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Abstract Detecting anomalies at the time of happen-

ing is vital in environments like buildings and homes to

identify potential cyber-attacks. This paper discussed

the various mechanisms to detect anomalies as soon

as they occur. We shed light on crucial considerations

when building machine learning models. We constructed

and gathered data from multiple self-build (DIY) IoT

devices with different in-situ sensors and found effective

ways to find the point, contextual and combine anoma-

lies. We also discussed several challenges and potential

solutions when dealing with sensing devices that pro-

duce data at different sampling rates and how we need

to pre-process them in machine learning models. This

paper also looks at the pros and cons of extracting sub-

datasets based on environmental conditions.

Keywords Anomaly Detection · Machine Learning ·
Internet of Things · Smart Buildings

1 Introduction

An anomaly is something unexpected, abnormal or dis-

tanced from the ordinary. From a technology perspec-

tive, an anomaly results from equipment malfunction,

cyber or physical intrusion, financial fraud (e.g. credit

card usage by hackers), terrorist activity, and an abrupt

change detected by sensors in the physical environment

due to an accident. Following are the types of anoma-

lies:

1. Point Anomalies: A single sample, different from

normal samples. For example, a credit card (CC)

transaction with an amount much larger than the

CC holder’s routine transactions.
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2. Collective Anomalies: A sample is a collection of

several data points considered anomalous if it differs

from other samples. For example, an electrocardio-

gram (ECG) is a collection of readings of the heart’s

activity over a specific period as one data sample.

3. Contextual Anomalies: If a sample is contextually

different from normal samples. Time is the context

in time-series data considering a situation where

data is streaming from sensors. An anomalous sam-

ple depends on a set of time-series values, e.g. a

temperature trend of the last 30 minutes showing

20oC increases 50% abruptly. In some other time

(context) 30oC is considered normal temperature.

Our work looked into all the above types of anoma-

lies in our dataset. We proposed multiple solutions to

look for abnormalities in various contexts, e.g. time-

series, multivariate, and inter-device sensor combina-

tions. The high-level idea behind anomaly detection is

to i) save resources by finding faults in systems in ad-

vance, ii) respond to events as early as possible iii) deal

with security breaches. Equipment with the least la-

tency from sensors is microcontrollers, and these de-

vices are resource-constrained. With the rapidly grow-

ing IoT domain, there are a few off-the-shelf micro-

controllers available now Sudharsan et al. (2021) which

support machine learning (ML) on edge using libraries,

e.g. TensorFlow. Detecting anomalies as soon as they

occur can help save a building from various challenges.

Gas leakage by equipment malfunction or pipeline cracks,

discomfort due to a sudden change in environment (tem-

perature, humidity, noise, air quality, and others), in-

frastructure damage, physical access at a non-working

time, or unauthorised personnel cyber-physical attacks

related. Detecting anomalies at the edge ensures early

response and reduces the risk of it getting ignored by

the central system in case of unavailability of network
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connectivity due to technical problems or cyber-attacks,

e.g. Daniel of Service (DoS). We collected data from

self-built physical devices with 32 data streams from

14 unique sensors. We have combined intra-device data

streams and inter-devices unique sensors’ streams. Other

than the original ”unconditional” dataset, we applied

two (02) environmental conditions to the data set, then

applied data preprocessing (scaling and reduction) tech-

niques to each resulting data set and then used different

ML algorithms. We tested all models using both nor-

mal and anomaly data sets and presented the results in

HTML format at GitLab/CyPhyRadar. We evaluated

the models based on computational time vs the number

of detected anomalies.

1.1 Contributions

– Impact of environmental conditions’ based data set

in anomaly detection

– Pros and cons of conventional (scaling/reduction)

and unconventional (atan) data preprocessing meth-

ods

– Comparison of different ML techniques

– Relations between various sensors in the context of

discovering anomalies in building

– Best practices to transform univariate data into time-

series format

– Handling missing data and synchronizing data streams

from different devices

2 Anomaly Detection within Smart Buildings

It is not energy-saving anymore; it is about the over-

all resilience of smart buildings, which is the next big

challenge. Smart buildings require mechanisms to mit-

igate or prevent fire, gas leakages, attacks, disasters,

accidents, safety and security-related issues, and other

unforeseen challenges. Secondary sensor networks can

help mitigate such events by observing physical chan-

nels such as external eyes and ears. Any compromise-

able device in a cyber network can allow attackers to

gain control over the complete building management

systems Alex Schiffer (2017).

2.1 Data Collection Setup

We have implemented a sensing network consisting of

various 14 different environmental sensors, Arduino based

microcontrollers and RaspberryPi (RPi) microproces-

sors, as shown in Table 1. The sensor reads the environ-

mental changes and transfers readings to the attached

RPi, directly or through a microcontroller, which then

transforms and/or transfers these values to the ingestor

using unique Message Queuing Telemetry Transport

(MQTT) channels. The data set consists of 32 differ-

ent data streams from eight (8) device sets, i.e. sensor-

Arduino-RPi (DSet). Temperature, humidity sensors and

some other associated data streams were duplicated in

two device-sets; although both device-sets were at the

same place, one of the DSet’s sensors was influenced by

a nearby heat source. Thus, the readings are different

in these data streams. Timestamp and other properties

were added to every new entry by the ingestor before

inserting it into the data set. The probability of BLE

and WiFi devices in the area was also calculator by the

ingestor after receiving collective BLE and WiFi de-

vices’ information from all other physical devices; these

data streams in channels ble devices and wifi devices

were considered as virtual devices. Figure 1 shows the

overall architecture of data collection setup, processing

points, devices’ and channels’ names. We divided the

data sets from July 24, 2020, to January 7, 2021, and

from March 26, 2021, to July 16, 2021, into two subsets,

normal and abnormal, respectively. Both data sets were

captured during normal routine operations, and some

naturally occurring unusual activities were recorded in

the time-frames of both data sets. We used the normal

subset for training and testing machine learning mod-

els, whereas the anomaly subset was for testing pur-

poses only.

