
Int. J. Computational Science and Engineering, Vol. x, No. x, 2021 1, Vol. x, No. x, 2021 1

Edge Analytics on Resource Constrained Devices

Sean Savitz
School of Computer Science and Informatics,
Cardiff University, UK
E-mail: savitzsa@cardiff.ac.uk

Charith Perera
School of Computer Science and Informatics,
Cardiff University, UK
E-mail: pererac@cardiff.ac.uk

Omer Rana
School of Computer Science and Informatics,
Cardiff University, UK
E-mail: ranaof@cardiff.ac.uk

Abstract: Video and image capture cameras have become an important type of sensor
within the Internet of Things (IoT) sensing ecosystem. Camera sensors can measure
our environment at high precision, providing the basis for detecting more complex
phenomenon in comparison to other sensors e.g. temperature or humidity. This comes at
a high computational cost on requirements of CPU, memory and storage resources, and
requires consideration of various deployment constraints such as lighting and height of
camera placement. Using benchmarks, this work evaluates object classification on resource
constrained devices, focusing on video feeds from IoT cameras. The models that have
been used in this research include MobileNetV1, MobileNetV2 and Faster R-CNN that
can be combined with regression models for precise object localisation. We compare the
models by using their accuracy for classifying objects and the demand they impose on
the computational resources of a Raspberry Pi. Various IoT deployments are investigated
by comparing the probability scores of classifying chosen objects using different camera
placements. We conclude that the Faster R-CNN model that is configured with the
InceptionV2 regression model has the highest accuracy. However, this is at the cost of
additional computational resources. We found that the best model to use for object
detection functionality on the Raspberry Pi is the MobileNetV2 model paired with the
SSDLite regression model. This results in the highest accuracy and probability score for
object classification, in comparison to other mobile-friendly models considered in this
work, whilst using the least amount of computational resources.

Keywords: Internet of Things, Edge Computing, Edge Analytics, Resource Constraint
Devices, Camera Sensing, Deep Learning, Object Detection.

Reference to this paper should be made as follows: Sean Savitz, Charith Perera, Omer
Rana, (2021) ‘Edge Analytics on Resource Constrained Devices’, International Journal
of Computational Science and Engineering, Vol. x, No. x, pp.xxx–xxx.

Biographical notes:
Sean Savitz graduated with a First class BSc degree in Computer Science at Cardiff
University, UK. He is currently reading an MSc in Cyber Security at the University of
Southampton.

Charith Perera is a Senior Lecturer at Cardiff University, UK. His research interests are
the Internet of Things, Sensing as a Service, Privacy and Sensing Infrastructure.

Omer Rana is a Professor of performance engineering at the School of Computer Science
and Informatics, Cardiff University, UK. His research interests include distributed systems
and scalable data analysis.

1 Introduction

Internet of Things (IoT) [1, 2] refers to the ever-growing
network of physical objects that feature an IP address

Copyright © 201X Inderscience Enterprises Ltd.



2 Savitz et al.

for internet connectivity [3]. This provides connectivity
and communication between objects and other internet-
enabled devices and systems. Over the last five years a
drastic increase in the use of IoT devices, particularly
within the average consumer household, has occurred. A
major influence has been the rise of cloud-based solutions
[4] to process large amounts of data generated from
IoT devices, as well as the low cost of entry into the
‘smart’ industry. IoT devices have been deployed across a
number of applications, such as smart parking, structural
health monitoring, smart lighting etc.

Cameras are becoming an important type of sensor
within the IoT sensing ecosystem [5]. Camera sensors
measure our surroundings at a high level of detail
and provide the basis for detecting more complex
phenomenon in comparison to other sensors e.g.
temperature or humidity. However, this comes at a high
computational cost, requiring significant CPU, memory
and storage capacity. Cameras and sensors are vital
to an IoT network and their sensing accuracy has
continued to increase over recent years. As a result, they
have contributed to new advancements, as well as the
development of useful applications such as Crowd-Based
Mobile Cloud [6]. This technology aims to utilise the ever
growing amounts of data that are collected from sensors
in smartphones in order to provide meaningful insights
about user behaviour [7]. These include identification of
complex social patterns, as well as detecting location
change patterns to predict a user’s future location and
activities. Another example of how this can be applied in
practice with an environmental focus is to aid scientists
with detecting temperature, Nitrogen Dioxide (NO2)
levels and other chemical leaks using mobile sensors in
real-time, from varying locations. [8].

We investigate various mechanisms for deploying
resource constraint IoT cameras to detect objects
using different deep learning pre-trained models. To
achieve this, we develop an end-to-end open-source
IoT stack, that can be deployed and reconfigured for
different purposes over time. Our primary focus is
to implement and deploy a Raspberry Pi4 based IoT
camera network that transmits real time video data
to a selection of neural network (NN) models that
have been pre-trained on the MS-COCO image dataset.
A performance evaluation of various NN models and
their suitability for deployment on resource-constrained
IoT sensing devices is reported. Our research utilises
the following models: MobileNetV1 [9], MobileNetV2
[10] and Faster R-CNN [11]. Each model behaves
distinctly in a network architecture, training strategy
and optimisation function. As a result, models such
as Faster R-CNN that provide state-of-the-art accuracy
comes at a computational cost (requiring greater number
of computational resources to execute). On the other
hand, mobile-friendly models are smaller in size and
require less memory and are therefore more suited to
resource-constrained environments.

We use these models to produce a comparative
analysis of the accuracy of detecting object(s) in real-

time. Another contribution of our research is to develop
a resource monitoring agent that compares a broad range
of resource measurements and includes the performance,
RAM usage, CPU load and CPU usage of each model on
a Raspberry Pi (RPi) device (used as a proxy for an IoT
device).

This paper is structured as follows: Section 2
presents related work along with a context for this
paper. Section 3 discusses the selection of our approach
and the experiments that have been performed.
Section 4 describes the edge-based analytics system
implementations that we compare, with an evaluation
of these systems in Section 5. Section 6 includes a
discussion of the results and the key observations from
these results, followed by concluding statements in
Section 7.

2 Background and Related Work

The Internet of Things (IoT) concept was coined
by a member of the Radio Frequency Identification
(RFID) development community and has grown in use
significantly in recent years [12]. It is widely accepted
that IoT is an extension of the internet into the
physical world for interaction with physical entities.
An IoT device is defined as ‘a hardware component
connecting an entity to the digital world’ [13]. Commonly
agreed characteristics of IoT devices across the industry
include their smaller/ embedded size, their mobility,
and their use of Cellular or Wi-Fi communication
methods. Although recently, there has been an increase
in popularity of new communication methods in IoT
networks, such as Zigbee, Z-Wave, Bluetooth Low
Energy (LE), Narrow Band IoT (NB-IoT), LoRAWAN,
SIGFox, etc. IoT devices often incorporate small, low-
cost and highly efficient single motherboard computer
designs, utilising cloud computing facilities to process
large data [14]. Practical deployment of IoT devices
remains a challenge [15], i.e. identifying whether to place
cameras and sensors at ground level or at a height, in
object detection tasks remains an error prone process.

2.1 Computer Vision and Deep Learning

Current computer vision applications make significant
use of deep learning techniques (as illustrated in
Figure 1), primarily using convolutional neural networks
(CNNs) [16] for identifying and recognising objects. A
CNN is the most representative model of deep learning
[17]. A typical CNN architecture, such as VGG16,
encompasses a multi-layered architecture, as presented
in Figure 2.

