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ABSTRACT 

Internet of Things (IoT) has gained substantial attention re- 

cently and play a significant role in smart city application 

deployments. A number of such smart city applications de- 

pend on sensor fusion capabilities in the cloud from diverse 

data sources. We introduce the concept of IoT and present 

in detail ten different parameters that govern our sensor data 

fusion evaluation framework. We then evaluate the current 

state-of-the art in sensor data fusion against our sensor data 

fusion framework. Our main goal is to examine and sur- 

vey different sensor data fusion research efforts based on 

our evaluation framework. The major open research issues 

related to sensor data fusion are also presented. 

 
1. INTRODUCTION 

During the past decade, the Internet of Things (IoT) 

has gained significant attention in  academia as well as 

industry [56]. The main reason behind this is the capa- 

bilities that IoT promises to offer. It promises to create 

a smart world where all the objects around us are con- 

nected to the Internet and communicate with each other 

with minimum human intervention [68]. 

Even though IoT encompasses a number of ideas and 

concepts, it does not have a clear definition. However, 

Tan and Wang [45] have defined IoT in a fairly compre- 

hensive manner as “Things have identities and virtual 
personalities operating in smart spaces using intelligent 

interfaces to connect and communicate within social, 

environment, and user contexts [45, 58]. Some other 

definitions are presented in  [5]. The papers [5, 79, 58] 

have surveyed the definition of IoT in three different 

perspectives: things, the Internet and semantics. 

IoT enables the vision “from anytime, anyplace con- 
nectivity for anyone, we will now have the connectivity 

for anything [76]”. Further expanding this idea, the 

European Union has defined the above vision as “The 
IoT allows people and things to be connected Anytime, 

Anyplace, with Anything and Anyone, ideally using Any 

network and Any service [25]”. 
The term Internet of Things was firstly coined by 

Kevin Ashton [4] in a presentation in 1998. He has 

also mentioned “The IoT has the potential to change 
the world, just as the Internet did. Maybe even more 

so. [68]”. Then, MIT presented their IoT vision in  

1999. Later, IoT was formally introduced by the Inter- 

national Telecommunication Union (ITU) by ITU In- 

ternet report in 2005 [76]. 

The rest of the paper is organised as follows. Sec- 

tion 2 provides an overview of sensor networks. Section 

3, sensor data fusion is defined and techniques are dis- 

cussed. We also outline the possible extensions to im- 

prove sensor data fusion. In  Section4, we highlight the 

importance of data fusion in smart city applications. 

In Section 5 presents the evaluation framework that we 

used to evaluate different research efforts. We survey 

various sensor data fusion efforts and its importance to- 

wards IoT in the Section 6. Final section concludes the 

survey by highlighting the survey results and research 

gaps. 

 

2. SENSOR NETWORKS 

Sensor networks are the m ajor enabler of the IoT. A 

sensor can be defined as a device that detects or mea- 

sures a physical phenomenon such as humidity, temper- 

ature, etc. A sensor node is a physical platform that 

hosts one or more sensors. Each sensor node has the 

capability to sense, communicate and process data. A 

typical sensor network [2] comprises two or more sen- 

sor nodes which communicate between each other using 

wired and wireless means. In sensor networks, sensors 

can be homogeneous or heterogeneous. Multiple sensor 

networks can be connected together through different 

mechanisms. One such approach is through the Inter- 

net. 
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Typically, sensor nodes are deployed in densely man- 

ner around the phenomenon which we want to sense [2]. 

These sensor nodes are low-cost and small in size, that 

enable large deployments. Sensor network is not a con- 

cept that emerged with the IoT. The concept of sensor 

network and related research existed long time before 

the IoT was  defined.  This can be clearly seen  when 

we evaluate the literature in the field. However, with 

the emergence of the IoT has facilitated the mainstream 

adoption of sensor network as a major technology used 

to realise the IoT vision. 

In recent times, another widely recognised source of 

sensor data is obtained from mobile smart devices. The 

ubiquitous nature of mobile smart devices such as smart 

phones, tablets, smart watch to name a few and the 

availability of cheap embedded sensors have completely 

revolutionised the smart city application dimensions. 

 

3. SENSOR DATA FUSION 

In this section we introduce sensor data fusion in the 

IoT domain. We also discuss its importance towards 

the IoT and where the techniques would fit into the 

IoT space. 

As we discussed in earlier sections, IoT would produce 

substantial amount of data [55] that are less useful un- 

less we are able to derive knowledge using them. We 

start our discussion by quoting some statements. The 

following statements strongly emphasis the necessity of 

sensor data fusion and filtering in  IoT domain. 

“By 2020, wirelessly networked sensors in everything 
we own will form a new Web. But it will only be of 
value if the ”terabyte torrent” of data it generates can 

be collected, analysed and interpreted [48]”. 
“Today, there are roughly 1.5 billion Internet-enabled 

PCs and over 1 billion Internet-enabled mobile smart 

phones. The present ‘Internet of PCs’ will move to- 
wards an ‘Internet of Things’ in which 50 to 100 billion 

devices will be connected to the Internet by 2020 [68]”. 
We see data fusion in the IoT environment as one  

of the most important challenges that need to be ad- 

dressed to develop innovative services. In particular, 

in smart cities applications, when 50  to 100  billion de- 

vices start sensing [84], it would be essential to fuse, 

and reason about the data automatically and intelli- 

gently. Fusion is a broad term than can be interpreted 

in many ways. Hall and Llinas [27] have defined the 

sensor data fusion as a method of combining sensor 

data from multiple sensors to produce more accurate, 

more complete, and more dependable information that 

could not be possible to achieve through a single sensor. 

Nakamura et al. [52] have defined data fusion based on 

three key operations: complementary, redundant, and 

cooperative. 

Complementary means putting bits and pieces of a 

large picture together. A single sensor cannot say much 

about the environment as it would be focused on mea- 

suring a single factor such as temperature. However, 

when we have data sensed through a number of differ- 

ent sensors, we can understand the environment in a 

much better way. 

Redundant means that same environmental factor is 

sensed through different sensors. It helps to increase 

the accuracy of the data. For example, averaging the 

temperature value sensed by two sensors located in the 

same physical location would produce more accurate in- 

formation compared to a single sensor. It also reduces 

the amount of data that need to be handled as it com- 

bines the two set of data streams together. 

