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ABSTRACT

Internet of Things (IoT) has gained substantial attention re-
cently and play a significant role in smart city application
deployments. A number of such smart city applications de-
pend on sensor fusion capabilities in the cloud from diverse
data sources. We introduce the concept of IoT and present
in detail ten different parameters that govern our sensor data
fusion evaluation framework. We then evaluate the current
state-of-the art in sensor data fusion against our sensor data
fusion framework. Our main goal is to examine and sur-
vey different sensor data fusion research efforts based on
our evaluation framework. The major open research issues
related to sensor data fusion are also presented.

1. INTRODUCTION

During the past decade, the Internet of Things (IoT)
has gained significant attention in academia as well as
industry [56]. The main reason behind this is the capa-
bilities that IoT promises to offer. It promises to create
a smart world where all the objects around us are con-
nected totheInternetand communicate with each other
with minimum human intervention [68].

Even though IoT encompasses anumber ofideas and
concepts, it does not have a clear definition. However,
Tan and Wang [45] have defined IoT in a fairly compre-
hensive manner as “Things have identities and virtual
personalities operating in smart spaces using intelligent
interfaces to connect and communicate within social,
environment, and user contexts [45, 58]. Some other
definitions are presented in [5]. The papers [5, 79, 58]
have surveyed the definition of IoT in three different
perspectives: things, the Internet and semantics.

IoT enables the vision “from anytime, anyplace con-
nectivity for anyone, we will now have the connectivity
for anything [76]". Further expanding this idea, the
European Union has defined the above vision as “The
loT allows people and things to be connected Anytime,

Anyplace, with Anything and Anyone, ideally using Any
network and Any service [25]".

The term Internet of Things was firstly coined by
Kevin Ashton [4] in a presentation in 1998. He has
also mentioned “The loT has the potential to change
the world, just as the Internet did. Maybe even more
Sso. [68]". Then, MIT presented their IoT vision in
1999. Later, IoT was formally introduced by the Inter-
national Telecommunication Union (ITU) by ITU In-
ternet reportin 2005[76].

The rest of the paper is organised as follows. Sec-
tion 2 provides an overview of sensor networks. Section
3, sensor data fusion is defined and techniques are dis-
cussed. We also outline the possible extensions to im-
prove sensor data fusion. In Section4, we highlight the
importance of data fusion in smart city applications.
In Section 5 presents the evaluation framework that we
used to evaluate different research efforts. We survey
various sensor data fusion efforts and its importance to-
wards IoT in the Section 6. Final section concludes the
survey by highlighting the survey results and research

gaps.

2. SENSOR NETWORKS

Sensor networks are the major enabler of the IoT. A
sensor can be defined as a device that detects or mea-
sures a physical phenomenon such as humidity, temper-
ature, etc. A sensor node is a physical platform that
hosts one or more sensors. Each sensor node has the
capability to sense, communicate and process data. A
typical sensor network [2] comprises two or more sen-
sornodes whichcommunicatebetween each other using
wired and wireless means. In sensor networks, sensors
canbehomogeneous or heterogeneous. Multiple sensor
networks can be connected together through different
mechanisms. One such approach is through the Inter-
net.
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Typically, sensor nodes are deployed in densely man-
ner around the phenomenon which we wantto sense [2].
These sensor nodes are low-cost and small in size,that
enable large deployments. Sensor network is not a con-
cept that emerged with the [oT. The concept of sensor
network and related research existed long time before
the IoT was defined. This can be clearly seen when
we evaluate the literature in the field. However, with
the emergence of the [oT has facilitated the mainstream
adoption of sensor network as a major technology used
to realise the IoT vision.

In recent times, another widely recognised source of
sensor data is obtained from mobile smart devices. The
ubiquitous nature of mobile smart devices such as smart
phones, tablets, smart watch to name a few and the
availability of cheap embedded sensors have completely
revolutionised the smart city application dimensions.

3. SENSOR DATA FUSION

In this section we introduce sensor data fusion in the
IoT domain. We also discuss its importance towards
the IoT and where the techniques would fit into the
IoT space.

Aswediscussed in earlier sections, [oT would produce
substantial amount of data [55] that are less useful un-
less we are able to derive knowledge using them. We
start our discussion by quoting some statements. The
following statements strongly emphasis the necessity of
sensor data fusion and filtering in IoT domain.

“By 2020, wirelessly networked sensors in everything
we own will form a new Web. But it will only be of
value if the “terabyte torrent” of data it generates can
be collected, analysed and interpreted [48]".

“Today, there are roughly 1.5 billion Internet-enabled

PCs and over 1 billion Internet-enabled mobile smart

phones. The present ‘Internet of PCs’ will move to-
wards an ‘Internet of Things’ in which 50 fo 100 billion
devices will be connected to the Internet by 2020[68]".

We see data fusion in the IoT environment as one

of the most important challenges that need to be ad-

dressed to develop innovative services. In particular,
in smart cities applications, when 50 to 100 billion de-
vices start sensing [84], it would be essential to fuse,
and reason about the data automatically and intelli-
gently. Fusion is a broad term than can be interpreted
in many ways. Hall and Llinas [27] have defined the
sensor data fusion as a method of combining sensor
data from multiple sensors to produce more accurate,
more complete, and more dependable information that
could not be possible to achieve through a single sensor.
Nakamura et al. [52] have defined data fusion based on
three key operations: complementary, redundant, and
cooperative.

Complementary means putting bits and pieces of a

large picture together. Asingle sensor cannot say much

about the environment as it would be focused on mea-
suring a single factor such as temperature. However,
when we have data sensed through a number of differ-
ent sensors, we can understand the environment in a
much better way.

Redundant means that same environmental factor is
sensed through different sensors. It helps to increase
the accuracy of the data. For example, averaging the
temperature value sensed by two sensors located in the
samephysicallocation would produce moreaccurate in-
formation compared to a single sensor. It also reduces
the amount of data that need to be handled as it com-
bines the two set of data streams together.