As illustrated in Figure 2, each of the three layers
of a CNN are known as a feature map – a 3D matrix
of pixels which represent different colour channels (e.g.
RGB). Different types of transformations are conducted
on these feature maps, such as filtering and pooling.
The filtering operation (or convolution) convolutes a



Edge Analytics on Resource Constrained Devices 3

Figure 1 The Breakdown of Subject Areas in the 1300
Computer Vision Accepted Papers in 2019 [18]

filter matrix (learned weights) with the values of a
receptive field of neurons and incorporates a non-linear
function such as ReLU to obtain final responses. Its
hyperparameters include the filter size F and stride S.
Stride alters the amount of movement of the input image
or video; a stride of 1 is a shift of one pixel of the image at
a time. The pooling layer incorporates a down-sampling
operation that carries out spatial invariance on the
convolution layer. This function typically uses maximum
or average pooling that summaries the responses of
a receptive field into one value, thus producing more
robust feature descriptions. Interleaving between the
convolution and pooling layers leads to an initial
feature hierarchy that can be fine-tuned in a supervised
approach with the use of fully connected layers to
adapt to varying visual tasks. VGG16 often has 13
convolutional layers, 3 fully connected layers, 3 max-
pooling layers and a softmax layer that is incorporated
for the classification of objects.

Input Image Convolution + ReLU Pooling Fully Connected Softmax

Car

Van
Bicycle
Phone
Person

Feature Learning Classification

Figure 2 A CNN that Processes an Input Image and
Classifies the Object [11]

Detecting an object using a CNN involves localising
the object in the image and identifying which class
this object belongs to [10]. These locations are typically
represented by bounding boxes that are placed around
each detected object, e.g. in pose estimation [19],
vehicle detection [20, 18] and video surveillance [21].
In [22], machine learning is used to detect and
classify human behaviour interactions in a visual
surveillance task. Other research in [23] describes
detection of curb ramps on Google street view, with
a focus on presenting to wheelchair users streets that
have adequate accessibility. Other examples include

autonomous driving, focusing on identifying pedestrians
and cyclists to prevent collisions [24]. However, object
detection can be computational expensive, especially in
comparison to image classification [18]. This complexity
results from the numerous potential object locations,
called ‘proposals’ that must be processed. The exact
location of an object must be refined in real-time for
precision. Nevertheless, various open-source and large-
scale image datasets are available that can be used in
conjunction with deep learning techniques to support
object detection.

A number of realistic data sets exist to support object
detection, e.g. ‘Labelled Faces in the Wild’ [25] and
detection of pedestrians with the ‘Caltech Pedestrian
Dataset’, the latter contained 250,000 frames with a total
of 350,000 bounding boxes, and 2300 unique annotated
pedestrians [26]. In addition, various ‘benchmark’
datasets, called the PASCAL Visual Object Classes
(PASCAL VOC), have also been reported. These
datasets contain 20 categories of objects that are spread
over 11,000 images [27]. More recently, the ImageNet
dataset was developed, which is organised according to
the WordNet hierarchy. Although ImageNet continues to
grow in size, it currently contains 21,841 synsets with
14,197,122 images, averaging 650 images per synset [28].

We use a selection of neural network models that
have been pre-trained on the Microsoft Common Objects
in COntext (MS COCO) dataset. This image dataset
contains 91 common object categories with over 200K
images and 2.5M labelled instances, in which 82 objects
have more than 5K labelled instances. In comparison to
the ImageNet dataset, MS COCO has fewer categories,
despite having a greater number of object instances
per category. MS COCO strives to find non-iconic
images containing objects in their natural context and
therefore provides images with a high level of contextual
information in a wide variety of environments. MS
COCO contains an average of 7.7 object instances
per image, which is greater in comparison to other
influential datasets such as ImageNet that averages 3.0
and PASCAL VOC that averages 2.3 [29]. This provides
our selected neural network models that have been pre-
trained with the MS COCO dataset, with the ability to
learn detailed object patterns for precise 2D localisation
[29].

Low-light environments cause complications in object
detection. Existing studies have primarily focused
on image enhancement [30] or improving night
vision surveillance that requires costly hardware [31].
Remarkably, less than 2% of the images provided by
the influential image datasets, including MS COCO, are
captured in low-light [32]. New developments in 2018,
however, led to the creation of the Exclusively Dark
dataset [32], which contains 7,363 low-light images that
possess especially low-light environments to twilights.



4 Savitz et al.

2.2 Neural Network Models for Mobile Devices

Modifying deep neural network architectures to create
an optimal balance between accuracy and performance,
whilst reducing its computational resource requirements
for execution, has been an integral part of research in
recent years [10]. This has led to major improvements
over early designs such as ResNet [33], GoogLeNet [34]
and VGGNet [35]. Modifying connectivity structures in
internal convolutional blocks has also improved accuracy,
such as with the introduction of sparsity [36] or using
the ShuffleNet model [37].

Neural network models such as Faster R-CNN are
computationally intensive to execute. Computational
cost can also be high due to the use of optimisation
techniques to adapt the neural network architecture
– which can involve the use of evolutionary search
techniques (e.g. genetic algorithms) or reinforcement
learning [38]. The availability of mobile-friendly
neural network models, such as MobileNetV1 and
MobileNetV2, require fewer computational operations
and and are therefore more tailored to resource-
constrained environments [10]. In sections 2.2.1 and
2.2.2, MobileNetV1, MobileNetV2 and Faster R-CNN
are presented, and compared in section 2.2.3.

2.2.1 MobileNet Architecture

Sandler et al. [10] introduce MobileNetV2, which
extends MobileNetV1 using depthwise convolution as
efficient building blocks, providing two new features:
linear connections between layers, as well as shortcut
connections between bottlenecks [10].

Input

Dwise 3x3
stride=s, Relu6

conv 1x1, Relu6

MobileNetV1

Input Input

MobileNetV2

Stride=1 block Stride=2 block

Conv 1x1, Relu6

Dwise 3x3
stride=2, Relu6

conv 1x1, Linear

Conv 1x1, Relu6

Dwise 3x3,
Relu6

conv 1x1, Linear

Add

Figure 3 MobileNetV1 and MobileNetV2 Convolutional
Blocks [10]

MobileNetV1 has two layers. The first layer performs
lightweight filtering by applying a single convolution
filter per input channel, called a depthwise convolution.
The second layer is a 1x1 convolution, called a pointwise
convolution which is responsible for building new

features through computing linear combinations of input
channels. In MobileNetV1, ReLU6 is used, making
use of low-precision computation. On the other hand,
MobileNetV2 utilises two types of blocks; one is residual
with a stride of 1 and the other with a stride of 2,
which is used for downsizing. The first layer comprises
of a 1x1 convolution with ReLU6, the second layer is
the depthwise convolution, with the final layer involving
another 1x1 convolution without non-linearity.

The size of the models, number of parameters
and computational complexity of these two MobileNet
models are compared in [10, 9]. They use MACs
(multiply-accumulate) operations to measure the size of
the models by identifying how many calculations are
used in processing a single 224x224 pixel image. They
suggest that MobileNetV2 is much smaller in size than
MobileNetV1 and is less computationally expensive.

Table 1 Size and Computational Cost: MobileNetV1 vs.
MobileNetV2

Version
MACs

(millions)
Parameters
(millions)

MobileNetV1 569 4.24
MobileNetV2 300 3.4

MobileNetV1 and MobileNetV2 are typically paired
with a Single Shot Detector (SSD), which is used in the
regression task in object detection. It aids in locating
the part of the image that has the highest probability
of containing an object. This is achieved by combining
prediction across multiple feature maps and applying
convolution filters to detect objects. SSD is faster
and more accurate than previous state-of-the-art single
shot detectors, such as YOLO [39]. Previous work [10,
40], incorporates a mobile-friendly variant of SSD
with MobileNetV2, namely SSDLite, that replaces the
regular convolutions in SSD with depthwise separable
convolutions. MobilNetV2+SSDLite is 35% faster than
MobileNetV1 SSD in which the computational cost, in
terms of Multiply-Accumulate and size of the model
is significantly decreased, whilst achieving the same
accuracy [10].