– Physical Devices = 8

– Virtual Devices = 2

– Environmental Conditions = 3

– Pre-processing Techniques = 8

– Data Streams (Total) = 32

– Intra-Device Combinations = 626

– Data Streams (Unique Sensors) = 14

– Inter-Device Combinations of unique sensors = 16383

– Machine Learning Techniques = 4

2.2 Data Collection Challenges

Some of the main challenges in data collection are:

– Time synchronisation, microcontrollers do not come

with an internal time clock, making it tricky to keep

data synchronised from different host devices, as-

suming the reporting time between each device is

different.

– Handling heterogeneous data types, contexts and

formats

– Low-resolution sensors, e.g., some generate integer

values for reading instead of floating-point values,

e.g., temperature value 22 instead of 22.0-22.9.

https://gitlab.com/IOTGarage/cyphyradar
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Fig. 1 H1: Passive InfraRed, H2: All-in-1 Multi-sensor, H3: Sound4, H4: Carbon Dioxide, H5: Infra-sound, H6: Light, H7:
Sense-Hat Multi-sensor, H8: Sound3

– Some sensors generate arbitrary data, which is very

difficult to detect and troubleshoot on edge.

– Dual channel sensors like temperature-humidity have

sensing errors in either of the channels creating dif-

ficulty to troubleshoot on edge.

– Different communication mediums have different la-

tency, which is also a challenge in time synchronisa-

tion.

– Communication modules provide limited access to

the chip via AT Commands.

– Skipped or missed part of data at random times

due to equipment malfunction, network connectiv-

ity, electric power or other issues.

2.3 Data Cleaning and Normalisation

We pre-processed the data sets before performing ML-

associated operations to save time and computational

resources. There were various possible combinations of

errors in data sets like null, non-numeric, or irrelevant

values when capturing data due to sensor malfunctions

or ingestion processing. We removed all rows with null

values, converted the date and time into a DataFrame

supported format, changed the type data type of all

other values to integer or float, and normalised data

sets.

2.4 Data Streams Overview and Analysis

Analysing all data streams, individually and jointly,

is very important before applying operations. Analysis

helps in getting a better understanding of data streams

and helps in estimating which pre-processing technique

with which type of model should be used to do further

processing. The best way to visualise data streams is

by graphs; we used interact-able graphs using Plotly-

library to better understand the data streams from all

sensors. We joined data streams from all devices to bet-

ter understand the relations between each combination.

Moreover, the Table 1 hosts details of all individual data

streams with description, host device, MQTT topic,

edge-processing technique (Process), minimum value,

maximum value, average, standard deviation (SD), and

median absolute deviation (MAD).

2.4.1 Single Data Streams

Figures 2hold visualization of some of the unique data

streams. We structured Sub-figures as a 1x2 matrix

where the left side (x1) graph shows all data and the

right side (x2) graph shows one-day activity. The left

side graph of figures 2(A1) and 2(B1) that there is a

sudden dip in temperature and increased humidity near

the end of October 2020 till the end of December 2020.

We also observe that Air Quality is dropping abruptly

at the same time. Though these events resulted from
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8 disconnection and/or power failure on the device, both

were considered anomalous and kept in the data sets;

we will discuss other aspects later in the paper. In Fig-

ures 2(E2) and 2(F2), we observed that the 24 hours

trend of artificial light, and natural is identical except

a few activities of artificial light can be found in the

nighttime. The light sensor in the all-in-1 device, fig-

ures 2(H1) and (H2), share similar trends. It is notice-

able that natural light trends are gradual compared to

artificial light. We also noticed that activities related to

Sound, Light, CO2, infra, BLE devices and particulate

concentration are stable and low-valued at night time.

Thus we decided to filter data sets based on daylight

conditions as well. We also observe a regular (not ev-

eryday) activity before the start of daylight time; this

issue has consequences which will be discussed later in

the paper.

2.4.2 Multi Data Streams

Analysing relations between different data streams is

difficult, ineffective and time-consuming when done sep-

arately. So we visualised multiple data streams to anal-

yse the relations demonstrated in figure 3. For example,

in figure 3(A1), it can straightforwardly be noticed that

the values of temperature and humidity go opposite di-

rections around the end of October 2020 till the end of

December 2020. We can also notice the relation between

natural and artificial light in Figures 3(B1) and (B2).

There are two possible types of multi-data streams in

the given setup, intra-device and inter-device. Visualis-

ing multiple data streams from one device is compar-

atively easy as there are a limited number of combi-

nations. On the other hand, inter-device data stream

combinations can be enormous, so we chose only (14)

unique sensors’ data streams, see bold items in Table 1.

We choose a couple of inter-device combination graphs

for demonstration which can be seen in Figures 3(C1)

and 3(D1). Figure 3(D2) has a different situation plot-

ted in which a fire alarm went off at night time and vis-

ited by a staff member to evaluate the situation, which

triggered the light in the room as seen in the red circle.

This activity is perfect to be considered a contextual

anomaly. From the left side graph, we can see a regular

activity of sound and light in the daytime. Later in this

paper, we will evaluate ML models by considering two

things i) the regular activity detected as an anomaly,

and ii) the sound and light activity around 2100 hours

is considered an anomaly.
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Fig. 2 Single Data Streams

2.5 Data Scaling and Reduction Techniques

The machine learns from the provided data instead of

legacy statistical or mathematical algorithms in the ML

context. It makes pre-processing of data sets an essen-

tial part of the process. Data standardisation is be-

ing largely practised for pre-processing data sets be-

fore performing ML. It drastically decreases the size of

the input sample (in some cases) and time for a model

generation compared to non-scaled data. We adopted

two techniques for standardisation, StandardScaler and

MinMaxScaler. Standardisation techniques can only con-

vert data into a certain range and can be reversed but

Fig. 3 Multi Data Streams

can not reduce the dimensions of the input sample in

the case of multivariate data. So, we used reduction

techniques to convert multivariate data into uni-variate.

