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Abstract—New generation mobile devices have become
inevitable to be employed within the realm of ubiquitous
sensing. Especially, smartphones have been increasingly used
for Human Activity Recognition (HAR) based studies. It
is believed that recognizing human-centric activity patterns
accurately enough could give a better understanding of
human behaviors. Further, such ability could give a chance
for assisting individuals in order to enhance the quality of
lives. However, the integration and realization of HAR based
mobile services stand as a significant challenge on resource-
constrained mobile embedded platforms. In this manner, this
paper proposes a novel Discrete Time Inhomogeneous Hidden
Semi-Markov Model (DT-IHS-MM) based generic framework
to address a better realization of HAR based mobile context-
awareness. In addition, we utilize power efficient sensor
management strategies by providing three intuitive methods,
and Constrained Markov Decision Process (CMDP) and Par-
tially Observable Markov Decision Process (POMDP) based
optimal methods. Moreover, a feedback control mechanism
is integrated to balance the tradeoff between accuracy in
context inference and power consumption. In conclusion, the
proposed sensor management methods achieve a 40% overall
enhancement in the power consumption caused by the physical
sensor with respect to overall 85-90% accuracy ratio thanks
to the provided adaptive context inference framework.

Index Terms—Context-aware framework, human activity
recognition, optimal sensing, power efficiency

I. INTRODUCTION

The ever-increasing technical advances in embedded

systems, together with the proliferation of growing devel-

opment and deployment in small-size sensor technologies,

have enabled smartphones to be re-purposed to recognize

daily occurring human based actions, activities and in-

teractions which mobile device users encounter with the

surrounding environment. Accurately recognizing human

related event patterns, called user states, can give a better
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understanding of human behaviors. Such recognition can

also be used to assist individuals to enhance their quality

of lives. Therefore, the inference of a variety of human

activities in a computationally pervasive way within a very

diverse context has drawn much interest in the research area

of ubiquitous sensing.

In the real world, being aware of context and communi-

cating is a key part of human interaction. A context can be

defined as characterization of a specific entity situation such

as user profile, user surrounding, user social interaction

or user activity [1]–[3]. Applying context awareness into

mobile devices enables to have a collection of autonomous,

ambient intelligent and self-operated network nodes (e.g.,

independently acting smartphones) which are well aware of

surrounding context, circumstances and environments. The

evolution of ubiquitous sensing on resource-constrained

mobile devices have empowered the creation of context-

aware middleware [4], [5]. It emerges as a promising

solution for the dynamic integration of highly complex

and rich interactions among virtual world and physical

world. With these capabilities, the new emerging network

architecture would enhance data credibility, quality, privacy

and share-ability by encouraging participation at personal,

social and urban scales and would lead discover the knowl-

edge about human lives and behaviors, and environment in-

teractions/social connections by leveraging the deployment

capacity of smart things (e.g., smartphones, tablets) in order

to collect and analyze the digital traces left by users.

However, heavily use of the built-in smartphone sen-

sors would bring new challenges especially in resource-

constrained hardware platforms. First, continuous capturing

user context through sensory data acquisitions, and second,

inferring desirable hidden information from the context

would put a heavy workload on the smartphone processor

and sensors. Thereby, these operations cause more power

consumption than the device itself does during a regular

run. Eventually, smartphone battery would deplete rapidly.

To address power efficiency in context-awareness, the

best energy saving algorithm would be the one that infuses

into the low level sensory operations by manipulating the

frequentness of sensory sampling intervals. Especially, an

adaptive sensor management mechanism that dynamically

assigns duty cycles and sampling periods in a context-

aware manner would reduce power consumption signifi-

cantly. However, intervening sensory operations to achieve

power efficiency jeopardizes the accuracy, i.e., quality of

service, provided by context-aware services. Therefore, it
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creates a tradeoff between power consumption and accuracy

provided by these services.

In this paper, we propose a novel framework that allows

to run a HAR based smartphone application while achieving

a fine balance in the defined tradeoff. The framework con-

sists of a context inference module including an observation

analysis block to acquire and infer the desired contexts

through the smartphone accelerometer, a statistical machine

to represent user activities, and a sensor management

system to prolong the smartphone battery lifetime. Our

objective is to improve the power efficiency of smartphones

by dynamically adapting sensor sampling rates and duty

cycles while supporting accurate recognition in user ac-

tivities. More importantly, this research creates an effective

HMM-based framework that provides optimal power saving

methods at the low-level sensory operations in order to

guide the development of future context-aware applications.

The followings are a few distinctive key novelties exposed

by this paper:

• User profiles are considered time-variant (inhomo-

geneity) in a provided statistical machine. Therefore,

adaptability problem is defined for time-varying user

profiles, and a relevant solution is given by intro-

duction of the entropy production rate. The entropy

production rate is also used for the accuracy notifier

in context inference problem.

• The analytical modeling of the accelerometer sensor

is provided, and integrated into sensor management

system. The system aims at utilizing a mixture pair

of duty cycling and adaptive sampling regulated by

three intuitive and two sub-optimal sampling policies

in order to prolong mobile device battery lifetime.

• Missing observations occurred due to the power saving

strategies are estimated under the regulation of inho-

mogeneous semi-Markovian process.

• A feedback control mechanism is integrated between

context inference module and sensor management sys-

tem in order to ensure that a fine balance is obtained

for the tradeoff.

• A smartphone application is implemented to show

the effectiveness of proposed entropy production rate

analysis on accuracy notification, and the extension of

battery lifetime under proposed sensor management

system.

The rest of the paper is organized as follows: Section

II gives a relevant prior research. Section III provides

the purpose and intention of proposed framework design.

Section IV explains the context inference module consisting

of analysis of sensory data, and creation of a statistical ma-

chine to represent true user activities and behaviors. Section

V includes the analytical model of sensor utilization, and

power saving solutions to balance the tradeoff. Section VI

is reserved for performance analysis. Finally, Section VII is

for conclusion and future work. In addition, the summary

of important notations used throughout the paper is listed

in Table I.

TABLE I: Summary of Important Symbols
Symbol Definition (Section where the symbol is first used)

St user state (IV-A)
Sτ
s Markov chain, or sequence of user states (IV-A)
ϑt observation (IV-A)
ϑτs sequence of observations (IV-A)
o observation emission matrix (IV-A)

n, s, t, τ time indexes throughout the paper (IV-A)
i, j,m indexes for user states (IV-A1)
ξ inhomogeneous Markov process (IV-A1)
qij user state transition rate (IV-A1)
Q user state transition density matrix (IV-A1)
pij user state transition probability (IV-A1)
P user state transition matrix (IV-A1)
πi initial user state probability (IV-A1)
Fij probability of waiting time in a state (IV-A2)
Hi probability of leaving a user state (IV-A2)
di a random time distribution (IV-A2)
Fj filtered probabilities (IV-A3)
Pj predicted probabilities (IV-A3)

Ŝt estimation of user state (IV-A3)
N total no. of user state transitions (IV-A4)
Ni total no. of passages in a fixed user state (IV-A4)
ep instantaneous entropy production rate (IV-B)
φ accuracy notifier (IV-B)
a actions (IV-B)

tsuff sufficient time to trigger an action (IV-B)

SR, or SR2

1D, or 2D state space for reward process (V-A)

r, w indexes for states ∈ SR (V-A)
l, k indexes for l ∈ DC and k ∈ fs (V-A)

Θtspan total power consumption for a spanning time (V-A)

ψSR reward process attached to ongoing SR (V-A)
V total received reward, i.e. power consumption (V-A)
u optimal policies in CMDP and POMDP (V-D)
P a state transition matrix under actions (V-D)
I identity matrix (V-D)
λ belief vector (V-E)
Ra rewards according to actions (V-E)

II. RELATED WORK

The pervasive mobile computing, which captures and

evaluates sensory contextual information in order to infer

user relevant actions/activities/behaviors, has been becom-

ing a well established research domain, especially within

the realm of Human Activity Recognition (HAR) and

location-based services. Most studies rely on recognition

of user activities (especially posture detection) and defini-

tion of common user behaviors by proposing and imple-

menting numerous context inferring systems. In addition,

researchers have been aware of the need for computational

power while trying to infer sensory context accurately

enough. However, most works provide some partial answers

to the tradeoff between context accuracy and battery power

consumption. It is hard to say that power saving considera-

tions have been significantly taken at the low-level physical

sensory operations. Especially, there is not a generic frame-

work that intends to apply adaptively changing dynamic

sensor management strategies, which employs varying duty

cycles and sampling periods during a sensory operation like

this paper intends to propose.