Cooperative operations combine the sensor data to- 

gether to produce new knowledge. For example, read- 

ing RFID tags recorded in  a supermarket can be used to 

identify the events such as shoplifting. Let’s consider a 

scenario where RFID reader in  a supermarket shelf de- 

tects that an item has been removed from a shelf. The 

RFID sensor in the counter does not see the object dur- 

ing payments. Later, the RFID sensor in the exit door 

detects the item that was removed from the shelf ear- 

lier. This sequence of actions can be simply inferred as 

a shoplifting event. 

 

 

 
Figure  1: Se n s o r Data pro ces s in g  

 
A white paper published by Carnot Institutes [11] has 

listed data fusion and data filtering as two main chal- 

lenges for the IoT and its applications such as smart 

cities. Data fusion is a data processing technique that 

associates, combines, aggregates, and integrates data 

from different sources. It helps to build knowledge about 

certain events and environments which is not possible 

using individual sensors separately. Data fusion also 

helps to build a context-awareness model that helps to 

understand situational context. The sensor data filter- 

ing stresses the requirement of filtering data to avoid 

large volumes of data transmission over the network. 

The most basic sensor data fusion example that is 

used widely in smart phones is an e-compass. It uses a 

combination of 3D magnetometer and the accelerome- 

ter to provide compass functionality. Mainly, data fu- 

sion operations can be applied at two levels: cloud level 

and within the network level. As shown in Figure 1, 

sensor nodes, smart city infrastructure, edge node, sink 

nodes, and low level computational devices such as mo- 
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bile phones belong to in-network sensor data processing. 

High-end computational devices such as servers belong 

to cloud level processing. 

The cloud can help better understand the environ- 

ment by performing complex sensor data fusion opera- 

tions. Cloud level devices have access to unlimited re- 

sources and hence has the capability to apply complex 

data mining algorithms over the data generated by large 

number of lower level sensors. After understanding the 

environment, the cloud can generate actions that need 

to be taken appropriately. 

In-network sensor data fusion is important to reduce 

the data transmission cost. As data transmission re- 

quires significant amount of energy, applying redun- 

dant fusion operation can reduce the data transmission. 

However, low-level nodes may not have the full view of 

the environment. Therefore, they may not be able to 

perform complex operations such as cooperative opera- 

tions. The main responsibility of in-network sensor data 

fusion is to reduce the data transmission cost. The fol- 

lowing rule defines how the data processing in each level 

should be conducted. 

 
 

L = CurrentLevel; 

if (KnowledgeRequired ≤ KnowledgeAvailable) ∧ 
(DataTransmissionCost > DataFusionCost) 

then  ProcessAtTheCurrentLevel(L) 

else SendDataTo(L + 1) 
 

The ultimate goal of sensor data fusion is to under- 

stand the environment and act accordingly. This can 

be defined as a cycle as shown in Figure 2. We call it  

Internet of Things Monitoring Cycle. It has five steps: 

Collection, Collation, Evaluation, Decide, and Act. IoT 

monitoring cycle has been derived by combining the In- 

telligence Cycle [63] and the Boyd Control Loop [7]. 

The Collection step collects raw data from sensors and 

other IoT data sources (Social media, smart city in- 

frastructure, mobile devices etc.). The Collation step 

analyse, compare and correlate the collected data. The 

Evaluation step fuses the data in order to understand 

and provide a full view of the environment. The Decide 

step decides the actions that need to be taken. The Act 
step simply applies the actions decided at the previous 

step. The Act step includes actuator control as well as 

sensor  calibration  and re-configuration. 

Typically, the deployed IoT infrastructure in smart 

cities provide a means to monitor the environmental 

context [57, 59]. There is very little interest in the raw 

sensor data. The data that is of significant interest is 

information about interesting events that are happen- 

ing in the specific area. In order to accomplish this task, 

IoT applications should be able to capture and reason 

about the events continuously. Therefore applying sen- 

sor data fusion techniques at the different levels of the 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

Figure  2 : In te rn e t o f Th in gs  Mo n ito rin g Cycle  

 

IoT application chain is essential in order to detect rel- 

evant events. 

 

4. SENSOR DATA FUSION FOR SMART CITY 

APPLICATION 

Data from citizens, systems, and general things flow 

through our cities thanks to the wide spread adoption of 

smart phones, sensor networks, social media and grow- 

ing open release of datasets [3]. The data from Smart 

cities present a grand challenge to researchers and smart 

cities promoters, as we need to take advantage of these 

streams of information to build new services and define 

a clear return of investment for the benefit of the society 

[36]. 

The challenge in smart city is not to build a single 

generic model e.g. weather model based on temperature 

and humidity, complex models about noise pollution, 

traffic etc., but to combine all these together to   build 

a good predictive contextually rich model. This model 

will help understand the dynamics of the society, and 

most importantly provide vital knowledge back to the 

citizens in order to enhance their quality of life. 

A recent work from a group of researchers from MIT 

[65] demonstrate the potential of fusing data from dis- 

parate data sources in smart city to understand a city’s 

attractiveness. The work focuses on cities in Spain and 

shows how the fusion of big data sets can provide in- 

sights into the way people visit cities. Such a correlation 

of data from a variety of data sources play a vital role 

in delivering services successfully in smart cities of the 

future. 

In smart cities, ability to fuse sensor data enables 

context awareness which has a huge potential for IoT. 

Understanding the context of the city and its citizen 

can help develop and provide a new world of services 

based on what an individual user is doing, what the in- 

frastructure [59] is doing, what nature is doing or all 

the above in various combinations [38]. The variety of 

services that can be developed is only limited to one’s 

imagination.   An example scenario could be a   bridge 



experiencing a structural issue due to adverse environ- 

mental conditions can alert the city administrators and 

alert all cars travelling towards the bridge to stay away 

and seek alternative routes. For such a scenario to be 

feasible, it is important, smart city applications built 

on IoT have the ability to fuse data from diverse data 

sources to enable context-aware decision making and 

support. 

 

5. EVALUATION FRAMEWORK 

In this section, we present the framework that we use 

to evaluate different IoT sensor data fusion research ef- 

forts. The framework comprises the ten most significant 

features (parameters) related to sensor data processing 

in the IoT domain. Table 1 summarises the evaluation 

at the end of the Section 6. 

5.1 Middleware Architecture Type 

Middleware can be explained as a software layer that 

lies between the hardware and application layers. It 

provides the reusable functionalities that are required 

by the application to meet complex customer require- 

ments. They are usually built to address the common 

issues in application development such as heterogeneity, 

interoperability,  security,  and  dependability [34]. 

