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ABSTRACT In a resource-constrainedWireless Sensor Networks (WSNs), the optimization of the sampling

and the transmission rates of each individual node is a crucial issue. A high volume of redundant data

transmitted through the network will result in collisions, data loss, and energy dissipation. This paper

proposes a novel data reduction scheme that exploits the spatial-temporal correlation among sensor data

in order to determine the optimal sampling strategy for the deployed sensor nodes. This strategy reduces

the overall sampling/transmission rates while preserving the quality of the data. Moreover, a back-end

reconstruction algorithm is deployed on the workstation (Sink). This algorithm can reproduce the data that

have not been sampled by finding the spatial and temporal correlation among the reported data set, and filling

the ‘‘non-sampled’’ parts with predictions. We have used real sensor data of a network that was deployed

at the Grand-St-Bernard pass located between Switzerland and Italy. We tested our approach using the

previously mentioned data-set and compared it to a recent adaptive sampling based data reduction approach.

The obtained results show that our proposed method consumes up to 60% less energy and can handle non-

stationary data more effectively.

INDEX TERMS Wireless sensor networks, data reconstruction, spatial-temporal correlation, data reduction.

I. INTRODUCTION

The momentum and growth of large-scale sensor networks

have been increasing over the recent years. The rising pop-

ularity of such networks is due to the fact that they can be

used in numerous and diverse event monitoring applications

including traffic, air and water quality, e-health, environmen-

tal monitoring (wildlife, forest fires, storms, etc.), and many

other applications. Such networks are expected to operate

autonomously and for a long period of time. However, in a

large scale sensor networks, the high volume of redundant

data being communicated through the network increases col-

lision, causes data loss, and most importantly it costs sensor

nodes a large amount of scarce energy resources. There-
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fore, due to severe energy, computational and bandwidth

constraints, a sound body of literature has centered on

optimizing the efficiency of both the sensing and transmitting

activities in order to maximize the lifetime of the network.

One of the most commonly used approaches to tackle this

problem is the sampling rate adaptation [1]–[4]. A sampling

rate is a rate at which a new sample is taken from a continuous

signal provided by the sensor board. This rate can be adapted

according to the input acquired from the monitoring area.

If no significant change is noticed for a certain period of time,

the sampling rate could be reduced for the upcoming period,

and in contrast, if an event is detected, the sampling rate is

increased. This sampling rate adaptation is based on event

detection [1], [5]. Another sampling rate adaption technique

takes into consideration the temporal and spatial correlation

among the reported data [2], and limits the sampling rate of
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the sensors that show high correlation with other neighboring

ones, and maximizes the sampling rate of those showing

a little or no correlation at all. Both approaches aim to reduce

the amount of redundant data being transferred through the

network.

Other data reduction approaches focus solely on reducing

the number of transmissions while maintaining a fixed sam-

pling rate [6]–[10]. The most popular of them all is the dual

prediction scheme. A prediction model capable of forecasting

future values is trained and shared between the source and the

destination, thus enabling the source sensor node to transmit

only the samples that do not match the predicted value.

Some approaches also combine both adaptive sampling and

transmission reduction into a single mechanism [11] aiming

to minimize further energy consumption.

In this paper, we propose a spatial-temporal Correlation

based Approach for Sampling and Transmission rate Adapta-

tion (STCSTA) in cluster-based sensor networks. The sensor

nodes do not need to run any algorithm. The cluster head is

responsible for collecting data from its member sensor nodes,

computing a correlation function in order to measure the cor-

relation degree among these nodes. Finally, the sensors that

show high correlation will be asked to reduce their sampling

rate and the ones showing low correlation will be asked to

increase it. Moreover, in order to ensure the integrity of the

data, a reconstruction algorithm deployed on the Sink station.

The latter is used to reconstruct the ‘‘non-sampled’’ mea-

surements by exploiting the temporal and spatial correlation

among the reported data. We compare our approach to a Data

Prediction with Cubic Adaptive Sampling (DPCAS) and to

an exponential Double Smoothing-based Adaptive Sampling

(EDSAS) using real sensor data. The latter and the former

combines both adaptive sampling and transmission reduction

into a single mechanism, allowing us to compare the effi-

ciency of our proposal with two very effective approaches in

terms of reducing radio communication.

The rest of the paper is organized as follows: In section II,

the work related to energy efficient data reduction in a wire-

less sensor network is presented. In section III the system

model is briefly explained and the energy model to calculate

the energy consumption is illustrated. A detailed explanation

of the proposed approach is provided in section IV, while

experimental results are discussed in Section V. This paper

ends with a conclusion section, in which the contribution is

summarized and intended future work is outlined.

II. RELATED WORK

Resource management in sensor networks is a widely dis-

cussed topic among researchers. Subsequently, there have

been numerous studies regarding this topic. In this section,

we present and discuss the different approaches used to tackle

this issue.

