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ABSTRACT The economic and social impact of poor air quality in towns and cities is increasingly being
recognised, together with the need for effective ways of creating awareness of real-time air quality levels
and their impact on human health. With local authority maintained monitoring stations being
geographically sparse and the resultant datasets also featuring missing labels, computational data-driven
mechanisms are needed to address the data sparsity challenge. In this paper, we propose a machine
learning-based method to accurately predict the Air Quality Index (AQI), using environmental monitoring
data together with meteorological measurements. To do so, we develop an air quality estimation framework
that implements a neural network that is enhanced with a novel Non-linear Autoregressive neural network
with exogenous input (NARX) model, especially designed for time series prediction. The framework is
applied to a case study featuring different monitoring sites in London, with comparisons against other
standard machine-learning based predictive algorithms showing the feasibility and robust performance of

the proposed method for different kinds of areas within an urban region.

INDEX TERMS Air Quality Estimation, Air Pollution, Machine Learning Prediction, Neural Network

I. INTRODUCTION
With the growing population of the world and the migration
of people to urban areas [1], it becomes imperative to create
an intelligent and sustainable environment that offers
citizens a high quality of life and is geared towards
supporting their well-being. The direct effect of this urban
drift has had profound effects on social, economic and
ecological systems, causing stresses on the environment
and society. The social and economic implications include
impacts from human activities such as transport,
industrialization, combustion, construction etc., all of which
have a direct or indirect bearing on the environment. These
pollution sources have led to release of pollutants such as
Nitrogen dioxide (NO,), Particulate Matter (PM), Sulphur
dioxide (SO,) etc. into the atmosphere.

It is recognized that air pollution is influenced by urban
dynamics [2]. Recent media reports' have highlighted the

' https://www.theguardian.com/environment/2018/aug/28/too-dirty-to-

breathe-can-london-clean-up-its-toxic-air
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links between road traffic and large-scale construction
activities with toxic air in towns and cities across the UK.
Poor air quality has clear public health impacts, with 40,000
deaths annually in the UK (9,500 in London) directly
attributable to air pollution and exacerbating health
conditions with those with heart or lung conditions [3].
Spikes in air pollution levels have also been directly linked
with increased hospital and GP visits [4], pointing to
additional costs faced by the public health service in treating
conditions exacerbated by poor air quality. This calls for
effective ways of creating awareness of real-time air quality
levels and their impact on human health.

Since air pollution is highly location dependent [2] and air
quality monitoring sensors installed at fixed-site stations,
though very accurate, have high installation costs, are bulky
and geographically sparse (the UK’s DEFRA Automatic
Urban and Rural Monitoring Network (AURN) has 168 sites
covering the entire UK [5]), this poses challenges for
evidence-based real-time air quality-related decision making,
both for city authorities and citizens. Secondly, the data from
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these monitoring stations has lots of missing labels due to the
maintenance schedules of the devices in the station [6].

Since there are a large number of air pollutants, which can
combine actively or reactively to form secondary pollutants,
countries have adopted the Air Quality Index (AQI) as a
measure of pollutants in the air. It is an easily understandable
value that shows how polluted the air is or how polluted it
will be in future. This information can be used to warn the
public or sensitive groups about the state of pollution of the
environment.

Beginning with the first use in Toronto in 1969, AQI
calculation and prediction has gained popularity and is
widely adopted by many countries [7]. The complexity and
number of factors affecting the AQI has motivated the use of
computational intelligence techniques in the prediction of air
quality, achieving higher accuracy than statistical methods
such as moving average or linear or Gaussian interpolation
[8]. The emerging paradigm of urban computing [9], which
aims to analyse the correlations and patterns from urban big
data to infer unknown knowledge [10], has researched
various aspects of air pollution, for instance, by employing
data-informed air quality prediction algorithms (to mitigate
the data sparsity challenge [11]), with the developed
Machine-Learning (ML)-based algorithms achieving a high
performance in terms of the prediction accuracy and
efficiency [8, 12, 13]. Most of these research works
implement techniques to predict and identify patterns
relevant to individual pollutant concentrations, for example,
PM, 5 [6, 14], Carbon Monoxide (CO) [12, 13, 15], PMy, [8,
16] and Nitrogen Oxides (NO,) [8, 15-17]. Other allied
works seek to employ supervised methods that take into
account historical AQI values in order to perform short-term
predictions of AQI measures for the same or neighbouring
regions [18, 19].

However, it has been noted that there should be three
stages involved in predicting AQI [20]: 1) establishment of
an Air quality model, 2) identification of meteorology factors
and forecast, and 3) doing the actual AQI forecast and
estimation based on identified algorithms. The AQI
calculation model choice is important since pollutants vary
from place to place, for example, an urban area may be
concerned about NO, because of large vehicular presence, an
industrialized area might want to monitor SO, and a city like
Madrid may be interested in pollen because of its prevalence
in this region. Thus, the AQI model needs to consider
individual pollutants or a combination of them. Meteorology
is an influencing factor since it has been established that
factors such as temperature, atmospheric pressure, relative
humidity, wind speed and wind direction are dominant
factors that influence pollutant concentration and by
extension AQI [16].