A traditional goal of middleware is to provide a set 

of programming abstractions to help software devel- 

opment where heterogeneous components need to be 

connected and communicated together (e.g: Internet of 

Things) [20]. However, programming abstraction comes 

at a cost. That means, when we use a middleware to 

connect sensors to applications, the performance will 

degrade due to additional overheads. If  you manu- 

ally connect application specific sensors to applications, 

they will perform much better. However, every time we 

develop a new application, we have to manually connect 

the sensors into the application where we will end up 

with repeated code. Compared to this repeated effort, 

using a middleware becomes a much better approach in 

term of cost and development time. Middleware sys- 

tems are too general and are developed not for a single 

domain but for multiple domains. As a result, middle- 

ware may have functionalities that are not required by 

one application but that may be required in another 

application. 

Todays’ IoT applications demand more and more ad- 

vanced and non-functional properties such as context- 

awareness and semantic in teroperability. Middleware 

systems can bundles those functionalities together to 

be reused in many applications. We identify developing 

middleware as the right way to address the needs of IoT 

applications. 

IoT (or sensor networks) middleware solutions can 

be mainly divided into two categories based on their  

installed location [31]: in-network schemes and server- 

side schemes. In-network middleware are usually de- 

veloped using low level programming languages such as 

nesC [18, 75] and installed on each sensor node. Those 

middleware systems have more control on low level op- 

eration of the network such as network routing, energy 

consumption, etc. This layer is much closer to the hard- 

ware. However, it lacks the overall knowledge about the 

environment. 

On the other hand, server-side middleware run in 

cloud computing environments. Those middleware col- 

lect data through gateways or sink nodes and are de- 

veloped using high level programming languages such 

as C, Java etc. However, these middleware systems 

have less control over the sensor network operation. 

They are unable to control low level operations  such 

as routing. However, they have more knowledge about 

the environment as they can analyse the sensor data 

received through different sensors. We have seen an 

emerging third category of middleware solutions, hybrid 

schemes, which combines both in-network and server 

side schemes. We believe that a hybrid middleware ap- 

proach is best suited for the IoT domain as we can com- 

bine the best of both the in-network and cloud-based 

server schemes. 

 

5.2 Context-awareness 

The most widely used context information is loca- 

tion [22]. However, context in the IoT is much more 

broader than location. All the information about sen- 

sors can be considered as context information (e.g. ca- 

pabilities of the sensors, related actuators, near by sen- 

sors, etc.). With the recent advancement of the IoT, 

context-awareness has become an essential part of the 

IoT applications. Context-awareness is no more limited 

to mobile applications. Currently, the largest context 

information consumers are mobile devices and their ap- 

plications. A research effort called mSense [41] has in- 

troduced a middleware solution to manage context in- 

formation. mSense separates context-awareness man- 

agement functionalities into a separate layer. The IoT 

domain also requires such separation to make applica- 

tion development much easier and faster. 

Chantzara and Anagnostou [13] have identified four 

common stages in context-aware application life cycle 

as context sensing, context processing, context dissem- 

ination, and context usage. This life-cycle has been en- 

hanced by [32]. Combining sensor data from multiple 

sensors helps to understand context information much 

more accurately. Better understanding will contribute 

towards intelligent fusion and complex event detection. 

The Cluster of European Research Projects (CERP- 

IoT) has also mentioned context awareness (location- 

aware, environment aware) as a key characteristic of 

objects in  the IoT space [68]. Identifying the context in- 

formation such as geographical location, sensor capabil- 



ities, near-by sensors, related actuators and supported 

data formats would help to built a context model for 

each sensor that can be used to increase the autonomous 

interaction among sensors. Nagy et al. [51] have de- 

fined a term called Global Understanding in related to 

context-awareness. It means that sensor ‘A’ can under- 

stand the properties and capabilities of sensor ‘B’ and 

vice versa. This can only be achieved through semantic 

technologies and context awareness  techniques. 

A research focused on smart objects [40] has defined 

three types of context-awareness: activity-aware, policy- 

aware, and process-aware. Activity-aware means the 

ability to understand the activity and the usage of a 

specific sensor. Policy-aware acts as a domain knowl- 

edge repository where it consists of rules. For example, 

policy-aware can identify the health and safety condi- 

tions of the user via policy knowledge and act accord- 

ingly. Process-aware is the ability to detect the current 

processes carried out by the user and the surrounded 

objects. An ideal IoT application should be able to 

provide additional assistance to users to carry out their  

work as mentioned above. 

Abowd and Mynatt [1] have identified 5Ws (who, 

what, where, when, why) as the minimum set of context 

information that need to be handled in  a pervasive com- 

puting environment. This stays true in the IoT space 

as well. Context information can be divided into three 

categories: user context, computing (system) context, 

and physical (Environmental) context [61]. User con- 

text means the knowledge about the user (e.g. age, 

gender, likes, dislikes, etc.). Computing context means 

the knowledge about the software and hardware used by 

users (e.g. operating system, hardware capacity, soft- 

ware applications, etc.). Physical context means the 

knowledge of the environment such as location, tem- 

perature, light, etc. 

Issarny et al. [34] have distinguished three types of 

context sensitivity: context-specific systems, context- 

dependent systems, and context-adaptive systems. Ap- 

plications that can work only in  one context are called 

context-specific. Context-dependent applications need 

to be configured at the beginning of the  application 

for each context. Context-adaptive systems can change 

their behaviour dynamically during runtime when con- 

text changes. IoT applications demand the context- 

adaptive behaviour to make the IoT vision a reality. 

In order to build a comprehensive context model us- 

ing context information, it is necessary to acquire con- 

text data through many different data sources. A single 

source would not be able to provide all necessary in- 

formation that can be used to understand the context 

accurately. Therefore, combining the context informa- 

tion retrieved through multiple sources is essential but 

challenging [44]. 

5.3 Semantic Interaction 

 
The IoT can be considered as an application domain  

where semantic web technologies can be used to enhance 

its functionalities significantly [30]. The IoT promises 

to connect the billions of things around us together. It is 

not feasible to manually connect by hard-wiring things 

and applications. Automating these tasks will definitely 

need the help of semantic technologies. Research con- 

ducted on semantic sensor web [15] has identified sev- 

eral challenges that need to be addressed by semantic 

technologies. For example, sensor configuration, con- 

text identification, complex sensor data querying, event 

detection and monitoring, and sensor data fusion are 

some of the tasks that can be enhanced using semantics. 