From the stand point of a creation of framework design in

context-aware applications, it would be notable to mention

the following studies. “EEMSS” in [6], “Jigsaw” in [7],

“Sensay” in [8] and “SeeMon” in [9] use hierarchical sensor

management strategy by powering a minimum number of
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sensors and applying fixed sensor duty cycles so that the

proposed framework could recognize user states through

smartphone sensors while improving device battery life-

times. Unfortunately, sensors have fixed duty cycles, and

also they are not adjustable to respond differently to variant

user behaviors. In addition, energy consumption is reduced

by shutting down unnecessary sensors at any particular

time. On the other hand, classification of sensory data is

based on pre-defined test classification algorithms. Apart

from these studies, many other works have emphasized

to use deterministic sampling period schemes [10], and

to maximize power efficiency by solely applying less

complexity in computations or by changing transferring

methods of inferred contextual data packets [9]. The other

popular method is to fuse multiple sensory information to

decide future employment of a specific sensor, especially

in localization applications [11], [12].

This paper differs from other studies in the following

ways. First, this paper consider physical world as inho-

mogeneous. Therefore, the inhomogeneity is characterized

by time-variant system parameters. Second, adaptability

challenge in response to variant and rapid user activities is

integrated as well using the convergence of entropy rate in

conjunction with the inhomogeneity. Accordingly, entropy

rate is used to make an assumption on accurate working

of system parameters regulated by an ongoing stochastic

process. Third, power saving considerations are taken at the

low-level sensory operations. Fourth and most importantly,

a machine learning structure regulates sensor management

by estimating the trend of user preferences, and oppor-

tunistically finding out stable moments in user activity.

Thereby, sensor management could apply optimal sensing

policies, and change sensor sampling settings to respond

the defined tradeoffs in context-aware application services.

Finally, missing contextual inferences are estimated while

energy saving strategies are being applied.

III. PROPOSED FRAMEWORK

Context aware sensing systems have been put forward to

provide a required model for recognition of daily occurring

human activities via observations acquired by various sen-

sors built in mobile devices. These activities are inferred

as outcomes of a wide range of sensor applications utilized

in such areas of environmental surveillance, assisting tech-

nologies for medical diagnosis/treatments, and creation of

smart spaces for individual behavior model. Key challenges

that are faced in this concept is to infer relevant activity

in such a system that takes raw sensor readings initially

and processes them until obtaining a semantic outcome

under some constrictions. These constrictions mostly stem

from difficulty of shaping exact topological structure and

from modeling uncertainties in the observed data due to

saving energy wasted while physical sensor operations

and processing of data are being undergone. Finally, there

is not a common framework system which covers all

types of application settings, provides an adaptation toward

changing context, and acquires a collection of asynchronous

heterogeneous context to create different abstract entities.

Even, none of current frameworks succeeds to have a

full transparency, which eliminates a direct involvement of

applications into context modeling process, by imposing

less computational workload on resource-limited mobile de-

vices. In this direction, gathering diverse and asynchronous

information, and presenting it to the application would

be the future work in context-aware framework research,

which this paper intends to enlighten. By this means, this

paper could help the exciting vision of “Internet-of-Things”

[13] while creating a knowledge network which capable

of making autonomous logical decision to actuate environ-

mental objects and also to assist individuals, especially in a

resource-constrained smart device. In addition, this research

could give a solution to effective manage fusion of data

gathered from multiple sensor applications.

To this end, this paper proposes an inhomogeneous (time-

variant) Hidden Markov Model (HMM) based framework in

order to represent HAR based user states by defining them

as an outcome of either recognition or estimation model.

A statistical tool-based classification, mostly using Hidden

Markov Models (HMMs) [14], [15] or using AutoRegres-

sive (AR) [16] models, is one of the foremost methods to

infer context obtained via wearable or built-in smart device

sensors in HAR based applications. However, these stud-

ies mostly allow predefined and user-manipulated system

parameter settings, such as arbitrary formation of context

transition matrix in HMMs, or building filtering coefficients

in ARs, which is not suitable for online processing due

to increasing computational workload while enlarging the

data size. Therefore, a statistical model is added into our

approach to track time-variant user activity profiles in order

to predict the best likely user state that fits into instant

user behavior. The inhomogeneity is characterized by time-

variant system parameters, and the user profile adaptability

challenge is modeled using the convergence of entropy

rate. Accordingly, an implemented smartphone application

is provided to demonstrate how entropy rate converges

in response to distinctive time-variant user profiles under

different sensory sampling operations. The proposed frame-

work is designed to be based on a statistical machine to

obtain a better realization in context-awareness in order to

create adaptability to time-variant user preferences and be-

haviors, estimate missing context inferences in presence of

idle sensory operations, and also preserve the functionality

against aperiodically received sensory observations.

Most importantly, which is the key of this study, a

machine learning structure regulates sensor management

opportunistically to figure optimal sensing policies, and

change sensor sampling settings such as varying sensory

sampling and duty cycling so as to power efficiency could

be achieved while satisfying the accuracy of context-aware

application services.

The following two sections give further information

about two inter-operated core modules that our proposed

framework has: context inference module and sensor man-

agement system.
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Fig. 1: The operational process flow of the proposed context-aware framework: the framework consists of two main modules, which are
context inference module and sensor management system. Basically, context inference module acquires sensory data, extracts context,
infers user states, and delivers recognition accuracy statistics to sensor management system. Then, sensory operations are adjusted by
sensor management system to achieve a fine balance in power consumption and recognition accuracy.

IV. CONTEXT INFERENCE MODULE

The proposed context inference module consists of two

main blocks as shown in Fig. 1, which are sensory data

acquisition and analysis, and a statistical machine. The

first block receives raw sensory readings (i.e., extracted

user contexts through mobile device based sensors) as

inputs. These readings undergo a series of signal processing

operations, and eventually end up with a classification al-

gorithm in order to provide desirable inferences about user

relevant information for context-aware applications. Note

that the selection of classification algorithm in the inference

process could differ due to the interested context obtained

through a target sensor. The probabilistic outcomes of the

classification algorithms source the inputs of the second

block.

The second block choses a Discrete Time Inhomo-

geneous Hidden Semi-Markov Model (DT-IHS-MM) as

the desired statistical machine. Hidden Markov Models

(HMMs) have been used to infer mobile device based

human-centric sensory context in HAR based applications

[17]. However, our approach intends to expand the prop-

erties of statistical machine so as to obtain a better real-

ization in context-awareness. First, the concept of Markov

Renewal Process is adopted to describe the functionalities

of user behavior modeling. Second, the inhomogeneity is

introduced to characterize time-variant user behaviors so

that the module could adapt itself to dynamically changing

user behaviors. Third, the semi-markovian feature is added

to specify aperiodically received discrete time observations

through sensory readings. Fourth, the estimation theory is

included in case of missing sensory inputs. Finally, the

entropy rate analysis is integrated to track the accuracy

of context inferences because there is not an absolute

solution to actually calculate the accuracy of a real-time

running HAR based context-aware application. Thereby,

the convergence of entropy rate is considered as output of

the module, which will be used by the sensor management

system introduced in Section V.

The following sub-sections include the explanations of

main blocks in context inference module. The desirable

statistical machine is put forward firstly since some system

parameters declared in this block will be used during the

introduction of the subsequent sensory data acquisition and

analysis block.