To implement the requisite three phases and to address the
data sparsity and unlabeled data challenges, this paper sets
out a comprehensive air quality estimation framework that
implements an AQI model encompassing a predictive
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algorithm for air quality index, given pollutant and
meteorology data. The novel predictive method applies the
Non-linear Autoregressive neural network with exogenous
input (NARX) time series prediction model that considers
meteorological inputs and previous pollutant values. The
selected AQI calculation model also proposes and evaluates
two approaches for AQI characterization and prediction: the
first of which trains the NARX algorithm directly on the
calculated historical AQI values, and the second predicts
individual pollutant values before feeding them into the AQI
calculation model. Evaluations based on a real-world dataset,
and comparison to the state-of-the-art methods in terms of
standard evaluation metrics, i.e., Root Mean Squared Error,
Mean Absolute Percentage Error, and Band Accuracy, show
the feasibility and performance improvements achieved from
the proposed approach.

The rest of the paper is organised as follows. Section 2
provides a review of the related work and techniques for AQI
and pollutant estimation. The details of the AQI calculation
model and meteorology factors characteristics are described
in Section 3. Section 4 presents the AQI estimation
framework, including algorithmic details of the NARX
predictive model. Section 5 presents the experiments
performed on a dataset collected from a real-world
deployment of monitoring sites across several boroughs of
the city of London and also discusses the evaluation results
based on the standard metrics by comparing to existing
methods. Section 6 concludes the paper and outlines the
future research directions.

Il. RELATED WORK

Prediction of air quality levels is important for
communicating pollution risks and exposure level. However,
it is a complex measure to calculate since the form and
dispersal patterns of pollutants are affected by environmental
and meteorological factors. The early approach was human-
centred, where data collected from different monitoring
stations were evaluated based on human experience; hence,
making it unreliable. Currently, computational intelligence
approaches involve use of smart algorithms such as decision
trees, neural networks, self-organizing maps, support vector
machines etc. in predicting air quality. This method is
advantageous because of its high accuracy and computational
efficiency [21].

Zhang et al [22] identified the major techniques for AQI
forecasting to include simple empirical approach and
statistical approach. The empirical approach is based on
persistence, which factors in current AQI into the prediction
of future AQI since it assumes that the current pollutant value
has a direct effect on tomorrow’s predicted value. This
approach is simple and good for stationary conditions but
can’t handle sudden changes in pollutant and weather.
Statistical approach relies on the fact that weather and
pollutant concentrations are related statistically i.e. there is
correlation between these two elements and therefore
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regression and trained neural network functions are
employed to forecast pollutant concentration.

Machine learning-based approaches. Zhang et al. [22]
mention the common algorithms to include Classification
And Regression Tree (CART), Artificial Neural Network
(ANN), and fuzzy logic. Their work noted that ANN has fast
computational speed and an ability to learn and adapt itself to
new instances. Moustris et al. [15] applied an ANN model
for short-term forecasting of SO,, NO,, Ozone (O;) and CO
levels across seven monitoring sites in Athens, with
evaluation statistics showing a good agreement between
predicted and observed pollutant values. The study
concluded that ANN can be used effectively for time series
prediction and is optimized for problems with big state
variables or large dimensions. Hourly concentration of NO,
and NO and meteorology were used in [17] to forecast their
values using neural network and Support Vector Machine
(SVM), with SVM’s ability to set the size of the hidden
layers automatically providing better performance than ANN.
Another finding from this was that factor-less prediction i.e.
prediction without external variables, is fine but additional
external variables greatly improve prediction. The downside
of this is that if the external variables are predicted, then it
could worsen the performance of the algorithm due to
accumulated prediction error. The use of ANN for hourly
prediction of pollutants was also demonstrated in [16], with
known pollutant concentration values at 1, 2 and 3 hour,
respectively, prior to the prediction, used to approximate the
impact of background factors such as industrial, restaurant
and resident emissions. This method was used to predict
pollutant concentrations an hour in advance. Comparison of
this ANN-based method with multiple linear regression
models shows that regression models perform better for
predicting CO and PM,, values, with mixed results for NO,
(comparable performance) and O; (ANN performs markedly
better). The authors also introduced an ‘unknown-
background” ANN method, where the predicted
concentrations were used as background factors for the
following hour prediction, resulting in improved performance
for the ANN method. Grid-based forecasting of PM;, levels
using ANN for a spatial classifier that co-trains a semi-
supervised model with spatial features such as points-of-
interest density and highway length, was used in [8]. This
was extended with a temporal classifier based on conditional
random field that considered temporal features such as traffic
and meteorology. To address the problem of data sparsity
from geographically sparse air quality monitoring stations
installed by government agencies, HazeEst [13] and the work
in [12] combined the data from static sites with mobile sensor
data to forecast CO values for the metropolitan area of
Sydney by training and evaluating a number of regression
models. Their findings show that SVR has the same
estimation accuracy as decision tree regression, but higher
than multi-layer perceptron and linear regression.
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Deep Learning approaches. Recent studies [6, 14] have
investigated the use of different deep learning neural
networks to perform forecasting of pollutant concentrations.
The Deep Air Learning (DAL) model [6] uses a sparse auto-
encoder to impose sparsity constraints on the input units to
enable the irrelevant input features to be ignored and the
main features relevant to the target to be explicitly revealed
for association analysis. The deep neural network-based
approach in [14] uses a spatial transformation component for
spatial correlation and a distributed fusion network to merge
all the influential factors for PM, 5 forecasting.