Annotating sensors, sensor data, and program compo- 

nents will increase the ability of interaction without ex- 

plicit programming commands. Furthermore, annota- 

tions will also increase the retrievability of sensor data. 

More sophisticated queries can be processed over the 

semantic annotated data. 

 

5.4 Dynamic Configuration 

Dynamic configuration can be interpreted at two lev- 

els: a software level dynamic configuration and a hard- 

ware level dynamic configuration. Dynamic hardware 

configuration stresses the adaptability of a system. IoT 

comprises tiny sensing devices (things) which are prone 

to fail frequently. Therefore, a network built by these 

devices is unreliable and should be able to change, con- 

figure and adapt itself to the environment dynamically. 

Furthermore, things may need to change their configu- 

ration as a result of the decisions made by the cloud- 

based server as a part of the actuation control. 

For example, lets consider a things (sensor node) S 
that is capable of sensing light, temperature and humid- 

ity. It is physically located in area L. Currently, sensor 

node S measures only temperature as it is the expected 

requirement of the server level software to make the de- 

cisions. Later, the server may require to know the light 

level of area L. The sensor node S needs to be con- 

figured to measure not only temperature, but also light 

level as well. This new configuration setting needs to be 

pushed to the sensor node from the cloud server. Figure 

3 presents an example of a dynamic reconfiguration for 

wireless sensors nodes deployments. According to our 

survey, this functionality is lacking among most of the 

current research efforts. 

Furthermore, software level can also support dynamic 

configuration capabilities. For example, software com- 

ponents described in semantic technologies can be com- 

bined together to create complex data fusion operations. 

Rather than combining these components at develop- 

ment time, runtime configuration can add more adapt- 

ability to the system. 

The complex data fusion operations should be  built 
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ming modules using semantics, where complex combi- 

nations are possible. 
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Figure  3 : Dyn am ic Sen s o r Netw o rk Co n figu ra- 

tio n  

 
by reusing the software components at runtime based 

on the user requirements. For example, Figure 4 shows 

how a system can dynamically configure the compo- 

nents into a work flow in order to detect events and act 

accordingly. 
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Figure  4 : So ftw are  Dyn am ic Co n figu ratio n  

 
5.5 Fusion Complexity 

Querying data from things is one of the common data 

fusion operations in the IoT domain [8, 24, 46, 80 ]. The 

level of complexity supported by the query may differ 

from the query language implementation. Sometimes, 

semantic technologies such as SPARQL [47], are used 

to query sensor data. 

Another common data fusion approach is event de- 

tection. Events can be recognised by identifying and 

correlating sequences of action that occurred in the en- 

vironment. Lets consider two sensors A and B, where 

A measures temperature and B is a camera. In an ideal 

system, users should be able to pose queries to retrieve 

the video feed of a room where temperature is higher 

than 35◦C. In order to answer such a request, the sys- 

tem should be able to combine both sensors A and B 
together. Another example query would be ‘identify 

the best place to store a sculpture in a museum based 

on the sculpture specification’. A number of data fu- 

sion operation need to be used to answer such queries. 

Concretely, a query may need to be generated by using 

optimum humidity level, temperature and other param- 

eters. 

This kind of combining needs to be supported by se- 

mantic technologies.  Song et al.  [67] have provided  a 

5.6 Actuation Management 

According to our evaluation, the majority of research 

efforts have left out the functionality of actuation man- 

agement from their proposed solutions. We presented 

the IoT monitoring cycle in Section 3. This cycle stresses 

the importance of the act step. Sensors sense data and 

transmit it to servers. Severs then do the processing 

and take the decision on how to handle the situation 

based on the gathered knowledge and previous experi- 

ence. Then actions need to be taken. Action can be a 

change in sensor configuration or to conduct a specific 

task using a connected actuator. For example, actua- 

tion could increase the humidity by spraying more water 

into the air. According to the context, the most appro- 

priate actions needs to be taken and managed by an 

ideal IoT software system in  an efficient manner. 
 

5.7 Type of Processing 

Data processing in  IoT can be done in two ways: in-

network processing and cloud level processing. Sen- 

sors are prone to produce faulty data due to technical 

issues. Furthermore, sensors produce redundant data 

that wastes the energy if they are transmitted. There- 

fore, data filtering is critical to save energy. In-network 

processing mechanisms can be used to address these is- 

sues. In-network sensor data processing however has 

limitations, because in-network devices such as sensor 

nodes and mobile phones perceive only limited knowl- 

edge about the environment (local context) [54]. There- 

fore, in-network data processing cannot make high level 

decision where overall knowledge is required. 

Cloud-based processing should be used to address the 

above problem. Cloud servers receive all the data col- 

lected through a variety of different sensors. These data 

increase the knowledge about the environment, so the 

servers can take decisions by considering overall knowl- 

edge (global context). Furthermore, cloud-based server 

devices have more sophisticated hardware power to pro- 

cess and understand large amounts of data compared 

to in-network hardware. Server level sensor data pro- 

cessing techniques are used to fuse data in many ways 

according to user queries. It  can also understand inter- 

esting events that occur in a sensor network. 

It is clear that both types of processing haves their  

unique contribution towards sensor data fusion in the 

IoT domain. Therefore, the ideal way to process sensor 

data is to use a hybrid approach where both in-network 

and cloud-level sensor data processing techniques are 

employed. 
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5.8 Cross Domain Portability 

Cross domain portability stresses the ability of ap- 

plying a proposed solution on different domains. Most 

of the proposed solutions are narrowly focused on one 

domain. We believe it is ideal to implement a solution 

addressing more than one domain in order to prove the 

cross domain portability. At the same time, it is critical 

to differentiate the domain specific and domain inde- 

pendent components of a solution. This increases the 

ability to apply a solution in different domains. A clear 

differentiation will enable rapid and easy expansion. 

5.9 Implementation 

Implementation is critical in order to prove a con- 

cept. Challenges that cannot been seen in theoretical 

process can be clearly seen in a practical implementa- 

tion. Implementation allows the identification of the 

practical and technical difficulties and challenges that 

arise during the implementation process. The major- 

ity of proposed solutions are practically implemented. 

Proper implementation should be followed by a rigorous 

performance evaluation procedure. The choice of pro- 

gramming model, platform and languages significantly 

impact on the future development and scalability. Mak- 

ing the programming code open source is a one approach 

that can ensure the rapid future development and avoid 

repetitive  work  among researchers. 