Cooperative operations combine the sensor data to-
gether to produce new knowledge. For example, read-
ing RFID tags recorded in a supermarket can be used to
identify the events such as shoplifting. Let’s consider a
scenario where RFID reader in a supermarket shelf de-
tects that an item has been removed from a shelf. The
RFID sensor in the counter does not see the object dur-
ing payments. Later, the RFID sensor in the exit door
detects the item that was removed from the shelf ear-
lier. This sequence of actions can be simply inferred as
a shoplifting event.
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Figure 1: Sensor Dataprocessing

A white paper published by Carnot Institutes [11] has
listed data fusion and data filtering as two main chal-
lenges for the IoT and its applications such as smart
cities. Data fusion is a data processing technique that
associates, combines, aggregates, and integrates data
from differentsources. Ithelpstobuild knowledge about
certain events and environments which is not possible
using individual sensors separately. Data fusion also
helps to build a context-awareness model that helps to
understand situational context. The sensor data filter-
ing stresses the requirement of filtering data to avoid
large volumes of data transmission over the network.

The most basic sensor data fusion example that is
used widely in smart phones is an e-compass. It uses a
combination of 3D magnetometer and the accelerome-
ter to provide compass functionality. Mainly, data fu-
sion operations can be applied at two levels: cloud level
and within the network level. As shown in Figure 1,
sensor nodes, smart city infrastructure, edge node, sink
nodes, and low level computational devices such as mo-



bile phones belong to in-network sensor data processing.
High-end computational devices such as servers belong
to cloud level processing.

The cloud can help better understand the environ-
ment by performing complex sensor data fusion opera-
tions. Cloud level devices have access to unlimited re-
sources and hence has the capability to apply complex
dataminingalgorithms over the data generated by large
number of lower level sensors. After understanding the
environment, the cloud can generate actions that need
to be taken appropriately.

In-network sensor data fusion is important to reduce
the data transmission cost. As data transmission re-
quires significant amount of energy, applying redun-
dant fusion operation can reduce the data transmission.
However, low-level nodes may not have the full view of
the environment. Therefore, they may not be able to
perform complex operations such as cooperative opera-
tions. Themainresponsibilityofin-network sensor data
fusion is to reduce the data transmission cost. The fol-
lowingruledefines howthe data processingin each level
should beconducted.

L= CurrentLevel,
if (KnowledgeRequired< KnowledgeAvailable) A
(DataTransmissionCost>DataFusionCost)
then ProcessAtTheCurrentLevel(L)
else SendDataTo(L+ 1)

The ultimate goal of sensor data fusion is to under-
stand the environment and act accordingly. This can
be defined as a cycle as shown in Figure 2. We call it
Internet of Things Monitoring Cycle. It has five steps:
Collection, Collation, Evaluation, Decide, and Act. IoT
monitoring cycle has been derived by combining the In-
telligence Cycle [63] and the Boyd Control Loop [7].
The Collection step collects raw data from sensors and
other IoT data sources (Social media, smart city in-
frastructure, mobile devices etc.). The Collation step
analyse, compare and correlate the collected data. The
Evaluation step fuses the data in order to understand
and provide a full view of the environment. The Decide
step decides the actions that need to be taken. The Act
step simply applies the actions decided at the previous
step. The Act step includes actuator control as well as
sensor calibration andre-configuration.

Typically, the deployed IoT infrastructure in smart
cities provide a means to monitor the environmental
context [57, 59]. There is very little interest in the raw
sensor data. The data that is of significant interest is
information about interesting events that are happen-
ingin the specific area. In order to accomplish this task,
IoT applications should be able to capture and reason
about the events continuously. Therefore applying sen-
sor data fusion techniques at the different levels of the
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Figure 2: Internet of Things Monitoring Cycle

IoT application chain is essential in order to detect rel-
evant events.

4. SENSORDATAFUSION FOR SMART CITY

APPLICATION

Data from citizens, systems, and general things flow
through our cities thanks to the wide spread adoption of
smart phones, sensor networks, social media and grow-
ing open release of datasets [3]. The data from Smart
citiespresentagrand challengetoresearchersand smart
cities promoters, as we need to take advantage ofthese
streams of information to build new services and define
aclear return of investment for the benefit of the society
[36].

The challenge in smart city is not to build a single
genericmodele.g. weather modelbased ontemperature
and humidity, complex models about noise pollution,
traffic etc., but to combine all these together to build
a good predictive contextually rich model. This model
will help understand the dynamics of the society, and
most importantly provide vital knowledge back to the
citizens in order to enhance their quality oflife.

Arecent work from a group of researchers from MIT
[65] demonstrate the potential of fusing data from dis-
parate data sources in smart city to understand acity’s
attractiveness. The work focuses on cities in Spain and
shows how the fusion of big data sets can provide in-
sights into the way people visit cities. Such a correlation
of data from a variety of data sources play a vital role
in delivering services successfully in smart cities ofthe
future.

In smart cities, ability to fuse sensor data enables
context awareness which has a huge potential for IoT.
Understanding the context of the city and its citizen
can help develop and provide a new world of services
based on what an individual user is doing, what the in-
frastructure [59] is doing, what nature is doing or all
the above in various combinations [38]. The variety of
services that can be developed is only limited to one’s
imagination. An example scenario could be a bridge



experiencing a structural issue due to adverse environ-
mental conditions can alert the city administrators and
alert all cars travelling towards the bridge to stay away
and seek alternative routes. For such a scenario to be
feasible, it is important, smart city applications built
on IoT have the ability to fuse data from diverse data
sources to enable context-aware decision making and
support.

S. EVALUATION FRAMEWORK

In this section, we present the framework that we use
to evaluate different IoT sensor data fusion research ef-
forts. The framework comprises the ten most significant
features (parameters) related to sensor data processing
in the IoT domain. Table 1 summarises the evaluation
at the end of the Section 6.

5.1 Middleware Architecture Type

Middleware can be explained as a software layer that
lies between the hardware and application layers. It
provides the reusable functionalities that are required
by the application to meet complex customer require-
ments. They are usually built to address the common
issues in application development such as heterogeneity,
interoperability, security, and dependability[34].

A traditional goal of middleware is to provide a set
of programming abstractions to help software devel-
opment where heterogeneous components need to be
connected and communicated together (e.g: Internet of
Things) [20]. However, programming abstraction comes
at a cost. That means, when we use a middleware to
connect sensors to applications, the performance will
degrade due to additional overheads. If you manu-
allyconnect application specific sensors toapplications,
they will perform much better. However, every time we
develop anew application, we have to manually connect
the sensors into the application where we will end up
with repeated code. Compared to this repeated effort,
using a middleware becomes a much better approach in
term of cost and development time. Middleware sys-
tems are too general and are developed not for asingle
domain but for multiple domains. As a result, middle-
ware may have functionalities that are not required by
one application but that may be required in another
application.