Compression [12]–[15] and aggregation [16]–[18] are two

techniques aiming to reduce the amount of data routed

through the network [19]. The former focus on compress-

ing the data before transmission to the upper node in the

network hierarchy and the latter filters and clean the data by

removing redundant information before routing these data to

the Sink station. Several data compression and aggregation

techniques have been proposed in the literature. The authors

in [12] proposed a compression technique for sensor net-

works organized in a cluster topology. The approach called

Cluster-Based Compressive Sensing Data Collection (CCS)

compresses data on the cluster head level by generating Com-

pressive Sensing (CS)measurements based on block diagonal

matrices created from the raw data received from neighboring

sensors. Moreover, the compressed CS measurements are

finally reconstructed at the base station (Sink). In [13] the

authors proposed a compression scheme called Compres-

sive Data Collection (CDC) for Wireless Sensor Networks,

it exploits the spatial-temporal correlation among sensory

data to perform compression. The scheme consists of two

layers, the opportunistic routing with compression and the

nonuniform random projection based estimation for recon-

struction. The authors in [20] proposed a data aggregation

technique called the Prefix-Frequency Filtering (PFF). This

approach mainly consists of two aggregation layers, the first

one is on the sensor level, and the second one is on the cluster

head or the aggregator. On both layers, redundant measure-

ments are filtered using the Jaccard similarity that measures

the correlation among collected measurements. In [16] a

Dynamical Message List Based Data Aggregation (DMLDA)

technique is presented, it is based on a special data structure

called dynamical list. The latter stores the history of received

measurements, that are then used to filter any duplicates.

One of the most energy consuming activities in WSN

beside transmission and processing is sampling, therefore

several studies have been conducted on how to reduce the

amount of sampled data through a technique known as

‘‘adaptive sampling’’, where a sensor can adapt its sampling

rate according to the change in the input environment. The

authors in [1] proposed and event-sensitive adaptive sam-

pling and low-cost monitoring (e-Sampling) scheme, where

each sensor has short and recurrent bursts of high sampling

rate in addition to a low sampling rate. Depending on the

analysis of the frequency content of the signal, each sensor

can autonomously switch between the two sampling speed.

The authors in [2] presents a decentralized temporal cor-

relation based adaptive sampling approach, enabling each

sensor to decide its own sampling rate while controlling the

size of the sampling interval by limiting the interval size

to an automatically calculated ‘‘MaximumSkipSamplesLimit

(MSSL)’’ value.

The overwhelming majority of studies agree on the fact

that radio transmission is the most consuming activity in

WSN [21]–[23]. Accordingly, numerous studies focused on

developing techniques to limit the number of radio transmis-

sions. Most of these techniques are based on the concept of

data prediction. The idea is to build on the Sink a prediction

model using previously collected readings, that is capable of

forecasting future measurements. Enabling the sensor node

to transmit a reading only when the prediction does not
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respect the error tolerance predefined the user. The authors

in [6] proposed a Hierarchical Least Mean Squares (HLMS)

adaptive filter as a predictionmodel, which is one of the many

adaptive filter based approaches [7], [8], [24]. This filter con-

sists of multiple layers of regular Least Mean Square (LMS)

filters, each layer takes feedback from the previous layer in

the hierarchy aiming to minimize the prediction error of the

model. Another technique called Derivative Based Predic-

tion (DBP) was introduced in [25], it is less complex than

the adaptive-filter based methods. The prediction model is

simply a straight line that interpolates a fixed window of data

of size m using the first and last l values in the window.

In [11] the authors proposed an approach that combines an

adaptive sampling method that is based on the TCP CUBIC

congestion protocol, with a transmission reduction method

that is based on an exponential predictive mode. The com-

plete data set including the ‘‘non-sampled’’ and ‘‘non trans-

mitted’’ measurements are then reproduced on the sink by

interpolating the received measurements. This approach was

inspired by both [26], and [27]. The latter uses an exponen-

tial Double Smoothing-based Adaptive Sampling (EDSAS)

technique, that adapts the sampling rate of a sensor based on

the accuracy of a prediction model. As long as this model

is producing good predictions the sampling rate is kept low.

It is increased, however, when the predictions surpass a prede-

fined error threshold. The former operates in similar fashion,

more specifically it adopted the TCP congestion control to

adapt the sampling rate of the sensor node. Thus the approach

is called Adaptive sampling TCP (ASTCP).

Both compression and aggregation are effective in term

of reducing the data load in the network, however, their

performance is limited and cannot reach the efficiency of

techniques such as adaptive sampling and transmission reduc-

tion. Therefore, compression and aggregation are considered

to be as a complementary layer that can be added to adap-

tive sampling and transmission reduction to further increase

their efficiency. Despite being very effective in reducing the

amount of sampled and transmitted data, adaptive sampling

and transmission reduction techniques can still consume a

substantial amount of energy. This is proportionally related

to the complexity of the algorithms that are required to be

implemented on the sensor level. The CPU running com-

plex algorithms can consume more energy than the sampling

activity [21], which renders the adaptive sampling technique

obsolete in case the implemented algorithm requires a large

number of CPU cycles.

In order to schedule the sampling intervals of sensor nodes

and reduce energy transmission, some approaches rely on the

spatial-temporal correlation between sensor nodes deployed

in the monitoring area [28]–[32]. The Authors in [28] pro-

posed an Efficient Data Collection Aware of spatial-temporal

Correlation (EAST). In the latter, the sink subdivides the

event area into spatially correlated cells of the same size,

then, in each cell, the node having the highest residual energy

is elected as a representative node. Only the latter transmits

data to the sink while also applying a temporal correlation

suppressionmethod on its collected data. Finally, at each time

instance, the representative node is re-elected according to

the same previous rule. The main drawback of this approach

is the size of the cell representing an area of spatially cor-

related nodes is static, and it is not calculated according to

the real level of correlation. Moreover, the representative

node is chosen according to residual energy rather than its

correlation with other nodes in the cell. Therefore, the term

‘‘representative’’ is not necessarily true.

In [29] the authors proposed a sleeping schedule algo-

rithm that aims to minimize the total spatial-temporal cover-

age redundancy among neighboring nodes while maximizing

coverage. Each sensor node compares itself with neighbor-

ing ones using a weight criteria and it locally optimizes

its scheduling according to its coverage redundancy. This

method requires constant message exchange between sensor

nodes in order to keep track of the changing weight of each

one of them, which can produce overhead.