Reduction techniques help in reducing ML model gen-

eration time to a minimum. The resulting data sample

from reduction techniques is computationally expensive

to reverse. Which makes it hide properties of individual

data streams or sensor values, e.g. value of temperature

and humidity can only be known by the edge device

but will be kept unknown by the fog or cloud device.

Scaling techniques are feasible on cloud/fog where a

complete data set is available to evaluate a given ML

model. We did not consider data scaling for ML models

destined to run on edge devices (microcontrollers). We

added another dimension to data sets after applying

pre-processing techniques to convert the data into time

series, and the resulting sample was three-dimensional.

We used two scaling techniques and five reduction tech-

niques on the available data to evaluate the time dif-

ference for model generation. We experienced that scal-

ing techniques take less time (a few microseconds) ver-

sus reduction techniques which takes 1500 to 2127 mi-

croseconds to execute the process.

2.5.1 Scaling Techniques

We used the following data scaling techniques for this

work. Standard Scaler calculate the mean and stan-
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dard deviation of the input sample before applying equa-

tion 1. In equation 1 SSd is the standard scaler output

sample of input sample d, u is equal to the mean of

sample d and s is equal to the standard deviation of

input sample d.

SSd =
(d− u)

s
(1)

The resulting output sample has a mean=0 and stan-

dard deviation=1. We used the StandardScaler function

from the sklearn library to perform this scaling opera-

tion.

MinMax Scaler is simpler than StandardScaler, there

is no pre-calculation required as compared to Standard-

Scaler, and most frequently used for input sample stan-

dardisation. The output sample is in the range of 0

to 1. The corresponding output value of the minimum

value in the sample will be 0, and the corresponding

output value of the maximum value in the sample will

be 1. These values are calculated using the equation 2.

We used the MinMaxScaler function from the sklearn

library to perform this scaling operation.

MMd =
(d− dmin)

(dmax − dmin)
(2)

In equation 2 MMd is the MinMax scaler output sample

of input d, d(min) is the minimum value in input sample

d and d(max) is the maximum value in input sample d.

2.5.2 Reduction Techniques

We used the following data reduction techniques for this

paper.

Average is the sum of all values divided by the number

of values resulting in a single value for each sample. Av-

erage can reflect the central tendency of multiple data

streams while converting the input sample into univari-

ate. Average requires the least processing resources as

compared to other pre-processing techniques. We used

the average function from the NumPy library to exe-

cute this operation on the multi-variate input samples.

m̄ = (
1

n
)

n∑
i=1

xi (3)

Standard Deviation (SD) results in a univariate data

stream that can reflect the spread of a multivariate in-

put sample. It takes slightly more processing resources

than average as the average input sample is a prereq-

uisite for the SD equation to be executed. We used the

std function from the NumPy library to execute this

operation on multi-variate input samples.

σ =

√∑n
i=1(xi − x̄)2

n
(4)

Median Absolute Deviation (MAD) calculates vari-

ability in the input sample, it is more computationally

complex than SD because it is dependent on the me-

dian value of the input sample. MAD is more resilient in

terms of outlier detection as compared to SD. We used

the median abs deviation function from scipy.stats li-

brary for this operation.

MAD = median(xi − x̄) (5)

Kurtosis (Ku) calculates the relative peakedness of

an input sample, it requires both average and SD of the

input sample thus the computational power requires is

more than the previous techniques. We noticed that Ku

is effective on larger data points in terms of influenc-

ing anomaly detection. We used stats.kurtosis function

from scipy library for this operation.

K =
1

n

n∑
i=1

(xi − x̄)4

σ4
(6)

Skewness (Skew) calculates the trends of the input

sample, it can be a normal, negative or positive skew-

ness value. Skew is the most computationally complex

in our discussed techniques, it requires precomputed

average and SD of the input sample. It is also effec-

tive on larger data points where a curve can be formed.

We used stats.skew function from scipy library for this

operation.

Sk =
1

n

n∑
i=1

(xi − x̄)3

σ3
(7)

2.6 Data Conversion to Time Series

We tried and compared different algorithms to convert

series data in a time-series format, i.e. each row con-

tains the number of future rows. In streaming data sce-

narios, anomalies are categorised based on data trends

instead of points, e.g. the temperature in daytime hits

30oC. In contrast, at night time, it remains below 18oC.

Considering a microcontroller without an internal clock

can only be aware of the context be current values

rather than time. The ML model shall be trained using

a time-series-based input sample to achieve this func-

tionally. Let us say the dimensions of the input sample

are [Rows, data points], e.g. [36484, 14], dimensions of

the resulting sample become [Rows, Time Steps, data

points], e.g. [36484, 74, 14]. Let us say R represents

data rows in the data set, T represents the number of

required time-steps for each sample, X represents the

use-able rows, and Y is the resulting time-series sam-

ple.

X ∈ {R0, R1, R2, . . . , R− T}
Y ∈ {X + 1, X + 2, X + 3 . . . , X + T}

(8)
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2.7 Anomaly Detection Techniques Selection

We used the following anomaly detection techniques in

this paper.

2.7.1 OneClassSVM (OSSVM)

Support Vector Machine (SVM) is one of the most com-

mon ML methods Djenouri et al. (2019). SVM is pri-

marily used for classification (supervised ML) but can

also be adopted for clustering (unsupervised ML). SVM

is memory efficient, flexible, and suitable in high di-

mensional spaces and even works with a smaller num-

ber of samples compared to dimensions. It has a sub-

method, OneClass for outlier-detection, that tries to

discover decision boundaries to achieve maximum dis-

tance between data points and source by using a clus-

tering mechanism. The main idea behind OneClass was

stalled because of its incompetence in finding outliers

and determining non-linear decision boundaries. How-

ever, with the introduction of soft margins and kernels,

these issues were resolved Amer et al. (2013). OneClass

SVM splits all given data points from the source and

amplifies the distance from this subspace to the source

in the training phase. The function returns a binary

output for each input row where +1 means smaller dis-

tance and -1 means larger distance where larger dis-

tance considers an anomaly Schölkopf et al. (2000).