Todays’IoT applications demand more and more ad-
vanced and non-functional properties such as context-
awareness and semantic interoperability. Middleware
systems can bundles those functionalities together to
bereused in manyapplications. Weidentify developing
middleware as the right way to address the needs of IoT
applications.

IoT (or sensor networks) middleware solutions can
be mainly divided into two categories based on their
installed location [31]: in-network schemes and server-

side schemes. In-network middleware are usually de-
veloped usinglow level programminglanguages such as
nesC [18, 75] and installed on each sensor node. Those
middleware systems have more control on low level op-
eration of the network such as network routing, energy
consumption, etc. This layer is much closer to the hard-
ware. However, it lacks the overall knowledge about the
environment.

On the other hand, server-side middleware run in
cloud computingenvironments. Those middleware col-
lect data through gateways or sink nodes and are de-
veloped using high level programming languages such
as C, Java etc. However, these middleware systems
have less control over the sensor network operation.
They are unable to control low level operations such
as routing. However, they have more knowledge about
the environment as they can analyse the sensor data
received through different sensors. We have seen an
emergingthird categoryofmiddlewaresolutions,hybrid
schemes, which combines both in-network and server
side schemes. We believe that a hybrid middleware ap-
proach is best suited for the [oT domain as we can com-
bine the best of both the in-network and cloud-based
server schemes.

5.2 Context-awareness

The most widely used context information is loca-
tion [22]. However, context in the IoT is much more
broader than location. All the information about sen-
sors can be considered as context information (e.g. ca-
pabilities of the sensors, related actuators, near by sen-
sors, etc.). With the recent advancement of the IoT,
context-awareness has become an essential part of the
IoT applications. Context-awareness isno more limited
to mobile applications. Currently, the largest context
information consumers are mobile devices and their ap-
plications. Aresearch effort called mSense [41] has in-
troduced a middleware solution to manage context in-
formation. mSense separates context-awarenessman-
agement functionalities into a separate layer. The IoT
domain also requires such separation to makeapplica-
tion development much easier and faster.

Chantzara and Anagnostou [13] have identified four
common stages in context-aware application life cycle
as context sensing, context processing, context dissem-
ination, and context usage. This life-cycle has beenen-
hanced by [32]. Combining sensor data from multiple
sensors helps to understand context information much
more accurately. Better understanding will contribute
towards intelligent fusion and complex event detection.

The Cluster of European Research Projects (CERP-
I0T) has also mentioned context awareness (location-

aware, environment aware) as a key characteristic of
objectsin theIoT space [68]. Identifying the context in-
formation suchasgeographicallocation,sensor capabil-



ities, near-by sensors, related actuators and supported
data formats would help to built a context model for
each sensor thatcan beused toincreasetheautonomous
interaction among sensors. Nagy et al. [51] have de-
fined a term called Global Understanding in related to
context-awareness. It means that sensor ‘A’can under-
stand the properties and capabilities of sensor ‘B’ and
vice versa. This can only be achieved through semantic
technologies and context awareness techniques.

Aresearch focused on smart objects [40] has defined
threetypesofcontext-awareness: activity-aware, policy-
aware, and process-aware. Activity-aware means the
ability to understand the activity and the usage of a
specific sensor. Policy-aware acts as a domain knowl-
edge repository where it consists of rules. For example,
policy-aware can identify the health and safety condi-
tions of the user via policy knowledge and act accord-
ingly. Process-aware is the ability to detect the current
processes carried out by the user and the surrounded
objects. An ideal IoT application should be able to
provide additional assistance to users to carry out their
work as mentioned above.

Abowd and Mynatt [1] have identified 5Ws (who,
what, where, when, why) as the minimum set of context
information that need tobe handled in a pervasive com-
puting environment. This stays true in the IoT space
as well. Context information can be divided into three
categories: user context, computing (system) context,
and physical (Environmental) context [61]. User con-
text means the knowledge about the user (e.g. age,
gender, likes, dislikes, etc.). Computing context means
the knowledge about the software and hardware used by
users (e.g. operating system, hardware capacity, soft-
ware applications, etc.). Physical context means the
knowledge of the environment such as location, tem-
perature, light, etc.

Issarny et al. [34] have distinguished three types of
context sensitivity: context-specific systems, context-
dependent systems, and context-adaptive systems. Ap-
plications that can work only in one context are called
context-specific. Context-dependent applications need
to be configured at the beginning of the application
for each context. Context-adaptive systems canchange
their behaviour dynamically during runtime when con-
text changes. IoT applications demand the context-
adaptive behaviour to make the IoT vision a reality.

In order to build a comprehensive context model us-
ing context information, it is necessary to acquire con-
text data through many different data sources. Asingle
source would not be able to provide all necessary in-
formation that can be used to understand the context
accurately. Therefore, combining the context informa-
tion retrieved through multiple sources is essential but
challenging[44].

5.3 Semantic Interaction

The IoT can be considered as an application domain
wheresemanticwebtechnologiescanbeusedtoenhance
its functionalities significantly [30]. The IoT promises
to connect the billions of things around us together. Itis
not feasible to manually connect by hard-wiringthings
and applications. Automatingthese tasks will definitely
need the help of semantic technologies. Research con-
ducted on semantic sensor web [15] has identified sev-
eral challenges that need to be addressed by semantic
technologies. For example, sensor configuration, con-
text identification, complex sensor data querying, event
detection and monitoring, and sensor data fusion are
some ofthe tasks that can be enhanced using semantics.
Annotating sensors, sensor data, and program compo-
nents will increase the ability of interaction without ex-
plicit programming commands. Furthermore, annota-
tions will also increase the retrievability of sensor data.
More sophisticated queries can be processed over the
semantic annotated data.

5.4 Dynamic Configuration

Dynamic configuration can be interpreted at two lev-
els: a software level dynamic configuration and a hard-
ware level dynamic configuration. Dynamic hardware
configuration stresses the adaptability of a system. IoT
comprisestinysensingdevices (things) which are prone
to fail frequently. Therefore, a network built by these
devices is unreliable and should be able to change, con-
figure and adapt itself to the environment dynamically.
Furthermore, things may need to change their configu-
ration as a result of the decisions made by the cloud-
based server as a part of the actuation control.