A. Inhomogeneous Hidden Semi-Markov Model: A Statis-

tical Machine

Classification algorithms produce observations (i.e.,

visible states), ϑt, of DT-IHS-MM. Amongst given obser-

vations, the one that has highest probability will make a

most likely differentiation in the selection of instant user

behavior. This observation is marked as instant observa-

tion, ϑT , which also indicates the most recent element of

observation sequence, ϑT1 , of DT-IHS-MM. On the other

hand, user states, sitting, standing, walking and running,

are defined as hidden states, S, of DT-IHS-MM since they

are not directly observable but only reachable over visible

states. Therefore, each observation has cross probabilities

to point a user state. These cross probabilities build an

observation emission matrix, o, which basically defines

decision probabilities to pick any user states from available

observations.

In addition, the transition probabilities among user states

might not be stationary since a general user behavior

changes in time. Thus, it is expected from a user state either

to transit into another user state or to remain in the same

with a different probability. These occurrences build a time-

variant user state transition matrix, p.
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1) Basic Definitions and Inhomogeneity: Let an inho-

mogeneous Markov process exist as ξ = {ξ(t), t ≥ 0}
with a user state space of S = {1, 2, ...,M}, and let

Q(t) = qij(t) where {i, j} ∈ S and t ≥ 0 be a transition

density matrix of ξ. If Q satisfies both 0 ≤ qij(t) ≤ ∞
and qi(t) = −qii(t) =

∑

i6=j qij(t), then Q is called

a conservative inhomogeneous transition density matrix

function on S.

qij(t) represents jump or transition rates from user state

i to user state j at time t. Whenever i = j, it means

that current user state remains unchanged, or i.e., a dummy

transition occurs.

Moreover, suppose that a user state transition probability

matrix P (s, t) = {pij(s, t) = Pr(S(t) = j | S(s) = i)}
where t ≥ s ≥ 0 together with Q satisfies both forward

and backward Kolmogorov’s equations [18], which assume

to have limt↓s ∂pij(s, t)/∂t = qij(s), then S becomes an

inhomogeneous Markov chain with the transition density

of Q. The chain can revisit a user state at different system

times, and also not every user state needs to be visited.

Hence, there is no requirement that user state transition

probabilities must be symmetric (pij 6= pji) or a specific

state might remain the same in succession of time (pii = 0).

Furthermore, let an initial user state π(t) = {πi(t) =
Pr(S(t) = i)} satisfy the Fokker-Planck equation [18]:

dπ(t)/dt = π(t)Q(t).

2) The Working Process: Let ξ = {ξn, n ∈ N} be

redefined as an inhomogeneous irreducible discrete Markov

process with a user state space of S. The process evolves

from S0 as initial user state and stays in there for a non-

negative length of time X1 until goes into another user

state S1. Then, it stays in the new user state for X2

before entering into S2, and so on. As indicated in [19],

this process is a two-dimensional or bivariate stochastic

process in discrete time called positive (S − X) process:

(S−X) = ((Sn, Xn), n ≥ 0) with initial of X0 = 0 where

Xn is called the successive sojourn times.

Xn is the time spent in state Sn−1 that defines inter-

arrival times. There is also another time variable Tn in-

troduced for the definition of system properties at which

state transitions occur. This random time sequence is called

renewal sequence, and it is given by Xn = Tn − Tn−1,

n ≥ 1 with the initial statuses of {X0, T0} = {0, 0}.

The Markov renewal process is now redefined over (S−
T ) = ((Sn, Tn), n ≥ 0) by

Qij(s, t) = Pr(Sn+1 = j, Tn+1 ≤ t | Sn = i, Tn = s),
(1)

where Tn represents n-th renewal time at which a user state

transition occurs.

The probability of waiting time, also called conditional

distributions of sojourn times, for each user state i in the

presence of (1) and information about the successively

followed user state is given by

Fij(s, t) = Pr(Tn ≤ t | Sn−1 = i, Sn = j, Tn−1 = s)

=

{

Qij(s, t)/pij(s), pij ≥ 0,
1, pij = 0.

(2)

In addition, with the help of (1) and (2), the probability

of the process leaving the user state i, also called sojourn

times distributions in a given user state, from time s to t
is introduced by

Hi(s, t) = Pr(Tn ≤ t | Sn−1 = i, Tn−1 = s)

=
∑

j

pij(s)Fij(s, t) =

U
∑

j 6=i

Qij(s, t).
(3)

If F (s, t) = F (t − s), s ≤ t, then the kernel Q only

depends on t − s, which it yields to have Q(t − s) =
pF (t − s) being called an inhomogeneous semi-Markov

process. The semi-Markov process [20], [21] indicates that

the sojourn time belonging to each state might have a

random distribution, di(t)
1, which can depend on the next

user state to be visited. Thereby, this gives the probability

of a user state transition being occurred at time t:

bij(s, t) =

{

Qij(s, t) = 0, t ≤ s

Qij(s, t)−Qij(s, t− 1), t > s.
(4)

Also, for each waiting time, a user state is occupied.

Therefore, transition probabilities are defined with (3) and

(4) by

pij(s, t) = Pr(St = j | Ss = i) = δij(1 −Hi(s, t)) +
∑

m∈M

∑t

τ=1 bim(s, τ)pmj(τ, t), (5)

where δij represents the Kronecker symbol. The first el-

ement of right-hand side, where di(t) = 1 if i = j,
notifies the probability of residing in user state i at time t
without any change in context since time s; and, the second

represents the probability of a user state transition from

state i in some way to user state j, and staying in this new

user state at time t.

αj(s, t) =

t
∑

t′=s

∑

i

[

αi(s, t− t′)pij(s, t− t′)dj(t
′)

t′
∏

t′′=1

oj(ϑt−t′+t′′ = z)
]

, (6)

3) User State Representation Engine: User state repre-

sentation engine infers an instant user behavior in light

of prior knowledge of a human behavior pattern and the

availability of sensory observation at a decision time. If

sensory observation exists, the applied process is called

recognition method; otherwise, estimation method. In other

words, estimation method is applied due to missing obser-

vations when power efficiency is taken into consideration

at the low-level sensory operations.

Let ϑt denote an observation at time t which is associ-

ated with user state St, and let oi(ϑt) be the probability

of observing ϑt from given St = i. Thus, oi(ϑ
t
s) =

∏t
t′=s oi(ϑt′) represents a sequence of emitted observations

from time s to t, s ≤ t. In addition, note that since the

process flows in a discrete time and follows the first order

1The proposed solutions in Section V regulate sampling epoch times in
sensory operations, and change the defined time distribution accordingly.
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Markovian feature, a current user state St depends solely

on the most recent user state St−1.

The inference of a hidden user state j at time t given the

last known hidden user state i at time s, s ≤ t is presented

by

Pr(St = j | Ss = i, ϑτs ), (7)

where τ = t − s. (7) is termed as predicted P , filtered

F , and smoothed S, probabilities of St, depending on

observation sequence of ϑt−1
s , ϑts or ϑTs respectively where

T > t.

The recognition method uses filtered probabilities of St

where it is derived from (7) as in Fj(s, t) = Pr(St =
j | Ss = i, ϑts) in presence of sufficient number of

available observations. The probability of an instant user

state recognition is found by the forward algorithm [17],

which is proposed to find the most likely one-step ahead

user state in a hidden chain. The forward algorithm relies on

updating a probability weight α inductively, which decides

the probability of current occurrence of a user state, St,

generated from the one-step-previous occurrence, St−1.

However, this method works well for traditional HMMs not

for Semi-Markovian featured models due to the random

sojourn time distribution between two consecutive user

states in the hidden chain. In this manner, an extended

forward algorithm has been proposed in [22], [23] by (6)

with the condition of αi(s, t) = πi if t ≤ 0.