Urban Computing approaches. Allied research on
transport-related themes has considered the impact of
weather changes on predicting traffic levels at different
points in a city [23], and predicting transport carbon
emissions within a city [24]. Recent studies have explored
urban models to predict air quality in city districts by
considering a range of spatio-temporal urban big data sources
such as meteorology, vehicular traffic and points of interest
(POD [2]. It is worth noting that different cities and their
public spaces are characterised differently based on their
specific natural and built environment [23], which needs to
be considered while calculating and predicting the pollution
index and discovering the latent temporal and spatial
patterns.

From the review of existing works, it is apparent that
several authors have used neural networks in their work to
model and predict air quality and pollutant concentration.
The choice of this machine learning algorithm is strongly
based on its fast-computational attributes and its ability to
learn and adapt to new instances. Hassan et al. [25] noted that
air quality prediction has complex and non-linear patterns.
These patterns of data can be efficiently handled by neural
networks. Additional features in air quality prediction
increase the dimension of data, and Hassan et al. stated that
ANN is naturally suited for problems with large number of
state variables. Neural networks’ ability to make
generalizations given an input and its non-mapping capability
makes it a good tool for time series prediction. Thus, in this
work, we explore a neural network-based algorithm and
incorporate a time delay to take into account prior pollutant
concentrations into the prediction of future AQIs. Compared
to the existing works, our work considers all individual
pollutant concentrations to provide a comprehensive AQI
characterisation and prediction framework.

IIl. BACKGROUND

In this section, we first establish the adopted AQI calculation
model, setting out how to calculate Air Quality Index (AQI)
based on the collected dataset. The characteristics of the
sensing sites that are used as the data sources are then
presented and analysed. Then we present the statistics of the
collected meteorological and pollution data.
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TABLEI
INFORMATION OF SENSING SITES
Borough Site Site Type
Barking and Dagenham Rush Green Suburban
Belvedere West Urban Background
Bexely
Erith Industrial
Horley Suburban
Reigate and Banstead
Poles Lane Rural
Richmond Upon Thames| Ntl Physical Lab Suburban
Westminster Marylebone Road Kerbside

A. AQI CALCULATION

This section sets out the adopted AQI calculation model,
which is the first stage for AQI estimation for an urban
region.

Choosing an appropriate model for representing AQI is
challenging. A common and widely used model is that by the
United States (US) Environmental Protection Agency (EPA),
which identifies six major pollutants as AQI indicators.
These include NO,, CO, O3, SO,, PM, 5 and PM;,. The EPA
model has widely been adopted by many countries, with
slight modifications on the pollutant threshold level. The
Department of Environmental and Food Research Agency
(DEFRA) model is only applicable in the United Kingdom as
it does not factor in CO in the AQI calculation. This is
because of the steady decrease in carbon monoxide emissions
in the UK over the past decade, due to decrease in CO
emission sources such as road transport, iron and steel
production and in the domestic sector as well [26]. On the
other hand, the Common Air Quality Index (CAQI) proposed
for use in Europe, which uses the same interpolation formula
as the EPA model for calculating the individual AQI of
pollutants, has a low tolerance of pollutants. This limits its
applicability to serve as the basis of a warning system in
countries outside Europe.

In this paper, we adopt the EPA model for AQI
calculation. This is because it can be applied across diverse
regions, with a single pollutant concentration or a
combination of two or more of these enough to compute
AQI. As a result, the model enables the pollutants of interest
in an area to be considered and also allows for different
pollutants to form the key determinant for the AQI of that
region, which may be the case due to the specific natural and
built environment of that region.

