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Abstract. Conventional conversational agents have a limited ability to
respond to different user intents when interacting with smart buildings.
The uniqueness of each building, coupled with the heterogeneity of built
environments, makes it challenging to adapt communication methods
universally. A possible solution is to develop a conversational agent ca-
pable of understanding physical, logical, and virtual assets in the built
environment, with the aim of establishing a standardised method of
human-building communication. Current smart building ontologies and
metadata description schemas aim to give smart buildings a common lan-
guage for the rapidly growing number of devices in smart buildings. This
research paper focuses on developing a comprehensive smart building
framework that integrates chatbot-driven natural language interactions
into smart buildings using the SPARQL query language to query the
smart building Knowledge Base (KB) and interact with buildings using
a chatbot. An environmental sensor network testbed was set up using
an ontology representing a smart building to evaluate the answer to the
question. We have used transformer-based machine learning (ML) mod-
els to translate the natural language (NL) queries into SPARQL queries
and summarise combined SPARQL and natural language queries, which
produced promising performance. By integrating chatbots into smart
building systems on the edge, users can interact in natural language, pro-
vide real-time information, and detect potential threats without the need
for specialised knowledge. Our future work will be to extend this model
to support heterogeneous building types represented by smart building
ontologies. The source code and data sets are publicly available. 3
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1 Introduction

Human Building Interaction (HBI), an interdisciplinary field, studies the com-
plex interplay between computer technology and the built environment/smart
buildings [2]. This field of study is concerned with dynamic interactions between
3 https://github.com/suhasdevmane/abacws-chatbot



humans and computers and between people and their physical environments.
Previous studies suggest that in addition to identifying the barriers to their
widespread adoption, it is necessary to investigate the communication interfaces
between buildings or their services [1]. Smart buildings have recently attracted
significant attention, mainly due to the desire to improve operational effective-
ness, occupant comfort, and energy efficiency [23]. Technological developments in
natural language processing (NLP) and knowledge representation have sparked
the creation of novel approaches that make use of chatbots. Furthermore, the
rise of the Internet of Things (IoT) has changed how devices are connected in
the built environment and has opened up access to a massive amount of data.

SmartThings (Samsung), Google Home (Google), HomeKit (Apple), Alexa
(Amazon), and other platforms use NLP and AI technologies for user intent
recognition, entity extraction, and response generation [7]. These systems rely
on patterns derived from large datasets, processed dynamically or pre-trained
in the cloud, without knowledge of smart building environments. Since smart
buildings vary in system and sensor, data is stored in different databases, mak-
ing it difficult for traditional cloud-based chatbots to access and interact with
these environments effectively. In addition, these agents lack domain-specific
knowledge, leading to inconsistent query results in diverse smart buildings. A
uniform approach to understanding user intent across different smart environ-
ments is unfeasible; each building requires a unique knowledge base to ensure
accurate responses. Developing chatbots that understand both user intent and
the built environment, leveraging knowledge representation techniques such as
ontologies, could facilitate efficient communication with heterogeneous smart
buildings. Aligned with contemporary advancements in the field, our research fo-
cuses on addressing the following objectives, ensuring accessibility for any smart
building user, regardless of expert knowledge, to engage in meaningful ’talk’ with
the building:

1. What elements and architectural considerations are essential to enable nat-
ural language interactions with smart buildings for diverse objectives?

2. What components are required for the development of adaptable algorithms
and applications within the smart buildings knowledge base, incorporating
real-time automated reasoning on data that can be deployed across a variety
of building types while inherently supporting application-specific functions?

Smart buildings need a unified metadata description framework applicable
to all building types to facilitate human-building interactions, providing a com-
prehensive knowledge representation approach. We utilised Brick [5], a widely
adopted semantic building metadata method, to develop and evaluate responses
to user questions by translating natural language (English in our case) into
SPARQL Protocol and RDF Query Language (SPARQL) using a Transformers-
based ML model [39]. Integrating the BrickSchema with reasoning applied to
the building ontology enables a semantic understanding of all physical, logical,
and virtual assets within the building, clarifying their interrelationships. Our
framework includes the Rasa conversational agent (chatbot), based on Natural



Language Understanding (NLU), and SPARQL, a query language for semantic
web databases, to efficiently access and process data from the building’s knowl-
edge graph. The NLU component handles intent classification, entity extraction,
and response retrieval, enabling intelligent interactions between users and smart
buildings.