Since the recognition process of user states evolves in

real time, the forward algorithm assigns a proper user state

to specify current user activity in case where a new obser-

vation is made. On the other hand, to make sure that user

state recognitions are made true, the backward algorithm,

whose corresponding weight is denoted by β, is employed

[17]. By this algorithm, the accuracy of previous user

state recognitions is validated, i.e., smoothing. However,

applying this algorithm seems redundant as it consumes

additional computational power on the mobile device batter-

ies. The context-aware applications run in real-time, thereby

there is no value of discovering what happened in the past

again. Hence, the backward component can be neglected,

and the filtered probability becomes

Fj(s, t) = αj(s, t)βj(s, t
′) = αj(s, t), t = t′ = T. (8)

Note that computational complexity while calculating

system parameters causes a crucial underflow problem.

When time goes by during evolution of ξ, αi(0, t)
t
⇒ 0

starts to head to zero at a exponential rate since pij includes

elements being lower than 1. Therefore, Fj(s, t) needs to

be scaled [17] by a factor of
∏t

t′=s

∑

j Fj(s, t
′).

In addition to using the filtered probabilities to recognize

user states, the predicted probabilities are used to estimate

user state in case of no observation received. When power

saving methods are taken into consideration as studied in

Section IV-B, there will be some time intervals during

sensory operations in which no sensor readings are ob-

tained. As a result, the framework cannot receive a relevant

observation. In that case, the inference of instant user state

is based on the estimation method not on the recognition

method.

The predicted probabilities are found by

Pj(s, t) = Pr(St = j | Ss = i, ϑt−1
1 , ✁ϑt)

= Pr(St = j, ϑt = z | Ss = i, ϑt−1
1 )

=
∑

j Fi(s, t− 1)pij(s, t− 1). (9)

Alternatively, (9) can be found by assigning the most

likely visionary observation instead by accepting there is

a missing observation:

Pj,z(s, t) =
∑

j

Fi(s, t− 1)pij(s, t− 1)oj(ϑt = z). (10)

Then, the most likely observation is selected according

to assigning each possible observation as a final node to

observation sequence while calculating (10) by

ϑ̂t = argmax
z

∑

j

Pj,z(s, t). (11)

Finally, instant user state estimation is found using (10)

together with (11) by

Ŝt = argmax
1≤j≤M

[Pj,z(s, t)]. (12)

Then, instant user state recognition is specified using (8) in

case where observations are available by

St = argmax
1≤j≤M

[Fj(s, t)]. (13)

4) Time-Variant User State Transition Matrix: The most

important feature of context-aware applications is being ca-

pable of adapting themselves to distinctive user behaviors.

User relevant context differs in time and the corresponding

user state also does. For instance, one user might remain

the same user state for a long time; whereas others might

be more active by changing their user states frequently.

Therefore, it cannot be expected from user state transition

matrix to remain stationary under such conditions.

• Default Settings: User state transitions can be repre-

sented as simple random walk on a graph [24]. On

this graph, a vertice, υ, represents a user state, and a

edge represents a user state transition. Thus, ξ always

starts evolving by a default transition matrix, which is

pdefaultij =
1

d(υi)
, υi ∼ υj (14)

where d(υi) is the number of vertices υj adjacent to

υi. For example, if d(υi) is 0, pdefaultii = 1.

pij(s, τ0, τ)
update
= δij(1 −H∗

i (s, τ0, τ)) +

∑

m∈M

τ
∑

v=τ0

b∗im(s, τ0, v)pmj(s+ v, τ − v). (15)

• Update: A random variable N(t) > n−1 ↔ Tn ≤ t is

represented as the total number of jumps or transitions

of the (S−T ) process during (s=0,t]. Therefore, N(t)
is also called the discrete-time counting process of the

number of jumps. Jumps or transitions may include
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any transition towards user state itself (i.e., virtual

transitions).

By having the counting process, counting parameters can

be calculated where 0 < τ ≤ t as follows:

• The number of visits to user state i during (0, t]:

Ni(t) =
∑N(t)−1

n=0 1{Sn=i}

• The number of transitions from user state i to user

state j during (0, t]: Nij(t) =
∑N(t)

n=1 1{Sn−1=i,Sn=j}

• The number of transitions from user state i to user

state j during (0, t] with the sojourn time, τ , in state

i: Nij(τ, t) =
∑N(t)

n=1 1{Sn−1=i,Sn=j,Xn=τ}

The empirical estimations of the user state transition

matrix, pij , the conditional distributions of sojourn times,

fij , and the discrete-time semi-Markov kernel, qij , are

given in [25] by

p̂ij(t) = Nij(t)/Ni(t), f̂ij(τ, t) = Nij(τ, t)/Nij(t),

q̂ij(τ, t) = Nij(τ, t)/Ni(t).
(16)

Given empirical estimations in (16) approach non-

parametric maximum likelihood estimations with having

good asymptotic properties if they maximize the likelihood

function of

L(t) =

N(t)
∏

n=1

pijfij(Xn)(1−
∑

j

B(t)
∑

τ=n

qij(τ)). (17)

where B(t) = t−XN(t) is called age process showing the

sojourn time in the last visited state SN(t).

With the evaluation of (17), the corresponding transition

density kernel turns into

Qij(s, τ0, τ)
update
=

Qij(s, τ) −Qij(s, τ0)

Qij(s, τ0)
, (18)

where τ0 is the elapsed time since the first entrance into

user state i.
Finally, beginning from the default status in (14), the

evolving inhomogeneous state transition probability (5) is

updated by (18) together with (3) and (4) as in (15).

5) Observation Emission Matrix: The least power con-

suming sensor on today’s smartphones is the accelerometer

[11]. Therefore, the accelerometer sensor is considered to

be used in the implementation of HAR based applications.

Blackberry RIM Storm II 9550 smartphone is chosen target

device. Storm II consists of 3-axis accelerometer named

ADXL346 from Analog Devices [26]. While any applica-

tion is running, the target smartphone is only connected to a

3G network, and background operations are kept minimal.

For performance evaluations, firstly, two user states

consisting, which are sitting and standing, and then four

user states consisting, which are sitting, standing, walking

and running, statistical machines are considered for the

framework. However, more complex models can be applied

as well by using similar system approach. In our previous

work [27], an unsupervised classification method to detect

user centric postural actions, such as sitting, standing, walk-

ing and running, by smartphones is studied. By adopting

these works into our current study, recognition between

user states is made. Then, the observation emission matrix

for two and four user states are constructed by adopted

algorithm as:

ojz =

[

prob. of sitting

prob. of standing

]

,









prob. of sitting

prob. of standing

prob. of walking

prob. of running.









(19)

B. The Output of the Context Inference Framework

Supposing πi(0) > 0 where ∀i ∈ S, the Markov process

ξn evolves in bidirectional way over the distributions of

P[n,n+ń] and P−
[n,n+ń] where ∀n ∈ Z

+ and ∀ń ∈ N, and

the user state transition matrix also obeys a condition of

pij > 0 ↔ pji > 0, then ξn satisfies

lim
t↓s

πi(s)pij(s, t)

πj(s)pji(s, t)
= 1, (20)

which indicates that the inhomogeneous Markov process

has instantaneous reversibility at time s, and hence it yields

to have π(s)Q(s) = 0.

Having the reversibility feature defined by (20), the

instantaneous entropy production enp of ξ at time n is given

by

e
n
p = H(P[n,n+1], P̄[n,n+1]) =

1

2

∑

i,j∈S

[πn
i p

n
ij − π

n
j p

n
ji] log

πn
i p

n
ij

πn
j p

n
ji

.

(21)

where H(P[n,n+1], P̄[n,n+1]) is the relative entropy of

distribution of (ξn, ξn+1), P[n,n+1], with respect to the

distribution of (ξn+1, ξn), P
¯
[n,n+1].