2.2.2 Faster R-CNN Architecture

Ren et al. [41] present their Faster R-CNN model, an
extension to two existing algorithms [42, 43]. Faster R-
CNN utilises a region proposal based framework, based
on scanning the entire scenario and then focusing on
the region of interest. Faster R-CNN is composed of
two modules; a deep convolutional neural network that
proposes regions and a Fast R-CNN network that uses
the proposed regions to classify objects. .

Table 2 Size & Computational Cost of MobileNetV2 with
SSD and SSDLite for predicting 80 Classes [10]

Params MAdds
SSD 14.8M 1.25B
SSDLite 2.1M 0.35B



Edge Analytics on Resource Constrained Devices 5

1. Input image 2. Extract region
proposals ~ 2000 

warped region

CNN

aeroplane? no.

bicycle? yes.

car? no.
3. Compute CNN

features 4. Classify regions

R-CNN: Regions with CNN features

Figure 4 The R-CNN Model Architecture [42]

As presented by [41, 42], R-CNN adopts a selective
search method that extracts precisely 2000 candidate
region proposals from each image. This significantly
decreases the number of regions that need to be
classified. Each proposed region is warped into a
fixed resolution and fed into a CNN module that
outputs a 4096-dimensional feature vector as the final
representation. In this case, the CNN acts as a feature
extractor that provides a high-level, semantic feature
representation of each region proposal. These features
are fed into a Support Vector Machine (SVM) that
classifies the presence of the object in the 2000 region
proposals. The final stage involves predicting offset
values which are used to adjust the bounding boxes
that represent the identification of an object to increase
precision.

However, the generation of the 2000 regions proposal
with selective search is time-consuming at around 2
seconds and R-CNN cannot be utilised for detection in
real-time as it takes around 47 seconds per image [44]. As
a result, Girshick et al. [43] addresses limitations of R-
CNN by developing a faster object-detection algorithm
called Fast R-CNN.

RoI
projection

Deep 
ConvNet

RoI pooling
layer

Conv feature
map

Fully
Connected
layer (FCs)

FCs

RoI feature
vector

for each RoI

softmax
bbox

regressor

Outputs:

Figure 5 The Fast R-CNN Architecture [43]

Instead of extracting 2000 region proposals, the Fast
R-CNN network processes the entire image through
several convolutional and max-pooling layers to produce
a convolutional feature map. Region proposals are
identified and then warped into squares. For each object-
proposal, a region of interest (RoI) pooling layer extracts
a fixed-length feature vector from the feature map that
is fed into a sequence of fully connected layers. From the

Table 3 Performance Comparison Carried out by
TensorFlow [41]

Model Name S
p
e
e
d

(m
s)

C
O
C
O

m
A
P

MobileNetV1 + SSD 30 21
MobileNetV2 + SSD 31 22
MobileNetV2 + SSDLite 27 22
Faster R-CNN + InceptionV2 58 28

RoI feature vector, a softmax layer is used to predict
the class of the proposed region, as well as the offset
values to localise the object in the image [11, 43]. As a
result, training in Fast R-CNN is on average 8.75 hours,
compared to R-CNN’s 84 hours.

Using selective search to find region proposals in R-
CNN and Fast R-CNN is a particularly slow and time-
consuming process that affects the performance of the
network. As a result, Ren et al. [41] introduces Faster
R-CNN in which their goal was to create a model that
shared computation with a Fast R-CNN network, whilst
removing the use of selective search.

Similar to Fast R-CNN, Faster R-CNN processes the
entire image through several convolutional and max-
pooling layers to produce a convolutional feature map.
The feature matrix is then passed into the Region
Proposal Network (RPN) layer, which is a convolutional
network that simultaneously predicts object bounds
and an objectness score at each position. The RPN is
trained to generate high-quality region proposal and uses
‘attention’ mechanisms to inform the unified network
where to find these, which are subsequently used by Fast
R-CNN for detection. As a result, the region proposals
created from the RPN are fed into the RoI pooling
layer that extracts a fixed-length feature vector from the
feature map.

The final stage of Faster R-CNN’s architecture is an
R-CNN whose goal is to: (i) classify region proposals into
classes, and (ii) adjust the bounding boxes that surround
the identified object for precision. Faster R-CNN has
a test-time of 0.2 seconds on average, compared to R-
CNN’s 49 seconds for R-CNN and and 2.3 seconds for
Fast R-CNN [44].



6 Savitz et al.

Input Image

RPN RoIP

Conv layers Proposals

R-CNN

car? no.

bicycle? no.

phone? yes.

Figure 6 The Faster R-CNN Architecture [41]

2.2.3 Comparison of the Models

In this section we compare MobileNetV1, MobileNetV2
and Faster R-CNN – identifying the probability
of classifying a chosen object(s) correctly, as well
as the impact of each model on computational
resources. TensorFlow ‘Model Zoo’ [41] provides
a collection of neural network models that have
been pre-trained on an abundance of image
datasets. Selected neural network models are pre-
trained on the MS COCO dataset and paired with
regression models that allow for more precise object
localisation. These models include MobileNetV1+SSD,
MobileNetV2+SSD, MobileNetV2+SSDLite and Faster
R-CNN+InceptionV2. To compare these models,
TensorFlow [45] uses benchmark tests to find the speed
(latency) of each model whilst inferencing on 600x600
images, as well as the mAP (mean average precision),
which is a detector-specific measurement for MS COCO.
Their investigation found that MobileNetV2+SSDLite
was the fastest model and Faster R-CNN + InceptionV2
had the highest detection accuracy.

Sandler et al. [10] compare MobileNetV1 and
MobileNetV2 models that focused on accuracy, size,
computational cost and performance. They ran each
model on a Google Pixel1 phone and classified objects
using the ImageNet dataset. Their results found
that MobileNetV2 was more accurate, smaller in size
with fewer parameters, required fewer computational
resources and had a lower latency compared to
MobileNetV1, as presented in Table 4.

[10] compares MobileNetV1+SSDLite and
MobileNetV2+SSDLite models that have been pre-
trained on the COCO dataset. They found that the
MobileNetV2+SSDLite model achieves competitive
accuracy with significantly fewer parameters and
reduced computational complexity. Multiply-Add
operations are used in their work to measure the impact
of each model on a Google Pixel 1 phone. Hollemans [46]
has identified the performance of the MobileNetV1
and MobileNetV2 models by monitoring the number
of frames per second. They run each model on various
Apple devices, by running inferences on 224x224 pixel

images using a double-buffering approach, combining the
use of a CPU and a GPU. We instead focus on resource
demands of a RPi – a more realistic environment for
many IoT devices.

In [47], the performance of the Faster R-CNN model
using the InceptionV2 regression model is investigated.
The pairing of these two models leads to a reduction
is size of the Faster R-CNN model [11]. Running
Faster R-CNN+InceptionV2 on a laptop with Nvidia
GeForce GTX 1060 GPU resulted in a frame rate of 1.6
seconds. In comparison, MobileNetV1 and MobileNetV2
models achieved significantly higher performance with
an average of 161 and 199 frames per second, respectively
[46].

Based on this survey, we have found that although
Faster R-CNN is a more computationally complex
model than MobileNetV1 and MobileNetV2, its network
architecture provides higher accuracy in an object
detection task. Our approach uses a monitoring agent
to quantify resource requirements for model execution
on a RPi, for the classification of objects within a live
video feed. The processing power, small size and low-
cost of a RPi has made it desirable for use in an IoT
network. RPi4 has had a full-chip redesign in which
benchmark tests have shown a significant increase in
performance [48]. Ansari et al. [49] present a security
alarm system that monitors motion and sets off an alarm
if a person is detected. Subsequently, the camera module
that is connected to the RPi takes photos and video
which is sent to a cloud server. The Meter Maid Monitor
project [50] uses an RPi with a camera module that
forwards live traffic video into a convolutional neural
network, in order to detect whether a ticket warden is
present. In the event that there is more than 75% chance
of identifying a ticket warden, a text message is sent to
the user.