In brief, the contributions of our paper are summarised as follows

– We propose a framework to promote the field of HBI and smart building tech-
nologies by providing an intuitive and effective method of human-building
conversation through chatbots, ML models with domain knowledge, and
smart home description using ontologies.

– We introduced two datasets: one for training the ML models and another
containing environmental data from a smart building testbed for natural
language conversation.

– We introduced the trained ML models based on transformers having do-
main knowledge to fine-tune the new building ontologies for human-building
conversation for multiple intents.

The organisational structure of this paper is as follows. Section 2 provides a
comprehensive overview of the current background and related work in HBI,
focusing on the use of conversational agents employing ontology and ML models
used for question-answering and text summarisation. Section 3, the overall sys-
tem architecture of the proposed framework is detailed, providing insight into
its structural components and functionalities. Finally, Section 4 describes the
dataset, ontologies used, and the implementation and experimental setup of this
framework. Finally, Section 5 critically evaluates the current framework from
different perspectives, assessing its effectiveness, limitations and potential areas
for improvement.

2 Related Work
There has been a surge in studies on user behaviour, interactive design, and smart
devices to support diverse and interdisciplinary research on smart buildings [44]
among researchers. To enhance human-building communication, recent studies
have adopted interactive design principles. A voice assistant was examined to see
if the differences in modality (i.e., voice vs. text) and device (i.e., smartphone
vs. smart home device) affect user perceptions when users attempt to retrieve
sensitive health information from voice assistants. It has been seen that, among
all the types above, conversational agents are preferred by users [12]. Others
explored design needs, user expectations[14,16], communication channels and
authentication[19], multiuser experience and design recommendations[24] spa-
tial consideration using Building Information Modeling (BIM) [29], household
social needs [35], future directions and challenges to be addressed by chatbot
research[15] to better interact in built environments. Smart buildings, equipped
with diverse components and sensors, provide valuable information to stakehold-
ers and facilitate user interactions through systems like Building Management
Systems (BMS) [36] and Building Automation Systems (BAS) [8] which requires
expert knowledge to execute tasks within the built environment.



Ontologies have become essential for describing domain-specific knowledge,
particularly in smart buildings, where various efforts have focused on defining
entities and relationships to solve interoperability issues [32,22,9,21,13,10,11].
Ontologies such as Semantic Sensor Networks (SSN) and Sensor, Observation,
Sample, and Actuator (SOSA) [43,18] offer frameworks for modelling sensor data.
Brick [5], an open-source Resource Description Framework (RDF) based schema,
was introduced to describe the structure and functionality of buildings, empha-
sising semantic descriptions of physical, logical, and virtual assets and their inter-
relationships. Brick prioritises completeness, expressivity, usability, consistency,
and extensibility. We utilised Brick to create an ontology tailored to describe a
smart building sensor network. Unlike Web Ontology Language (OWL), which
is part of the W3C Semantic Web stack and uses Description Logic (DL), Brick
is built on RDF and RDF-Schema (RDFS) semantics without employing DL.