To compute AQI using the EPA model, the concentration
of pollutants is measured and their Individual Air Quality
Index (IAQI) is computed using the formula in equation 1, as
given in [27]. The highest IAQI value becomes the AQI and
the pollutant with the highest AQI becomes the key pollutant:

I, —1
AQI =—1H_ Lo x(C,—BP )+I 1
Q P BPHI‘_BPLU ( P Lo) Lo ( )
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TABLE II
DATA STATISTICS OF SENSING SITES

Meteorological Data] Pollutant Data
S|~
Ll .§ .5 %‘ 2|
Site 21818|=121E 8l .l 2| |- g (2|8
SlalzlsIRB 28 < <l< ol &
23E5|E|12| 2|2 1EPIZI1012] & |£|%
E|E|2 |2 5|& — | s|.8
15} = = e o =R
e|Z S S S |E|E
« g |=

[a)

Rush Green Y|Y[Y|Y Y(Y|Y NO, (100] 14
Belvedere West [[Y|Y |Y Y Y Y|Y O3 | 6920
Erith Y|Y|Y Y|Y Y PM,, | 9050
Horley Y|IY|Y|Y|Y Y|Y PM,, | 80[37
Poles Lane Y|Y|Y Y Y O; | 86 6
Ntl Physical Lab [ Y |Y |Y Y O; | 88|41
Marylebone Road||Y | Y |Y Y|Y|Y Y|Y|[NO, | 71|34

where AQI , is the index for pollutant p, C, is the truncated
concentration of pollutant p, BPHi is the concentration
breakpoint that is greater than or equal to Cp,, BF, is the
concentration breakpoint that is less than or equal to C,,
I, and I, are the AQI values corresponding to BF,;; and
BP,  respectively.

This model further converts the pollutant concentrations to
a number on a scale of 0 to 500. Any number in excess of
100 is considered unhealthy. This is further subdivided into
six categories namely “0-507, “51-100”, “101-200”, “201-
3007, “301-4007, “401-500", with different countries having
slight differences in the breakpoints for the above categories,
which denote different levels of health concerns, ranging
from Good (0-50) to Hazardous (>301).

B. AIR QUALITY MONITORING SITE
CHARACTERISTICS

LondonAir*, the London Air Quality Network (LAQN)
website, provides the datasets from the large-scale
deployment of air pollution monitoring sites across London.
Sensing sites are deployed on different kinds of areas, with
the designated types covering: Urban Background, Industrial,
Rural, Suburban, and Kerbside. As different kinds of sites
measure different observations, the sites in Table I are
selected as both pollution and meteorological data are
monitored and accessible from these sites. These seven
selected monitoring sites are located in five boroughs of
London. The framework developed in this paper has been
applied to real data sources obtained in London, UK, and
contains the following datasets: meteorological: temperature,
wind speed, wind direction, rainfall, humidity, solar radiation
and barometric pressure, collected every hour; air pollutants:
real valued concentrations of six kinds of pollutants,
consisting of NO,, PM,y, PM, 5, CO, SO, and O, reported by

2 https://www.londonair.org.uk/LondonAir/Default.aspx
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FIGURE 1. Boxplot Comparing the Distribution of Different Meteorological
Features for the London Monitoring Stations.

the ground-based monitoring stations every hour. The
datasets were collected over a number of years (2013-17),
covering the first five months of the year, i.e. January to end
of May (inclusive), since we found these months to have the
most complete datasets.

As shown in Table II, all the monitoring sites report data
for temperature, wind speed, wind direction, and NO,. The
other observations are measured by some of the sites. The
dominant pollutants are NO,, Oz, and PMj, across the
different sites. The dominant rate is derived by calculating
the percentage of how many times the pollutant dominates in
the calculation of the AQI of the area over the total number
of measured records. It is apparent from the statistics in
Table II that the datasets have missing records, for
simplification, these rows are removed during the data

VOLUME XX, 2017

. =

! I

‘ I

— ‘T ! o |

150 . |

_g | B | % 300 . :

El } } ! 2 | |

o R | : 5 1 |

=z Lo P! o T I

50 é Q E}‘I | | 10011 |

|
1

ol T T E JE T L

o @ &

g 3§ g &

c = s g 2 = @

2 e £ 8 g o 5

s . 3:3 3 . 3

§ 2 F 3t ¢ g .8 ¢

g 4 & £ & 2 £ & 5 2 2
150 - 1507 T .
| | 30 | !

[
- ! L s 15
£ 100 } r?E‘ 10001 | = 20 | % :
E) | S b E) ‘ =) I
2 | 3 ! 2 ‘ g |
= T 15 | £
& T ‘ o’ | ol Q
50 | 50

g Lo : H @10 H Cos H
; Q o E 5 [ I
ol T T ottt 4 a 1 0 1
% 5 2§ g g
@ a S 14 '3
= =, a2 @ @
o ® c o 5 < c
: s f43 ; 5
T . TyE oz = >
2 o a8 z2 £ £

FIGURE 2. Boxplot Showing the Distribution of Individual Pollutant
Concentrations for the Different London Monitoring Stations.

cleaning stage of the experiments. However, this approach
may result in some meaningful data being omitted. To
overcome this problem, missing data estimation approaches,
as proposed in our previous work [11], can be applied at the
pre-processing step to obtain a complete dataset. Our
approach simply assumes this step has already been done and
the training dataset is ready to be processed by the approach.