5.10 Performance Evaluation 

Performance of a system becomes critical when the 

system becomes larger and larger. In the IoT, we ex- 

pect to connect millions and billions of sensors together. 

Therefore, performance evaluation is critical to under- 

stand and verify how the system would work in a real 

world deployment. It also allows to optimise the solu- 

tion based on the performance evaluation results. Un- 

fortunately, most of the proposed solutions in the IoT 

domain have not conducted a performance evaluation 

procedure which makes hard to decide the applicability 

of the proposed solutions in  real world. 

Performance evaluation remains an open issue and 

a challenge that needs to be achieved by researcher in 

the IoT domain. Performance evaluation can be cate- 

gorised into two distinct areas: software and hardware. 

Parameters such as energy, response time, data fusion 

capability, and number of supported sensors, need to be 

evaluated. 

6. SENSOR DATA FUSION APPROACHES 

- STATE-OF-THE-ART 

In this section, we discuss some of the solutions pro- 

posed by different researchers. We highlight the signifi- 

cances of each project in brief. At the end, a summary 

of the evaluation is presented in Table 1. It is to be 

noted, a number of solutions in sensor data fusion have 

been addressed within the wireless sensor network re- 

search. These solutions are completely applicable with 

the IoT domain. 

J ara et. al. [36] have applied sensor data fusion to 

understand human behaviours in smart cities. Their  

work analyses data obtained from the European project 

Smart Santander. The work demonstrates how ubiqui- 

tously available data such as traffic flows and temper- 

ature can be correlated to understand and model the 

influence of temperature on traffic flow. The work con- 

siders the Poisson model and shows that the Poisson 

distribution model is not always valid. 

Sobolevsky et al. [65] have applied sensor data fusion 

to estimate the attractiveness of smart cities for visi- 

tors. The work focuses exclusively on cities in  Spain. 

To arrive at attractiveness they fuse sensor data from 

three data source namely credit and debit card trans- 

actions carried out by visitors, 3.5 million photos and 

videos taken in spain and posted to Flickr and 700 ,000  

geo-tagged tweets. The attractiveness of a city for the 

purpose of the city was defined as the total number of 

tweets, pictures and card transactions that took place 

within it. The work produces some interesting results 

and demonstrated how fusion of sensor data sets (big 

data sets) can provide insights into how people use cities. 

In general, the work identified bigger cities attract large 

number of visitors. However, there were also some ex- 

ceptions that deviate from the above assumption. For 

example certain cities such as Malaga had high level of 

visitors but the least number of Flickr activity. This is 

due to the fact, these cities are considered as retirement 

locations and the category of visitors tends to less use 

social media such as Flickr. This work is an excellent 

demonstration of how data fusion in  smart cities can 

help create innovative services delivering value back to 

its citizens and smart city developers. 

Antonelli et al. [3] present city sensor fusion, a big 

data platform that collects, aggregates, analyses, se- 

mantically enriches and offers visual analytics from data 

flows in smart cities. The work focuses on using sensor 

data fusion to detect city scale events such as event 

lasting days, number of visitors attracted, venues that 

attracted significant interest etc. The platform fuses 

data from different types of data sources ranging from 

social media to mobile phones to sensors such as Traffic 

flow, weather and pollution. 

Soldatos et al., [66] propose OpenIoT a first-of-kind 

open source IoT platform enabling the semantic inter- 

operability of IoT services in the cloud. OpenIoT pro- 

motes interoperability among IoT silos right from the 

sensor to the cloud services. OpenIoT is built upon 

semantic web standards such as W3C Semantic Sen- 

sor Networks (SSN) ontology, which provides a com- 

mon standards-based model for representing physical 

and virtual sensors, RDF to store, index and    retrieve 



data, and supports virtually  any  IoT  protocols such 

as CoAP, 6LoWPAN etc. OpenIoT includes also sen- 

sor middleware and sensor data fusion capability at the 

things and at the cloud. OpenIoT eases the collection 

of data from virtually any sensor, while at the same 

time ensuring they are embedded with proper semantic 

annotation. Furthermore, it  offers a wide range of Do- 

it-yourself visual tools that enable the development and 

deployment of IoT services and applications with almost 

zero programming. Another  key  feature of  OpenIoT 

is its support for mobile sensors and thereby enabling 

support for an emerging wave of mobile crowd sensing 

applications. The OpenIoT platform is a blueprint ar- 

chitecture to develop semantically interoperable smart 

city solutions with support for complex sensor data fu- 

sion algorithms. 

Zanella et al., [83] offers a survey of available tech- 

niques, architecture, and protocols for a urban IoT which 

are used to achieve the Smart City” vision. The paper 

describes characteristics of an urban IoT and overviews 

some services related to Smart City. The technical so- 

lution proposed in this paper have been used in Padova 

(Italy) Smart City project [12]. The Padova project 

employs IPv4 and IPv6 at th network layers and uses a 

wireless sensor network gateway to collect data from de- 

ployed sensor network infrastructure [59]. Theodoridis 

et al., [72] illustrates challenges, socioeconomic chances 

and vital findings from the European smat city project 

Smart Santander. The paper surveys a Logical 3-tier 

node and 3-plane architecture and highlights various 

use cases that employ sensor data fusion in smart cities 

including Outdoor parking management, precision ir- 

rigation and home garden monitoring. Lin et al., [37] 

presents an information framework which encompasses 

the complete urban information system for building a 

Smart City by using the Internet of Things.  The  pa- 

per use a Noise Mapping in Smart Cities case study to 

demonstrate the architecture. 

Da Rocha et al. [17] have focused on developing se- 

mantic middleware for wireless sensor networks using 

low level programming (i.e using NesC, a extension to 

the C programming language used for embedded pro- 

gramming). The approach is based on a rule-based 

reasoning engine using ontologies. The research ad- 

dresses the Structural Health Monitoring (SHM) appli- 

cation domain. Research justifies the reason of choosing 

wireless sensor networks over wired sensor networks by 

pointing out the fact that wired sensor networks are 

time consuming to deploy, very expensive and hard to 

reconfigure [17]. 

Semantic sensor networks in SHM domain enable the 

usage of semantic information towards monitoring and 

handling the environment. The research incorporates 

semantic features at the middleware level using a low 

level programming approach. The middleware has been 

implemented using the NesC language in  Mica Motes 

[16] that runs the TinyOS [74] operating system. The 

reasoning engine Pellet [14] is integrated in this middle- 

ware. New behaviours can be added into the applica- 

tion by adding new rules. All the communication be- 

tween the nodes are done by using a XML format called 

TinyXML [73]. Knowledge is stored and processed us- 

ing OWL. Da Rocha et al. [17] have developed ontolo- 

gies related to the domain and other services. Applica- 

tion driven, device driven and network driven concepts 

are defined in the ontology. Ontologies help to share 

information such as power remaining on a sensor, capa- 

bilities of the sensors and so on. 