3 Systems Design

The design of our IoT system incorporates three
stages; Data Collection, Data Processing and Data
Presentation. The Data Collection stage uses sensors,

Table 4 Performance Comparison: MobileNetV1 vs. MobileNetV2 on the ImageNet Dataset [10]

Model Name Top 1 Accuracy (%) Parameters (Millions) MAdds (Billions) Speed (ms)
MobileNetV1 70.6 4.2 575 113
MobileNetV2 72 3.4 300 75



Edge Analytics on Resource Constrained Devices 7

Table 5 Performance Comparison: MobileNetV1+SSDLite Vs. MobileNetV2+SSDLite on the COCO Dataset [10]

Model Name Speed (ms) Parameters (Millions) MAdds (Billions) Speed (ms)
MobileNetV1 + SSDLite 22.2 5.1 1.3 270
MobileNetV2 + SSDLite 22.1 4.3 0.8 200

Table 6 The Maximum Frames Per Second (FPS) When
Using MobileNetV1 and MobileNetV2 Models’ On
Apple Devices [46]

Version iPhone 7 iPhone X iPad Pro 10.5
MobileNetV1 118 162 204
MobileNetV2 145 233 220

actuators and cameras as edge devices [51, 52]. Data
Processing is carried out by a central hub, also
realised using a Raspberry Pi 4 (RPi) device – which
subsequently acts as a gateway in our IoT system as
illustrated by Figure 7. A Python script was deployed on
the RPi for processing a real-time video feed using the
three models: MobileNetV1, MobileNetV2 and Faster
R-CNN. These models are pre-trained on the MS
COCO dataset for object detection. The Python script
automates the collection of probability scores for object
classification across the three models. Our work made
use of a camera module that connects to the RPi and
feeds live video into each of the selected models. A
GrovePi+ was also incorporated that fits on to the RPi
via the GPIO pins, to provide a connection between
the RPi and edge devices [53]. Finally, the data was
processed and presented in a user-friendly interface in
the Data Presentation stage, explored further in section
3.2.

3.1 IoT Cloud Platform

The available memory within an RPi is constrained
by the inserted microSD card. As a result, in our
IoT system the RPi processes data at the edge
which is then sent to the cloud. To provide seamless
connectivity in the data stack of our IoT network,
the original plan was to utilise Eclipse Kura on the
gateways and Eclipse Kapua as the cloud platform.
However, due to limited RPi4 documentation, we utilised
the open-source IoT cloud platform ’ThingsBoard’
(thingsboard.io) – which combines scalability, fault-
tolerance and performance, in addition to support for
data presentation in a user-friendly manner using custom
widgets. A lightweight communication protocol was
needed to provide data exchange between ThingsBoard
and the RPi. We used the Message Queuing Telemetry
Transport (MQTT) protocol as it is a lightweight
publish/ subscribe messaging transport protocol and is
useful for connections in remote locations where a small
code footprint is required or where network bandwidth
is at a premium. We are processing the images on
the edge (i.e., RPi) and only sending the extracted
information (meta data) in text format to the cloud (i.e.,
ThingsBoard).

Sensors, Actuators
and Camera

Modules ThingsBoard.io

GrovePi+ MQTT Protocol

Figure 7 Overall IoT System Architecture

We used MobileNetV1, MobileNetV2 and Faster R-
CNN in this work. These models are typically paired
with regression models that aid the precise localisation
of objects. We have used variants of the aforementioned
neural network models, namely MobileNetV1+SSD,
MobileNetV2+SSD, MobileNetV2+SSDLite and Faster
R-CNN+InceptionV2, that permits this research to be
aligned with other literature. The pairing of Faster R-
CNN and InceptionV2 was incorporated as this was the
variant of the Faster R-CNN model that was smallest in
size. Selecting models that have been pre-trained on the
MS COCO dataset was attractive as MS COCO presents
images with more contextual information than other
influential datasets and contains more labelled object
instances per image than ImageNet or PASCALVOC. In
section 3.1.1, the objects that we have chosen to classify
in our investigation are discussed.

3.1.1 Objects Chosen

We developed a Python script to identify bicycles,
road vehicles, e.g. cars, trucks, and buses, and mobile
phones for the purposes of this investigation. This section
discusses the potential use cases and motivations for our
choices.
Bicycle detection: The detection of bicycles is
paramount to collision avoidance systems within vehicles
on the road. Volvo developed a cyclist detection system
[54] that incorporates a grille-mounted radar system
and a high-resolution camera to monitor the location of
cyclists around the car. The radar detects the objects
and tracks the vehicle’s distance to them whilst the
camera determines the type, size and height of the
object. In the event that collision risk is imminent, the
system sounds an audible alarm, causing the breaks to
be automatically applied.
Vehicle detection: The detection of vehicles on the
road, such as cars, trucks, and buses can also be
used to analyse traffic patterns [20, 18]. Sravani et
al. use their traffic monitoring data to investigate and
analyse queue-lengths, traffic-flows at junctions, speed
distribution data, as well as space and time occupancy
rates on the road [20]. In turn, this data can be used



8 Savitz et al.

by structural engineers during the creation of new roads
or to determine where to place speed restrictions and
traffic lights on the road. Distinguishing between road
vehicles also has its use in restricted areas such as bus
lanes. For the purpose of detecting road vehicles, our
work investigated the probability score of each model
classifying large toy cars, trucks and buses, as shown in
Figure 8.
Mobile phone detection: Mobile phones can be used
to take pictures or video. The detection of mobile
phones has its use in a vicinity where security is of
utmost importance and is therefore not allowed. In the
event that a phone is detected, then an alarm will ring
informing staff where the phone is located. Another use
of a mobile phone detector is in the workplace that
reminds members of staff that they have left their phone
behind when they leave the office.

Figure 8 Bicycle, Mobile Phone and Road Vehicles Used
in this Study

3.2 Comparative Analysis of Models

To measure the performance of each model, we used
number of frames per second (FPS) as a metric –
an approach that has been utilised in [46, 47]. We
partially adopted the measurements used in [55], by
considering RAM usage, CPU load and CPU usage. We
also continuously observed the CPU core temperature
of the RPi when running each model to ensure that
the temperature did not increase to over 85oC. Such
high temperature would lead to a significant decrease in
performance in what is termed as throttling [56]. This
would have therefore led to unreliable results and an
invalid outcome. The resulting comparative analysis is
presented in Figures 12, 13, 14, 16 and 17.

3.3 Deployment Scenarios

The placement of IoT sensors also has an influence on
the analysis outcome. We placed the camera and light
sensor of the IoT system 80cm away from the chosen

Object
Distance: 80 cm

Height: 5 cm

Light Sensor

Pi Camera V2

Raspberry Pi 4

Figure 9 Camera and Light Sensor Placed 80cm Away
From the Object and on the Ground

object(s), as illustrated in Figure 9. We also investigated
placing the camera at a height of 2.5 metres at a range of
distances away from the chosen object(s) during testing.
This is important in practice when having to determine
whether to place edge devices at ground level or at
a height, e.g. at the end of a long pole, for optimal
object detection. These placement scenarios provide an
important insight into best practices for the deployment
of edge devices in an IoT network, especially where these
edge devices include video cameras.

Object

Light Sensor

Pi Camera V2

Raspberry Pi 4

Height: 2.5m 

Distance: 1m

Figure 10 Camera and Light Sensor Placed at a Height
of 2.5 metres

A light sensor was also used to assess the quantity
of light and its impact on object classification accuracy.
Low lighting would otherwise lead to a reduced
probability score as a result, as only 2% of the MS
COCO dataset contains images captured in a low-light
environment. The importance of white (vs. yellow) light
for improving accuracy of face recognition has also been
highlighted by [57].