It is widely used in various applications for both su-

pervised and unsupervised learning methods. It is also

heavily adopted in academia. An anomaly classifier us-

ing SVM was proposed Araya et al. (2017) for detect-

ing abnormal consumption behaviour. A method pro-

posed by Ferdoash et al. (2015) to calculate excessive

airflow in Heating Ventilation and Air Conditioning

(HVAC) units in a large-scale Building Management

System (BMS). They also calculated the pre-cooling

start time for reaching the required temperature us-

ing temperature sensors. Jakkula and Cook (2011) the

proposes OneClass SVM for anomaly detection in smart

home environments using publicly available smart en-

vironment data sets. Himeur et al. (2021a) proposed

a method to detect anomalous power consumption in

buildings. OCSVM is highly effective on point anoma-

lies and can be inferred on fog devices to be used in

real-time environments.

2.7.2 Isolation Forest (IF)

IF is one of the top-most used algorithms in the outlier

detection domain because of its speed and simplicity.

IF is based on ensemble learning. The idea behind IF

is that randomly developed decision trees can quickly

isolate an outlier in the data set instead of detecting

outliers using density or distance from other samples.

Outliers are isolated because of the shorter path in the

tree as they have fewer relations with other data points

Liu et al. (2008). In terms of functional performance

in outlier detection, IF is the most popular algorithm

Buschjager et al. (2020). We use the IsolationForest

function from the SKLearn library to perform model

generation. The function requires all samples as input

and return a list of anomaly score for each sample. IF

is also effective for point anomalies only. It is not suit-

able for fog devices in real-time scenarios as it requires

a complete dataset.

2.7.3 CNN

In Deep Neural Networks (DNN), Convolutional Neu-

ral Network (CNN) is on the most wanted neural net-

works list. The name ”Convolutional” comes from the

matrixes-based linear operation. CNN models consist of

multiple layers, e.g. max-pooling, fully-connected, and

others Albawi et al. (2018). It brings significant im-

provement in computer vision (CV), Time series predic-

tion and Natural Language Processing (NLP). It covers

a wide range of application scenarios by providing sin-

gle and multidimensional layers, i.e. 1-D CNN, support-

ing Time Series Prediction and Signal Identification.

2-D CNN enables Image Classification, Object Detec-

tion, Image Segmentation and Face Recognition and 3-

D CNN, which helps in Human Action Recognition and

Object Recognition/Detection Li et al. (2021b). In con-

trast with other classification approaches, e.g. feature-

based, CNN can find and learn relations and generate

in-depth features from time-series data streams auto-

matically, e.g. speech recognition, ECG, price stocks,

pattern recognition, rule discovery, and many more Zhao

et al. (2017). All platforms support CNN, i.e. Edge (mi-

crocontrollers), Fog (RaspberryPi, Mobile Platforms)

and Cloud (High-performance Linux, Windows or Other

OSes). We implemented CNN by using TensorFlow API.

2.7.4 RNN

A recurrent Neural Network (RNN) is also a type of

DNN, and it is designed with built-in memory, making

it more suitable for time-series-based data streams. An-

other feature of RNN is that it can process information

in bi-directional instead of forwarding direction only.

Typical RNN has a known issue of vanishing or explod-

ing gradient, which affects its accuracy and overall per-

formance. With the help of Long Short-Term Memory

(LSTM) Hochreiter and Schmidhuber (1997), which is

designed with a memory cell to hold information over a
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period of time, this problem can be resolved. LSTM is

complex but sophisticated, and has three gates input,

output and forget. RNN models can predict the future

value from time-based input compared with the data

sample to calculate the loss. If the loss is greater than

the threshold (pre-computed using the training sam-

ple), the data sample can be categorised as an anomaly.

LSTM is widely used in various applications commonly

based on time-series data. LSTM is available only on

Fog and Cloud devices using the TensorFlow library.

Anomaly detection in a time-series context is a signifi-

cant application of LSTM.

3 Experimentation Results

This section will discuss the results of different com-

binations of data pre-processing and ML models. We

tested selective TF models on all platforms (Cloud-Fog-

Edge) and SKLearn models on Cloud and Fog only.

SKLearn models predictions are binary (Anomaly=-1,

Normal=1) whereas TF models were based on future

prediction, so the output was non-binary. Results for

TF models were calculated using a two steps process.

First, we calculated the Mean Absolute Error (MAE)

for the predicted loss method using equation 9 and

threshold by using equation 10.

MAE =
1

n

n∑
t=1

|y − x| (9)

The equatrefeq:mae calculates the mean absolute error

(average loss) of all input samples by calculating abso-

lute loss for each sample, where n represents a number

of samples, y represents predicted and x represents ex-

pected values of each sample.

Threshold = (8 · σ(MAE)) +MAE

σ− > StandardDeviation
(10)

Equation 10 dynamically calculates the threshold by

calculating the standard deviation of MAE, multiplying

it eight times and adding it with MAE. If the resulting

loss of an input sample is greater than the threshold,

the sample is considered anomalous.

3.1 Architectural Configurations

As discussed previously, we are using four types of ML

Models to train and test available data sets. These mod-

els are from two different APIs, Sci-kit Learn (SKLearn)

and TensorFlow (TF). SKLearn and RNN based mod-

els are available on Cloud and Fog platforms, whereas

CNN is also deployable on edge devices. In this section,

we will discuss the configurations of each algorithm.

We configure the OCSVM model with 0.5 nu, ”auto”

gamma and ”RBF” kernel parameters. We configure

IF model for ”auto” contamination parameter. Early-

Stopping to monitor loss with min delta=1e-2 and pa-

tience=3 was configured for both CNN and RNN mod-

els. We converted the dataset for both NN models into

74-time steps. We also fixed 100 epochs (max), adam

optimizer, and batch size to be 10 for both NN models.

Our CNN model requires TensorFlow version 2.1.1 and

RNN on the 2.4.1 version. We configured CNN models

with Conv1D layer, kernel size of 32, 5 filters and mean-

squared error for loss calculation. We used LSTM layers

for RNN models with 32 neurons and mean-absolute-

error for loss calculation.

