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Big data production in industrial Internet of Things (IloT) is evident due to the massive deployment
of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due
to limited computational, networking and storage resources at IoT device-end. Big data analytics
(BDA) is expected to provide operational- and customer-level intelligence in IloT systems. Although
numerous studies on IloT and BDA exist, only a few studies have explored the convergence of the
two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques
that can lead to the development of intelligent IloT systems. We devise a taxonomy by classifying
and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools,
analytics techniques, requirements, industrial analytics applications and analytics types). We present
the frameworks and case studies of the various enterprises that have benefited from BDA. We also
enumerate the considerable opportunities introduced by BDA in IloT. We identify and discuss the
indispensable challenges that remain to be addressed, serving as future research directions.
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1. Introduction flexibility, precision and efficiency to manufacturing processes [9,
10]. Given this cross-platform integration, IloT systems need to
ensure interoperability, virtualisation, decentralisation, real-time
capability, service orientation, modularity and security across all
verticals [11]. However, these systems are perceived to have
qualities, such as self-awareness, self-prediction, self-comparison,

self-configuration, self-maintenance and self-organisation [12].

Industrial Internet of Things (IloT) (also known as Industry
4.0), which was initially conceived as a vision by the German
government, is currently attributed as the fourth industrial rev-
olution. The technology ecosystem underpinning IloT is mainly
the integration of cyber-physical systems (CPS) [1], Internet of

Things (IoT), cloud computing [2-4], automation (e.g. intelligent
robots in product assembly lines) [5], Internet of services [6],
wireless technologies, augmented reality [7] and concentric com-
puting [8], amongst others. Advances in such related areas as
[oT, big data analytics (BDA), cloud computing and CPS have
fuelled the formation of IloT activities to deliver unprecedented
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BDA is a related area that enables IIoT systems to deliver value
for data captured from cross-platform integration. BDA refers to
the process of collecting, managing, processing, analysing and
visualising continuously evolving data in terms of volume, ve-
locity, value, variety and veracity [13]. Big data in IloT systems
arise due to unbounded internal and external activities relevant
to customers, business operations, production and machines [14].
BDA processes in IloT systems manage the collected data using
multiple transient and persistent storage systems that provide
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on-board, in-memory, in-network and large-scale distributed stor-
age facilities across IloT systems [15,16]. The granularity of data
processing facilities for BDA processes in IIoT systems vary from
resource-constrained IoT devices to resourceful large-scale dis-
tributed cloud computing systems [17]. Similarly, analytic op-
erations differ in terms of descriptive, prescriptive, predictive
and preventive procedures [14]. In addition, BDA processes must
ensure real-time knowledge visualisation across multiple IloT
systems. A proper integration of BDA processes into IloT sys-
tems is perceived to maximise value creation to evolve business
models for profit maximisation [14,18].

1.1. Motivation

Although IloT [19-24] and BDA [13,25-31] have been widely
studied separately, only a few studies including [32] have ex-
plored the convergence of the two domains. Big data production
in IIoT is evident due to large-scale deployment of sensing devices
and systems in pervasive and ubiquitous industrial networks.
Given that the concept of IIoT systems is still evolving, complete
integration and implementation of BDA processes in IIoT systems
are unavailable yet [32,33]. Existing surveys on IloT systems focus
on concepts related to adoption of IloTs [34,35], the integration
of IloTs and edge cloud computing systems [36], industrial mar-
ketplaces for IloTs [4], big data and virtualisation technologies
for IloT systems [37], technological advancements relevant to
CPS in IloT systems [38], smart manufacturing [39] and big data
applications for business operations [40-42]. We introduced the
concept of the concentric computing model (CCM) for BDA in IloT
in our previous work [32] whereby we outlined the discussion
on different layers of CCM and discussed the relevant research
challenges that must be addressed to fully enable CCM for BDA
in IIoT. However, to the best of our knowledge, a detailed review
on BDA implementation for IloTs is still lacking in the existing
literature. Thus, the current study extends our previous work [32]
by presenting the key operations of BDA for value creation in IloT
systems. On the basis of BDA concepts, this study surveys earlier
contributions relevant to data analysis in IIoT systems.