4 Implementation

We used the following hardware throughout this project;
a Raspberry Pi4 running the Raspbian operating system,
a GrovePi+, a Pi Camera V2 module and a light
sensor. Python version 3.6 was used for the numerous
libraries required for deep learning and computer vision
functionality. In particular, the TensorFlow library
was vital, which is an open-source machine learning
framework to develop and train models, while the
OpenCV library was used for image recognition and
identification.



Edge Analytics on Resource Constrained Devices 9

Table 7 Metrics Used for Comparative Analysis

Metric Description
Probability Score Measures the probability and confidence that chosen object(s) have been detected (Array of 10 Floating

Points between 0 and 1).
Performance (FPS) Measures the number of image frames per second sent to the neural network model for processing (Frames

per Second (FPS)).
RAM Usage Measures the amount of memory currently used when running each neural network model.
CPU Load Measures the number of processes which are executed or waiting to be executed by the CPU.
CPU Usage (%) Measures CPU utilisation. This is the amount of time required to process instructions while each neural

network model is used.
CPU Temperature (oC) Measures increase in CPU temperature, caused by running each neural network model.

Table 8 Commands Used in the Resource Monitoring
Agent

Resource Measurement Command
RAM Usage free-m
CPU Load uptime
CPU Usage mpstat
Temperature vcgencmd measure temp

The Python script utilises a category index that maps
integers that are directly associated with objects from
the MS COCO dataset to the name of that object.
For example if the neural network predicts that the
object detected is ‘2’, this will therefore correspond
to a ‘bicycle’. The first feature that we developed
incorporates these integers as an input to the system and
provides functionality only to detect those object(s) that
may be required for a particular purpose. This permits
the code to be dynamic in nature. This can be expanded
to any of the 91 objects presented in the MS COCO
dataset.

A 2-dimensional 10x10 matrix is used to store the
integers that relate to the objects that have been
detected. A 2-dimensional 10x10 matrix is also used to
store the probability score of each object that has have
been detected. During detection, the object’s integer
value with the highest probability score automatically
shifts to the first element of the first row of the
matrix. This is therefore presented as ‘classes[0][0]’ and
‘scores[0][0]’. We also output the exact location of the
detected object using a multidimensional array, as well
as the current number of detected objects.

In order to identify the demand imposed by
each of the selected neural network models, a
resource monitoring agent was developed that collects
measurements from the computational resources of
the RPi4 while objects are detected. This data is,
subsequently, stored in a dictionary for easy extraction
with the use of keys.

The value from the light sensor is also monitored,
which connects to the Raspberry Pi via the GrovePi+.
This aids in ensuring that the amount of light present
stays consistent throughout our investigations. The final
stage of the IoT stack involves sending the data that has
been processed and collected on the RPi to the cloud
platform, ThingsBoard.

All the information collected is stored in a dictionary
and includes the following: the current frames per

Object Used
for Detection

White Light
Lamp

Pi Camera V2

Raspberry Pi 4

Light Sensor

Figure 11 Placement of Objects, Edge Devices and the
Raspberry Pi 4 in the Comparative Analysis
Investigation

second, the probability score of classifying the chosen
object(s), the value from the light sensor, the RAM used,
the CPU load, the CPU used and the CPU temperature.
The dictionary is then converted into a JSON object
which is the format requirement of ThingsBoard. JSON
is one of the formats accepted by the Thingsboard.

5 Evaluation

The following models that have been pre-
trained on the MS COCO dataset were used:
MobileNetV1+SSD (MV1SSD), MobileNetV2+SSD
(MV2SSD), MobileNetV2+SSDLite (MV2SSDLite) and
Faster R-CNN+InceptionV2. This section discusses the
results of the tests that were carried out to evaluate the
performance and accuracy of the models

Through a series of evaluations, the probability scores
that chosen object(s) are classified by the selected neural
network models were compared. This investigation
also includes numerous tests that compare the impact
that each selected neural network model has on the
computational resources of a RPi4. We use all objects
that have been discussed previously: bicycles, road
vehicles, e.g. cars, trucks and buses, and mobile phones.
In this test, we placed the camera and light sensor of the
IoT network at ground level, at exactly 80cm away from
the object(s) chosen for detection, as presented in Figure
11.

To ensure that our tests were repeatable and reliable,
we ran the Python script that feeds real-time video into
each neural network model for precisely 5 minutes. The
results were then averaged every 30 seconds, producing
10 data points. A tape measure was used to measure
the exact 80cm distance between the camera and the



10 Savitz et al.

chosen object(s) during detection. We ensured that
the temperature of the RPi4 did not exceed 85oC
– as this would lead to throttling and a subsequent
decrease in performance. We maximised the amount of
light present, thereby ensuring that light was not a
limiting factor in each model’s probability scores for
classifying objects. As previously explained, we used
white light throughout by using a lamp pointing to each
object, as well as the dimmer lights in the room which
maximised the light present. By ensuring that there were
no other tasks running on the RPi, the computational
resource measurements collected reflected the execution
of the neural network model. For comparison, resource
measurements of the RPi at rest are also included in the
results.

5.1 Object Classification Scores

As illustrated in Figure 12 results show that MV1SSD
consistently had the lowest probability score for
classifying all three objects compared to the other
three models. We found that this model’s accuracy
was between 0.75 and 0.84, and its mode was 0.82. In
addition, when using the MV1SSD model for detection,
we observed its highest mean probability score was
for road vehicles and bicycles tests with 0.82, while
the value for mobile phone detected averaged at 0.76.
For the MV2SSD model, the probability score ranged
between 0.80 and 0.90 for classifying all three objects,
with 0.86 the most frequent outcome. The highest mean
probability score while utilising the MV2SSD model was
generated in the road vehicles test with 0.88, compared
to 0.86 in the bicycle test and 0.82 in the mobile phone
test. The MV2SSDLite model (for all three objects)
resulted in a probability score ranging between 0.80
and 0.91 and a mode of 0.86. While incorporating
the MV2SSDLite model, the highest mean probability
score was recorded during the classification of road
vehicles with 0.90 compared to 0.87 whilst classifying
bicycles and 0.84 for classifying mobile phones. In
comparison to the other three models, the Faster R-
CNN+InceptionV2 model classified the three objects
with the highest probability score, with a range between
0.91 and 1, and 0.99 the most common result. In this
investigation, the highest mean probability score while

using the Faster R-CNN+InceptionV2 model was for the
mobile phone test with 0.99, compared to 0.97 for the
road vehicles test and 0.95 for the bicycle test. As a
result, Faster R-CNN+InceptionV2 achieved an average
mean probability score while classifying all three objects
that were 21% higher than MV1SSD, 14% higher than
MV2SSD and 11% higher than MV2SSDLite. Overall,
we have found that the highest mean probability score
across all models was achieved during the classification of
road vehicles with 0.89, compared to the classification of
bicycles with 0.88 and the classification of mobile phones
with 0.85.

5.2 Comparing the Performance of Each Model

As shown in Figure 13, the MV2SSDLite model had the
best performance across all three investigations, with a
mean number of frames per second (FPS) of 1.51, that
equates to 0.66 seconds per frame, and a mode of 1.52
across all tests. In comparison, we observed that utilising
the MV1SSD model resulted in an average FPS of 1.46
(0.68 seconds per frame) and a most frequent outcome of
1.44 FPS. The MV2SSD model had a mean FPS of 1.21
(0.83 seconds per frame), with 1.17 FPS being the most
common result. Undeniably, the worst performing model
throughout this investigation was achieved by Faster R-
CNN+InceptionV2, with a mean FPS of just 0.17. The
consequence of this is that MV2SSDLite attained an
788% increase in FPS over Faster R-CNN+InceptionV2,
a 3% increase in FPS over MV1SSD and a 25% increase
in FPS over MV2SSD.