By using (21), Fig. 2 shows the convergence of entropy

rate under some sensory operation parameters, such as a

fixed duty cycle DC = 1 along with variant sampling fre-

quencies fs = {100, 50, 25, 12.5} Hz. Aggressive sampling

method, which takes 100 Hz as fs, draws an actual track of

the entropy rate. Circles over blue line indicate a difference

in user behavior. Since user states, such as sitting and

standing, are recognized in this application example, the

frequentness of transition from one user state to another

cannot be observed much due to nature of human being,

that requires high energy effort by users throughout applica-

tion running time. Therefore, user state transition matrices

over time are desired as pij =

[

0.9 0.1
0.1 0.9

]

,

[

0.85 0.15
0.1 0.9

]

,
[

0.8 0.2
0.1 0.9

]

,

[

0.75 0.25
0.1 0.9

]

,

[

0.6 0.4
0.1 0.9

]

,

[

0.5 0.5
0.1 0.9

]

.

According to the results obtained by a HAR based

smartphone application, the entropy rate converges late

while samplings are collected at less than 100 Hz. This

indicates the reason why accuracy ratio decreases as well.

In addition, the entropy rate cannot sometimes converge

into any point and stops, where the plot lines belonging

to fs = {12.5, 25, 50} Hz. When the frequentness of user

state transitions increases, sampling frequency may not be

fast enough to capture the activeness of an user profile.

Therefore, the system cannot find any proper user state

transition matrix to define instant user activity profile.

After all these assessments on the characteristic of en-

tropy rate analysis with respect to a changing user activity

https://www.researchgate.net/publication/243050193_Estimation_of_the_Entropy_Rate_of_a_Countable_Markov_Chain?el=1_x_8&enrichId=rgreq-3d6bbdef-b9c0-4863-a858-83852a517eef&enrichSource=Y292ZXJQYWdlOzI3MjUwNjk3NjtBUzoxOTkwMTQxMzQ4ODIzMDZAMTQyNDQ2MDA3NTI2OQ==
https://www.researchgate.net/publication/260538881_Unsupervised_posture_detection_by_smartphone_accelerometer?el=1_x_8&enrichId=rgreq-3d6bbdef-b9c0-4863-a858-83852a517eef&enrichSource=Y292ZXJQYWdlOzI3MjUwNjk3NjtBUzoxOTkwMTQxMzQ4ODIzMDZAMTQyNDQ2MDA3NTI2OQ==
https://www.researchgate.net/publication/221164364_Less_is_more_Energy-efficient_Mobile_Sensing_with_SenseLess?el=1_x_8&enrichId=rgreq-3d6bbdef-b9c0-4863-a858-83852a517eef&enrichSource=Y292ZXJQYWdlOzI3MjUwNjk3NjtBUzoxOTkwMTQxMzQ4ODIzMDZAMTQyNDQ2MDA3NTI2OQ==
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Fig. 2: Entropy rate analysis: convergence of entropy production
rate might differ depending on how accurate the context inference
is made under different sampling frequencies.

profile, let ep(s, t) denote a sequence of entropy rates from

(21) in time range of s up to t. Also, assume that a simple

threshold is defined by εep = [µep −σep , µep +σep ] where

µep and σep are mean and standard deviation of ep(s, t)
respectively. Thereby, the first output delivered to the sensor

management system by the statistical machine as shown in

Fig. 1 is named as accuracy notifier, which is defined by

φ(s, t) =
1

(t− s+ 1)

t
∑

n=s

1(enp∈εep )
. (22)

Moreover, τii denotes a return time, i.e., elapsed total

sojourn time, to user state i entering at s, as:

τii =

{

min{n = t− s, n ≥ 1, St = i | Ss = i},
∞, St 6= i, t ≥ 1,

(23)

represents the amount of time until the process returns to

the same user state i given the fact that it started from user

state i. Note that it may never return back to the same state

i.
By considering that a time variable tsuff is assigned

during application run to indicate a sufficient time interval

in which user state i would not change, the second output

is defined then using (22) and (23) by

a(t) =











1, φ(s, t) ≥ φ, τii > tsuff ,

2, φ(s, t) ≥ φ, τii ≤ tsuff ,

3, φ(s, t) < φ,

(24)

where φ ∈ [0.5, 1] and a(t) denotes the actions for sensory

management introduced in Section V-B.

V. SENSOR MANAGEMENT SYSTEM

In this section, the effect of variant sensory load profiles

on the depletion of mobile device battery is studied. Then,

these battery discharge profiles are examined within the

concept of Markov Reward process. In addition, there are

five novel solutions provided in this section for balancing

the tradeoff existing between accuracy in the user state

recognitions and power consumption required by the recog-

nition process.
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Fig. 3: Battery lifetime analysis: total lifetime for battery depletion
differs due to variant sensory operation methods within the
smartphone accelerometer. Experiment values are taken at every
20-min time intervals.

A. Sensor Utilization

The smartphone accelerometer sensor is utilized in order

to examine the power efficiency achieved under different

sampling and duty cycling strategies. Assume that a set of

DC and a set of fs are given by {1, 0.75, 0.5} and {100,

50, 25, 12.5} Hz respectively. Also, let a state space lie

over two sub-spaces, which are sets of DC and fs, as in

SR2

= {DC× fs}. Thus, the state space is defined as in

SR
r = SR2

{l,k} = {SR2

{1,100}→1, S
R2

{1,50}→2, . . . , S
R2

{0.5,12.5}→W},
(25)

where SR2

→ SR : {DC = l, fs = k} → r, ∀l ∈ DC,

∀k ∈ fs and W = length(DC)× length(fs).

The state space SR, or SR2

, is considered to represent

different sensory operation methods supported by the ac-

celerometer sensor in a sensor management system.

To be able to see the effect of SR on the battery deple-

tion, an application is implemented on the target device.

The application runs from a point where the smartphone

battery is fully-loaded until it totally depletes. Only one

constant pair of sampling frequency and duty cycle, i.e. a

state in SR, is applied as sensory operation parameters to

the accelerometer at each application run. A total time for

sensory operation cycle, denoted by tc, is taken as 1 second.

For instance, where fs = 100 Hz, DC = 100% and tc = 1
second are taken, the total number of samplings per second

becomes 100.

The application results are shown in Fig. 3. Note that the

Blackberry Java 7.1. SDK only reveals remaining battery

status. According to results, more aggressive sampling

methodology is applied, faster the battery depletes. In

addition, the lower value of DC makes the battery recover

effect more significant, and thus it prolongs the battery

lifetimes. However, the battery non-linearities [28] are not

intended to study in this paper.

After the application results shown in Fig. 3 together with

[26] and our previous work [29], the sampling frequency

and duty cycle dependent power consumption model in the

https://www.researchgate.net/publication/266489399_Energy_Efficient_Sensor_Management_Strategies_in_Mobile_Sensing?el=1_x_8&enrichId=rgreq-3d6bbdef-b9c0-4863-a858-83852a517eef&enrichSource=Y292ZXJQYWdlOzI3MjUwNjk3NjtBUzoxOTkwMTQxMzQ4ODIzMDZAMTQyNDQ2MDA3NTI2OQ==
https://www.researchgate.net/publication/4118310_Battery_model_for_embedded_systems?el=1_x_8&enrichId=rgreq-3d6bbdef-b9c0-4863-a858-83852a517eef&enrichSource=Y292ZXJQYWdlOzI3MjUwNjk3NjtBUzoxOTkwMTQxMzQ4ODIzMDZAMTQyNDQ2MDA3NTI2OQ==
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TABLE II: The power consumption ratio in sensor drain per each
operation cycle: tc = 2s, and comparisons are applied based on
(50%, 12.5 Hz)

(DC in %, fs at Hz) Ratio

(100, 100) 4.45
(50, 100) 2.58
(100, 50) 2.85
(50, 50) 1.80

(100, 25) 1.75
(50, 25) 1.24

(100, 12.5) 1.26
(50, 12.5) 1

accelerometer sensor operations can be defined as in

Θω∗12.5Hz = ω ∗ Ωsample + (ωmax − ω) ∗ Ωidle,

Θtc =
(DC)tc

ωmax/fsmax

Θω∗12.5Hz +
(1 −DC)tc
1/fsmax

Ωidle,
(26)

where ω = {1, 2, 4, 8}, and Ωsample and Ωidle are de-

fined as power consumption occurred during the operations

where sensor makes samplings or runs idle respectively,

and tc is a time span through a power cycle.