Chatbot architectures suggest that formalising rational components (reason-
ing and NLP capabilities) and intuitive components (semantics) is crucial to
improving chatbot knowledge bases to support human-like conversation [3]. Re-
cently, ontology-based chatbots have gained popularity in domains, demonstrat-
ing effective communication with users. Examples include a tutoring chatbot
for students [30], an e-commerce assistant [40], and MediBot, a medical assis-
tant [4], all using ontologies alongside other components. Ontology-driven chat-
bots utilise linguistic rule-based systems and syntactic ambiguity resolutions
to accurately detect user intent [34]. ML models are used to automate various
tasks. Transformer-based models are used for patient monitoring in smart homes
[25], human activity recognition (HAR) [27,20], security [41], and energy effi-
ciency [17]. Recently, a Bidirectional Encoder Representations from Transform-
ers (BERT) model has been used to answer questions in knowledge graphs [38]. A
Text-to-Text Transfer Transformer (T5) based model is trained for SPARQL to
generate NL questions for knowledge-based conversational applications, which
can be used to generate SPARQL using datasets such as LC-QuAD 2.0 and
ParaQA, CSQA, WebNLG-QA [26]. The Bidirectional Auto-Regressive Trans-
formers (BART) based model is trained to generate SPARQL questions to inter-
act with the DBLP database using the DBLP-QuAD dataset [42]. BART excels
in sequence-to-sequence tasks such as summarisation, translation, and question-
answering by preserving key details, while T5’s unified text-to-text approach
enhances performance across these tasks [26]. Integrating these models with a
knowledge base can significantly improve human interaction with smart build-
ings.

3 System Architecture
Figure 1 illustrates the system architecture with its main components: Graphical
User Interfaces (GUI) and back-end processes. The GUI, known as services,
enables user communication with smart buildings and consists of interconnected
services necessary to complete the dialogue. The back-end processes handle user
intents, process inputs, and generate output through custom actions and ML
models. Table 1 explains the components attached and their role in fulfilling the
purpose of the human-building conversation.



Fig. 1. Overview of system architecture

Table 1. Element requirements and selections for human-building conversations.

Element Required Selected Element Application

Semantic description
of Smart building

BrickSchema
ontology

To semantically describe physical, logical and virtual as-
sets and their relationships.

Reasoning on
ontology

shacl, owlrl, vbis To facilitate the validation of RDF data against prede-
fined shapes, ensuring compliance with constraints.

A language to talk
to ontology

SPARQL To retrieve information from RDF databases in the con-
text of ontologies.

RDF triple store Apache Jena Fuseki To handle SPARQL queries and keep requests and re-
sponses in a manner consistent with the ontology’s se-
mantic structure.

Conversational
Chatbot

RaSa Open Source To interact with the smart building system using natural
language that is connected to various services.

Timeseries Database PostgreSQL To store large volumes of data from our sensor network
with unique IDs.

IoT platform ThingsBoard To gather, handle, display, and evaluate data from IoT
devices that are connected to PostgreSQL and the PgAd-
min server for data management and administration.

Natural language to
SPARQL translation

BART (bart-base),
T5 (t5-base)

To convert the natural language question received from
Rasa to the SPARQL query.

SPARQL summarisation T5 (t5-base) To summarise the response received from the knowledge
base and database to a meaningful summary for the user.

Training Datasets Custom To train the transformer model for NL to SPARQL trans-
lation and summarisation of received data from database
and ontology.

Smart Building
Visualization

Abacws3D To visualise the live sensor data and monitor buildings
health using React and TypeScript.

Programming
language

Python, Flask,
Node, Docker,
Jupyter Notebook

To avoid dependency conflicts at end-user, Data Analy-
sis (EDA) and Visualization, Perform custom application
using portable application.



3.1 Services

We adopted the BrickSchema as our building metadata schema due to its struc-
tural advantages, effectively addressing the limitations of previous schemas. This
choice ensures a well-defined ontology that is maintainable within set specifi-
cations. For reasoning within the BrickSchema ontology, we utilised its sup-
ported reasoning profile, streamlining the integration of reasoning mechanisms.
SPARQL was used for querying and interacting with the data, connecting with
the Apache Jena-Fuseki SPARQL endpoint that holds the building ontology, re-
ceives SPARQL queries from the Rasa action server, and incorporates reasoners
to maintain standards. We used Rasa Open Source, a popular framework for
building AI assistants in Python that supports multiple platforms. It manages
training data, including NLU data, stories, and rules, in YAML format, with
definitions for forms and responses within the domain. Rasa uses regular expres-
sions, lookup tables, and synonyms to train NLUs on categorised user utterances,
employs step-based stories composed of user messages and actions, and uses an
ML pipeline for intent classification and custom actions.