The middleware proposed by Da Rocha et al. [17] in- 

telligently shares information between different sensors 

based on semantic knowledge. For example, two sensors 

in the same area should not share their information if 

those sensors are measuring two different aspects of the 

environment; for example light and corrosion. How- 

ever, if the two sensor measurements complement each 

other, such as humidity and corrosion, then the sensors 

should share their measurements and do the reasoning 

by combining both measurements. When many sensors 

measure the same aspect, few of the sensors can switch 

themselves off intelligently to save energy resources. 

Zafeiropoulos et al. [81, 82] have presented an ar- 

chitecture to address the issues such as data aggrega- 

tion, data management, and querying. The semantic 

technologies are used to extract meaningful information 

from the raw sensor data. Aggregation of data contains 

less value unless they are interpreted accurately. The 

interpretation is essential in order to detect interesting 

events in sensor networks. Zafeiropoulos et al. [81, 82] 

correctly argue that this event detection should be sup- 

ported by data gathered through heterogeneous data 

sources. The semantic technologies that support such 

operations are content description languages, query lan- 

guages, and annotation frameworks. The proposed ar- 

chitecture comprises three layers: data layer, processing 

layer, and semantic layer. The data layer is responsible 

for collecting data from sensors using event-based or 

polling-based mechanisms. The processing layer con- 

verts those raw data into XML files. In  the semantic 

layer maps the XML data in to a semantic model where 

the XML messages are stored in the form of class in- 

dividuals. This conversion is done by XML mapping 

rules. Another set of rules called semantic rules are 

used to detect events. As a result of these conversions, 

a system can query and reason the sensor data using 

semantic query languages which provide enriched capa- 

bilities. 

The project Hydra [21] addresses the needs of health- 

care, home automation and agriculture domains. It pro- 

vides an architecture to connect sensor devices together 

to detect events.   The Hydra  middleware is based   on 



a Service Oriented Architecture (SOA) and a Model 

Driven Architecture (MDA). The core architecture of 

Hydra comprises a number of different managers, such 

as network, discovery, ontology, event, storage, and con- 

text managers. Each of these managers are divided into 

a number of layers. For example, the context manager 

comprises four layers. Context data acquisition, con- 

text management, context awareness, and context rea- 

soning and interpretation. The Hydra middleware does 

not differentiate the domain specific and domain inter- 

preted components in its architecture, which makes it  

hard to extend the domain into other domains. Hydra 
encapsulate sensors into web services and the devices 

are described using semantics where it enables seman- 

tic interoperability among sensors. However, data is not 

annotated  using semantics. 

Lee et al. [42] have proposed a hybrid middleware 

which comprises an in-network middleware and a server- 

side middleware. The in-network middleware has the 

capability to deal with operations such as energy ef- 

ficient data transmission. The server-side middleware 

handles the context-aware stream processing, event de- 

tection and querying. The main focus is given to the 

in-network middleware. Therefore, event detection and 

data fusion capabilities are very limited. The in-network 

middleware has the intelligent capability to identify in- 

complete and false data values. 

Bruckner et al.[9] have proposed a framework to pro- 

cess audio and video sensor data in a semantic manner. 

The proposed system architecture comprises seven lay- 

ers. The bottom layers which are closed to the sensor 

nodes do the image and audio processing and convert 

the raw data into Low Level Symbols (LLS). Then data 

fusion mechanisms are used to convert those symbols 

into High Level Symbols (HLS). Patterns and events can 

be recognised using these symbols. The implementation 

has been deployed in an airport domain where the sys- 

tem is capable of identifying events such as unattended 

luggage or gunfire. The entire architecture is narrowly 

focused on video and audio sensor data processing. 

Semantic Sensors (SS ) [33] network middleware con- 

nects a variety of sensors to applications. The objective 

of the middleware is to develop a sensor network where 

developers need not to be aware of the device type of 

each sensor node. SS t can identify the location and the 

relationship among the sensors. The evaluation of the 

middleware has been done in a lab environment by at- 

taching sensors to daily use items such as bottles and 

books. Logical expressions are used to store information 

about each object and their relationships. Very primi- 

tive events are possible to recognise by the system. For 

example, the system can answer simple queries such as 

identify the state of the object (i.e moving or not) or 

recognise the other objects near by. The implementa- 

tion is done using low level programming languages such 

as nesC. 

Semantic Web Architecture for Sensor Networks 

(SWASN ) [29] is a server-side middleware that uses 

semantic web technologies to enrich sensor data pro- 

cessing. This project has proposed a four layer archi- 

tecture: sensor networks data sources layer, ontology 

layer, semantic web processing layer, and application 

layer. SWASN is capable of connecting multiple sensor 

networks together. To achieve this challenge, SWASN 
uses a separate local ontology for each sensor network to 

map sensor data to a common global RDF data model. 

SWASN provides sophisticated querying features using 

SPARQL [47]. The system is focused on building fire 

emergency domain. 

u-Greenhouse [31] is a context-aware middleware that 

proposed to process data collected through sensors  in 

a greenhouse environment by applying wireless sensor 

network technologies. This middleware provides the 

functionalities of data filtering, event processing, context- 

aware processing and integration of heterogeneous sen- 

sors. The system architecture consists of three parts: 

sensor network interface, data process, and application 

service interface. The approach is to develop a hybrid 

middleware that consists of in-network data processing 

middleware that are installed on each node and a server- 

side data processing middleware. The u-Greenhouse 
architecture comprises three layers: the physical layer 

(Sensor node and gateways), the middleware layer and 

the application layer. Semantic capabilities are pro- 

vided using and context-aware ontology. The system is 

capable of recognising simple events in greenhouse en- 

vironment that can trigger actions. u-Greenhouse solu- 

tion is narrowly focused on greenhouse domain. 

Siguenza  et  al.   [64]  combine  states chart technol-   

ogy and semantic technology to annotate and process 

sensor data. The objective is to derive high level infor- 

mation from raw sensor data. W3C State Chart  eX- 

tensible Markup Language (SCXML) is used to imple- 

ment the system.  The sensor data are enriched   using 

RDF semantics and stored in an SCXML data model.  