By using (26) and the application results obtained for

Fig. 3, Table II shows power consumption ratio of each

sensory operation methods by the accelerometer, where the

least aggressive sampling method, DC = 50% and fs =
12.5 Hz, is taken as normalizing factor.

To this end, assume that a semi-Markov chain represents

the evolution of changing sensory operation methods, SR,

for a desired sensor management system. The chain consists

of a finite state space SR = {1, ...,W}, the state transition

density matrix qR ∈ QR, and the state transition matrix

pR ∈ PR where QR, PR ∈ R
W×W. In addition, a reward

structure can be attached to this on-going chain, and it

can be thought as a random variable associated with the

state occupancies and transitions. Moreover, assume that

the reward, denoted by ψ, is seen as power consumption

per unit time while a mobile device battery is discharging,

and SR is redefined as the battery discharge profiles/states.

Thereby, the total reward, i.e., total power consumption,

depends on the total visiting time in a state r where r ∈ SR.

Then, it can be said that the reward ψr belonging to state

r is proportional to the corresponding power consumption

defined by (26).

Finally, the general evolution of a semi-Markov reward

process to describe power consumption caused by sensory

operations in the sensor management system is given by

Vw(s, t) = Vr(s, t−1)+
∑

w∈W

pRrw(s, t− 1)ψw(s, t), (27)

where the left-hand side, V , represents the expected present

value of all received rewards from time s to t given that

process enters into state i at time s. Whereas, the first

element of right-hand side represents the aggregation of

rewards earned both at previous time; and the second

element is the reward obtained from either continuity in

the same state or transition to another state.

B. Trade-off Analysis: The Description of Action Set

There are five different solutions proposed in order to

respond the defined trade-off between sensing accuracy and

power consumption. The proposed solutions aim at reduc-

ing power consumption by intervening sensory operations.

Therefore, the context inference framework always receives

the manipulated sensory samplings, then tries to recognize

user states accurately according to (12) and (13). After the

recognition process is done, it releases a(t) as in (24),

which defines actions to be taken on sensory operations.

These actions force the proposed solutions to adjust a pair

of duty cycle or sampling frequency dynamically while

sensory sampling operations are actively operated. As a

result, a feedback system is integrated into a cyber-physical

sensor management system that balances the increase in

power efficiency with the decrease in user state recognition

accuracy.

Actions are defined as commands {1, 2, 3} for sensor

management, which are to decrease, preserve and increase

power consumption respectively. If the entropy rate is

not stable, which means user profile changes frequently,

thereby corresponding entropy rate does not converge a

specific value. Action #3 needs to be taken in this case

to increase the power consumption in sensory operations

by making more aggressive samplings. In contrast, if the

entropy rate converges and hangs in a specific margin, then

action #2 preserves the same set-up for applied sensory

operations. More significantly, if the same user profile

has been observed at least for a sufficient time tsuff ,

then action #1 is taken to reduce power consumption by

estimating that user profile is expected to stay on hold.

C. Intuitive Solutions

Intuitive solutions either reduce power consumption by

decreasing DC or/and fs, or improve accuracy in user state

recognition by increasing them. Relevant adjustments are

regulated by action set of a(t). There are three different

intuitive solutions are proposed as follows:

1) Method I (MI): This method tries to change DC in

the first place rather than to change fs. Let the pairs of DC

and fs lie over a space SR2

, which is defined in a matrix

of {DC, fs} → {l, k}, where l ∈ DC and k ∈ fs. Method

I proposes how to wander over the defined space according

to actions by

SR2

(l, k) =































SR2

(l − 1, k), a = 1, l 6= lmin

SR2

(l, k − 1), a = 1, l = lmin, k 6= kmin

SR2

(l + 1, k), a = 3, l 6= lmax

SR2

(l, k + 1), a = 3, l = lmax, k 6= kmax

SR2

(l, k), otherwise
(28)

2) Method II (MII): This method, in contrast to Method

I, makes the adjustments in fs in the first place. Then, the
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relevant state transitions over SR2

become

SR2

(l, k) =































SR2

(l, k − 1), a = 1, k 6= kmin

SR2

(l − 1, k), a = 1, k = kmin, l 6= lmin

SR2

(l, k + 1), a = 3, k 6= kmax

SR2

(l + 1, k), a = 3, k = kmax, l 6= lmax

SR2

(l, k), otherwise
(29)

3) Method III (MIII): In this method, state transitions

are executed according to the ascending order of power

consumption ratios shown in Table II. The definition of (25)

is then re-characterized as in SR = ascend(SR). Hence,

both DC and fs could be changed simultaneously.

SR(r) =











SR(r − 1), a = 1, i 6= rmin

SR(r + 1), a = 3, i 6= rmax

SR(r), otherwise

(30)

In summary, intuitive solutions (28), (29) and (30) regu-

late pR, and hence affect the evolution of (27).

D. Constrained Markov Decision Process (CMDP)

Constrained Markov Decision Process (CMDP) is ap-

plied into sensor management system by setting a Markov-

optimal policy u. This policy controls sensory sampling

operations by deciding which pair of DC and fs to be

assigned in the sampling process, and it randomizes the

decisions over given actions.

The CMDP parameter set is provided as follows:

• Decision Epochs, O, are the outputs obtained from

the context inference module. State Space, SR, and

Action Space, A, are given by (25) and (24) respec-

tively.

• State Transition Probability, P a
rw: This probability

matrix defines transition probabilities among states

{r → w} while action a is taken.

P a
rw =



















1
r−1 , a = 1, w < r

1, a = 2, w = r
1

W−r
, a = 3, w > r

0, otherwise.

(31)

Remark that all transitions that form a specific state

are set an equal probability according to the rule of

actions. Different transition probabilities could bring

an unfair selection of state.

• Accuracy Cost, c(r,a): The accuracy cost is the

retrieved error rate in user state recognitions while

the context inference framework is running, which is

defined by φ in (22).

c(r, a) = 1− φar . (32)

On the other hand, the default settings for the accuracy

cost is ruled by the rate of missing sampling points

under different system states where {(S = r)} →
{(DC = l)× (fs = k)} and ∀a ∈ A:

c(r, a)default = c({l, k}, a) = 1− l + l
k

kmax

. (33)

Remark that the default settings are the maximum

error rates, indeed.

• Power Consumption, d(r,a): Power consumption ra-

tio is the reward process ψr:

d(r, a) = ψr, ∀a ∈ A. (34)

The policy aims to maximize the accuracy in user state

recognitions subjected to the power constraints. Therefore,

a CMDP distinguishes from a regular MDP in the added

power consumption function d, which is related to the

constraints Vy where y ∈ [1,Y].
ρ(r, a) is denoted in CMDP as the occupation measure

by specifying the probability of a relevant state-action pair

in the decision process which satisfies given constraints,

whose probability distribution is given by

f(γ, u, r, a) =

∞
∑

t=1

Pruγ (S
R
t = r, Ar = a), (35)

where γ and u are defined any initial distribution and any

stationary policy respectively.

Having (31), (32), (33) and (34), the constrained opti-

mization problem is given by the following requirements:

min
ρ

∑

r

∑

a

ρ(r, a)c(r, a)

subjects to:
∑

r

∑

a

ρ(r, a)(δw(r) − P a
rw) = 0,

∑

r

∑

a

ρ(r, a) = 1, ρ(r, a) ≥ 0,

(36)

where ∀r, w ∈ SR, ∀a ∈ A, δw(r) = {1, r =
w; 0, otherwise}.