The authors in [30] proposed a spatial-temporal correlation

model that aims to extend the network lifetime by scheduling

a sleeping period for sensors showing high similarities with

other ones belonging to the same cluster. The similarity is

measured by computing the Euclidean Distance, Cosine Sim-

ilarity and Pearson Product-Moment Coefficient (PPMC).

If the result of one of the three indicates a high similarity,

the sensor node is set to sleep for half of the period time

(1 period = N samples). The first problem with such an

approach is if a sensor X shows a similarity with a sensor Y,

the opposite is also true (sensor Y will show similarity with

sensor X), therefore, according to this approach, both sensors

will be set to sleep. By doing so correlated sensors will miss

simultaneously instead of compensating for one another by

keeping one of them awake. The second problem is that the

sleeping duration is static instead of being computed in a

dynamic way according to the level of correlation.

Motivate by the problems related to the aforementioned

approaches, we present in this paper a spatial-temporal

Correlation approach for Sampling and Transmission rate

Adaptation (STCSTA) in cluster-based sensor networks. Our

approach does not require any algorithm to be implemented

on the sensor level, the only task performed by sensors are

uniquely sampling and transmission. All the work is done on

the Cluster-Head (CH) level, where at the end of each round

(duration predefined by the user), the CH runs an algorithm

that finds the spatial correlation among the data reported by

the sensors belonging to the same cluster. Then, it transmits

to each one of them its new sampling rate for the next round

according to its level of correlation with other neighboring

sensors in the cluster. The sampling rate scheduling respects

a strict protocol that keeps the sampling rate of the sen-

sors showing high correlation with a large number of nodes

at an optimal maximum level. Moreover, the protocol pre-

vents highly correlated sensors from missing simultaneously,

allowing one to compensate for another. in addition to sam-

pling rate scheduling, and in order to ensure the integrity of

the data, a reconstruction algorithm is deployed on the Sink.
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This algorithm can identify the time stamps where data has

not been received due to a reduction in the sampling rate

of a specific sensor, and reconstruct them using the spatial-

temporal relations among the collection of data reported by

the sensors.

III. SYSTEM AND ENERGY MODEL

A. SYSTEM MODEL

We consider a set S of N sensor nodes and C cluster heads

deployed over a specific monitoring area at locations LS =

{ls1, ls2, . . . , lsN } and LC = {lc1, lc2, . . . , lcC } respectively,

where a sensor Si is located at the location lsi and a cluster-

head Cj is located at the location lcj, and the Sink S is

placed in a distant location at a position l0. Sensor nodes

are grouped into clusters, where each one of them belongs to

one cluster only. The cluster heads are considered to be more

powerful than sensor nodes in term of processing capabilities

and they have been allocated larger energy resources. Figure 1

illustrates an example of the described network architecture

for one cluster.

FIGURE 1. Illustrative example of the network architecture.

The network is periodic and operates in rounds, where

each round R is exactly P seconds, and it is subdivided

into m time slots, where at each time slot a sensor samples

one measurement. Therefore, the maximum sampling rate

(SRmax) is considered to be P/m samples per round. During

the very first round, each sensor node collects data using the

maximum sampling rate SRmax and transmits the readings to

the CH after each acquisition. On the CH level, when the latter

receives a measurement from any sensor Si it stores the values

in its memory and routes it directly to the Sink. At the end of

the first round, the CH would have stored in his memory the

following matrixM . where n is equal to the current sampling

rate (SRmax) in this case, and N is the number of sensors in

the cluster.

M =













x11 x21 x31 . . . xn1

x12 x22 x32 . . . xn2
...

...
...

. . .
...

x1N x2N x3N . . . xnN













The CH than proceeds to computing the correlation between

each pair of sensors (The number of possible pairs is N (N−1)
2

).

Using the obtained correlation results the CH calculates

than transmit to each sensor node its new SR. A detailed

explanation of how the correlation is calculated and how the

new SR is determined is provided in section IV. For the

next round, each sensor samples data according to its new

sampling rate provided by the CH. For Instance, if the latter

demands a specific sensor to reduce its sampling rate by 40%,

and supposing that SRmax is equal to 50 measures/round,

the sensor is supposed to sample 30 measurements instead.

If each period is 10 minutes long (600s), instead of sampling

a measurement every 12 seconds (600/50), the sensor would

sample a measurement every 20 sec (600/30). Moreover,

Knowing the duration of each period, the maximum sam-

pling rate and the time stamp when each measurement was

received, both the Sink and the CH are capable of identifying

the non-sampled data, which will be replaced by ‘‘Nan’’

(see matrix M′) in order to reconstruct them later at the Sink

station and in order to make the computation of the corre-

lation among sensor nodes easier for the CH as explained

in section IV-A. Therefore, the stored matrix that is used

to compute the correlation will actually be as shown below,

where n is equal to the maximum number of samples per

round (SRmax):

M ′ =















x11 x21 x31 . . . x501 Nan xn1

x12 x22 x32 . . . Nan Nan xn2

...
...

... Nan
...

...
...

x1N x2N x3N . . . x501 Nan xnN















B. ENERGY MODEL

In order to compute the energy consumption of a sensor

node [33], [34], it is necessary to take into consideration

the energy consumed by every single operation performed

by the node. Generally, the consumed energy relates to four

main tasks, namely, sampling, logging, processing, and radio

transmission. Therefore, the energy consumption model can

be defined as:

Enode = Esampling + Elogging + Eprocessing + Eradio (1)

where Esampling is the energy required for sampling one value,

Elogging is the required energy to log data in the memory,

Eproccessing is the required energy to run and algorithm con-

senting of N CPU cycles, and Eradio is the energy required

to transmit a b bits packet for a distance d . In this article we

use the energy model discussed in [21] to calculate the overall

energy consumption of each sensor node.