C. POLLUTANTS AND METEOROLOGY

Figure 1 shows the boxplots of the meteorological data of the
different sensing sites. Except for the monitoring site of
Horley, the temperature data shows a similar pattern for the
different areas even in different years. This shows that there
are small variations in temperature values in the inner
boroughs of London, where the monitoring sites are located,
over the winter and spring seasons for the evaluated years.
The temperature data for Horley shows a median higher than
that recorded at the other sites, but also contains extremely
low minimum temperature values of -20 C, which might be
attributed to the data containing outliers. Wind speed does
not vary too much, with the median range from 1 to 2 m/s.
However, the Poles Lane monitoring site reported some wind
speed measurements much higher than that from the other
sites. A possible reason for this is that the site is a rural area
and may not have a substantial built environment near the
site, which can act as an obstacle to the wind. Wind direction
shows stable distributions across all sites. Wind direction was
measured within a 360" angle (i.e. all directions) and the
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measurements were mostly dominated by one direction, i.e.
around 200’ to the north. Rainfall is reported by only two of
the selected sites in the datasets. Most of the data is
composed of 0 values and several of them are 1, 2, 3, and 4
mm. Humidity is also measured by two sites; however, there
is a large difference in the measured values, with the ‘urban
background’ site of Belvedere West reporting higher
humidity values than that of the suburban site in Horley.
Solar radiation and pressure are only available for the Rush
Green site; thus, it cannot be compared to the others.

Figure 2 provides the boxplots of the measured pollutants
values. NO, is reported by all of the selected sites. NO,
values at the kerbside site of Marylebone Road are much
larger than those from the other sites. This is because NO, is
mostly generated by road traffic and corresponds to the
kerbside location of this sensing site and the urban nature of
this location. On the contrary, Marylebone Road has lower
O; values than those reported at the other sites, pointing to a
possible inverse correlation; because O; is a secondary
pollutant formed by the reaction of NO, with hydrocarbons
under ultraviolet light. The other observations of PM;, and
PM,s show similar distributions but differences in the
extreme values. For example, Marylebone Road contains
high PM,, values, while Erith has large values reported for
PM,, and PM,, pointing to a link to its industrial location.
CO and SO, are only measured at the Marylebone Road site
in our datasets. These two pollutants show low
concentrations at this site and are not considered the main
source of pollution in London.

Figure 3 shows the AQI distributions of the different
sensing sites. Calculated AQI values of Rush Green and
Horley show low values throughout, with more than 75%
falling within the ‘Good’ band and the maximum AQI value
in the Moderate band. The AQIs of Belvedere West, Erith,
Poles Lane, and Ntl Physical Lab show a larger variance than
the previous two sites. Although most of them are within the
ranges of the Moderate and Good bands, some values are
high and extend to the ‘Unhealthy’ and ‘Very Unhealthy’
bands. For the kerbside Marylebone Road site, most values
are Good or Moderate, but the maximum calculated AQI
reaches the ‘Hazardous’ range.
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300
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HF-———-—-———===
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FIGURE 3. Boxplot Comparing the Air Quality Index Distributions for
the Different London Monitoring Stations.
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IV. AIR QUALITY ESTIMATION FRAMEWORK

Figure 4 presents the proposed air quality estimation
framework, which combines meteorological data as well as
pollutant data with a one-step temporal delay to provide
estimates of AQI values. The two approaches developed in
this work are shown in Figure 4. Both approaches begin with
a data cleaning phase. The left-hand side of Fig. 4, which
depicts the first approach developed in this work for AQI
estimation, AQIPredict, computes AQIs based on the original
pollutant concentrations. It then trains a prediction model that
applies meteorological data and the previously calculated
AQIs to predict AQIs. On the other hand, the right-hand side
of Fig. 4, which shows the second approach being proposed
in this work, Pollutant2AQI, trains a prediction model
directly with the meteorological data and the previous
pollutant values to predict pollutant values. The individually
predicted pollutant values are then used to compute the final
estimates of AQI values.
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FIGURE 4. Air Quality Estimation Framework.

The Learning Model in the framework applies a Nonlinear
Autoregressive Neural network with eXogenous input
(NARX) [28, 29] to provide time series pollution data/AQI
prediction with meteorological data as exogenous input.
NARX is based on recurrent dynamic neural network, which
has a memory of its previous state. The NARX will learn a
function of equation:

y(t) = f(yt—d ’ Xmeteorological ) @)

where y,_, is the previous value of y and d is the output time

delay (I in our experiments), X qeyrologica 15 @ Vector of

meteorological data.

The NARX can be trained by steepest descent algorithm,
Newton’s method as well as Levenberg Marquardt (LM)
algorithm [30, 31]. LM algorithm is applied in our
framework and introduced below. The aim of the training is
to get the weights for least square error. The sum of squared
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error of NARX is defined as a function E(®) of weights
vector @ with /N samples.