For example, lets consider a things (sensor node) S
thatis capable of sensinglight, temperature and humid-
ity. It is physically located in area L. Currently, sensor
node S measures only temperature as it is the expected
requirement of the server level software to make the de-
cisions. Later, the server may require to know the light
level of area L. The sensor node S needs to be con-
figured to measure not only temperature, but also light
level as well. This new configuration setting needs to be
pushed to the sensor node from the cloud server. Figure
3 presents an example of a dynamic reconfiguration for
wireless sensors nodes deployments. According to our
survey, this functionality is lacking among most of the
current research efforts.

Furthermore,softwarelevelcan alsosupportdynamic
configuration capabilities. For example, software com-
ponentsdescribed in semantictechnologies can be com-
bined togethertocreatecomplexdatafusion operations.
Rather than combining these components at develop-
ment time, runtime configuration can add more adapt-
ability to the system.

The complex data fusion operations should be built
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Figure 3: Dynamic Sensor Network Configura-
tion

by reusing the software components at runtime based
on the user requirements. For example, Figure 4 shows
how a system can dynamically configure the compo-
nents into a work flow in order to detect events and act
accordingly.
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5.5 Fusion Complexity

Querying data from thingsis one ofthe common data
fusion operations in the IoT domain [8,24,46,80]. The
level of complexity supported by the query may differ
from the query language implementation. Sometimes,
semantic technologies such as SPARQL [47], are used
to query sensor data.

Another common data fusion approach is event de-
tection. Events can be recognised by identifying and
correlating sequences of action that occurred in the en-
vironment. Lets consider two sensors A and B, where
Ameasures temperature and Bis a camera. In an ideal
system, users should be able to pose queries to retrieve
the video feed of a room where temperature is higher
than 35°C. In order to answer such a request, the sys-
tem should be able to combine both sensors A and B
together. Another example query would be ‘identify
the best place to store a sculpture in a museum based
on the sculpture specification’. A number of data fu-
sion operation need to be used to answer such queries.
Concretely, a query may need to be generated by using
optimum humiditylevel,temperature and other param-
eters.

This kind of combining needs to be supported byse-
mantic technologies. Songet al. [67] have provided a

full description on how to accomplish such tasks by us-
ingsemantictechnologies. Zafeiropoulosetal. [67] have
described allthe elements such as sensors and program-
ming modules using semantics, where complex combi-
nations are possible.

5.6 Actuation Management

According to our evaluation, the majority of research
efforts have left out the functionality of actuation man-
agement from their proposed solutions. We presented
the IoT monitoring cycle in Section 3. This cycle stresses
the importance of the act step. Sensors sense data and
transmit it to servers. Severs then do the processing
and take the decision on how to handle the situation
based on the gathered knowledge and previous experi-
ence. Then actions need to be taken. Action can be a
change in sensor configuration or to conduct a specific
task using a connected actuator. For example, actua-
tion could increase the humidity by spraying more water
into the air. According to the context, the most appro-
priate actions needs to be taken and managed by an
ideal IoT software system in an efficient manner.

5.7 Type of Processing

Data processing in IoT can be done in two ways: in-
network processing and cloud level processing. Sen-
sors are prone to produce faulty data due to technical
issues. Furthermore, sensors produce redundant data
that wastes the energy if they are transmitted. There-
fore, data filtering is critical to save energy.In-network
processing mechanisms can be used to address these is-
sues. In-network sensor data processing however has
limitations, because in-network devices such as sensor
nodes and mobile phones perceive only limited knowl-
edge abouttheenvironment (local context) [54]. There-
fore,in-network data processingcannot make high level
decision where overallknowledgeisrequired.

Cloud-based processingshould beused toaddressthe
above problem. Cloud servers receive all the data col-
lected through a variety of different sensors. These data
increase the knowledge about the environment, so the
servers can take decisions by considering overall knowl-
edge (global context). Furthermore, cloud-based server
deviceshavemore sophisticated hardware power to pro-
cess and understand large amounts of data compared
to in-network hardware. Server level sensor data pro-
cessing techniques are used to fuse data in many ways
according to user queries. It can also understand inter-
esting events that occur in a sensor network.

It is clear that both types of processing haves their
unique contribution towards sensor data fusion in the
IoT domain. Therefore, the ideal way to process sensor
datais touse a hybrid approach where both in-network
and cloud-level sensor data processing techniques are
employed.



5.8 Cross Domain Portability

Cross domain portability stresses the ability of ap-
plying a proposed solution on different domains. Most
of the proposed solutions are narrowly focused on one
domain. We believe it is ideal to implement a solution
addressing more than one domain in order to prove the
cross domain portability. At the same time, it is critical
to differentiate the domain specific and domain inde-
pendent components of a solution. This increases the
ability to apply a solution in different domains. Aclear
differentiation willenable rapid and easy expansion.

5.9 Implementation

Implementation is critical in order to prove a con-
cept. Challenges that cannot been seen in theoretical
process can be clearly seen in a practical implementa-
tion. Implementation allows the identification of the
practical and technical difficulties and challenges that
arise during the implementation process. The major-
ity of proposed solutions are practically implemented.
Properimplementation should be followed byarigorous
performance evaluation procedure. The choice of pro-
gramming model, platform and languages significantly
impacton the future development and scalability. Mak-
ingtheprogrammingcode opensourceisaoneapproach
that can ensure therapid future development and avoid
repetitive work amongresearchers.

5.10 Performance Evaluation

Performance of a system becomes critical when the
system becomes larger and larger. In the IoT, we ex-
pecttoconnect millions and billions of sensors together.
Therefore, performance evaluation is critical tounder-
stand and verify how the system would work in a real
world deployment. It also allows to optimise the solu-
tion based on the performance evaluation results. Un-
fortunately, most of the proposed solutions in the IoT
domain have not conducted a performance evaluation
procedure which makes hard to decide the applicability
of the proposed solutions in real world.

Performance evaluation remains an open issue and
a challenge that needs to be achieved by researcher in
the IoT domain. Performance evaluation can be cate-
gorised into two distinct areas: software and hardware.
Parameters such as energy, response time, data fusion
capability, and number of supported sensors, need to be
evaluated.