IV. THE PROPOSED APPROACH (STCSTA)

In this section, we will explain in detail, how the correlation

between sensor nodes and the new sampling rates of each

sensor are calculated.

A. COMPUTING CORRELATION AND SAMPLING

RATE ALLOCATION

1) ALGORITHM 1 - LINE(2–14)

After a round is completed, each sensor node would have

transmitted to the cluster head a different number of mea-

surements since the sampling rate of each one of them can be
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different. Nevertheless, as mentioned earlier the CH identifies

the non sampled data and fill their corresponding place in the

vector by a Nan value, therefore all the vectors will have the

same size n. However, the correlation between two vectors

containing Nan values cannot be computed. Therefore, each

and every Nan value is replaced by the value of the first

‘‘non-Nan’’ value that comes before it in the same vector. For

instance, in the ‘‘M′’’ matrix, x511 is Nan it will be set equal

to the same value as x501 , and x502 and x512 are set equal to the

same value as x492 , and so on.

2) ALGORITHM 1 - LINE(17–22)

Afterward, the linear dependency of each pair of vectors

(vi, vj) ∈M
′ is calculated using the Pearson correlation coef-

ficient. The latter is known as the best method of measuring

the association between variables of interest because it is

based on the method of covariance. It gives information about

the magnitude of the association, or correlation, as well as

the direction of the relationship. The Pearson correlation

coefficient is described in the equation 2 below, where µ and

σ are the mean and standard deviations.

ρ(vi, vj) =
1

n− 1
×

n
∑

k=1

(
vik − µvi

σvi
)(
vik − µvj

σvj
) (2)

The justification behind using the Pearson correlation can

is illustrated in Figure 2.We have used a data set of 92 sensors

to generate 4 graphs that show the number of sensors that

are moderately & highly correlated with 4 randomly chosen

sensors during each period and for the first 100 periods. For

instance, in Figure 2(a) we notice that this randomly chosen

ambient temperature sensor correlates with a large number

of sensors during each period. On average it correlates with

27 sensors as the mean values shows. Same for Figure 2(b)

and (c) on average these sensors correlate with approximately

30 other sensors that are in the same cluster. However, The

mean value in Figure 2(d) is significantly lower (mean=19),

in section V-D we will see how this will reflect on the results.

FIGURE 2. Figure showing the number of moderately & highly correlated
sensors (Pearson correlation coefficient ≥ 0.5) during each one of the
first 100 Periods. (a) Ambient temperature sensor. (b) Surface
temperature sensor. (c) Relative humidity sensor. (d) Wind speed sensor.

Heterogeneous environmental data beside other types of

data such as medical data (vital signs), movement tracking

data (speed, acceleration, location) and etc, are usually highly

and/or moderately correlated. This correlation thus can be

used in order to reduce the number of transmitted measure-

ments by deriving values from other observed ones. This is

indeed the motivation behind using correlation to adapt the

sampling rate of the sensors.

3) ALGORITHM 1 - LINE(23–28)

After computing the correlation value of each sensor i with

all the other sensors belonging to the same cluster, the CH

looks for the sensor j that it correlates the most with as shown

in table 1.

TABLE 1. The correlation table.

4) ALGORITHM 1 - LINE(29–38)

Afterward, the CH counts the number of occurrences of each

sensor j in the second column of the table and stores them in

a list according to their ascending order.

5) ALGORITHM 1 - LINE(39–49)

Starting from the first sensor j in the ordered list, the CH

looks in table 1 for the sensor j in the first column and

extract the value of its max correlation from the third column.

Then the CH notifies j that its sampling rate must be reduced

proportionally to the correlation value. For instance, if sensor

5 was first in the ordered list, the CH would notify it that its

sampling rate for the next round must be reduced by 75%,

since its level of correlation with sensor 6 is 0.75. Then the

sensor j (in this case 5) is flagged as already notified. Thus,

for the next sensor j in the ordered list, if its matching sensor

i is already flagged. Instead of reducing its sampling rate

proportionally to the level of correlation, it is reduced by

(100 - i’s reduction %). For instance, if the next sensor j in

the list is 3, it matches with sensor 5 in table 1, therefore, it’s

sampling rate will be reduced by 100 − 75 = 25%. And so

on, until the last element in the ordered array.

6) ALGORITHM 1 - LINE(50–56)

However, some sensors may not appear in the second column

of the table 1, since they have not been matched with other

sensors. Therefore, the CH looks for these sensor in the

1’st column of table 1, and for each sensor i, it find their

matching sensor j in the second column, looks at how much

the sampling rate was reduced for sensor j and notifies sensor

i that its sampling rate must be reduced by (100 - sensor j′s

reduction %).
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The same explained operation is repeated at the end of

each round. Therefore, enabling each sensor node to adjust

its sampling rate according to its level of correlation with

other sensors in the network. The algorithm 1 illustrates the

proposed method that is implemented on the CH.

Algorithm 1 STCSTA.