N

E@) =Y (@) )

q=1

The Gauss-Newton method provides a solution of
changing weights A for a step as follows:

Ao = —[DZE(m)TD E() )

where [J*E(®) is the Hessian matrix and JE(®) is the
gradient, which can be calculated by following equations:

DPE(oF J (@)J(oF S(o) 5)
DE(@F J' (o)e(w) (6)

where J () is the Jacobian matrix of size N X P, P being
the size of ®;

[ de(®)  Odq(w)  Oe(o) ]
o 0w, 0w
de_ (® Oe_ (® Oe, (o
o 0w, ow
de,, (®) Oe,, (®) Oe,, (®)
| 0w 0w, 0 |
and
N
S(@) =) e, ()¢, () ®)
g=1
Gauss-Newton method assumes S (®) = 0, thus,
Do =[T" (@) (@)] I (@ew) ©)
while the LM algorithm makes the following modification to
it:
Do =[J" (@) (@) +ul | T (@)e(w) (10)

where [ is an identity unit matrix and [/ is a parameter
controlling the size of the trust region. When [/ is large, the
method turns into a steepest descent method with a small
step size 1/ M, whereas it turns into Gauss-Newton method

when (/=0 . If one step reduces overall error, U is

divided by a factor [3. Otherwise, {/ is multiplied by the
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Algorithm 1. LM Training

1. INPUT: Training dataset d
2 OUTPUT: Converged network net

3. Compute outputs of the network net based on the inputs in d
using Equations (12) and (13)

4. Compute the sum of squared errors E of net using Equation (3)

5. Compute the Jacobian matrix J using Equations (15) (14) (11)
and (7)

6.  Get changing of weights Ao using Equation (10)
7.  Compute sum of squared errors E,.,, of a network using new

weights @, = @ + Ao
8. IFE..<E
9. Reduce [/ in Equation (10) by ,B

10. Apply @, to net

11. IF converged

12. Stop and return net
13. ELSE

14. Repeat from Line 3
15. END IF

16. ELSE

17. Increase [/ by ,B

18. Repeat from Line 6
19. ENDIF
20. The algorithm is converged when the norm of the gradient

UE ((!)) (Equation (6)) is less than a predefined value, or

when the sum of squared errors E has been reduced to a certain
error goal.

0
Lﬁi) =f'(netl.k) , the
Onet,

1
elements in Jacobian matrix can be written as

_0¢, (@) _0e (@) _0de, (o) dnetf
" dw, dcf,  Oner! 04,

where q is the q" sample, p is the p™ weight, wf ; indicates

factor. By defining O;k =

=00, (11)

J

the weight connects unit j to unit i in the k™ layer, netik is the

input of unit i in the k™ layer, and 0 ; is the output of unit i

from unit j in the (k-1)" layer. The relations of them are:

Mk—l
k — k-1 k
net! =" af 0} +b] (12)
J
where M, is the number of units in layer k-1;
and
of = f(net) (13)

This can be computed by backpropagation algorithm

ﬁk — f '(netk )(!)k+lT6k+l (14)

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2884647, IEEE Access

IEEE Access

Multidisciplinary © Rapid Review § Open Access Journal

where f '(net*) is the derivative of function in of a unit in

layer k with respect to its input, with a modification at the
final layer.

o' =—f'(net") (15)

where L indicates the final layer.

Algorithm 1. LM Training describes the process of
training a neural network with LM algorithms. Given a
Training dataset d, LM algorithm iteratively adapts weights
in the network until it is converged. In the first iteration, it
calculates outputs of an initial network net based on
Equations (12), (13), and inputs in d (Line 3). With those
outputs and original outputs in d, the sum of squared errors E
can be obtained according to Equation (3) (Line 4). The
algorithm then computes the Jacobian matrix and gets
changing of weights of net (Line 5-6). New weights are
calculated and applied to a network to compute sum of
squared errors E,,, based on d (Line 7). If E,,, < E, { in
Equation (10) is reduced by [, the new weights are applied to
the net to continue the next iteration (from Line 3); otherwise
M in Equation (10) is increased by [, the algorithm re-
computes (from Line 6) changing of weights of net and
compares new errors with E (Line 8-19). During this check,
if the algorithm converges under the condition at Line 20, the
final trained net is returned.

V. EXPERIMENTS AND RESULTS

To evaluate our proposed AQI estimation methods, we
design experiments to compare the two proposed approaches
for AQI prediction introduced in Figure 4 with different
learning algorithms, i.e., Linear Regression (LR) [32],
Logistic Regression (LoR) [33], SVR [34, 35], and NARX
[30, 31], with the datasets described in Section III. The
algorithms are implemented using the Statistics and Machine
Learning Toolbox and Deep Learning Toolbox in Matlab
R2017b. The NARX neural network applies 10 hidden
layers. The meteorological data are set without any time
delay while the pollution data/AQIs are set with one-step
time delay. The experiments randomly choose 75% data for
training and 15% for testing. For the proposed NARX-based
method, another 15% are used for validation. All the methods
are performed 10 times and evaluated by using the mean
values of the following evaluation metrics: Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error
(MAPE), and band accuracy. RMSE and MAPE are
calculated as per equations 16 and 17, and band accuracy is
the percentage of how many predicted AQIs are in the same
band of actual AQIs over the total number of data points in
the test set.