The action server executes custom actions based on user queries, running
any Python code, such as database queries and API calls. The bot’s actions and
responses are followed based on the stories. The dialogue model predicts the next
step based on user messages, while rules train the assistant’s dialogue manage-
ment model. The processing pipeline, defined in config.yml, runs a sequence of
components to efficiently handle incoming messages. To enhance data acquisition
and evaluation, we deployed an environmental sensor network integrated with
an IoT platform in an academic building. Sensor data is transmitted to a Post-
greSQL database, contributing to a dynamic dataset with autogenerated IDs
and keys, which are added to the building ontology for external data reference.
For data exploration, visualisation, testing, debugging, and administration, we
integrated tools such as Adminer, PgAdmin, and GraphDB with the PostgreSQL
database and the RDF store. A 3D visualisation service provides a visual repre-
sentation of the environmental sensors, retrieving data via an API. In addition,
an IoT platform virtualises devices and manages data storage, administration,
actions, and visualization of data within the local network.

3.2 Machine Learning Models and Custom Actions

Figure 2 shows the flow of a natural language conversation between a user and
a smart building, where a chatbot mediates between the user and the build-
ing by processing intentions and providing answers. The conversation agent first
receives the user’s question and processes it through the NLU pipeline to deter-
mine the intent. If the intent is out of scope, it is classified as a custom action.
Custom actions are sets of operations that fulfil user intents. The custom action
script considers the user’s input and sends it to the BART or T5 model for
tokenisation. The input text is converted into word embeddings and translated
into a SPARQL query. The query is sent to the RDF knowledge base to fetch the
required data. If the answer includes data stored in a database, it retrieves the



Fig. 2. Machine learning model and custom actions flow

associated data using SQL queries with unique UUIDs. The responses from both
the RDF storage and the PostgreSQL database are converted into well-formatted
RDF triples. These triples are stored for data analysis using portable applica-
tions in CSV and JSON format. T5 model receives this formatted response,
which summarises the input in a readable format based on the user’s Natural
Language Question (NLQ) and formatted SPARQL response. The summarised
response is then sent to the chatbot interface.

Response Formatter : The system includes a sophisticated response formatter
script designed to process responses from both the SPARQL endpoint and the
PostgreSQL database. This script efficiently handles RDF data by removing
URLs and appending the respective PREFIX, ensuring a clean and readable
output. Additionally, it processes database responses to produce a consistent
and understandable format suited for transformer models trained on our dataset.
This formatting ensures that the data are presented in a way that maximises
the effectiveness of the ML models, thereby enhancing the overall performance
and accuracy of the system in understanding and generating responses.

Natural Language Translation and summarisation : Text-to-text frame-
works in transfer learning have shown remarkable capabilities for natural lan-
guage generation, translation, and comprehension. ML T5 models are trained
using natural language questions, formatted SPARQL query responses, and sum-
marisation text. The training dataset contains more than four thousand exam-
ples to construct the summary from the user input question, and the formatted
SPARQL response. BART is an ML model trained using natural language ques-
tions and SPARQL query pairs to construct a SPARQL query.



4 Implementation
The framework for smart buildings integrates a Rasa chatbot, a SPARQL end-
point with a local database, and a building ontology hosted in Apache Jena
Fuseki. This setup allows for seamless natural language interaction, translating
user intents into SPARQL queries executed on the local database. The ontol-
ogy represents smart building elements. The SPARQL query retrieves sensor
information based on a Universally Unique Identifier (UUID) within a semantic
description in smart building ontology. It selects properties like sensor, external
reference, UUID, database, label, and connection string, using RDF triples to
navigate relationships via the Brick ontology. The query filters sensors by UUID
and links them to external references associated with time-series data stored
in a database, extracting the data points, database type, label, and connection
string. This SPARQL query effectively extracts structured data and ML models
summarise the responses and sends to the rasa actions for the user.
Dataset Structure To successfully train a model, a large-quantity bilingual
parallel corpus is needed. We have used a custom-created training dataset with
a number of 5,470 sets for training the T5 and BART models, including natural
language questions, the corresponding SPARQL query, response, and explana-
tion, as shown in the example below:

{
"ID": 4050,
"en": "How does this smart building monitor and maintain air quality

in the east zone?",
"sparql": "SELECT ?sensor WHERE { ?sensor a brick:Air_Quality_Sensor

; brick:hasLocation bldg:east-Zone . }",
"response": "sensor: bldg:airq5.04, bldg:airq5.05, bldg:airq5.34,

bldg:airq5.25, bldg:airq5.28",
"explanation": "Sensors located in the east zone monitor air

quality."
}

Ontology Structure The ontology defines entities such as buildings, sensors,
and their relationships using the brickschema. It contains 4899 RDF triples be-
fore any reasoning is performed. It has information about all the floors, sensor
devices and their UUIDs, where their information is stored in the database. An
example snippet of an ontology is as follows.

@prefix bldg: <http://abacwsbuilding.cardiff.ac.uk/abacws#> .
@prefix brick: <https://brickschema.org/schema/Brick#> .
bldg:Abacws a rec:Building, rec:School ;

rec:address "Cardiff, UK" ;
rec:architectedBy "Cardiff University" .

bldg:airq5.01 a brick:Air_Quality_Sensor ;
rdfs:label "Room Air Quality Sensor" ;
ref:hasExternalReference [

ref:hasTimeseriesId "478abf30-7db2-11ee-b0f3-69bd975277c1"
] .



Table 2. Natural language conversation flow between human-building
Question How this smart building monitor and maintain the air quality in the east zone?
SPARQL Query
Generated

SELECT ?sensor
WHERE {

?sensor a brick:Air_Quality_Sensor ;
brick:hasLocation bldg:east-Zone . }

Formatted SPARQL
Response sensor : bldg:airq5.04, sensor: bldg:airq5.05, sensor: bldg:airq5.34, sensor:

bldg:airq5.25, sensor: bldg:airq5.28
Received Answer The output from the SPARQL endpoint lists several air quality sensors. Sensor

airq5.04, Sensor airq5.05, Sensor airq5.34, Sensor airq5.25, Sensor airq5.28 are
sensors located in the east zone of the building to monitor air quality.

Question what is the average temperature level in east-zone on the Floor 5 in the building
between 1st May 2023 and 30 January 2024?

SPARQL Query
Generated

SELECT ?sensor ?timeseries_id ?timeseries_key_id

WHERE {
?sensor a brick:Temperature_Sensor ;
brick:isPointOf bldg:east-Zone ;

ref:hasExternalReference ?ref .
?ref ref:hasTimeseriesId ?timeseries_id ;
ref:hasTimeseriesKeyId ?timeseries_key_id .

}
Formatted SPARQL
Response sensor : bldg:temp5.05 , timeseries_id: 78df12c0-7db2-11ee-b0f3-

69bd975277c1, timeseries_key_id: 133, sensor : bldg:temp5.34 , time-
series_id: 9586a700-83f5-11ee-a992-8978af4232d8, timeseries_key_id:
133, sensor : bldg:temp5.25 , timeseries_id: 6694ad70-83f5-11ee-a992-
8978af4232d8, timeseries_key_id: 133, sensor : bldg:temp5.28 , time-
series_id: 759e7850-83f5-11ee-a992-8978af4232d8, timeseries_key_id: 133

Received Answer Overall Average Temperature: {overall_average}
Question Compare CO2 levels recorded by sensors in the north-west and south-west

zones between 10/11/2023 to 29/02/2024.
SPARQL Query
Generated

SELECT ?northWestTimeseriesId ?southWestTimeseriesId
WHERE {

OPTIONAL {
?sensor a brick:CO2_Sensor ;
brick:hasLocation bldg:north-west-Zone ;

ref:hasExternalReference [
ref:hasTimeseriesId ?northWestTimeseriesId ] . }

OPTIONAL {
?sensor a brick:CO2_Sensor ;
brick:hasLocation bldg:south-west-Zone ;

ref:hasExternalReference [
ref:hasTimeseriesId ?southWestTimeseriesId ] . } }

Formatted SPARQL
Response northWestTimeseriesId :478abf307db211eeb0f369bd975277c1,

southWestTimeseriesId :478abf307db211eeb0f369bd975277c1,
southWestTimeseriesId :9f44f0107db211eeb0f369bd975277c1....