6. SENSOR DATA FUSION APPROACHES
- STATE-OF-THE-ART

In this section, we discuss some of the solutions pro-
posed bydifferent researchers. Wehighlight the signifi-
cances of each project in brief. At the end, a summary
of the evaluation is presented in Table 1. It is to be
noted, anumber of solutions in sensor data fusion have

been addressed within the wireless sensor network re-
search. These solutions are completely applicable with
the IoT domain.

Jara et. al. [36] have applied sensor data fusion to
understand human behaviours in smart cities. Their
work analyses data obtained from the European project
Smart Santander. The work demonstrates how ubiqui-
tously available data such as traffic flows and temper-
ature can be correlated to understand and model the
influence of temperature on traffic flow. The work con-
siders the Poisson model and shows that the Poisson
distribution model is not always valid.

Sobolevsky et al. [65] have applied sensor data fusion
to estimate the attractiveness of smart cities for visi-
tors. The work focuses exclusively on cities in Spain.
To arrive at attractiveness they fuse sensor data from
three data source namely credit and debit card trans-
actions carried out by visitors, 3.5 million photos and
videos taken in spain and posted to Flickr and 700,000
geo-tagged tweets. The attractiveness of a city for the
purpose of the city was defined as the total number of
tweets, pictures and card transactions that took place
within it. The work produces some interesting results
and demonstrated how fusion of sensor data sets (big
datasets) can provideinsightsintohow people use cities.
In general, the work identified bigger cities attract large
number of visitors. However, there were also some ex-
ceptions that deviate from the above assumption. For
example certain cities such as Malaga had high level of
visitors but the least number of Flickr activity. This is
due to the fact, these cities are considered as retirement
locations and the category of visitors tends to less use
social media such as Flickr. This work is an excellent
demonstration of how data fusion in smart cities can
help create innovative services delivering value back to
its citizens and smart city developers.

Antonelli et al. [3] present city sensor fusion, a big
data platform that collects, aggregates, analyses, se-
manticallyenriches and offers visualanalytics from data
flows in smart cities. The work focuses on using sensor
data fusion to detect city scale events such as event
lasting days, number of visitors attracted, venues that
attracted significant interest etc. The platform fuses
data from different types of data sources ranging from
social media to mobile phones to sensors such as Traffic
flow, weather and pollution.

Soldatos et al., [66] propose OpenloT a first-of-kind
open source loT platform enabling the semantic inter-
operability of IoT services in the cloud. OpenloT pro-
motes interoperability among IoT silos right from the
sensor to the cloud services. OpenloT is built upon
semantic web standards such as W3C Semantic Sen-
sor Networks (SSN) ontology, which provides a com-
mon standards-based model for representing physical
and virtual sensors, RDF to store, index and retrieve



data, and supports virtually any IoT protocols such
as CoAP, 6LoWPAN etc. OpenloT includes also sen-
sor middleware and sensor data fusion capability at the
things and at the cloud. OpenloT eases the collection
of data from virtually any sensor, while at the same
time ensuring they are embedded with proper semantic
annotation. Furthermore, it offers a wide range of Do-
it-yourself visual tools that enable the development and
deploymentofloTservicesand applications with almost
zero programming. Another key feature of OpenloT
is its support for mobile sensors and thereby enabling
support for an emerging wave of mobile crowd sensing
applications. The OpenloT platform is a blueprint ar-
chitecture to develop semantically interoperable smart
city solutions with support for complex sensor datafu-
sion algorithms.

Zanella et al., [83] offers a survey of available tech-
niques, architecture,and protocols for aurban IoT which
are used to achieve the Smart City” vision. The paper
describes characteristics of an urban IoT and overviews
some services related to Smart City. The technical so-
lution proposed in this paper have been used in Padova
(Italy) Smart City project [12]. The Padova project
employs IPv4 and IPv6 at th network layers and uses a
wireless sensor network gateway to collect data from de-
ployed sensor network infrastructure [59]. Theodoridis
etal.,[72]illustrates challenges, socioeconomic chances
and vital findings from the European smat city project
Smart Santander. The paper surveys a Logical 3-tier
node and 3-plane architecture and highlights various
use cases that employ sensor data fusion in smart cities
including Outdoor parking management, precision ir-
rigation and home garden monitoring. Lin et al., [37]
presents an information framework which encompasses
the complete urban information system for building a
Smart City by using the Internet of Things. The pa-
per use a Noise Mapping in Smart Cities case study to
demonstratethearchitecture.

Da Rocha et al. [17] have focused on developing se-
mantic middleware for wireless sensor networks using
low level programming (i.e using NesC, a extension to
the C programming language used for embedded pro-
gramming). The approach is based on a rule-based
reasoning engine using ontologies. The research ad-
dresses the Structural Health Monitoring (SHM) appli-
cationdomain. Research justifiesthereason ofchoosing
wireless sensor networks over wired sensor networks by
pointing out the fact that wired sensor networks are
time consuming to deploy, very expensive and hard to
reconfigure [17].

Semantic sensor networksin SHM domain enable the
usage of semantic information towards monitoring and
handling the environment. The research incorporates
semantic features at the middleware level using a low
levelprogrammingapproach. Themiddlewarehas been

implemented using the NesC language in Mica Motes
[16] that runs the TinyOS [74] operating system. The
reasoningengine Pellet [14]isintegrated in this middle-
ware. New behaviours can be added into the applica-
tion by adding new rules. All the communication be-
tween the nodes are done by using a XML format called
TinyXML [73]. Knowledge is stored and processed us-
ing OWL. Da Rocha et al. [17] have developed ontolo-
gies related to the domain and other services. Applica-
tion driven, device driven and network driven concepts
are defined in the ontology. Ontologies help to share
information such as power remaining on a sensor, capa-
bilities of the sensors and soon.

The middleware proposed by Da Rocha et al. [17]in-
telligently shares information between different sensors
based on semanticknowledge. Forexample, twosensors
in the same area should not share their information if
those sensors are measuring two different aspects ofthe
environment; for example light and corrosion. How-
ever, if the two sensor measurements complement each
other, such as humidity and corrosion, then the sensors
should share their measurements and do the reasoning
bycombining both measurements. When many sensors
measure the same aspect, few of the sensors can switch
themselves off intelligently to save energy resources.