1 A 2
RMSE = /;;()’i_)’i) (16)
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where 7 is the number of data points in the test set; 3, is the

predicted value for the ith input, and y; is the corresponding
target value.

A. AQI PREDICTION: RESULTS AND DISCUSSION

In the results’ diagrams, we use AQIPredict to indicate
Approach 1 that uses meteorological data and historical
values of AQI (calculated from the individual pollutants’
concentrations using Eq. 1, prior to training) to predict future
AQI values. We use Pollutant2AQI to present Approach 2
that uses meteorological data and the historical pollutants
values to predict individual pollutant values and then
computes the AQIs based on predicted values, using Eq. 1.
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Figure 5 (a), (b) and (c) show the results for RMSE,
MAPE and band accuracy, respectively, for the predicted
AQI values. It is clear that the results vary a lot across the
different sensing sites. This is because firstly, the different
monitoring sites are sited differently (e.g. kerbside vs. rural
location) and located in different kinds of areas which have
different meteorological and pollution characteristics.
Secondly, these sensing sites measure different
meteorological and pollution data, thus features of the model
are different between different sites. Thirdly, pollutants’
concentrations are dispersed differently and dominate
different areas, depending upon on a number of factors such
as industrial activities, vehicular emissions, human activities
such as construction, etc.

According to Table II, Rush Green is a site recording six
kinds of meteorological data but only one type of pollution
data: NO,. Its AQI in Fig. 3 shows that the pollution values
range from O to around 100 and most of them are below 25,
ie., the AQIs are always in the ‘Good’ band. For these
reasons, all the methods perform well on this dataset
achieving a band accuracy of close to 100% (over 99.6%, see
Fig. 5c). With respect to RMSE and MAPE, the proposed
NARX methods perform the best on both approaches. It is
worth noting that even though the RMSE values do not show
much difference between the evaluated machine learning
algorithms, the MAPE values of LoR on both AQIPredict
and Pollutant2AQI are much worse than the others. This is
due to the fact that the AQI data values from Rush Green are
small, hence, a small number of errors may not reflect much
on the RMSE value but may show up in the MAPE which is
significantly affected when the calculation involves the ratio
of small actual values.

Another similar sensing site is Horley, which records four
meteorological features and two pollutants’ data: NO, and
PM,, (with PM/, the dominant pollutant). The mean values
of AQIs of this site are slightly higher than that of Rush
Green, nevertheless, almost all the AQIs fall within the
‘Good’ band. Hence, the band accuracies of predicted values
from this site are also close to 100 percent (over 99.1%, see
Fig. 5c). RMSE and MAPE values are low for all the
methods. RMSE values are close to each other as shown in
Fig. 5a, but the MAPE results of the Pollutant2AQI methods
are less than those of AQIPredict methods. Among them, the
proposed Pollutant2AQI NARX method performs the best
for both evaluations. For band accuracy, Pollutant2AQI
NARX reaches an accuracy of 99.13%, slightly less than the
best achieved result of 99.42% obtained by Pollutant2AQI
LR and Pollutant2AQI LoR.

Belvedere West is a site with four meteorological features
and four kinds of pollution data: NO,, PM,o, O3 (dominant
pollutant), and PM,s. AQIs of this site ranges from 0 to
around 250, covering five bands. Most of the AQIs are
located in the Good and Moderate bands. With regards to the
evaluation results for this site, Pollutant2AQI NARX
performs the best for all three metrics.
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The Erith sensing site monitors three meteorological
features and three kinds of pollutants: NO,, PM,, (dominant),
and PM, 5. The AQIs of this site range from O to around 170,
covering four bands, with the majority of the AQI values
falling within the Good and Moderate bands. The AQIPredict
LR method performs the best for RMSE (Fig. 5a) and band
accuracy (Fig. 5c), while the Pollutant2AQI SVR performs
the best for MAPE (Fig. 5b). Overall, the Pollutant2AQI
methods have higher RMSE values but lower MAPESs. This
shows that Pollutant2AQI methods can perform accurate
predictions when the actual values are small; however, for
points where actual values are large, the predicted values of
Pollutant2AQI methods are further from the actual values
than those of other methods, which results in large RMSE
values but still small MAPE values.

Poles Lane and Ntl Physical Lab are two similar sites,
which monitor the same three meteorological features and
two kinds of pollution data: NO, and O; (dominant). Boxplot
figures in Figure 3 show that their AQIs’ distributions are
also similar. Compared to the other sites, RMSEs of these
two sites are larger, band accuracies are smaller, but MAPEs
do not show much difference. An interesting finding is that
AQIPredict NARX performs the best for the RMSE and
MAPE evaluations for both sites, but Pollutant2AQI NARX
has a better band accuracy than AQIPredict NARX. For
Poles Lane, Pollutant2AQI NARX achieves the best band
accuracy, while for Ntl Physical Lab, band accuracy is about
5% lower than those of Poles Lane, and Pollutant2AQI SVR
achieves the best band accuracy.