3.2 Data Streams’ Configurations

We divided our data sets into two sub-datasets depend-

ing on daylight conditions, e.g., day time sub-dataset

(DT) and night time sub-dataset (NT). We used uncon-

ditional data set (UC) for ML models as well. We imple-

mented these scenarios on these two types of streams.

Converting datasets into sub-datasets reduces the ML

model generation time as well as inference time. It also

supports (in some cases) the implementation of point-

based anomaly detection, e.g. illumination. Events at

nighttime can be detected with high accuracy and low

computational resources if the ML model is trained

using the NT sub-dataset. On the other hand, sub-

datasets are limited to specific circumstances only, e.g.

if the buildings are designed to be illuminated 24x7.

i. Univariate (Single Data Streams): each data stream

from all devices was used to train, test, and analyse

models. Because these Data Streams were already uni-

variate, reduction techniques were not applicable. ii.

Multivariate (Multiple Data Stream): There can be enor-

mous possible combinations between intra-device and

inter-device data streams. Research has already been

conducted about relations between physical channels

like temperature-humidity with CO2 Liu et al. (2017).

Showing all possible combinations of multi-data streams

is overwhelming; thus, we have presented results of a

few of these combinations and preserved all models and

results stored for detailed analysis.
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Fig. 4 Scaled vs Non-Scaled and RNN vs CNN Model Train-
ing Times

3.3 Results

3.3.1 Univariate vs Multivariate

Reduction techniques returns univariate data so the

model training time is identical for all number of data

stream combinations. Total training time also depends

on the number of epochs executed before early stopping

condition becomes true. Figure 4 shows model training

times of scaled vs non-scaled dataset, it can be observed

that scaled dataset took more time for training in both

CNN and RNN methods. It is also obvious to see that

RNN CNN is efficient when compared to RNN. Due to

limited knowledge of known anomalies in the dataset, it

is difficult to determine overall efficiency of ML models.

3.3.2 Detecting Anomalies using Individual Sensor
Data Streams (Univariate)

A comparison of temperature with edge-processed T

data streams, which is atan (temperature), from the

sense-hat device. We had 32 data streams, out of which

14 were from unique sensors, and 18 were associated

streams. While comparing different sensor and associ-

ated data streams, we found that atan converted data

streams required a lesser threshold value to find anoma-

lies in novel data. The transformed data streams were

ineffective at certain stages where change suddenly fluc-

tuated. As seen in circled in blue colour where anoma-

lies are shown in orange dots in figure 5, a few anomalies

found in T, all at a lower temperature, was not detected

in the temperature model can be seen in green circles.

When it comes to humidity, the edge-processed scaled

data stream H was less sensitive as compared to the

unprocessed data stream, as demonstrated in figure 6,

the blue circles highlight the difference. Since we gen-

erated models for three environmental conditions, we

Fig. 5 Temperature vs Atan (Temperature) Comparison

Fig. 6 Humidity vs Percentage (Humidity) Comparison

found that the sum of anomalies found in two daylight

condition-based data sets (dark=0, light=1) was equal

to the number of anomalies found in the unconditional

data set.

We also noticed that there is no difference in non-

scaled streams vs scaled streams in temperature and its

associated data streams, e.g. T. Whereas other sensors

and associated data streams show different results, e.g.

a number of anomalies found original data stream of hu-

midity sensor were noticeably different from Standard-

Scaler but comparatively similar with MinMax. We ob-

served that StandardScaler decreases sensitivity result-

ing in lesser anomalies as compared to the non-scaled

data stream. It was also observed that MinMaxScaler

increased sensitivity resulting in more anomalies. We

found an obvious difference when comparing a number

of anomalies in pressure (P) and particulate concentra-

tion (M) data streams where StandardScaler results in

drastically increased sensitivity, the number of anoma-

lies are greater using a smaller threshold level. On the

other hand, anomalies found in Carbon dioxide (CO2)

in scaled versions of data streams were fewer as com-

pared to non-scaled data stream based models, which

point toward a decrease in sensitivity. Another notice-

able trend in the number of anomalies is that the sum of

both conditional anomalies was marginally greater than

the unconditional data set except for standard scaler

based models. We found a unique trend in artificial sen-

sor condition-based models. No anomalies were found

in non-scaled and MinMax scaler models in conditional

data sets, but standard scaled models found anomalies.

Anomalies found in unconditional data set based mod-

els were similar to non-scaled and scaled models. Sound

sensor-based models show an opposite reaction when it
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comes to anomalies; we found zero anomalies in UC

and DT. Whereas NT based models found anomalies,

non-scaled and MinMaxScaler models were pretty much

similar. However, the StandardScaler model found more

anomalies that represent increased sensitivity similar to

previously discussed pressure and particulate concen-

tration models.

3.3.3 Detecting Anomalies using Intra-Device

(Multivariate)

The total number of unique intra-device combinations

of data streams was 626. We choose a few of them for

analysis in this paper. We noticed that most of the

data preprocessing techniques could find almost similar

anomalies in the sense-hat device (all data streams),

except MinMaxScaler, which was extremely sensitive,

and MAD was too insensitive. Kurtosis and Skewness

were not effective. Zero anomalies were found when im-

plemented on the temperature and humidity (Temp-

Humidity) set. The behaviour of MinMaxScaler was the

same in Temp-Humidity but turns regular when used on

all other associated streams, i.e., T, P, H and HI (T-P-

H-HI) MAD were also able to find the same contextual

anomalies on this set. When looking at the results of

all data streams in All-in-1, we found that MAD was

most sensitive on UC and most insensitive on DT (zero

anomalies). The average was not effective (a few anoma-

lies detected) on NT and UC, whereas it could find the

same contextual anomalies as other techniques. We no-

ticed that temperature sensor readings were regularly

dipping randomly and abruptly, which was one of the

reasons for its influence over other data streams and

thus on statistical outcomes. Looking at other models

in all-in-1 devices, excluding temperature-related val-

ues, we found few anomalous activities.