Zafeiropoulos et al. [81, 82] have presented an ar-
chitecture to address the issues such as data aggrega-
tion, data management, and querying. The semantic
technologiesareused toextract meaningfulinformation
from the raw sensor data. Aggregation of data contains
less value unless they are interpreted accurately. The
interpretation is essential in order to detect interesting
events in sensor networks. Zafeiropoulos et al. [81, 82]
correctly argue that this event detection should be sup-
ported by data gathered through heterogeneous data
sources. The semantic technologies that support such
operationsarecontentdescriptionlanguages,querylan-
guages, and annotation frameworks. The proposed ar-
chitecture comprisesthreelayers: datalayer, processing
layer, and semantic layer. The data layer is responsible
for collecting data from sensors using event-based or
polling-based mechanisms. The processing layer con-
verts those raw data into XML files. In the semantic
layer maps the XML data into a semantic model where
the XML messages are stored in the form of class in-
dividuals. This conversion is done by XML mapping
rules. Another set of rules called semantic rules are
used to detect events. As a result of these conversions,
a system can query and reason the sensor data using
semanticquerylanguages which provide enriched capa-
bilities.

The project Hydra[21] addresses the needs of health-
care,homeautomation and agriculture domains. It pro-
vides an architecture to connect sensor devices together
to detect events. The Hydra middleware is based on



a Service Oriented Architecture (SOA) and a Model
Driven Architecture (MDA). The core architecture of
Hydra comprises a number of different managers, such
as network, discovery, ontology, event, storage, and con-
text managers. Each ofthese managers are divided into
a number of layers. For example, the context manager
comprises four layers. Context data acquisition, con-
text management, context awareness, and context rea-
soning and interpretation. The Hydra middleware does
not differentiate the domain specific and domain inter-
preted components in its architecture, which makes it
hard to extend the domain into other domains. Hydra
encapsulate sensors into web services and the devices
are described using semantics where it enables seman-
ticinteroperabilityamongsensors. However,datais not
annotated using semantics.

Lee et al. [42] have proposed a hybrid middleware
which comprises an in-network middleware and a server-
side middleware. The in-network middleware has the
capability to deal with operations such as energy ef-
ficient data transmission. The server-side middleware
handles the context-aware stream processing, event de-
tection and querying. The main focus is given to the
in-network middleware. Therefore, event detection and
datafusion capabilities are verylimited. Thein-network
middleware has the intelligent capability to identify in-
complete and false data values.

Bruckner et al.[9] have proposed a framework to pro-
cess audio and video sensor data in a semantic manner.
The proposed system architecture comprises seven lay-
ers. The bottom layers which are closed to the sensor
nodes do the image and audio processing and convert
the raw data into Low Level Symbols (LLS). Then data
fusion mechanisms are used to convert those symbols
into High Level Symbols (HLS). Patterns and events can
berecognised usingthesesymbols. Theimplementation
has been deployed in an airport domain where the sys-
tem is capable of identifying events such as unattended
luggage or gunfire. The entire architecture is narrowly
focused on video and audio sensor data processing.

Semantic Sensors (SS) [33] network middleware con-
nects a variety of sensors to applications. The objective
ofthe middleware is to develop a sensor network where
developers need not to be aware of the device type of
each sensor node. SSt can identify the location and the
relationship among the sensors. The evaluation of the
middleware has been done in a lab environment by at-
taching sensors to daily use items such as bottles and
books. Logicalexpressionsareused tostoreinformation
about each object and their relationships. Very primi-
tive events are possible to recognise by the system. For
example, the system can answer simple queries such as
identify the state of the object (i.e moving or not) or
recognise the other objects near by. The implementa-
tionisdoneusinglowlevelprogramminglanguagessuch

as nesC.

Semantic Web Architecture for Sensor Networks
(SWASN) [29] is a server-side middleware that uses
semantic web technologies to enrich sensor data pro-
cessing. This project has proposed a four layer archi-
tecture: sensor networks data sources layer, ontology
layer, semantic web processing layer, and application
layer. SWASN is capable of connecting multiple sensor
networks together. To achieve this challenge, SWASN
uses aseparatelocalontologyfor each sensornetworkto
map sensor data to a common global RDF data model.
SWASN provides sophisticated querying features using
SPARQL [47]. The system is focused on building fire
emergency domain.

u-Greenhouse[31]isacontext-aware middleware that
proposed to process data collected through sensors in
a greenhouse environment by applying wireless sensor
network technologies. This middleware provides the
functionalities of datafiltering,event processing,context-
aware processing and integration of heterogeneous sen-
sors. The system architecture consists of three parts:
sensor network interface, data process, and application
service interface. The approach is to develop a hybrid
middleware that consists of in-network data processing
middleware that areinstalled on each node and a server-
side data processing middleware. The u-Greenhouse
architecture comprises three layers: the physical layer
(Sensor node and gateways), the middleware layer and
the application layer. Semantic capabilities are pro-
vided using and context-aware ontology. The system is
capable of recognising simple events in greenhouse en-
vironment that can trigger actions. u-Greenhousesolu-
tion is narrowly focused on greenhouse domain.

Siguenza et al. [64] combine states chart technol-
ogy and semantic technology to annotate and process
sensor data. The objective is to derive high level infor-
mation from raw sensor data. W3C State Chart eX-
tensible Markup Language (SCXML) is used to imple-
ment the system. The sensor data are enriched using
RDF semantics and stored in an SCXML data model.
The possible situations are defined as states such as ad-

verseWeather. The conditions related to the adverseWeather

state need to be fulfilled in order to infer the current
state as adverseWeather.

HARMONI [28] is a context-aware system for the
healthcare domain. This project has gone beyond the
objective of identifying events using sensor data fusion.
Homed et al. [28] have used their framework to reduce
the amount of data transmission significantly. A mo-
bile device that is capable of filtering data is deployed
in the patient’s room. This device is able to monitor
the events according to the specifications defined in the
filters. For example, doctors may need not to know all
the behaviour of a patient. Doctors are only interested
to know when a patient shows any unusual behaviour



(e.g. very high heart rate). Therefore, it is not neces-
sary to transfer all the data sensed by the sensors to
the back-end server. Instead, a mobile device in the pa-
tient’s room can filter the sensed data and transfer only
the relevant data intelligently to the server based on
the filter definition [28]. These filters need bechanged
according to the context. For example, heart rate may
need to be monitored based on the context. When the
patient is doing exercises, it is natural that heart rate
goes up. Therefore, the filters should be able to alter
the filter definitions based on thecontext.