5.3 Comparing RAM Used

As shown in Figure 14, the results of this investigation
found that utilising the MV2SSD model to classify
our chosen object(s) consistently used the most
computational resources in relation to the RAM used,
with a mean of 670.97MB across the entire investigation.
In addition, the Faster R-CNN+InceptionV2 model
also used RAM with an average of 645.99MB, while
the MV1SSD model resulted in an average RAM
usage of 486.79MB. In this study, the least amount of
computational resources used in connection to RAM was
the MV2SSDLite model, with an average of 456.29MB.

MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

Time (Seconds)Time (Seconds)

Figure 12 Probability Scores of each Model Classifying Bicycles, Road Vehicles and Mobile Phones



Edge Analytics on Resource Constrained Devices 11

MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

Time (Seconds)
MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

Time (Seconds)
MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

Time (Seconds)

Figure 13 Performance of each Model During the Classification of Bicycles, Road Vehicles and Mobile Phones

As a result, MV2SSD utilised 47% more RAM than
MV2SSDLite model, 38% more than MV1SSD model
and 4% more than Faster R-CNN+InceptionV2 model.

5.4 Comparing CPU Load

As shown in Figure 15, our results show that the
MV1SSD used the least computational resources in
relation to the CPU load, with a calculated mean of
1.42 processes during the classification of the three
objects. Furthermore, the lowest CPU load across all
three investigations was achieved with the MV1SSD
model with 2.05 processes compared to the larger
values of 2.2 processes, 2.8 processes and 3.72 processes
collected from the MV2SDDLite, MV2SSD and Faster
R-CNN+InceptionV2 models, respectively. A CPU mean
load of 1.48 processes was generated while utilising the
MV2SSDLite model, whilst an average of 1.62 processes
was recorded with the MV2SSD model and a mean
of 2.54 processes was observed while using the Faster
R-CNN+InceptionV2 model. Therefore, the Faster R-
CNN+InceptionV2 model consumed the most CPU
resources. As a result of this investigation, we have found
that the MV1SSD model imposed a demand on the CPU
load that was 4% less than the MV2SSDLite model, 12%
less than the MV2SSD model and 44% less than the
Faster R-CNN+InceptionV2 model.

5.5 Comparing the CPU Used by each Model

In this study, as shown in Figure 16, we found that
the MV2SSDLite model utilised the least number of
computational resources compared to the other three
models, with an average of 15.64% for the entire
investigation. In comparison, higher averages were
observed with the other models in which a mean of
15.67%, 15.92% and 19.35% were recorded for the
MV1SSD, MV2SSD and Faster R-CNN+InceptionV2
models, respectively. In addition, we observe that the
MV2SSDLite model has a CPU demand of 0.2%
less than the MV1SSD model, 2% less than the
MV2SSD model and 19% less than the Faster R-
CNN+InceptionV2 model. On the other hand, the Faster
R-CNN+InceptionV2 model has the greatest CPU
usage. This results in the Faster R-CNN+InceptionV2
model using 24% more of CPU than MV2SSDLite,
23% more CPU than MV1SSD and 21% more CPU
than MV2SSD. The highest CPU usage achieved within
the MV2SSDLite model was 16.5% compared to 17.5%
from the MV1SSD model, 18.07% from the MV2SSD
model and 22.76% from the Faster R-CNN+InceptionV2
model.

5.6 IoT Deployment & Placement

This test investigates where to place edge devices in
an IoT system for optimal object detection. This test
provides an insight into the best practices for the

MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

RAM Used at Rest

Time (Seconds)
MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

RAM Used at Rest

Time (Seconds)
MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

RAM Used at Rest

Time (Seconds)

Figure 14 RAM Usage of RPi During the Classification of Bicycles, Road Vehicles and Mobile Phones



12 Savitz et al.

MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

CPU Load at Rest

Time (Seconds)
MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

CPU Load at Rest

Time (Seconds)
MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

CPU Load at Rest

Time (Seconds)

Figure 15 CPU Load of RPi During the Classification of Bicycles, Road Vehicles and Mobile Phones

MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

CPU Usage at Rest

Time (Seconds)
MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

CPU Usage at Rest

Time (Seconds) MobileNetV1+SSD
MobileNetV2+SSDLite

MobileNetV2+SSD
Faster R-CNN+InceptionV2

CPU Usage at Rest

Time (Seconds)

Figure 16 CPU Usage of RPi During the Classification of Bicycles, Road Vehicles and Mobile Phones

deployment of cameras and sensors in an IoT network.
We initially deployed our Python script on the RPi
to automate the collection of probability scores when
the chosen object(s) are classified by each model. We
use these probability scores to investigate where to
deploy cameras in an IoT network by identifying whether
placing cameras at a height leads to an increased
classification probability score. The Pi camera used to
feed live video into each model only has a resolution of 8
megapixels. Therefore, we found that the neural network
models were having difficulty with smaller objects, such
as the mobile phone and toy vehicles, when observed
from a distance. As a result, we have only used a bicycle
for classification in this test.

We primarily placed the camera at ground level at an
incrementally increasing distance of 1metre, 1.5metres
and 2metres from the bicycle. We then placed the camera
at the height of 2.5metres at the same distances away
from the bicycle, for comparison. For repeatability, the
script that submitted real-time video to each neural
network model was executed for 3minutes in each
experiment. We then found the mean probability score
of each model classifying the bicycle at each distance.
The amount of light available was maximised using a
white light lamp that ensured that light was not a
limiting factor in this investigation. A tape measure is
used to ensure that we were placing the camera at exact
distances away from the bicycle.

From the results, we can observe a similar trend, i.e.
placing the camera at a distance of 1.5metres away from

Table 9 Mean Probability Scores of Each Model
Classifying Bicycles When the Camera is Placed at
Ground Level

Network Model 1m 1.5m 2m

MobileNetV1+SSD 0.79 0.86 0.59
MobileNetV2+SSD 0.83 0.88 0.64
MobileNetV2+SSDLite 0.89 0.95 0.68
Faster R-CNN+InceptionV2 0.91 0.96 0.71

Table 10 Mean Probability Scores of Each Model
Classifying Bicycles When the Camera is Placed at
2.5metres

Network Model 1m 1.5m 2m

MobileNetV1+SSD 0.90 0.96 0.79
MobileNetV2+SSD 0.95 0.98 0.85
MobileNetV2+SSDLite 0.98 0.98 0.88
Faster R-CNN+InceptionV2 0.93 0.98 0.89



Edge Analytics on Resource Constrained Devices 13

Object Used
for Detection

White Light
Lamp

Pi Camera V2

Raspberry Pi 4 Light Sensor

Figure 17 Edge Devices Placed at a Height of 2.5metres
in the Deployment Investigation

the bicycle led to the highest probability score with a
calculated mean of 0.91 on the ground, compared to 0.98
at a height of 2.5metres. On the contrary, placing the
camera at a distance of 2metres away from the bicycle
resulted in the worst probability scores with a generated
average of 0.66 on the ground and 0.85 at a height of
2.5metres. Placing the camera at a height of 2.5metres
consistently resulted in a higher probability score of
classifying bicycles than at ground level, at all distances.
The overall average of the probability score of classifying
the bicycle with the camera at ground level was 0.81,
compared to 0.92, with the camera placed at a height
of 2.5metres. We also found that the largest increase in
probability score between placing the camera at height
compared to the ground was at a distance of 2.5metres
away from the bicycle at 29%.