3.3.4 Detecting Anomalies using Inter-Device Multiple

Data Streams (Multivariate)

As discussed in an earlier section about the one known

anomalous activity based on sound and light sensors’

data, we analyzed the particular activity to learn the

effectiveness of different algorithms and pre-processing

techniques. We found that the CNN model with scaled,

non-scaled and average sound and artificial values can

spot the anomalous activity without spotting false posi-

tives (usual everyday activity). In contrast, RNN mod-

els were not successful in detecting the particular ac-

tivity, as shown in figure 7. We also noticed that false

positives were found in all models, along with detecting

anomalous activity in the NT dataset. We also found

that SKLearn based models overwhelmed false positives

in all datasets.

Fig. 7 Sound & Light Known ”Anomalous Activity” Anal-
ysis

3.3.5 Point, Contextual, Combined Anomalies

Looking closely at figure 8, the two highlighted por-

tions of the timeline of the temperature data stream

from the sense-hat device. We observed at the end of

April 2021 temperature sensor malfunctioned, resulting

in an extreme increase to 30oC. Another event marked

anomalous in highlighted point 2 shows a sudden dip

in temperature from 22.6oC to 22.9oC detected. While

looking at historical data, both points are in the normal

range, but this activity is considered anomalous in con-

text. Figure 9 shows the combined activity of artificial

light and sound for the week commencing on June 14,

2021. In the context, office activity started early, i.e.

at 0530 hours on Monday, Tuesday, and Thursday and

was detected as anomalous True Positive (TP). The of-

fice starts at 0700 hours on Friday and Wednesday, as

shown in the black circle. The Friday morning activ-

ity was detected as False Positive (FP). On the other

hand, the Wednesday activity was accurately detected

as True Negative (TN). In addition to day start activ-

ities, a TP anomaly was detected around 2100 hours

due to a response initiated as a result of a (separately

operated) fire alarm.

4 Related Work

There are some suggestions for supervised anomaly de-

tection methodsLiu et al. (2015) Laptev et al. (2015).

The results are promising, but labelled data is rare

in the real world. Perhaps unsupervised ML methods

have become the focus of attention because of the ex-

cellent performance and the flexibility provided Li et al.

(2021a). The scope of anomaly detection is not limited

to specific areas. However, everywhere e.g., industry

Oh and Yun (2018), financial systems Gran and Veiga
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Fig. 8 1-Point Anomaly vs 2-Contextual Anomaly in Tem-
perature Data Stream

Fig. 9 Combined Contextual Anomalies in Sound and Arti-
ficial Light Data Streams

(2010), healthcare and maintenance of spacecraft by de-

tecting anomalies Gupta et al. (2014), cyber-physical

system Luo et al. (2021), and smart buildings Araya

et al. (2016).

4.1 Anomaly Detection Techniques for IoT Data

Research conducted by Microsoft Ren et al. (2019) led

to the development of an algorithm for detecting anoma-

lies in time-series data using residual spectrum pro-

cessing and convolutional neural networks (SR-CNN).

However, they were mainly concerned about stationery

and seasonal data, resulting in ineffective results on

non-stationary data. Data from Surface-mounted audio

sensors used with semi-supervised CNN auto-encoders

Oh and Yun (2018) to detect faults in industrial ma-

chinery. A deep autoencoders based model has been

proposed for detecting spectrum anomalies in wireless

communications Feng et al. (2017). The model devel-

oped in this work is to detect anomalies that may oc-

cur due to an abrupt change in the signal-to-noise ratio

(SNR) of the monitored communications channel. In

a critical infrastructure environment, if phasor data is

manipulated, the control centres may take the wrong

actions, negatively impacting power transmission relia-

bility. To mitigate this threat Yan and Yu (2015) pro-

posed a deep autoencoder technique. The Zhang et al.

(2018) study uses data from a number of heterogeneous

IIoT sensors, including temperature, pressure, vibra-

tion, and others, to develop an RNN-LSTM based re-

gression model to predict failures in pumps at a power

station. A new RNN-LSTM based method was devel-

oped Hundman et al. (2018) to detect anomalies in

a massive amount of telemetry data from spacecraft.

They also offered a method for evaluating that was

non-parametric, dynamic, and unsupervised. Another

solution proposed Wu et al. (2020) to detect anomalies

in multi-seasonality time-series data using RNN-GRU

also proposed a Local Trend Inconsistency metric on

top of their proposed anomaly detection algorithm. The

authors of Mart́ı et al. (2015) proposed a combination

of Yet Another Segmentation Algorithm (YASA) and

OneClassSVM (OCSVM) in order to detect anomalous

activities in turbomachines in the petroleum industry.

The authors of Aurino et al. (2014) used OCSVM to de-

tect gunshots from audio signals. OCSVM grouped with

DNN used to detect road traffic activities by Rovetta

et al. (2020). Isolation Forest (IF) was used to detect

anomalies in smart audio sensors Antonini et al. (2018).

IF is also used, in combination with order-preserving

hashing techniques, to detect anomalies by Xiang et al.

(2020). Another novel approach proposed by Farzad

and Gulliver (2020) uses autoencoder based IF for log-

based anomaly detection.

4.2 Environmental Monitoring within Buildings

In today’s world, human beings spend 90% of their time

in built environments which includes residential, com-

mercial, education, as well as transport, i.e. vehicles,

Brady (2021). Monitoring an indoor environment is dif-

ferent from industrial or mission-critical infrastructure,

where normal activities are largely known because of

the heterogeneous nature of activities. There are sev-

eral environmental monitoring applications other than

anomaly detection, e.g. Energy Monitoring, Comfort

Level Monitoring. Environment monitoring is well re-

searched. The heterogeneous nature of environments re-

quires the selection of the suitable parameters, sensors

technologies, communication mediums, placement and

power arrangements. Major parameters in this domain

are temperature, humidity, carbon emissions, illumina-

tion, airflow, and occupancy Hayat et al. (2019). Air

Quality (AQ) is becoming a critical matter. WHO re-

ported that there are almost 7 million premature deaths

are being caused by air pollution annually WHO (2021).
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Authors of Saini et al. (2020) presented a survey of sys-

tem architectures used for Indoor Air Quality (IAQ)

data collection as well as methods and applications for

prediction. Indoor environment quality plays an essen-

tial role in the health and well-being of human be-

ings, Clements et al. (2019) presented a living lab to

simulate real office spaces to support further research

on environmental monitoring in the built environment.