Terziyan et al. [70] have proposed the UbiRoad mid-
dlewarethatuses semanticand agenttechnologies. Their
focus is on the smart road and traffic control domain.
Asample scenario has presented to convey the ultimate
objective. UbiRoad addresses four main challenges: in-
teroperability, flexible coordination, self-management,
trust and reputation. They have also identified context-
aware sensor data fusion as a secondary challenge. The

proposedsolutionisbased ontwoother projects SmartRe-

source [69] and UBIWARE [39]. UbiRoad combines dif-
ferent ontologies to incorporate different concepts into
the system such as device ontology, context ontology,
data ontology, and domain ontology. For example, de-
vice ontology is used to recognise different devices in
the sensor network and context ontology is used to un-
derstand the traffic control domain.

Phuocand Hauswirth [60] have proposed the concept
of combining link data towards sensor data mashups.
The system acquires sensor data through wrappers and
passes them to the upper layer for fusion operations.
Thedata fusion comprises manyoperationssuch asdata
filtering, data alignment, association, correlation, pat-
tern detection and classification. Fusion operations can
be composed together to produce high-level filters. The
acquired sensor data are stored in RDF models. There-
fore, SPARQL is used to query the data. Each individ-
ual sensor in considered as sensor component. Combi-
nations of sensor components are defined as a sensing
system. Sensor systems and fusion operation can be
combined together to build complex work flows. An
Ajax [23] based graphical user interface is provided to
build those work flows. The approach is more focused
towards utilising link dataconcepts.

Gyllstrom et al. [26] have proposed a complex event
processingsystem overdatastreamscalled SASE. SASE
is narrowly focused on the RFID sensors domain. A
high-level SQL like language has been defined to sup-
port user queries. The system is capable of identifying
events such as shoplifting or inventory misplacement.
Users need to syntactically define the query, and the
system can process the query against the data stores.
Some data fusion operations such as anomaly filtering,
temporal smoothingand duplication reduction are pro-
vided by SASE.

Liu and Zhao [43] have identified that most of the ef-
forts on sensing systems today are domain specific with
very little re-usability. To solve this problem, they have
proposed a open architecture which is enriched with se-
mantics. XML data formats are used in the system to
store data. Service components are the main building
block in the system. Each service is designed to take
inputs, do some processing and give the output back.
Services are designed in such a way that multiple ser-
vices can be combined together to build a complex ser-
vice. Thisrun-time combining process is possible due to
semanticdescriptions. This programmingmodel allows
the user to query the sensor data and events in abstract
ways without dealing with raw sensor data.

SEMbySEM[10] is a sensor management framework
that focuses on isolating technical related challenges
from the applications layer by using a facade layer in-
between. The facade layer transforms the sensor data
into semantically enriched information. The proposed
architecture comprises three layers: facade, core, and
visualisation. The core layer does the reasoning and in-
ferring. An ontological semantic model is used tostore
the concepts, rules and data.

Intelligent Event Processing Agent (iIEPA) [19] is an
approach that combines complex event processingand
multi agent systems. The research is focused on traffic
management domain. Arule based system is employed
to identify the events. Data fusion operations such as
filter, split, aggregate, and transform are used to infer
events. Events are defined in a language called Espers
continuous Query Language (EQL).

Izumi et al. [35] have proposed a knowledge filter-
ing scheme for the health care support domain. Their
system comprises a number of different agents, such as
a data stream mining agent, a inference agent, and a
knowledge base agent. A multi agent architecture is
used to built the system, and an ontology scheme is
used to store data where SPARQL queries are used for
data filtering. Knowledge gathered using sensors is fil-
tered based on four different perspectives: person based
filtering, access policy based filtering, location based fil-
tering, and time based filtering.

Teymourian et al. [71] present a conceptual approach
to address the problem of Semantic Event Processing
(SCEP). SCEPcombineseventprocessingtechnologies
and semantic technologies. This research effort is not
directly related to sensor data fusion. However, the
techniques used in this area can be combined with sen-
sor data stream processing in order to detect events in
the IoTenvironment.

The Sensor Web Agent Platform (SWAP) framework
[50] comprises three layers: sensor layer, knowledge layer,
and application layer. A multi agent technology and
web services technologies are employed to built the sys-
tem. Each layer consists of a number of agents thatare



capable of doing specific tasks. The implementation is
focused on a fire detection domain. The number of dif-
ferent agents can be combined together to answer or
detect complex situations such as wild fire.

7. EVALUATION OF SENSOR DATA FUSION

APPROACHES

The Table 1classifies the difference sensor data fusion
efforts based on the evaluation framework we presented
in section 5.

The parameters used to evaluate each feature of re-
search efforts can be explained as follows. In depth
discussion on each feature is conducted in the Section
5.

e Architecture Type: This feature evaluates whether
the proposed solution is proposed as amiddleware
(M) or an Application system (A). Application
systems are narrowly focused on one specific do-
main while middleware solutions possesses more
domain expandabilityand domain independence.

e Context-awareness: This feature evaluates whether
the proposed solution possesses context-awareness
capabilities or not.

e Semantic Interaction: This feature is evaluated
using four categories: High (H), Moderate (M),
Low (L), and none (x).

- High (H) - Both data and program compo-
nents are annotated using semantic technolo-
gies. Semanticreasoningmechanismsareem-
ployed.

- Moderate (M) - Either data elements or pro-
gram components are enriched using seman-
tics technologies, but not both.

- Low (L) - No semantic technologies are used.
However, solutions are enriched with limited
semantic capabilities using different techniques
such as rules [9], symbols [33], etc.

- None (x) - No semantic interactions posed by
the approach.

e Dynamic Configuration: This feature is evaluated
using four categories: High (H), Moderate (M),
Low (L), and none (x).

- High(H)-Sensorhardwareand software com-
ponents are dynamically configured based on
the environment. The solution possesses au-
tomated configuration of filtering, fusion and
reasoning mechanism, according to the prob-
lems at hand.