Input: SRmax (1 sample/ X seconds)

1: while Energy 6= 0 do

2: k ← 1

3: for each sensor j in the cluster do

4: receive the first value v0j at the beginning of the

round

5: data[j][0]← v0j
6: lastReceived[j]← v0j
7: end for

8: while ! end of round do

9: if nothing is received from sensor j after X seconds

then

10: data[j][k]← lastReceived[j]

11: else if vnj is received during the X seconds count

then

12: data[j][k]← vnj
13: lastReceived[j]← vnj
14: end if

15: k ← k + 1

16: end while

17: if end of round then

18: for i=1 to N do

19: for j=i+1 to N do

20: corrArray[i][j] ← PearsonCorr(data[i][:

], data[j][:])

21: end for

22: end for

23: for i=1 to N do

24: maxCorr[i][0]← i

25: [index, value]← max(corrArray[i][:])

26: maxCorr[i][1]← index

27: maxCorr[i][2]← value;

28: end for

29: k ← 1

30: for each element i ∈ the second column of maxCorr

do

31: if i /∈ first column of countOcc then

32: count ← count how many times i occures in

the second column of maxCorr

33: countOcc[k][0]← i

34: countOcc[k][1]← count

35: k ← k + 1

36: end if

37: end for

38: order countOcc in ascending order according to

the second column

39: k ← 1

Algorithm 1 (Continued.) STCSTA.

40: for each element j ∈ the first column of countOcc

do

41: match← maxCorr[j][1]

42: if reduce[match-1] is empty then

43: Notify sensor j that its sampling rate must be

reduced by (maxcorr[j][2]*100)%

44: reduce[j− 1]← (maxcorr[j][2] ∗ 100)

45: else

46: Notify sensor j that its sampling rate must be

reduced by (100 - reduce[match-1])%

47: reduce[j-1]=100 - reduce[match-1]%

48: end if

49: end for

50: for j=1 to N do

51: if reduce[j-1] is empty then

52: match← maxCorr[j][1]

53: Notify sensor j that its sampling rate must be

reduced by (100 - reduce[match-1])%

54: end if

55: end for

56: end if

57: end while

B. ANALYSIS STUDY

The objective of this algorithm is to create and manage

a sampling rate balancing system based on the correlation

degree between the nodes belonging to the same cluster.

The idea is to match each sensor node with the one that

correlates the most with, in such a way that, if one node of

the paired couple reduces heavily its sampling rate, the other

one keeps it high and vice versa, allowing them to compen-

sate one another. This compensation mechanism is crucial

for the success of the reconstruction algorithm in term of

minimizing the estimation error and increasing the quality

of the replicated data. The latter relies on the correlation

among sensor nodes in order to reconstruct the non-sampled

measurements. Therefore, if highly correlated sensors are

missing data simultaneously this would negatively affect the

accuracy of the reconstructed measurement. When the bal-

ancing of non-sampled data is kept in check on the CH level,

The reconstruction algorithm on the Sink will theoretically

produce better estimations.

In this section, we will illustrate an example that explains

our algorithm step by step. The latter provides a better analy-

sis of what happens at the end of each round on the cluster

head to better understand why and how this compensation

system works. Let us start by assuming that at the end of a

given period, the CH has already computed the correlation

between each pair of sensors belonging to the same cluster.

In addition, we assume that the CH already matched each

sensor with the one that correlates the most with and stored

the results in a table similar to Table 2. The next step is

to count for the sensors appearing in the second row of the
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TABLE 2. Table showing for each sensor its best match (maximum
correlation) and the degree of correlation with this match.

table how many times it has been matched. For instance,

sensor 7 has beenmatched 4 times, sensor 1 has beenmatched

2 times, and sensor 10, 9, 3, and 8 have been matched only

one time. The matched sensors are then ordered in ascending

order according to how many times they have been matched.

the order will then be: {sensor 8, sensor 3, sensor 9, sensor 10,

sensor 1, sensor 7}.

Starting from the first sensor in the list (sensor 8) the CH

looks for the sensor that it matcheswith. Looking at table 2we

see that sensor 8 matches with sensor 7. The CH then checks

whether the sampling rate of sensor 7 for the next round has

been decided yet. If it is not the case the CH notes that the

sensor 8 must reduce its sampling rate for the next round by

83%, since the correlation degree for sensor 8 with its match

is 0.83. The CH then follows the same procedure for the next

sensor in the ordered list. sensor 3, 9, and 10 they all match

with sensor 7 too, and since the sampling rate of sensor 7 has

not been decided yet, their sampling rate will be reduced by

54%, 89%, and 90% respectively for the next round. Now the

CH searches for the sensor that matches with the next sensor

in the ordered list (sensor 1). Looking at table 2 we see that

it is sensor 8. However, the sampling rate of sensor 8 has

been already decided to be reduced by 83%, therefore instead

of reducing the sampling rate of sensor 1 by 78% it will be

reduced by 100-83%, therefore 17% only. Same for sensor

sensors 7, it matches with sensor 10, therefore its sampling

rate must be reduced by 100-90% (10% only).

The next step is to adapt the sampling rate of the sensors

that do not appear in the second row of the table, or in other

words they have not been matched with other sensors in the

cluster. In this example, the non-matched sensors are sensor 2,

4, 5 and 6. Starting by sensor 2, its match is 1, therefore the

sampling rate of sensor 2 for the next round must be reduced

by 100-17% (83%), same for sensor 4,5, and 6 their sampling

rate will be reduced respectively by 46%, 11%, and 83%.

Before computing the percentage of the reduction in sam-

pling rate, the matched sensors are first ordered in ascending

order according to how many times they have been matched.

The reason behind this crucial step can be explained as fol-

lows: Let us suppose the list has not been ordered, and the

CH started by sensor 7, which has been matched 4 times with

4 different sensors. The sampling rate of sensor 7 will be

reduced by 79%. Therefore, eventually, the sampling rates

of sensors 3, 8, 9, and 10 will be reduced by 21% only

compared to 54%, 83%, 89%, and 90% respectively if the

list was ordered. In consequence of not ordering the list

first, the overall reduction in the sampling rate of the sensors

would be reduced, which would lead to an increase in data

transmission and energy consumption. Since sensor 7 can

compensate for 4 other sensors, it is wise to leave it until the

end, allowing the sensors that it matches with to reduce more

their sampling rate.

