the best on one PM2.5 dataset with NARX performs 

the best on the other one. NARX performs well for both SO2 

and CO datasets. 

Overall, NARX can achieve a good performance for 

prediction of pollution data except for that of PM10. 

Therefore, for predicting AQIs, NARX can be used on areas 

whose dominant pollutant is not PM10, with LR proving to be 

a better choice for such locations. This is in agreement with 

findings in the existing literature [16], where multiple linear 

regression models achieved better results than ANN for mean 

relative and absolute error percentages as well as for RMSE 

for PM10 concentration predictions. 

VI.     CONCLUSIONS AND NEXT STEPS 
In this paper we propose two approaches for AQI estimation 

and prediction, both based on meteorological and historical 

pollutant data; one learns a model based on the previous AQI 

and meteorological data to predict AQIs, the other learns 

models based on the previous pollution data and 

meteorological data to predict pollution concentrations first 

and then compute AQIs. Both approaches can get good band 

accuracy (over 75%), as shown on the evaluations conducted 

across various datasets. The best approach is the latter 

approach combined with neural network, which achieves the 

lowest RMSE and MAPE across most of the evaluated 

datasets. This approach gets very good band accuracies 

(more than 81%) on all the datasets. However, by further 

analysing the individual pollutant value prediction step, we 

found that a neural network-based method is not the optimum 

at predicting PM10 data. Therefore, we recommend using 

linear regression to predict AQI if the dominant pollution is 

PM10 in the area of interest. In summary, the results show the 

feasibility of our proposed approaches for predicting AQIs 

based on meteorological data and the historical pollutant 

data/AQIs.  

In the future, we plan to analyse correlations between 

sensing sites located close to each other to uncover latent 

similarities in pollutant or AQI patterns and to analyse if they 

are influenced by other environment factors such as green 

cover or traffic. We also plan to further extend the analysis of 

impact on air quality from different types of sensing areas 

across different cities. Another future work is to infer the 

latent diurnal and seasonal pollution data patterns in different 

parts of a city according to its built environment. 
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