- Moderate (M) - Poses very limited dynamic
hardware configuration such as switch on/ off
Sensors.

- Low(L)-Posessoftwarelevellimited dynamic
composition and configuration capabilities.

- None (x) - No software or hardware compo-
nents are dynamically configured.

e fusion Complexity: This feature is evaluated us-
ingthree categories: High (H), Moderate (M), and
Low (L).

- High (H) - Capable ofansweringcomplexuser
queries. Program components can be com-
bined together to produce complex results.

- Moderate (M) - Capable of answering moder-
ately complex user queries. Develop complex
fusion mechanism by combining simple fusion
components is not possible.

- Low (L) - Limited fusion techniques such as
data filtering is possible.

Actuation Management: Does the solution pos-
sesses actuation management capabilities.

e Type of Processing: Is the data fusion approach
Centralised (C) or Decentralised (D).

e Cross Domain Portability: Number of domains
that the proposed solution is applied.

¢ Implementation: This feature tells that whether
researchers have practically implemented the pro-
posed solution or if it is a theoretical approach
only.

* Performance Evaluation: This feature evaluates
whether each research effort has conducted a per-
formance evaluation procedure on their proposed
system or not.

8. CONCLUSION

In this article, we first highlighted the importance
of sensor data fusion in IoT application such as smart
cities applications. Weexamined a number of different
sensor data fusion research efforts related to IoT with
particular focus on smart cities application domain.

We developed a evaluation framework by carefully
selecting ten different metrics. We believe these ten
metrics are open challenges in the field. Some of these
challenges are addressed by the researchers significantly
and some are in its infancy. One of the major goals of
this article is to highlight the opportunities for improve-
ments and research gaps in the field.

Based on surveyed approaches, context-awareness in
IoT more specifically within the smart city domain is
gaining importance but still in its infancy. A lot of fo-
cus on context awareness is towards a particular appli-
cation while to realise the true IoT-enabled smart cities



2
- = =
o 21218 » g °0 w 2
& 218 & B 2 £ = | g
128 |E 2 5|8 g |&/H
E 528 g/=2g g £¢
5 ff 9lo ! 8§ |~ 5) S| %
S 8 Z|E z|/2|/5| 2 |E|E
S|l s s |23 o @ = | £ =
S EEE 5 5| & o =5 3
Research Efforts | < | O | & | A | & | < | & o E ~ >
Gibbonsetal. [24] | A | x| x | L |L | x | D 3 ./ | < | 2003
Liu &Zhao[43] | A| x |H M |H | x | C 1 ./ | < | 2005
Whitehouseetal.[77] |M| <x | M| L | H| x| C 1 ./ | < | 2006
Lewisetal.[49] M| x | H|M | M| x| C 1 ./ | < | 2006
Moodleyetal.[5S0] | M |./ | L | x| L | x|C 1 ./ | < | 2006
Moodley &Simonis[50] | M | x M |M |H | <x | C 1 ./ | < | 2006
Bouilletetal. [6] | M| ./ |H | L |H|./ |C 1 ./ | ./ | 2007
Brennaetal. [8] | A| ./ | x| x | M| x |C 1 ./ | < | 2007
Gyllstrometal. [26] | A | < | x | x | M | x | C 1 ./ | < | 2007
Noguchietal.[26] |[M | x | M |H |[M| x | C 1 . | < | 2007
Zafeiropoulosetal.[81] | M | x |H | L [ M| x | C 1 ./ | ./ |2008
Shethetal.[62] | A| <~ |H| L |M| x| C 2 ./ | < | 2008
Bruckneretal. [9] | A | ./ | L | x | M| x | D 1 ./ | < | 2008
Huangetal.[29] M|,/ | H | M |M| x| C 1 ./ | < | 2008
Woodetal. [78] | A|,/|L | M| L |x D 1 ./ | < | 2008
Homedetal.[28] | A|./|L|M | H |./|D 1 ./ | ./ | 2008
Nietal.[S3] | A|./|H | < |M| x| D 1 x | < | 2009
DaRochaetal. [177 | M| ./ | M| L | M| x |D 1 ./ | < | 2009
Phuoc &Hauswirth[60] | M | <x |H | L | H | x | C 1 ./ | < | 2009
Teymourianetal. [71] | A|./| L |L | L |x|C 2 < | %< | 2009
Brunneretal. [10] | M | x |H | x | M| x | C 1 ./ | < | 2009
Eisenhaueretal.[2]] M |./|H | M| H | x| C 2 ./ | < | 2009
Leeetal. [42] | M | x | L | x | L | x | D 1 ../ 12010
Siguenzaetal.[64] | A | x | M| x | L | x| C 1 .| < ]2010
Izumietal.[35] | A|./ | M| x M| x| C 1 ../ 12010
Terziyanetal. [70] | M| ./ | M| L |[M| x | C 1 .| <2010
Hwangetal. [31] M|,/ L M| L |./|D 1 ../ 12011
Dunkel[19] | A| < | L |[M|H |./|D 1 =< 2011
Zanella et al. [83] Theodoridis et al. [72] Linetal. [37] |[M | <x | L | L | M| L | C 1 ../ 12014
Jaraetal. [36] | A|./|L | L |H | ./|C 1 .| ./ | 2014
Sobolevskyetal.[65] | A|./| L |L|H]|./ |C 1 ../ | 2015
Antonellietal. [3] | A|.,/ | H| M| H|./|C 1 .| ./ | 2014
Soldatosetal.[66] | M|,/ | H | H |H/|./|D | many()|./ |./|2014

Table 1: Taxonomy of Sensor Data Fusion Research Efforts

vision, a broader non-domain focus will have to be pur-
sued. Furthermore, dynamic configuration of things is
also not addressed by most of the proposed solutions.
Similarly,actuation managementsistheleastaddressed
feature amongall. We believe actuation management is
important as it plays a significant role in the IoT mon-
itoring and feedback cycle. Further, performance eval-
uation techniques employed by most of the researchers

to evaluate their proposed approaches are limited. Per-
formance evaluation is extremely important as we are
expecting these solutions to incorporate billions of sen-
sor devices. Finally, cross domain portability is also
addressed poorly. The majority of the efforts arebased
on a single domain. It is hoped that future efforts will
aim to address these research gaps.
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