The possible situations are defined as states such as ad- 

verseWeather. The conditions related to the adverseWeather 
state need to be fulfilled in order to infer the current 

state as adverseWeather. 

HARMONI [28] is a context-aware system for the 

healthcare domain. This project has gone beyond the 

objective of identifying events using sensor data fusion. 

Homed et al. [28] have used their framework to reduce 

the amount of data transmission significantly. A mo- 

bile device that is capable of filtering data is deployed 

in the patient’s room. This device is able to monitor 

the events according to the specifications defined in  the 

filters. For example, doctors may need not to know all 

the behaviour of a patient. Doctors are only interested 

to know when a patient shows any unusual  behaviour 



(e.g. very high heart rate). Therefore, it is not neces- 

sary to transfer all the data sensed by the sensors to 

the back-end server. Instead, a mobile device in the pa- 

tient’s room can filter the sensed data and transfer only 

the relevant data intelligently to the server based on 

the filter definition [28]. These filters need be changed 

according to the context. For example, heart rate may 

need to be monitored based on the context. When the 

patient is doing exercises, it is natural that heart rate 

goes up. Therefore, the filters should be able to alter 

the filter definitions based on the context. 

Terziyan et al. [70] have proposed the UbiRoad mid- 

dleware that uses semantic and agent technologies. Their  

focus is on the smart road and traffic control   domain. 

A sample scenario has presented to convey the ultimate 

objective. UbiRoad addresses four main challenges: in- 

teroperability, flexible coordination, self-management, 

trust and reputation. They have also identified context- 

aware sensor data fusion as a secondary challenge. The 

proposed solution is based on two other projects SmartRe- 

source [69] and UBIWARE [39]. UbiRoad combines dif- 

ferent ontologies to incorporate different concepts into 

the system such as device ontology, context ontology, 

data ontology, and domain ontology. For example, de- 

vice ontology is used to recognise different devices in 

the sensor network and context ontology is used to un- 

derstand the traffic control domain. 

Phuoc and Hauswirth [60] have proposed the concept 

of combining link data towards sensor data mashups. 

The system acquires sensor data through wrappers and 

passes them to the upper layer for fusion operations. 

The data fusion comprises many operations such as data 

filtering, data alignment, association, correlation, pat- 

tern detection and classification. Fusion operations can 

be composed together to produce high-level filters. The 

acquired sensor data are stored in RDF models. There- 

fore, SPARQL is used to query the data. Each individ- 

ual sensor in considered as sensor component. Combi- 

nations of sensor components are defined as a sensing 

system. Sensor systems and fusion operation can be 

combined together to build complex work flows. An 

Ajax [23] based graphical user interface is provided to 

build those work flows. The approach is more focused 

towards utilising link data concepts. 

Gyllstrom et al. [26] have proposed a complex event 

processing system over data streams called SASE. SASE 
is narrowly focused on the RFID sensors domain. A 

high-level SQL like language has been defined to sup- 

port user queries. The system is capable of identifying 

events such as shoplifting or inventory misplacement. 

Users need to syntactically define the query, and the 

system can process the query against the data stores. 

Some data fusion operations such as anomaly filtering, 

temporal smoothing and duplication reduction are pro- 

vided by SASE. 

Liu and Zhao [43] have identified that most of the ef- 

forts on sensing systems today are domain specific with 

very little re-usability. To solve this problem, they have 

proposed a open architecture which is enriched with se- 

mantics. XML data formats are used in  the system to 

store data. Service components are the main building 

block in  the system. Each service is designed to take 

inputs, do some processing and give the output back. 

Services are designed in such a way that multiple ser- 

vices can be combined together to build a complex ser- 

vice. This run-time combining process is possible due to 

semantic descriptions. This programming model allows 

the user to query the sensor data and events in abstract 

ways without dealing with raw sensor data. 

SEMbySEM [10] is a sensor management framework 

that focuses on isolating technical related challenges 

from the applications layer by using a facade layer in- 

between. The facade layer transforms the sensor data 

into semantically enriched information. The proposed 

architecture comprises three layers: facade, core, and 

visualisation. The core layer does the reasoning and in- 

ferring. An ontological semantic model is used to store 

the concepts, rules and data. 

Intelligent Event Processing Agent (iEPA) [19] is an  

approach that combines complex event processing and 

multi agent systems. The research is focused on traffic 

management domain. A rule based system is employed 

to identify the events. Data fusion operations such as 

filter, split, aggregate, and transform are used to infer 

events. Events are defined in a language called Espers 

continuous Query Language (EQL). 

Izumi et al. [35] have proposed a knowledge filter- 

ing scheme for the health care support domain. Their 

system comprises a number of different agents, such as 

a data stream mining agent, a inference agent, and a 

knowledge base agent. A multi agent architecture is 

used to built the system, and an ontology scheme is 

used to store data where SPARQL queries are used for 

data filtering. Knowledge gathered using sensors is fil- 

tered based on four different perspectives: person based 

filtering, access policy based filtering, location based fil- 

tering, and time based filtering. 

Teymourian et al. [71] present a conceptual approach 

to address the problem of Semantic Event Processing 

(SCEP ). SCEP combines event processing technologies 

and semantic technologies. This research effort is not 

directly related to sensor data fusion. However, the 

techniques used in this area can be combined with sen- 

sor data stream processing in order to detect events in 

the IoT environment. 

The Sensor Web Agent Platform (SWAP ) framework 

[50] comprises three layers: sensor layer, knowledge layer, 

and application layer. A multi agent technology and 

web services technologies are employed to built the sys- 

tem. Each layer consists of a number of agents that are 



capable of doing specific tasks. The implementation is 

focused on a fire detection domain. The number of dif- 

ferent agents can be combined together to answer or 

detect complex situations such as wild fire. 
 

7. EVALUATION OF SENSOR DATA FUSION 

APPROACHES 

The Table 1 classifies the difference sensor data fusion 

efforts based on the evaluation framework we presented 

in section 5. 

The parameters used to evaluate each feature of re- 

search efforts can be explained as follows. In depth 

discussion on each feature is conducted in the Section 

5. 

• Architecture Type: This feature evaluates whether 

the proposed solution is proposed as a middleware 

(M) or an Application system (A). Application 

systems are narrowly focused on one specific do- 

main while middleware solutions possesses more 

domain expandability and domain independence. 

• Context-awareness: This feature evaluates whether 

the proposed solution possesses context-awareness 

capabilities or not. 