6 Discussion and Lessons Learnt

Based on comparative analysis, we find that the
Faster R-CNN+InceptionV2 model attains the highest
probability score for classifying chosen object(s) in
comparison to the other three models. This is achieved
by the model’s deep neural network architecture that
incorporates a region proposal network (RPN) and
a Fast R-CNN. This results in higher accuracy in
predicting and classifying objects. The MobileNetV2
+ SSD (MV2SSD) and MobileNetV2 + SSDLite
(MV2SSDLite) models have a higher probability score
for classifying chosen object(s) than the MobileNetV1
+ SSD (MV1SSD) model. This improvement results
from MobileNetV2’s architecture that involves linear
bottlenecks between layers and shortcut connections.
Our results closely align with those of [11], which
found that the Faster R-CNN+InceptionV2 model’s
COCO mAP (mean average precision) measurement
was 28, compared to MV1SSD’s 21, MV2SSD’s 22 and
MV2SSDLite’s 22. Overall, this investigation was very
successful as all models were able to classify the chosen
object(s) to a high probability score, with 0.75 the lowest
score recorded whilst using the MV1SSD model.

In the performance investigation, the computational
complexity of using the RPN and Fast R-CNN in
the Faster R-CNN+InceptionV2 model’s architecture

resulted in an extremely poor performance during the
classification of the three objects. Previous work in
[47] that used Faster R-CNN+InceptionV2 recorded the
number of frames per second (FPS) as 0.67, compared to
our research that averaged just 0.17FPS. However, [47]
uses a laptop GPU while running their tests, compared
to our investigation that uses a Raspberry Pi4 with
a Broadcom VideoCore VI. In addition, we observed
that even the use of the mobile-friendly models led
to a maximum of 1.56FPS during the classification of
mobile phones whilst using the MV2SSDLite model. In
comparison, the investigation in [46] has found that
the number of FPS reached up to 204FPS with the
MobileNetV1 model and 220FPS with the MobileNetV2
model. To reach these high measurements, however,
their study incorporated a double-buffered approach and
GPU acceleration to improve performance. Therefore,
the current trend in industry is to deploy these models on
servers with large GPUs to improve their performances
on the RPi.

It was observed that the demand imposed on the CPU
load and CPU usage by the Faster R-CNN+InceptionV2
model’s deep neural network architecture was much
higher than the mobile-friendly models. Interestingly,
however, MV2SSD used the most computational
resources in relation to the RAM in the investigation.
This is contrary to the study in [10], that found that
MobileNetV2 used significantly less Multiply-Adds than
MobileNetV1. MV2SSDLite consistently used the least
computational resources in relation to all measurements.
This is caused by MobileNetV2 pairing with the
mobile-friendly variant of SSD, namely SSDLite, that
replaces the regular convolutions in SSD with depthwise
separable convolutions. The large difference between the
computational cost of MV2SSD and MV2SSDLite that
we have observed is consistent with [10] that found
that the number of Multiply-Adds in MV2SSDLite was
significantly less than MV2SSD. In the IoT deployment
investigation, we found that placing the camera at
a height of 2.5metres consistently resulted in higher
probability scores for classifying a bicycle than placing
the camera on the ground. Placing the camera at height
leads to the camera having a wider view of the object.
This results in a higher probability score of classifying
the correct object as more features of the object can be
considered.

• The Faster R-CNN+InceptionV2 model achieves
the highest accuracy and probability score when
classifying objects.

• The MV2SSDLite model achieves the highest
accuracy and probability score in comparison to
other mobile-friendly models.

• Overall, the Faster R-CNN+InceptionV2 model
has the highest demand on the computational
resources of the RPi, in particular CPU load and
CPU usage.



14 Savitz et al.

• The MV2SSDLite model has the smallest
computational cost.

• Placing the camera at a height of 2.5metres led
to higher object classification probability scores,
compared to placing the camera at ground level.

7 Conclusion

This work investigates analysis of video streams that
have been generated from IoT cameras that are placed
at the edge of the network. A key focus is to benchmark
leading machine learning/inferencing algorithms that
can be executed in proximity to these cameras on
Raspberry Pi devices. This is realised by feeding live
video through variants of a selection of well-known
neural network models that have been pre-trained on the
MS COCO image dataset – utilising MobileNetV1+SSD,
MobileNetV2+SSD, MobileNetV2+SSDLite and Faster
R-CNN+InceptionV2.

We conclude that the MobileNetV2+SSDLite is the
best model to use for object detection tasks on the RPi.
This model has the highest accuracy and probability
score for classifying objects compared to other mobile-
friendly models. It also achieved the best performance
of 1.51FPS, whilst using the least amount of RAM
and CPU of the RPi in comparison to all the models
considered.

Our approach for IoT deployment provides a basis
for calibrating camera location and its distance from
the object of interest. Placing the camera at a height of
2.5metres consistently led to a higher probability score
for all models for classifying a bicycle – an increased
accuracy of 14% compared to placing the camera at
ground level.

Acknowledgement

This work is also partly supported by EPSRC Capital
Equipment award for ECR and PETRAS 2 (privacy,
ethics, trust, reliability, acceptability, and security) IoT
Centre of National Excellence (EP/S035362/1).

References

[1] Shu Chen, Nanxi Chen, Jiayi Tang, and Xu Wang.
Cognitive fog for health: A distributed solution for
smart city. International Journal of Computational
Science and Engineering, 22(1):30–38, 2020.

[2] C. Perera, Y. Qin, J.C. Estrella, S. Reiff-Marganiec,
and A.V. Vasilakos. Fog computing for sustainable
smart cities: A survey. ACM Computing Surveys,
50(3), 2017.

[3] Charith Perera, Arkady Zaslavsky, Peter Christen,
and Dimitrios Georgakopoulos. Context Aware

Computing for The Internet of Things: A
Survey. Communications Surveys Tutorials, IEEE,
16(1):414 – 454, 2014.

[4] Ce Li, Tan He, Yingheng Wang, Liguo Zhang,
Ruili Liu, and Jing Zheng. Pipeline image haze
removal system using dark channel prior on cloud
processing platform. In International Journal of
Computational Science and Engineering, volume 22,
pages 84–95. Inderscience Publishers, 2020.

[5] Mohammed Amine Benmahdjoub, Abdelkader
Mezouar, Larbi Boumediene, and Youcef Saidi.
Smart embarked electrical network based on
embedded system and monitoring camera.
International Journal of Computational Science
and Engineering, 22(1):15–29, 2020.

[6] Mahmood Hosseini, Constantinos Marios
Angelopoulos, Wei Koong Chai, and Stephane
Kundig. Crowdcloud: a crowdsourced system for
cloud infrastructure. Cluster Computing, 2019.

[7] Charith Perera, Prem Prakash Jayaraman, Arkady
Zaslavsky, Dimitrios Georgakopoulos, and Peter
Christen. MOSDEN: An internet of things
middleware for resource constrained mobile devices.
In Proceedings of the Annual Hawaii International
Conference on System Sciences, pages 1053–1062.
IEEE, jan 2014.

[8] Jerry Gao, Jing Zhao, Xiaojun Yin, Sean Chen,
and Jesse Huang. Crowd-Based Mobile Sensor
Cloud Services - Issues, Challenges and Needs.
In Proceedings - 2017 International Conference
on Computational Science and Computational
Intelligence, CSCI 2017, 2018.

[9] Hartwig Adam Andrew G. Howard, Menglong Zhu,
Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto. MobileNets:
Efficient Convolutional Neural Networks for Mobile
Vision Applications. In Computer Vision and
Pattern Recognition, 2009.

[10] Mark Sandler, Andrew Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang Chieh Chen.
MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition, 2018.

[11] Gopikrishna Yadam. Object Detection using
TensorFlow and COCO Pre-Trained Models —
by Gopikrishna Yadam — Object Detection using
TensorFlow and COCO Pre-Trained Models, 2018.