TABLE 3. Table showing the % of SR reduction for each sensor compared
with its match.

A summary of the results is illustrated in table 3. We notice

that if a sampling rate of a particular sensor is highly reduced,

the one of the sensor that it correlates the most with will be

proportionally and slightly reduced (e.g. sensors 2 and 1).

This balanced reduction is meant to compensate for the

matched sensor since the non-sampled values will eventu-

ally be derived mostly from its best match. Similarly, if the

sampling rate of a sensor is slightly reduced, this will give

more freedom to its match thus allowing it to highly reduce

its sampling rate (e.g. sensors 5 and 9).

C. RECONSTRUCTION OF THE NON SAMPLED DATA

In this section, the algorithm used to reconstruct non-sampled

data is explained. As mentioned earlier, the Sink detects

and replaces non sampled data with a ‘‘Nan’’ value. After

a certain period of time, let’s say M rounds, defined by the

user, the sink runs a reconstruction algorithm that can replace

all the ‘‘Nan’’ values with estimations calculated using the

spatial and temporal correlation among the data reported

by the sensor nodes in the network. This algorithm it is

deployed on the Sink instead of the CH due to its complexity.

If deployed on CH it will consume a great amount of energy.

The reconstruction algorithm proposed in [35] essentially

used to estimate missing data in co-evolving time series was

adopted and adapted to suit our case. Assuming after M

rounds, the Sink would have stored in his Sink the following

data-set:

SinkDataSet =













x11 x21 x31 . . . x501 Nan xn∗M1

x12 x22 x32 . . . Nan Nan xn∗M2
...

...
... Nan

...
...

...

x1N x2N x3N . . . x501 Nan xn∗MN













A probabilistic model (Figure 3) is built to estimate the

expectation of missing values conditioned by the observed

part. The model is built by initializing a latent variable Z1,

a linear mapping matrix F and a projection matrix G, for the

readers interested in how these values are initialized please

refer to [35]. Afterward, using the linear mapping F the

algorithm can proceed to calculate the other Zn (n ∈ [1,n*M])

by simply multiplying Zn−1 ∗ F . Once all the values of Zn
are calculated, the algorithm then estimates the observed and
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FIGURE 3. The probabilistic model.

non-observed (Nan) values. This is achieved by multiplying

each Zn by the projection Matrix G, which gives the pre-

dictions ([xn1 , . . . , x
n
N ]) of the values at the sampling time n.

Using the estimations, and the observed part, the algorithm

then tries to maximize the log-likelihood of the observed

sequences using an EM iterative algorithm [36] in order to

update F and G and produce more accurate predictions. The

same operation is repeated with the newly computed F and

G until the number of iteration reaches a maximum value

predefined by the user, or until the log-likelihood is no longer

increasing.

V. EXPERIMENTAL RESULTS

We implemented our algorithm in addition to DPCAS [11] in

a custom WSN simulator built in Matlab, and we conducted

multiple experiments in order to evaluate and compare their

performances. In the simulation, we used real sensor readings

collected from a sensor network that was deployed at the

Grand-St-Bernard pass between Switzerland and Italy [37].

The Network consisted of 23 sensors, each one of them col-

lects 9 different environmental features with a fixed sampling

rate of 1 sample every 2 minutes. We have chosen 4 out of

these 9 features (ambient temperature [C◦], Surface temper-

ature [C◦], relative humidity [%], and wind speed [m/s]),

since the others are not complete. Environmental features are

usually stationary, therefore, in addition to taking a sample

every 2 minutes, and for a rigorous comparison, we set up

two other scenarios, the first one, a sample is taken every

10 minutes instead, and the second one, a sample is taken

every 20 minutes. In this way, the data will become ‘‘non-

stationary’’ which makes it more realistic and harder for

both algorithms to adapt to high variation in collected mea-

surements. The raw data set (sample every 2mins) consists

of 10000 readings for each sensor, for the 1st scenario we

will end up with 2000 readings instead, and 1000 readings

for the second one.

In DPCAS the parameter ǫ defines the error tolerance of

the application, the greater is ǫ, the less is the amount of data

that will be sampled and transmitted. However, the error of

the estimated data will increase. Therefore, the value of ǫ is

the level of trade-off between the quality of the replicated data

and the amount of sampled and transmitted measurements.

In our experimentation, we set up five different values for ǫ

ranging between 0.1 and 0.5 and we compare our approach

to DPCAS for each value of ǫ.

A. SAMPLING AND TRANSMISSION REDUCTION

In this section, we will explore and compare the effectiveness

of each algorithm in reducing the number of both sampled and

transmitted data in three different scenarios. As mentioned

earlier, each sensor node collects 4 different environmental

features (ambient temperature, surface temperature, relative

humidity, and wind speed). For simplicity and better visual-

ization of the results, all the figures will be illustrating the

percentage of the aggregated sum of the data sampled and

transmitted by the 23 nodes combined and for all features.

FIGURE 4. Average percentage of data sampled by each sensor node.

FIGURE 5. Average percentage of data transmitted by each sensor node.