• Semantic Interaction: This feature is evaluated 

using four categories: High (H), Moderate (M), 

Low (L), and none (×). 

–  High (H) - Both data and program compo- 

nents are annotated using semantic technolo- 

gies. Semantic reasoning mechanisms are em- 

ployed. 

–  Moderate (M) - Either data elements or pro- 

gram components are enriched using seman- 

tics technologies, but not both. 

–  Low (L) - No semantic technologies are used. 

However, solutions are enriched with limited 

semantic capabilities using different techniques 

such as rules [9], symbols [33], etc. 

–  None (×) - No semantic interactions posed by 

the approach. 

• Dynamic Configuration: This feature is evaluated 

using four categories: High (H), Moderate (M), 

Low (L), and none (×). 

–  High (H) - Sensor hardware and software com- 

ponents are dynamically configured based on 

the environment. The solution possesses au- 

tomated configuration of filtering, fusion and 

reasoning mechanism, according to the prob- 

lems at hand. 

–  Moderate (M) - Poses very limited dynamic 

hardware configuration such as switch on/ off 

sensors. 

–  Low (L) - Poses software level limited dynamic 

composition and configuration capabilities. 

–  None (×) - No software or hardware compo- 

nents are dynamically configured. 

• Fusion Complexity: This feature is evaluated us- 

ing three categories: High (H), Moderate (M), and 

Low (L). 

–  High (H) - Capable of answering complex user 

queries. Program components can be com- 

bined together to produce complex results. 

–  Moderate (M) - Capable of answering moder- 

ately complex user queries. Develop complex 

fusion mechanism by combining simple fusion 

components is not possible. 

–  Low (L) - Limited fusion techniques such as 

data filtering is possible. 

• Actuation Management: Does the solution pos- 

sesses actuation management capabilities. 

• Type of Processing: Is the data fusion approach 

Centralised (C) or Decentralised (D). 

• Cross Domain Portability: Number of domains 

that the proposed solution is applied. 

• Implementation: This feature tells that whether 

researchers have practically implemented the pro- 

posed solution or if it is a theoretical approach 

only. 

• Performance Evaluation: This feature evaluates 

whether each research effort has conducted a per- 

formance evaluation procedure on their proposed 

system or not. 

 
 

8. CONCLUSION 

In this article, we first highlighted the  importance 

of sensor data fusion in IoT application such as smart 

cities applications. We examined a number of different 

sensor data fusion research efforts related to IoT with 

particular focus on smart cities application domain. 

We developed a evaluation framework by carefully 

selecting ten different metrics. We believe these ten 

metrics are open challenges in  the field. Some of these 

challenges are addressed by the researchers significantly 

and some are in its infancy. One of the major goals of 

this article is to highlight the opportunities for improve- 

ments and research gaps in the field. 

Based on surveyed approaches, context-awareness in 

IoT more specifically within the smart city domain is 

gaining importance but still in its infancy. A lot of fo- 

cus on context awareness is towards a particular appli- 

cation while to realise the true IoT-enabled smart cities 
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Gibbons et al. [24] A × × L L × D 3 ./ × 2003 

Liu & Zhao [43] A × H M H × C 1 ./ × 2005 

Whitehouse et al. [77] M × M L H × C 1 ./ × 2006 

Lewis et al. [49] M × H M M × C 1 ./ × 2006 

Moodley et al. [50] M ./ L × L × C 1 ./ × 2006 

Moodley & Simonis [50] M × M M H × C 1 ./ × 2006 

Bouillet et al. [6] M ./ H L H ./ C 1 ./ ./ 2007 

Brenna et al. [8] A ./ × × M × C 1 ./ × 2007 

Gyllstrom et al. [26] A × × × M × C 1 ./ × 2007 

Noguchi et al. [26] M × M H M × C 1 ./ × 2007 

Zafeiropoulos et al. [81] M × H L M × C 1 ./ ./ 2008 

Sheth et al. [62] A × H L M × C 2 ./ × 2008 

Bruckner et al. [9] A ./ L × M × D 1 ./ × 2008 

Huang et al. [29] M ./ H M M × C 1 ./ × 2008 

Wood et al. [78] A ./ L M L × D 1 ./ × 2008 

Homed et al. [28] A ./ L M H ./ D 1 ./ ./ 2008 

Ni et al. [53] A ./ H × M × D 1 × × 2009 

Da Rocha et al.  [17] M ./ M L M × D 1 ./ × 2009 

Phuoc & Hauswirth [60] M × H L H × C 1 ./ × 2009 

Teymourian et al. [71] A ./ L L L × C 2 × × 2009 

Brunner et al. [10] M × H × M × C 1 ./ × 2009 

Eisenhauer et al. [21] M ./ H M H × C 2 ./ × 2009 

Lee et al. [42] M × L × L × D 1 ./ ./ 2010  

Siguenza et al. [64] A × M × L × C 1 ./ × 2010  

Izumi et al. [35] A ./ M × M × C 1 ./ ./ 2010  

Terziyan et al. [70] M ./ M L M × C 1 ./ × 2010  

Hwang et al. [31] M ./ L M L ./ D 1 ./ ./ 2011 

Dunkel [19] A × L M H ./ D 1 ./ × 2011 

Zanella et al. [83] Theodoridis et al. [72] Lin et al. [37] M × L L M L C 1 ./ ./ 2014 

J ara et al. [36] A ./ L L H ./ C 1 ./ ./ 2014 

Sobolevsky et al. [65] A ./ L L H ./ C 1 ./ ./ 2015 

Antonelli et al. [3] A ./ H M H ./ C 1 ./ ./ 2014 

Soldatos et al. [66] M ./ H H H ./ D many(5) ./ ./ 2014 
 

Table  1: Taxono m y o f Se n s o r Data Fus io n  Res earch  Effo rts  

 

vision, a broader non-domain focus will have to be pur- 

sued. Furthermore, dynamic configuration of things is 

also not addressed by most of the proposed solutions. 

Similarly, actuation managements is the least addressed 

feature among all. We believe actuation management is 

important as it plays a significant role in the IoT mon- 

itoring and feedback cycle. Further, performance eval- 

uation techniques employed by most of the researchers 

to evaluate their proposed approaches are limited. Per- 

formance evaluation is extremely important as we are 

expecting these solutions to incorporate billions of sen- 

sor devices. Finally, cross domain portability is also 

addressed poorly. The majority of the efforts are based 

on a single domain. It is hoped that future efforts will 

aim to address these research gaps. 
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