1.2. Contributions

The main contributions of this study are listed as follows.

e We build a case of BDA for IloT systems whereby the role
and entire process of BDA are discussed. The study sets a
theoretical ground to understand modern automated data
pipelines for enriching intelligence in IloT systems.

e We investigate existing state-of-the-art research studies
conducted on IIoT in terms of BDA. In this context, we cat-
egorise and classify the literature by devising a taxonomy.

e We present frameworks and case studies whereby BDA pro-
cesses are adopted to improve the overall performance of
IIoT systems.

e We present several research opportunities, challenges and
future technologies to minimise the research gaps between
state of the art (i.e. proposed in the literature) and state of
the practice (i.e. adopted by industries in practice).

The rest of the paper is organised as follows. Section 2 dis-
cusses the key concepts relevant to BDA in IloT systems, followed
by a detailed survey of existing technologies and algorithms
in Section 3. Section 4 presents the taxonomy, and Section 5
highlights a few frameworks and relevant case studies. Section 6
presents the opportunities, open challenges and future directions.
Section 7 provides the concluding remarks.

2. BDA in IIoT systems

This section presents a detailed discussion on different aspects
of big data adoption in IloT systems. To this end, several design
principles, which should be considered prior to configuring and
deploying IloT systems, are highlighted. The role of BDA and its
life cycle is discussed in detail to deliver end-to-end intelligence
in [IoT systems.

2.1. Design principles for IloT systems

The designs of IloT systems involve seven principles [11],
as depicted in Fig. 1. Firstly, interoperability must be ensured
amongst different technologies, such as CPS, IoT devices and con-
centric computing systems. Wireless data communication tech-
nologies play an unparallelled role to realise an interoperable
system. Secondly, virtualisation technologies at all levels must be
considered for efficient service provisioning and delivery across
[loT systems. Virtualisation varies in terms of platforms, net-
works, data, operating systems and applications. Thirdly, de-
centralisation must be conducted to ensure highly distributed
[loT systems. Decentralisation varies in terms of system-wide
data processing and data storage. Fourthly, IIoT systems must
provide real-time feedback to all stakeholders. Fifthly, service-
orientation must be guaranteed whereby all system functions
are implemented in the form of service-oriented architecture
(SOA). Sixthly, modular approach must be adopted for system
implementation. Lastly, system-wide security must be considered
as core principle. The BDA process for IloT systems must be
designed in consideration of the above-mentioned principles.

2.2. Rise of big data in IloT systems

Big data in IloT systems emerge from a plethora of technolo-
gies. CPS refers to the integration of physical machine compo-
nents with on-board computations and networking facilities [38,
43]. CPS and IoT devices act as the backbone of IloT systems
and thus generate massive amount of raw data streams, which
result in big data [44]. Therefore, real-time analysis of these
data can improve machine health and lead to defect-free product
manufacturing [1,34,45].

IoT devices in IIoT systems refer to devices that can remotely
sense and actuate in industrial environments [46]. IoT devices
either work as stand-alone devices that roam around industrial
environments or are attached with existing CPS to perform cer-
tain predefined actions [47]. The on-board sensing facilities in
[IoT devices lead the generation of big data, which may become
useful for value creation in enterprises. The integration of CPS and
[oT devices results in massive back-end cloud service utilisation
for the execution of BDA processes [48]. To achieve massively
customised production, the number of cloud services can be
grown immensely. Thus, BDA can facilitate in-service selection,
service orchestration and real-time service provisioning [49].