[12] Keyur K Patel, Sunil M Patel, and P G Scholar.
Internet of Things-IOT: Definition, Characteristics,
Architecture, Enabling Technologies, Application
& Future Challenges. International Journal of
Engineering Science and Computing, 2016.



Edge Analytics on Resource Constrained Devices 15

[13] Mohamed Abomhara and Geir M. Køien. Cyber
security and the internet of things: Vulnerabilities,
threats, intruders and attacks. Journal of Cyber
Security and Mobility, 2015.

[14] Jamilson Dantas, Eltton Araujo, Paulo Maciel,
Rubens Matos, and Jean Teixeira. Estimating
capacity-oriented availability in cloud systems.
International Journal of Computational Science
and Engineering, 22(4):466–476, 2020.

[15] Charith Perera, Chi Harold Liu, and Srimal
Jayawardena. The Emerging Internet of Things
Marketplace from an Industrial Perspective: A
Survey. IEEE Transactions on Emerging Topics in
Computing, 3(4):585–598, 2015.

[16] Fei Gu, Zhihua Xia, Jianwei Fei, Chengsheng Yuan,
and Qiang Zhang. Face spoof detection using
feature map superposition and CNN. International
Journal of Computational Science and Engineering,
22(2-3):355–363, 2020.

[17] Zhong Qiu Zhao, Peng Zheng, Shou Tao Xu, and
Xindong Wu. Object Detection with Deep Learning:
A Review, 2019.

[18] Priya Dwivedi. Latest Computer Vision Trends
fomr CVPR 2019, 2019.

[19] Alexander Toshev and Christian Szegedy.
DeepPose: Human pose estimation via deep neural
networks. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition, 2014.

[20] Ch Sravani, A.Janar Dhana, M.Vara Lakshmi, and
Y Kyathi. Gmm Based Vehicle Traffic Analysis On
Roads. International Journal of Engineering Trends
and Technology, 2017.

[21] Neha Patil, Shrikant Ambatkar, and Sandeep
Kakde. IoT based smart surveillance security
system using raspberry Pi. In Proceedings
of the 2017 IEEE International Conference on
Communication and Signal Processing, ICCSP
2017, 2018.

[22] Nuria Oliver, Barbara Rosario, and Alex Pentland.
A Bayesian computer vision system for modeling
human interactions. In Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 1999.

[23] Kotaro Hara, Jin Sun, Robert Moore, David Jacobs,
and Jon E. Froehlich. Tohme: Detecting curb
ramps in Google Street View using crowdsourcing,
computer vision, and machine learning. In
UIST 2014 - Proceedings of the 27th Annual
ACM Symposium on User Interface Software and
Technology, 2014.

[24] Peter Fairley. Self-driving cars have a bicycle
problem [News]. IEEE Spectrum, 2017.

[25] Erik Learned-Miller, Gary B. Huang, Aruni
RoyChowdhury, Haoxiang Li, and Gang Hua.
Labeled faces in the wild: A survey. In Advances in
Face Detection and Facial Image Analysis. 2016.

[26] Piotr Dollár, Christian Wojek, Bernt Schiele,
and Pietro Perona. Pedestrian detection: A
benchmark. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2009,
2009.

[27] Mark Everingham, Luc Van Gool, Christopher K.I.
Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (VOC) challenge.
International Journal of Computer Vision, 2010.

[28] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. 2009.

[29] Tsung Yi Lin, Michael Maire, Serge Belongie,
James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO:
Common objects in context. In Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2014.

[30] Ankit Chourasiya and Neha Khare. A
Comprehensive Review Of Image Enhancement
Techniques. International Journal of Innovative
Research and Growth, 2019.

[31] J Sanchez-Yanez, Jonathan Cepeda-Negrete, and
Raul E Sanchez-Yanez. Experiments on image
enhancement for night-vision and surveillance.
Technical report, 2015.

[32] Yuen Peng Loh and Chee Seng Chan. Getting
to know low-light images with the Exclusively
Dark dataset. Computer Vision and Image
Understanding, 2019.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, 2016.

[34] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, 2015.



16 Savitz et al.

[35] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image
recognition. In 3rd International Conference on
Learning Representations, ICLR 2015 - Conference
Track Proceedings, 2015.

[36] Soravit Changpinyo, Mark Sandler, and Andrey
Zhmoginov. The Power of Sparsity in Convolutional
Neural Networks. feb 2017.

[37] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and
Jian Sun. ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices.
In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, 2018.

[38] Barret Zoph and Quoc V. Le. Neural
architecture search with reinforcement learning.
In 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track
Proceedings, 2017.

[39] Wei Liu, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott Reed, Cheng Yang Fu,
and Alexander C. Berg. SSD: Single shot multibox
detector. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
2016.

[40] Hongxiang Fan, Shuanglong Liu, Martin Ferianc,
Ho Cheung Ng, Zhiqiang Que, Shen Liu, Xinyu Niu,
and Wayne Luk. A Real-Time Object Detection
Accelerator with Compressed SSDLite on FPGA.
In Proceedings - 2018 International Conference on
Field-Programmable Technology, FPT 2018, 2018.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 39(6):1137–1149, 2017.

[42] Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation.
In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, 2014.

[43] Ross Girshick. Fast R-CNN. In Proceedings of
the IEEE International Conference on Computer
Vision, 2015.

[44] R-CNN, Fast R-CNN, Faster R-CNN, YOLO —
Object Detection Algorithms — by Rohith Gandhi
— Towards Data Science, 2018.

[45] Tensorflow.org. Performance measurement —
TensorFlow Lite, 2020.

[46] Matthijs Hollemans. MobileNet version 2, 2018.

[47] Madhawa Vidanapathirana. Real-time Human
Detection in Computer Vision — Part 2 — by
Madhawa Vidanapathirana — Medium, 2018.

[48] Rob Zwetsloot. Raspberry Pi 4 specs and
benchmarks. Technical report, Raspberrypi.org,
2019.

[49] Aamir Nizam Ansari, Mohamed Sedky, Neelam
Sharma, and Anurag Tyagi. An Internet of things
approach for motion detection using Raspberry Pi.
In Proceedings of 2015 International Conference on
Intelligent Computing and Internet of Things, ICIT
2015, 2015.

[50] Matt Richardson. Meter Maid Monitor: parking
protection with Pi - Raspberry Pi, 2016.

[51] Guto Leoni Santos, Demis Gomes, Judith
Kelner, Djamel Sadok, Francisco Airton Silva,
Patricia Takako Endo, and Theo Lynn. The internet
of things for healthcare: Optimising e-health system
availability in the fog and cloud. In International
Journal of Computational Science and Engineering,
volume 21, pages 615–628. Inderscience Publishers,
2020.

[52] B. Alturki, S. Reiff-Marganiec, and C. Perera. A
hybrid approach for data analytics for Internet
of Things. In ACM International Conference
Proceeding Series, volume Part F1327, 2017.

[53] Badraddin Alturki, Stephan Reiff-Marganiec,
Charith Perera, and Suparna De. Exploring the
Effectiveness of Service Decomposition in Fog
Computing Architecture for the Internet of Things.
IEEE Transactions on Sustainable Computing,
2019.

[54] Jay Ramey. How does pedestrian and cyclist
detection work? Autoweek explains, 2017.

[55] Adisorn Lertsinsrubtavee, Anwaar Ali, Carlos
Molina-Jimenez, Arjuna Sathiaseelan, and Jon
Crowcroft. Picasso: A lightweight edge computing
platform. In Proceedings of the 2017 IEEE 6th
International Conference on Cloud Networking,
CloudNet 2017, 2017.

[56] Shahriar Shovon. Raspberry Pi Temperature
Monitor, 2018.

[57] Peter Raynham and Torunn Saksvikrønning. White
light and facial recognition. Lighting Journal
(Rugby, England), 2003.