Received Answer Overall Average CO2 in north-west is : {overall_average} and south-west is
{overall_average}

Table 2 illustrates how a user-entered natural language query is converted to
a SPARQL query and how the formatter formats the response returned by the
SPARQL database. The T5 model then generates the response for Rasa actions.



4.1 Experimental Setup

All experiments were conducted on an Amazon EC2 instance configured with a
Tesla T4 GPU, enabling faster convergence. The g4dn.4xlarge instance provided
sufficient computational power to handle the intensive training and evaluation
processes required for the models used. The machine setup is outlined in Table
3.

Table 3. Specifications of the training machine.
Component Specification
Product g4dn.4xlarge
CPU Intel Xeon Platinum 8259CL, 8 cores (16 threads) @ 2.50GHz
Memory 64 GiB DDR4
Storage 150 GiB NVMe SSD
GPU 1 x NVIDIA Tesla T4

For our experiments, we leveraged the BART and T5 models, which are
highly regarded for their sequence-to-sequence capabilities. BART, known for
combining bidirectional and autoregressive transformers, is particularly effective
for tasks like text generation. On the other hand, T5 treats all NLP tasks as text-
to-text, making it versatile across various natural language processing domains.
Both models were used to convert natural language questions into SPARQL
queries, while T5 is used to summarise the output of SPARQL queries and
database answers, as T5 showed promising performance for text summarisation
of various datasets [37].

To ensure the models could understand domain-specific language, we en-
hanced the tokeniser by adding tokens from the Abacws smart home ontology
and the BrickSchema ontology (v1.4). These tokens, along with RDF triples and
SPARQL query tokens, were processed using the ‘rdflib‘ library and incorpo-
rated into the training pipeline. This preprocessing step allowed the models to
effectively map natural language queries to their corresponding SPARQL queries
within the smart building domain. Table 4 presents the evaluation metrics for
BART and T5 across different tasks. We observed the performance for tasks such
as SPARQL query generation and output summarisation.

Table 4. Model Evaluation Metrics
Model Name Task Eval Loss Runtime (s) Samples/s Steps/s
BART-NL2SPARQL SPARQL Generation 0.0755 2.2169 123.145 31.125
T5-NL2SPARQL SPARQL Generation 0.0019 3.3988 15.888 2.06
T5-SPARQL2QA summarisation 0.0838 22.0205 12.398 1.589

As shown in Table 4, the models performed well on the evaluation dataset,
which comprised 10% of the total data. The training time ranged from 3 to 4
hours, depending on the model and dataset size. For both models, we trained
using the Seq2Seq framework, optimising key parameters such as a learning rate
of 2e-5, a batch size of 1, and 20 training epochs. Evaluation metrics such as
loss, runtime, samples per second, and steps per second were recorded to track
the model performance.



The dataset used for training consisted of 5470 samples, with an 80-20 train-
test split. 10% of the data was reserved for validation to assess model per-
formance throughout the training process. The RDF triples (4899 triples) and
tokens were derived from the BrickSchema ontology and Abacws smart home
ontology. These ontologies were verified using Protégé, an open-source ontology
editor, to ensure that the SPARQL queries generated were both syntactically
and semantically correct.

5 Result and Discussion
To evaluate the performance of our models, we used three common metrics for
natural language generation tasks: BLEU[31], ROUGE[28], and METEOR[6].
These metrics were chosen because of their widespread use in the evaluation
of text generation models and their ability to provide a comprehensive view of
model performance [33].

– BLEU: The Bilingual Evaluation Understudy (BLEU) score measures the
precision of n-grams between the generated and reference texts. Higher BLEU
scores indicate better performance.