Occupancy monitoring is essential to determine air-

conditioning and illumination requirements in build-

ings, Erickson et al. (2014) proposed a wireless sensor

network based occupancy model to be integrated with

buildings conditioning systems. Based on two seasons of

monitoring IAQ and thermal comforts in school build-

ing Asif and Zeeshan (2020) recorded more than 50%

increase in CO2 levels during class times. Thermal com-

fort has critical importance for the well-being and pro-

ductivity of occupants in indoor environments, Valine-

jadshoubi et al. (2021) proposed an integrated sensor-

based thermal comport monitoring system for buildings

which also provides the virtual visualization of thermal

conditions in buildings. Authors of Ngah Nasaruddin

et al. (2019) presented temperature and relative hu-

midity monitoring solutions in high temperature and

humid climate environments using well-calibrated ther-

mal micro-climate devices and a single-board microcon-

troller.

4.3 Anomaly Detection within Buildings

Researchers propose a wide variety of methods for anomaly

detection in buildings. The diversity of techniques re-

flects extensive work being done in this domain. Un-

supervised learning has been used for fault detection

and diagnostics in smart buildings. Authors of Capoz-

zoli et al. (2015) proposed a simple technique based

on unsupervised learning that can automatically detect

anomalies in energy consumption based on the histor-

ically recorded data of active lighting power and total

active power. They adopt statistical pattern recognition

and ANN along-with other anomaly detection meth-

ods. A novel method, Strip, Bind, and Search (SBS),

based on unsupervised learning proposed by Fontugne

et al. (2013) to help identify devices with anomalous

behaviour by looking at inter-device relationships. The

authors of Xu et al. (2021) also proposed a data min-

ing based unsupervised learning technique to detect

anomalies in HVAC systems; the proposed work also

performs dynamic energy performance evaluation. In

the models proposed by Araya et al. (2017), overlap-

ping sliding windows and ensemble anomaly detection

were used to identify anomalies. The same authors also

proposed a Collective Contextual Anomaly detection

using similar techniques in their previous work Araya

et al. (2016). A Generalized Additive Model was pro-

posed by Ploennigs et al. (2013) for diagnosing build-

ing problems based on the hierarchy of sub-meters. A

Two-Step clustering algorithm based on unsupervised

machine learning was proposed by Poh et al. (2020) to

detect anomalous behaviour from physical access data

of employees about their job profiles. In a distributed

sensor network, an anomaly detection technique was

proposed by Meyn et al. (2009) using semi-empirical

Markov Models for time-series data. In a recent survey

conducted by Himeur et al. (2021b), the authors con-

cluded that anomaly detection techniques could help

in the reduction of energy consumption to benefit all

stakeholders.

5 Lessons Learnt and Discussion

DIY based (single-board computers, microcontrollers,

sensors) IoT devices are widely available and becoming

easy to deploy. These devices are micro-manageable and

cost-effective, but it is a laborious job which leads to

various challenges; while doing this research, we learnt

the following lessons: (i) missing data due to run-time

errors, (ii) threshold calculation, (iii) inter-device syn-

chronisation, (iv) importance of ”normal” dataset, (v)

an overwhelming number of ML models, (vi) converting

time-series data for unsupervised ML processing and

(vii) handling interactive graphs.

Missing data: DIY devices are prone to configura-

tion, deployment, and handling problems when used

for capturing data on a long-term basis. There is no

built-in notification system that can alert in case of

any error; thus, the errors persist silently for an ex-

tended period, ultimately affecting the dataset. Dur-

ing our data-capturing stage, we faced various scenarios

where data collection stopped, e.g. device power outage,

sensor malfunctions, communication errors, etc. thus;

the data is missing during those time slots.

Threshold calculation: Anomaly decision in time-

series data using an unsupervised approach is based on

loss and threshold. The threshold is critical in the deci-

sion process and calculating the threshold for each con-

figuration (data stream combinations with sub-datasets).

A maximum loss value from a normal dataset (training

dataset) can be used as a threshold; to achieve that,

an utterly normal dataset (without any capture-time

errors) is required.

Inter-device synchronisation : Due to multiple de-

vice setups, there were synchronisation errors due to

missed data in devices at different time slots. Data lost

from any single device or frequency differences can re-

sult in synchronisation issues. This creates a unique
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challenge when combining data streams from inter-device.

It is recommended to use a single host device for all sen-

sors or create a master table with a single timestamp at

the ingester-end to keep data synchronised at capturing

stage.

Importance of ”normal” dataset: For the above-learnt

lessons, we observe the critical importance of a com-

pletely normal dataset, e.g. without run-time errors (com-

munication, power, hardware).

An overwhelming number of ML models: Due to the

number of data streams, the number of combinations

was in the thousands. The resulting ML models and

associated results were overwhelming and difficult to

observe and manage. A systematic approach needed to

be adopted to handle the heterogeneous configuration

of datasets, models, and results.

Converting time-series data for unsupervised ML

processing: Time-series conversion of data sets using

pandas data-frames is far more computationally expen-

sive than using the NumPy library. It is wise to test

and compare all available methods for each sub-task

before starting mass processing. The result is the same

for both methods.

Handling interactive graphs: For unsupervised learn-

ing approaches for time series, analysing data using in-

teractive graphs is vital but requires extensive compu-

tational resources to load and interact graphs with mul-

tiple data streams.