Let u be the optimal policy that satisfies for all i, a:

ur(a) =
ρ(r, a)

∑

a ρ(r, a)
, ∀r ∈ S, ∀a ∈ A, (37)

whenever the denominator is non-zero. Since the occupa-

tion measure is derived from,

ρ(w) = γ(w) +
∑

r

∑

a(r)

ρ(w, a)P a
rw

= γ(w) +
∑

r

ρ(r)
∑

a(r)

ρ(w, a)

ρ(w)
P a
rw

= γ(w) +
∑

r

ρ(r)
∑

a(r)

uw(a)P
a
rw

= γ(w) +
∑

r

ρ(r)Prw(u),

(38)

it is concluded that ρ equals to γ(I−P (u))−1 like defined

in (36), and hence to (35), where I is the identity matrix.

In addition, the following constraints are added into (36):
∑

i

∑

a

ρ(r, a)dy(r, a) ≤ Vy, y = 1, ...,Y. (39)

where Vy(t) = (1± ν)Vy(t− 1) is given for the constraint

according to which action is taken, such as {a = 1 : −ν}
and {a = 3 : +ν} where 0 < ν < 1, and {a = 2 : ν = 0}.
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Finally, the constrained optimization problem is defined

from (36) and (39) as {min c subjects to dy ≤ Vy}, whose

solution is described in [30], [31], and solved based on

linear programming as follows: Find the minimum C∗ ∈
C(γ, u) for u defined in (37), ρ ∈ f(γ, u) defined in (38),

C(γ, u) = C(ρ(u)) and each Dy(γ, u) = Dy(ρ(u)), where

the expected cost is expressed as in

C(γ, u) = E
u
γ

{

∞
∑

t=1

c(SR
t = r, At = a)

}

=

∞
∑

t=1

E
u
γc(S

R
t = r, At = a)

=
∞
∑

t=1

∑

r

∑

ai

Pr(SR
t = r, At = a)c(r, a)

=
∑

r

∑

ar

∞
∑

t=1

Pr(SR
t = r, At = a)c(r, a)

=
∑

r

∑

ar

f(γ, u, r, a)c(r, a).

(40)

In the similar way, for the constraints,

Dy(γ, u) =
∑

r

∑

ar

f(γ, u, r, a)dy(r, a). (41)

Under the policy u from (37) and derivation from (40)

and (41), the expected average accuracy and power con-

sumption cost is then defined by

E
u[C] =

1

n

n
∑

n′=1

E
ucn′(i, a), (42a)

E
u[V ] =

1

n

∑

∀y

n
∑

n′=1

E
udyn′(i, a), (42b)

where n′ and n are instant and total decision epoch times

respectively.

E. POMDP

Partially Observable Markov Decision Process (POMDP)

also decribes an optimal solution in order to respond the

defined tradeoff. The parameter set by POMDP has some

similarities like the one provided by CMDP. The same

states SR, actions a, state transitions P a
rw are used in this

model as well. A POMDP relies on an agent which takes

some action a ∈ A, and hence makes the system moves

from state r to a new state w. Due to the uncertainty in an

action, the state transition is modeled by P a
rw. In addition,

the agent makes an observation x ∈ O to gather information

for the decision on the new system state selection, thereby,

state-observation relationship is probabilistically modeled

by Za
wx. In each observation epoch, the agent takes action

a in state r, then receives a reward R(r, a).
The POMDP parameter set is given as follows:

• Decision Epochs, O, State Space, SR, Action Space,

A and State Transition Probability, P a
rw, are given

the same like in Section V-D.

• Observation Emission Probability, Za
wx: The obser-

vation is the accuracy ratio provided by the context

inference module (see Section IV-B).

Za
wx(t) =

1

|Z|

{

φ(t), r = w,

(1− φ(t)), r 6= w,
(43)

where SR
(t−1) = r, SR

t = w, ∀a ∈ A, |Z| = φ(t) +
(W− 1)(1− φ(t)), and x = 1 since there is only one

observation, which is the accuracy ratio.

• Reward Function, Ra
r (t): The reward process (i.e.,

power consumption) ψr is defined in Section V-A:

Ra
r(t) = ψr, ∀a ∈ A. (44)

• Belief Vector, λar (t): Since the internal state of the

underlying POMDP is not directly observable, the

knowledge of the internal state could be provided by

a belief vector λar (t) ∈ Λ in presence of the history of

all past decisions and observations. The belief vector

gives the conditional probability of being in state r
under action a prior to any state transition.

The belief vector is updated whenever a new knowledge

comes in after incorporating the action and observation

obtained at time t within the history set of H(t) =
{a(τ), O(τ)}, τ ∈ [1, t]. The updated belief vector is

obtained using (43) by the Bayes rule:

λaw(t+ 1) = T (λ(t) | a,O) =
Za
wx

∑

i P
a
rwλ

a
r (t)

∑

x Z
a
wx

∑

r P
a
rxλ

a
r (t)

.

(45)

The goal defined by POMDP is to develop an opportunis-

tic sensor sampling strategy which seeks for a favorable

trade-off balance between accuracy in sensing and energy

efficiency. Hence, a sensing policy u∗ : Λ → A is defined

to map a belief vector λr to an action a. The policy u∗ is

presented by a sequence of functions {u∗ = [η1, η2, ...,∞]}
where ηt maps a belief vector λr(t) ∈ Λ to an action a ∈ A
at time t over infinite horizon of POMDP.

From the time at the current belief vector is λ(t), a value

function Vt(λ(t)) is denoted to represent the minimum

expected remaining reward which can be earned under

the assigned policies. This reward is obtained through

immediate and future rewards. The optimal policy strikes a

balance between earning immediate reward and obtaining

a lean toward future decisions on the system.

The optimal strategy aims at minimizing the expected

total reward, and it is defined together with (44) and (45)

as in

u = argmin
u

Eu[
T
∑

t=1

Ra
r(t) | λ(1)]. (46)

Hence, the value function for total reward aggregation is

given with the help by (46) as in

Vt(λ(t)) = min
a

E[Ra(λ(t)) + ϕVt+1(T (λ(t) | a, Sa
r (t)))],

(47)

where Ra(λ) =
∑

r λrR
a
r and ϕ ∈ [0, 1] is a discount

factor.

Due to the impact of the current action on the future

rewards, an uncountable number of belief states lie over
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an infinite horizontal space. Therefore, specifying non-

stationarity of the optimal policy, or finding an optimal

strategy for POMDP is often computationally prohibitive.

1) Myopic Strategy and Sufficient Statistics: Since the

finding an optimal strategy is computationally restricted,

it is crucial to exploit the available POMDP and develop

suboptimal strategies in order to reduce the complexity.

Therefore, it is needed to show the a posterior of distri-

bution of the belief vector under sufficient statistics. The

belief vector (45) is then updated based on the chosen

action under the following sufficient statistics:

λr(t+ 1) =











(λ(t)Tr P
a
rw)

T, a′ = {1, 3}, r 6= w,

λi(t), a′ = 2, r = w,

0, otherwise,

(48)

where superscript T denotes the matrix transpose.

In addition, a myopic policy is introduced to ignore the

impact of current action on the future rewards by solely

focusing on minimizing the immediate reward. This is

due to the fact that power consumption caused by instant

sensory operation settings does not rely on future diversity

in the sensory operation methods. Thereby, the myopic

policy makes ϕ = 0 in (47), and hence it turns (46) into:

SR
∗ = argmin

r
E[Ra

r (λ
a
r (t))],

subjects to max(Za
w,O=x(t)) > ε,

(49)

where SR
∗ is the chosen optimal state, and ε denotes the

minimum probability of given accuracy allowed by the

process.