The Marylebone Road kerbside site measures three
meteorological features and five kinds of pollution data: NO,
(dominant), PMy, O3, CO and SO,. The majority of the AQI
values of this site are close to 50, which is the boundary
between the Good and Moderate band. However, the
maximum AQI values reach the Hazardous band, i.e., the
values cover the entire range of the 6 AQI bands; from Good
to Hazardous. For the prediction performance for this site,
AQIPredict NARX achieves the best RMSE, Pollutant2AQI
NARX achieves the best MAPE, while AQIPredict LoR
achieves the best band accuracy.

To summarise, for RMSE, Pollutant2AQI NARX and
AQIPredict NARX perform the best on datasets from three
sites each, with AQIPredict LR showing the best
performance on the seventh case. For MAPE values (see Fig.
5b), Pollutant2AQI NARX performs the best on datasets
from four sites, AQIPredict NARX performs the best on two,
and Pollutant2AQI SVR performs the best on one. It is a
mixed picture for band accuracy as shown in Fig. 5c, with
Pollutant2AQI NARX showing the best performance for
three datasets, AQIPredict LR, AQIPredict LoR, and
Pollutant2AQI SVR separately showing the best performance
on one dataset each, and Pollutant2AQI 1R and
Pollutant2AQI LoR tied in for similar accuracies on the last
one. Taking into account all the datasets from the seven sites,
Pollutant2AQI NARX performs the best on most of the
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datasets, and provides competitive results for the rest. This
indicates that Pollutant2AQI NARX has robust performance
for different kinds of datasets and can be recommended for
AQI prediction.

B. POLLUTANT PREDICTION: RESULT AND
DISCUSSION

In addition to AQI prediction, we also compared MAPEs for
the prediction of the individual pollutant values (as part of
the Pollutant2AQI approach) by the different methods, i.e.,
LR, LoR, SVR, and NARX. The results are presented in
Figure 6. We get the worst performance with LoR as the
training algorithm across most of the datasets, with the only
exception being the MAPE results for PM,, data from Horley
and the CO data from Marylebone Road (second lowest
MAPE value). For NO,, the proposed NARX approach
performs the best for 6 sites, while SVR performs the best on
data from Belvedere West. Both SVR and NARX get the
same MAPE on NO, data from Marylebone Road. However,
the NARX method does not appear to be the best one for
predicting PM,, data. Among the four sites monitoring PM,,
concentrations, LR achieves the two best MAPEs, while LoR
and SVR achieving the best MAPE values on one dataset
each. For O; data, NARX performs the best for two datasets,
with LR and SVR performing well on one each. SVR also
performs the best on one PM, 5 dataset with NARX performs
the best on the other one. NARX performs well for both SO,
and CO datasets.

Overall, NARX can achieve a good performance for
prediction of pollution data except for that of PM.
Therefore, for predicting AQIs, NARX can be used on areas
whose dominant pollutant is not PM,, with LR proving to be
a better choice for such locations. This is in agreement with
findings in the existing literature [16], where multiple linear
regression models achieved better results than ANN for mean
relative and absolute error percentages as well as for RMSE
for PM,, concentration predictions.

VI. CONCLUSIONS AND NEXT STEPS

In this paper we propose two approaches for AQI estimation
and prediction, both based on meteorological and historical
pollutant data; one learns a model based on the previous AQI
and meteorological data to predict AQIs, the other learns
models based on the previous pollution data and
meteorological data to predict pollution concentrations first
and then compute AQIs. Both approaches can get good band
accuracy (over 75%), as shown on the evaluations conducted
across various datasets. The best approach is the latter
approach combined with neural network, which achieves the
lowest RMSE and MAPE across most of the evaluated
datasets. This approach gets very good band accuracies
(more than 81%) on all the datasets. However, by further
analysing the individual pollutant value prediction step, we
found that a neural network-based method is not the optimum
at predicting PM,, data. Therefore, we recommend using
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FIGURE 6. Results of Pollution Data Prediction of Different Learning
Algorithms.

linear regression to predict AQI if the dominant pollution is
PM,; in the area of interest. In summary, the results show the
feasibility of our proposed approaches for predicting AQIs
based on meteorological data and the historical pollutant
data/AQIs.

In the future, we plan to analyse correlations between
sensing sites located close to each other to uncover latent
similarities in pollutant or AQI patterns and to analyse if they
are influenced by other environment factors such as green
cover or traffic. We also plan to further extend the analysis of
impact on air quality from different types of sensing areas
across different cities. Another future work is to infer the
latent diurnal and seasonal pollution data patterns in different
parts of a city according to its built environment.
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