Figure 4 and 5 shows that on one hand, the bigger is

the sampling interval between two consecutivemeasurements

(higher variations in data), the greater is the average per-

centage of both sampled and transmitted data will be when

DPCAS is deployed. On the other hand, when our approach

(STCSTA) is deployed, the average percentage remains stable

despite the level of variations in collected measurements,

which makes it more robust, dynamic and tolerable to high

variations. This is not the case for DPCAS however, its effec-

tiveness can be significantly affected (a double-digit increase

in sampled and transmitted data) depending on the type of

data being collected. Moreover, Figure 4 and 5 shows that

STCSTA has the upper hand when it comes to reducing the

number of both sampled and transmitted data. For sampled

data, Figure 4 shows that STCSTA outperforms DPCAS in

all scenarios and for all the values of ǫ. Figure 5 shows the

average percentage of data transmitted by each one of the
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FIGURE 6. Average energy consumption of each sensor node.

23 nodes for both algorithms in 3 different scenarios and

using different ǫ for DPCAS. The obtained results show the

following: STCSTA outperforms DPCASwhen ǫ ≤ 0.2 in all

scenarios. However, for ǫ = 0.3 DPCAS transmits less data

in the first scenario (SRmax = 1 sample/ 2mins), butmore data

in the other two scenarios (SRmax = 1 sample/ 10 mins and

1 sample/ 20 mins). Finally, For ǫ = 0.4 and 0.5, DPCAS

is slightly better in the first two scenarios. To sum it all

up, the results in Figure 5 show that STCSTA outperformed

DPCAS 9 times, the latter outperformed STCSTA 5 times,

and finally, we have 1 tie.

To conclude on this, when it comes to reducing the sam-

pling and transmission rate, thus the energy consumed by

the sampling activity Esampling and the transmission activity

Eradio STCSTA is more effective than DPCAS.

B. ENERGY CONSUMPTION

In this section, we present a comparison between the average

energy consumed by the 23 sensor nodes when DPCAS and

STCSTA are deployed.

Previously, in section V-A, the obtained results clearly

show that the Eradio and Esampling are less when STCSTA is

deployed since the amount of sampled and transmitted data

is directly related to the energy consumed by the sampling

and transmitting activities. However, according to Equation 1,

we still need to calculate Elogging and EProcessing. This is

where our approach shows a clear advantage. Knowing that in

DPCAS an algorithm must be deployed on the node that han-

dles 4 different sensors at a time. The node needs to perform

reading and writing in the memory, and it needs to compute

mathematical operation using the CPU. Therefore, the node

will be consuming additional energy (Elogging and EProcessing).

However, for STCSTA, the node does not have to run an

algorithm, nor to perform read and write in the memory,

it simply collects a measurement using the integrated sensors,

and directly transmits it to the CH. Therefore, no additional

energy consumption is required. Figure 6 shows the average

energy in Joule consumed by each one of the 23 deployed

nodes. It is clear that our approach consumes approximately

from 20% up to 60% less energy than DPCAS depending on

the scenario and the value of ǫ.

C. COMPARISON WITH A BASELINE METHOD

The previously described results demonstrated that our

approach STCSTA outperforms DPCAS in terms of

energy preservation. The DPCAS algorithm in [11] was

compared to two other approaches that use a similar tech-

nique, namely EDSAS [27] and ASTCP [26]. As mentioned

in section II, the ASTCP algorithm was inspired by the

EDSAS. Moreover, the DPCAS algorithm was inspired by

both ASTCP and EDSAS. In this section, we will use the

EDSAS as a baseline for comparison since it was the root

algorithm that inspired both ASTCP and DPCAS. Table 4

below shows the average energy consumed by each node in

all scenarios and for the same value of ǫ = 0.1 used in [11].

The obtained results are fairly similar to the ones obtained

in [11] and our approach remains better.

TABLE 4. Table comparing STCSTA and DPCAS to the baseline EDSAS.

TABLE 5. Quality of the reconstructed data.

D. THE QUALITY OF THE REPLICATED DATA

In order to measure the quality of the final set of data, we use

the accuracy of the estimations as the validation criteria.

Specifically, we use the Root Mean Square Error (RMSE)

and the Mean Absolute Error (MAE) as an accuracy metric.

Table 5 shows the RMSE and MAE of the estimated data

for the three scenarios. For ambient temperature, surface

temperature and relative humidity the errors are low. This is

due to the fact that the spatial-temporal correlation of these

features is strong, so the estimation algorithm can obtain an

accurate and solid relationship based on mining correlation

rules. Table 5 also shows that the error increases when the

sampling interval widens. The bigger is the sampling interval,

the weaker is the temporal correlation, therefore the harder

is for the estimation algorithm to accurately estimate values.

For Wind direction, the errors increase significantly but they

are still proportionally low compared with the range of value

for the wind speed (between 0 and 350 m/s). Wind speed

has no spatial correlated with any other feature. Moreover,

the wind speed value varies significantly between one sample

and the other as shown in Figure 10, therefore the temporal

correlation is weak as well, that is why it has the highest error

among other features.

Figures figs. 7 to 10 shows a reconstructed signals for

ambient temperature, surface temperature, relative humidity,

and wind speed respectively. As shown in the figures, the data

estimation (reconstruction) algorithm has been able to cap-

ture both the dynamics of the signal as well as the correlation

across given inputs, therefore achieving a very satisfying
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FIGURE 7. Reconstructed ambient temperature signal.

FIGURE 8. Reconstructed surface temperature signal.

FIGURE 9. Reconstructed relative humidity signal.

FIGURE 10. Reconstructed wind speed signal.

reconstruction of the signals. To conclude on the quality

of the replicated data, simulation results presented in this

section, demonstrated that the Sink is capable of reproducing

the ‘‘non-sampled’’ data with a tolerable error margin. Thus,

using our approach a sensor node can significantly reduce its

sampling rate without affecting the integrity of the data.