– ROUGE: Recall-Oriented Understudy for Gisting Evaluation (ROUGE) mea-
sures the overlap of n-grams and the longest common subsequence between
the generated and reference texts. We report ROUGE-L scores.

– METEOR: The Metric for Evaluation of Translation with Explicit ORdering
(METEOR) evaluates generated text by considering synonyms, stemming,
and paraphrasing. Higher METEOR scores indicate better performance.

We evaluated the BART and T5 models trained for SPARQL query gener-
ation and the T5 model trained for text summarisation. The results are sum-
marised in Table 5 for the evaluation dataset used.

Table 5. Models performance on SPARQL generation and text summarisation

Task Model BLEU ROUGE-L METEOR Res. Time (ms)

SPARQL Generation BART 0.6078 0.7054 0.6089 1500
T5 0.6432 0.7102 0.6423 1350

Text summarisation T5 0.6232 0.6574 0.6012 1450

The evaluation results show that both the BART and T5 models perform well
on the SPARQL query generation task, with T5 slightly outperforming BART in
terms of BLEU, ROUGE-L and METEOR scores. For the text-summarisation
T5 also achieved strong scores, indicating its effectiveness in summarising the
outputs. The system has demonstrated a commendable degree of success in ful-
filling user intentions for the constructed building ontology. This success can be
attributed to several factors that collectively enhance its performance.
Smart Building Ontology: A general and expandable ontology for smart
buildings provides the framework for representing various components like sen-
sors, actuators, rooms, and environmental parameters.



NLU: NLU capabilities in the Rasa chatbot enable intuitive and user-friendly
interactions by effectively mapping user intents to ontology searches, converting
user input into executable commands.
SPARQL Query Engine: The resilient SPARQL query engine swiftly exe-
cutes dynamic queries against the local SPARQL database, providing accurate
and timely results. Its real-time data processing capabilities enhance system
effectiveness in managing streaming sensor data and performing automatic rea-
soning based on ontology.
Machine Learning Models: Training advanced ML models, notably T5 and
BART, on large datasets improves human-building interaction by enabling the
system to comprehend and construct SPARQL queries from NL inputs and sum-
marise query results efficiently.

Using BrickSchema, we ensure the ontology is structured to support smart
building components like sensors, actuators, and environmental controls via cus-
tom actions. The ontology is both flexible and extensible, enabling consistent
performance, accurate queries, and smooth integration with other architectures,
while allowing future updates without disrupting current functions. To ensure
reliability, we continuously refine and validate the ontology. The current ma-
chine learning models trained on BrickSchema can be fine-tuned for different
schemas and datasets, allowing adaptability. We’re also improving accuracy by
training models on larger datasets by expanding current datasets. Key prior-
ities include monitoring response times under heavy loads and ensuring data
persistence. Our iterative improvements, guided by analytics and user feedback,
will keep the framework robust. Regular documentation updates will help users
adapt and expand the system as needs evolve.

6 Conclusion

The system has successfully demonstrated the ability to fulfil user intentions
across various building ontologies using a generic and extensible ontology, a
robust SPARQL query engine, and advanced NL understanding capabilities in-
tegrated within the Rasa chatbot. In achieving our objectives, we have success-
fully enabled NL interactions with smart buildings by developing an adaptable
framework that supports both NL query translation and semantic understand-
ing through SPARQL queries. The framework integrates smart building data
retrieval and reasoning capabilities by incorporating ML models to enable real-
time, automated reasoning on building data, ensuring its deployment across
various building types. Additionally, the framework offers flexibility for diverse
user needs, allowing the system to handle multiple intents and adapt to a wide
range of building environments, as demonstrated by our testbed setup and the
successful translation of NL inputs into building-specific queries. The incorpo-
ration of T5 and BART models trained on the large datasets further enhances
the system’s capacity for efficient human-building interactions. These efforts en-
sure that the system remains a leading solution in smart building management,
offering a versatile and user-friendly interface for diverse applications.
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