6 Conclusion and Future Work

In this paper, we captured data streams from various

in-situ sensors using different devices with a variety of

configurations. We were able to detect point, contex-

tual and combined anomalies. We compared different

ML methods combined with several data pre-processing

techniques to better understand how to efficiently de-

tect anomalous activities in a smart building environ-

ment. We also evaluated the performance of the con-

ditional dataset (based on environmental conditions,

e.g. daylight). We found that it can work better for

detecting point anomalies as the activities are filtered

for certain situations. A clean, anomaly-free dataset

is required for model training for better results. Un-

conventional scaling techniques, e.g., atan, can lower

sensitivity for detection and an overhead during the

data-capturing process; atan and other conversions can

be performed in bulk at any later stage with reason-

able computational resources. We explored relations be-

tween various sensors in finding anomalies in buildings.

We also explored effective techniques to pre-process datasets

to optimise ML models. We also introduced an inter-

device data synchronisation technique to fill up missing

time slots and trim time-series datasets when compar-

ing different datasets. Threshold plays a vital role in

reducing false positives and increasing true positives.

A dynamic threshold calculation is essential to deal

with the overwhelming configuration of data streams.

The day of the week can also be used as a context

for anomaly detection in time-series datasets, but a

large dataset is required for modelling. Availability of a

dataset with known anomalies will be an important step

towards determining overall efficiency of ML models.
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berto E. Cerpa. Occupancy modeling and prediction for
building energy management. ACM Transactions on Sen-
sor Networks, 10(3), 2014.

Amir Farzad and T. Aaron Gulliver. Unsupervised log mes-
sage anomaly detection. ICT Express, 6(3):229–237, 2020.

Qingsong Feng, Yabin Zhang, Chao Li, Zheng Dou, and Jin
Wang. Anomaly detection of spectrum in wireless com-
munication via deep auto-encoders. Journal of Supercom-
puting, 73(7):3161–3178, 2017.

Afreen Ferdoash, Shubham Saini, Jitesh Khurana, and Amar-
jeet Singhz. Poster abstract: Analytics driven operational
efficiency in HVAC systems. BuildSys 2015 - Proceedings
of the 2nd ACM International Conference on Embedded
Systems for Energy-Efficient Built, pages 107–108, 2015.

Romain Fontugne, Jorge Ortiz, Nicolas Tremblay, Pierre
Borgnat, Patrick Flandrin, Kensuke Fukuda, David
Culler, and Hiroshi Esaki. Strip, bind, and search: A
method for identifying abnormal energy consumption in
buildings. IPSN 2013 - Proceedings of the 12th Interna-
tional Conference on Information Processing in Sensor
Networks, Part of CPSWeek 2013, pages 129–140, 2013.

Aurea Gran and Helena Veiga. Wavelet-based detection of
outliers in financial time series. Computational Statistics
and Data Analysis, 54(11):2580–2593, 2010.

Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei
Han. Outlier Detection for Temporal Data: A Survey.
IEEE Transactions on Knowledge and Data Engineering,
26(9):2250–2267, 2014.

Hasan Hayat, Thomas Griffiths, Desmond Brennan,
Richard P. Lewis, Michael Barclay, Chris Weirman,
Bruce Philip, and Justin R. Searle. The state-of-the-art
of sensors and environmental monitoring technologies in
buildings. Sensors (Switzerland), 19(17), 2019.

Yassine Himeur, Abdullah Alsalemi, Faycal Bensaali, and
Abbes Amira. Smart power consumption abnormality
detection in buildings using micromoments and improved
K-nearest neighbors. International Journal of Intelligent
Systems, (August 2020):2865–2894, 2021a.

Yassine Himeur, Khalida Ghanem, Abdullah Alsalemi, Faycal
Bensaali, and Abbes Amira. Artificial intelligence based
anomaly detection of energy consumption in buildings:
A review, current trends and new perspectives. Applied
Energy, 287(April):1–41, 2021b.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term
Memory. Neural Computation, 9(8):1735–1780, nov 1997.

Kyle Hundman, Valentino Constantinou, Christopher La-
porte, Ian Colwell, and Tom Soderstrom. Detecting space-
craft anomalies using LSTMs and nonparametric dynamic
thresholding. Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 387–395, 2018.

Vikramaditya Jakkula and Diane J. Cook. Detecting anoma-
lous sensor events in smart home data for enhancing the
living experience. AAAI Workshop - Technical Report,
WS-11-07(December 2014):33–37, 2011.

Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and
scalable framework for automated time-series anomaly
detection. Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, 2015-Augus:1939–1947, 2015.

Jia Li, Shimin Di, Yanyan Shen, and Lei Chen. FluxEV:
A Fast and Effective Unsupervised Framework for Time-
Series Anomaly Detection. WSDM 2021 - Proceedings of
the 14th ACM International Conference on Web Search
and Data Mining, pages 824–832, 2021a.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun
Zhou. A Survey of Convolutional Neural Networks: Anal-
ysis, Applications, and Prospects. IEEE Transactions
on Neural Networks and Learning Systems, pages 1–21,
2021b.

Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan
Pei, Jiao Luo, Xiaowei Jing, and Mei Feng. Opprentice
: Towards Practical and Automatic Anomaly Detection
Through Machine Learning Categories and Subject De-
scriptors. In ACM Internet Measurement Conference,
2015.

Fei Tony Liu, Kai Ming Ting, and Zhi Hua Zhou. Isolation
forest. Proceedings - IEEE International Conference on
Data Mining, ICDM, pages 413–422, 2008.

Xinyu Liu, Enhan Mai, Xiangxiang Xu, Hae Young Noh, Lin
Zhang, Xinlei Chen, and Pei Zhang. Poster abstract: In-
dividualized calibration of industrial-grade gas sensors in
air quality sensing system. SenSys 2017 - Proceedings of
the 15th ACM Conference on Embedded Networked Sen-
sor Systems, 2017-Janua:5–6, 2017.

Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng, and Dan-
feng Daphne Yao. Deep Learning-based Anomaly Detec-
tion in Cyber-physical Systems: Progress and Opportuni-
ties. ACM Computing Surveys, 54(5), 2021.

Luis Mart́ı, Nayat Sanchez-Pi, José Manuel Molina, and Ana
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