E. THE EFFECT OF THE SAMPLING STRATEGY

ON ERROR MINIMIZATION

The previous results have evaluated the efficiency of our

proposed approach (STCSTA) in terms of reducing data

transmission and energy consumption as well as the quality

of the data replicated on the Sink. However, as previously

explained in section IV-B, the objective of our algorithm

is to guarantee that the highly correlated sensors are not

skipping data sampling simultaneously in order to reduce the

reconstruction error. That was in theory, Therefore, in this

section, we put the theory into practice in order to justify this

claim.

Instead of building a list of matching sensors, ordering

the list, and reducing the sampling rate of each sensor pro-

portionally to its match. We eliminated the steps from line

30 and upward in Algorithm 1, only to allow a sensor to

reduce its sampling rate according to its highest degree of

correlation. For instance, let’s assume that the sensor 1 has

the highest correlation degree with sensor 5 (0.8). Without

checking whether sensor 5 has already reduced its sampling

rate or not, it will automatically reduce it by 80%. There is

a chance that sensor 5 has already reduced its sampling rate

lets say by 70%. Thus, both sensor 5 and 1 will skip sampling

simultaneously which would, in theory, affect negatively the

reconstruction algorithm, which will lead to an increase in

the reconstruction error. We will be calling this method ‘‘The

exaggerated sampling reduction’’ method. Table 6 shows the

% of increase in the reconstruction error when this method is

applied.We notice that the Reconstruction error increases sig-

nificantly in all scenarios and for all environmental features,

which justifies our controlled sampling strategy.

TABLE 6. Percentage of increase in reconstruction error (the exaggerated
sampling reduction method).

F. SCALABILITY AND LIMITATIONS

Obviously, the scalability of such a network depends on the

computational power of the CH and its memory capacity.

A more powerful CPU and big memory size mean that the

CH could handle a large number of sensors simultaneously.

The weaker is the CPU and the smaller is the memory size,

the fewer nodes a CH can handle. A great number of devices

that can be used as a CH are currently available in the market,

they all have different features and characteristics. One can

find cheap less powerful CH device for personal use or an

expensive and powerful device for commercial use. There-

fore, the choice of the CH depends on the size of the network

a user wants to deploy. A network consisting of thousands of

nodes will certainly need a powerful CH. However, a network

consisting of a few hundred or tens of nodes could work just

fine with a less powerful CH.

Our proposed algorithm is not very complex though,

it has a complexity that is linear in time (O(n)). This linear

complexity allows the CH to handle a large number of nodes

with minimal computational power. Regarding the memory

size required by the STCSTA, assuming that the number of

nodes in the cluster is N , and each value is encoded into

8bytes.

50678 VOLUME 7, 2019



G. B. Tayeh et al.: Spatial-Temporal Correlation Approach for Data Reduction in Cluster-Based Sensor Networks

FIGURE 11. Memory size needed for the first part of the
Algorithm (line 1-28).

FIGURE 12. Memory size needed for the second part of the
Algorithm (line 23-57).

• 8× (N (SRmax +
1
2
N + 4)+ 1) bytes is the memory size

required by the Algorithm1 from line 1-28. Figure 11

shows the memory size needed by the CH in function of

SRmax and the number of nodes belonging to the cluster.

• 8(×6N + 1) bytes is the memory size required by the

Algorithm1 from line 23-57 if we assume that thematch-

ing sensors are at maximum equal to the number of

sensors in the cluster. Figure 12 shows the maximum

memory size needed by the CH in function of the number

of nodes belonging to the cluster.

The maximum memory size required by the CH is

8×Max(N (SRmax +
1
2
N + 4)+ 1, 6N + 1) bytes, since the

values stored in the first part of the Algorithm (1-17), could

be cleared once the sensors have been matched (Algorithm 1,

line 17-28).

Nevertheless, the greater is the number of nodes belonging

to the same cluster, the better is the correlation among these

nodes, the fewer data a sensor will sample and transmit

which eventually leads to less energy consumption. There-

fore, the number of sensors belonging to the same cluster

should be maximized in function of its computational and

memory resources.

As for the limitation of our proposed algorithm, it is evident

when there is no or little correlation among the collected

measurements, the sampling rate of the sensors will be always

kept high. Since the role of this algorithm is to minimize the

sampling rate of the sensor node, it will not be as efficient as

it should be.

VI. CONCLUSION
We proposed in this paper a sampling and transmission

rate adaptation algorithm for cluster-based sensor networks.

This algorithm is deployed on the Cluster-Head (CH) and

it operates in rounds. The latter controls the sampling rate

of each individual sensor node by increasing it or decreas-

ing it according to its spatial correlation with other sensors

in the network. Moreover, we adopted and adapted a data

reconstruction algorithm that is implemented on the Sink

station. The latter can identify the ‘‘non-sampled’’ data that

are not collected due to a decrease in the sampling rate of a

specific sensor and it estimates them using an EM iterative

approach that is capable of capturing the temporal and spatial

correlation among the reported measurements. We presented

experimentation that we have conducted on real sensor data

of a network that was deployed at the Grand-St-Bernard pass

located between Switzerland and Italy. We have compared

our approach with a recent data reduction technique that

combines both adaptive sampling and transmission reduction.

The obtained results demonstrate that our proposal is better

at reducing the energy consumption of the sensor node, thus

extending the operational lifetime of the network while pre-

serving the integrity and the quality of the data.

For future work, we aim to tune better the Algo-

rithm deployed on the CH by incorporating other attributes

to determine the optimal sampling rate of each individual

sensor. Moreover, we will explore the possibility of adding

a compression phase between the CH and the workstation in

order to reduce more the amount of transmitted data.
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