VI. PERFORMANCE EVALUATION

A case study in HAR based application model is exam-

ined in order to investigate the defined tradeoff by proposed

sensor management system. The targeted smartphone is

placed fixed on user’s hip area. A similar user activity

profile is examined for each tradeoff analysis by five

different participants. They are 3 males and 2 females,

whose ages range from 18 to 30. Accordingly, the HAR

based user activity profile begins with a random activity

pattern of user states sitting and standing for a minute (used

for calibration), then any of user states sitting, standing,

walking and running transits into the another one in the

end of the following sojourn times of {5, 5, 10, 10, 30,

30, 60, 60, 100, 100, 300, 300} seconds. This procedure

is also performed three times (approx. 50 mins in total per

method by each individual) to see the effect of having a

transition from longer waiting time to shorter waiting time,

or vice versa. The initial one-minute long application time

is used for adaptation process, which is reserved to set

required adjustments in the system parameters with respect

to ongoing activity pattern. Note that system parameters

already have default settings defined by (14). From this

point, sensory operation parameters, which are duty cycle

and sampling frequency, are updated with a 10-second

period. In addition, tsuff is set to 20 seconds. Recall that as

long as a continuing settlement time in any state gets longer

than tsuff , sensor management system decreases power

consumption, which jeopardizes recognition accuracy of

the activity pattern in return. The default sensory operation

parameters are set to the aggressive sampling method,

which is equal to the pair of {100%, 100 Hz} for {DC, fs}.

The context inference module is set to recognize a user

state with a period of one second under the aggressive

sampling method. The underlying Markovian chain in this

module has a finite horizon length of 60, which means a-

minute-long recent history of user states. Every one minute,

system parameters are updated according to (15). Except

for the aggressive sampling method in sensory operations,

the context inference module may not have a sensory

observation at any time. For instance, in a case where the

pair of {50%, 50 Hz} is selected for sensory operation

parameters, the decision period to recognize a user state

is extended to 4 seconds, which results in having 3 empty

decision points to estimate missing user state recognitions.

The tradeoff analysis is carried out for each sensor

management method by each participants. The tradeoff

solutions by each method are averaged, and then shown

in Fig. 4 for the analysis of power consumption ratio

according to (27), (42b) and (47), and also in Fig. 5 for the

analysis of averaged recognition accuracy according to (22),

(42a) and (49). In addition, the tradeoff solutions by each

method in both figures are noted by the suffixes ’a’ and ’b’

to demonstrate without/with some constraints added. The

suffix ’a’ indicates the actual sensor management methods

without any additional constraints. However, the suffix ’b’

sets extra rules on these methods. First, a 10% tolerance

value is added into Method I, II and III to constrain the

recognition accuracy ratio, which help the prevention of

drastic recognition errors. If this constraint is exceeded,

sensory operation parameters are forced to set the default

settings, i.e, the aggressive sampling. Second, for CMDP,

there is another constraint set on the power consumption

ratio to control the tendency of the decision process to take

an immoderate decrease in power consumption. According

to this regulation, current sensory operation setting must

stay in ±25% of the present power consumption level at

most for the next setting. Finally, additional constraint for

POMDP, the update process of belief vector is reconfigured

by adding the feature of λi(t+ 1) = 1 where a = 2.

In light of the explanations above, the following discus-

sions can be made through both Fig. 4 and 5:

• Recognition accuracy ratio decreases significantly dur-

ing the initial progress of context inference module

since the framework begins running with default set-

tings. Therefore, the adaptation process toward a user

activity profile by the framework is not adequate yet.

It is also because that users exhibit variant activity

profiles that make the adaptation process take different

time accordingly.

• Both figures show ups and downs, i.e. zig-zag lines,

to prove the defined tradeoff. This is because sensor

management system always seeks for an opportunity

to save in power consumption. However, this also jeop-

ardizes the accuracy problem. In contrast, accuracy
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Fig. 4: Averaged power consumption ratio in response to user
profile: the evolution of power consumption efficiency in com-
parison to the most aggressive sensory sampling methods is
shown for each proposed sensory operation method in response
to the analyzed user profile. Overall 40% enhancement in power
consumption caused by the smartphone accelerometer is achieved.
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Fig. 5: Averaged recognition accuracy ratio in response to user
profile: having shown a drastic decrease initially due to the default
system parameters, the recognition accuracy ratio heals gradually
while the context inference module gets better adaptation toward
the analyzed user profiles, and ends up with an overall 10-15%
decrease in accuracy ratio for user state recognitions thanks to the
proposed framework.

is healed by boosting power cost. Therefore, increase

in power consumption compensates the worsening the

recognition accuracy ratio, whereas decrease in power

consumption receives benefits from the adaptation

feature if possible where the framework shows high

accuracy.

• When the time passes by and the framework gets a

better adaptation to the user activity profile, the recog-

nition accuracy ratio increases even though power

consumption ratio decreases. It is also because that

all user activities are known by the framework at this

point, and that will lead to have continuity of better

enhancement on tradeoff solutions.

• While switching from longer waiting times to slower

waiting times, during the second or third run of defined

user activity pattern, accuracy decreases even if power

consumption increases. It is because the system has

been fully aware that the same user activity has been

continuing for a longer waiting period. Moreover, it is

also giving a higher recognition accuracy comparing

to what it is currently available in presence of higher-

pace variant user activities.

• The recognition accuracy ratio may show a slight

decrease if a state transition occurs after a long state

visiting time, or the number of estimations in user

state recognition increases after a slower sampling

policy is attained. It is because that the entropy rate

cannot converge into any stable point. In such cases,

the framework attempts to fix the accuracy ratio.

• Amongst intuitive solutions, a comparison can be

made by MIII>MI>MII in terms of the power con-

sumption ratio, and by MI>MIII>MII in terms of

the recognition accuracy ratio. Results show that the

sampling in slower frequencies consume higher power

than the sampling in lower duty cycles; however, it

shows the opposite assumption for the recognition

accuracy. It is because that sampling in slower fre-

quencies still obtains information about user activ-

ity while the sampling in lower duty cycles cannot

do. On the other hand, MIII has the highest power

consumption since it switches sensor operation modes

modestly while achieving a fine accuracy in user state

recognitions.

• MXb>MXa where X=I, II, III and CMDPb>CMDPa

are met in terms of the power consumption ratio due

to the aggressive sampling is forced to apply in case

where severe errors occur in user state recognitions.

• POMDPb makes a clear conclusion about the belief

vector rather than POMDPa does when a sufficient

visiting time elapsed on a specific user state. Hence,

the power consumption decreases since the conclusion

notifies the continuity of the same user state.

• MIII responds in a similar way what CMDP has while

trying to reach their optimal policies.

In general, our novel tradeoff solutions achieve overall

40% enhancement in power consumption caused by the

physical sensor work with respect to overall 10-15% de-

crease in accuracy ratio for user state recognitions thanks to

proposed generic context inference framework. The novelty

of our framework also comes from the integrated adapt-

ability feature toward variant user behaviors along with the

online recognition accuracy tracker while providing optimal

adaptive sampling strategies to achieve energy efficiency

within the research area of mobile device based activity

recognition. In contrast, some other recent studies within

the same concept show enhancement in power efficiency by

20-25% in [32], by 5-10% in [33], and by 10-30% in [34]

while satisfying considerable recognition accuracy under

non-adaptive, deterministic, and variant sampling frequency

or duty cycle applying sensor sampling methods.

VII. CONCLUSION

In this paper, a novel comprehensive framework is pre-

sented within the futuristic concept of context-awareness in
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mobile sensing. A statistical machine based context infer-

ence model together with an intelligent sensor management

system is created to recognize human-centric activities. This

approach aims at achieving a fine balance between power

consumption and recognition accuracy. The study takes the

smartphone accelerometer sensor into the scope to show

the effectiveness of proposed total system structure as well

as leaving the door open for future improvements in the

functionality of other smartphone sensors.

While creating the statistical machine, some features are

taken into the consideration, such as time-varying user

activity profile, system adaptability to the changing profile,

non-uniform time distribution of sensory sampling process

due to the power saving precautions, and the estimation

process where missing sensory observations exist. On the

other hand, while creating the sensor management system,

the analytical modeling of power consumption caused by

the accelerometer is examined. Thereby, along with the

collaboration of the statistical machine, a better balance is

achieved for the defined tradeoff throughout the paper. For

the tradeoff analysis, some intuitive and optimal sensory op-

eration solutions are provided in order to increase efficiency

in power consumption; whereas the statistical machine tries

to maintain the accuracy ratio provided by the framework.
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