2.3. Concentric computing model for BDA in IloT

Recent evolution in sensing and computing technologies has
opened new avenues for big data processing. Concentric comput-
ing refers to the large-scale highly distributed computing systems
based on a wide range of devices and computing facilities in
different form factors [8]. Concentric computing offers big data
processing at sensors levels, endpoints in IloT systems, edge
servers, and centralised and decentralised cloud computing sys-
tems, as illustrated in Fig. 2 [14,36,50]. Despite their small size
and limited computational power, sensors and IoT devices have
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Fig. 2. Industrial IoTs and multilayer computing resources.

the ability to filter and reduce raw data streams by using on-
board smart data reduction strategies [51]. However, edge servers
at gateways and centralised computing clusters have the ability to
distribute the computing load for BDA applications [52,53]. Multi-
stage execution, automating, and management of BDA processes
(i.e., data engineering, data preparation and data analytics) are
necessary in concentric computing environments (such as sensors
and wearable devices as endpoints, IoT devices, edge servers, and
cloud computing servers) [54].

2.4. Big data analytics for delivering intelligence in IloT systems

BDA processes are executed as a result of multistage highly in-
terdependent application components (Fig. 3). These components
are categorised as follows.

2.4.1. Data engineering

Data engineers build computing and storage infrastructure
to ingest [55], clean [56], conform [57], shape [58] and trans-
form [59] data. IloT systems produce and ingest big data from
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Fig. 3. Multistage execution, automating, and management of BDA processes (i.e., data engineering, data preparation and data analytics) in concentric computing
environments (such as sensors and wearable devices as endpoints, IoT devices, edge servers, and cloud computing servers) [32].

inbound enterprise operations and outbound customer activities.
The raw data at the earliest stage need further processing to
improve the quality and establish the relevance with IloT appli-
cations. Therefore, data wrangling and cleaning methodologies
help select relevant datasets in case of historical data or data
streams in case of streaming data. Data conformity procedures
are applied to ensure relevant, correctly collected big data. Data
shaping and transformation methodologies help improve data
quality by reducing the number of attributes and converting data
formats for uniform data processing.

2.4.2. Data preparation

Big data emerge in raw form with large volume and enormous
speed, and data scientists spend 70%-80% of their time in data
preparation activities [60]. Big data are refined using statistical
methods to handle unstructured, unbalanced and nonstandard-
ised data points efficiently [61]. In addition, data refinement helps
summarise voluminous data to reduce overall complexity. As a
result, the spatiotemporal attributes of big data in IloT systems
vary. Ultimately, data locality is necessary to reduce in-network
traffic and latency in big-data applications [61]. Location-aware
highly virtualised data infrastructure can address these issues.
However, data blending, which is the process of combining data
from multiple sources, becomes complex. Accordingly, further
involvement by data scientists [62] is required to perform data
cleaning and noise removal [63]. Detection methods for outliers
and anomalies are also needed to prepare big data for further
analysis [64,65].

2.4.3. Data analytics

The analytic processes in lloT systems are executed in multiple
phases [66]. Data scientists generate learning models from high-
quality well-prepared data. After the model is developed, model

scoring operations are performed by giving sample datasets and
finding and ranking the attributes in datasets/data streams. The
correctly tuned models are deployed in production environments
to find the knowledge patterns from future data.

2.4.4. Managing and automating the data pipeline

Although existing literature still lacks the concept of auto-
mated data pipelines in IloT systems, BDA processes are executed
as a sequence of operations during data engineering, preparation
and analytics. Therefore, a holistic approach is needed to execute
and administer BDA processes across all layers of concentric
computing systems. Life cycle management is needed for full
process execution from raw data acquisition to knowledge vi-
sualisation and actuation. Data provenance, that is, designating
ownership of data to different stack holders, also needs seri-
ous attention to ensure system-wide control on data [67]. The
continuous evolution in data streams results in knowledge shift
that enforces data pipelines to adaptively reconfigure analytic
processes. The data pipelines need to be continuously monitored
for change detection, and the entire BDA process needs to be
re-executed to produce high-quality results [68]. In security per-
spective, the cross-platform execution of BDA processes demands
secure operations at [oT device, CPS and big data levels [69].

3. Technologies and algorithms for BDA in IIoT systems

A common example of IloT systems is the concept of a smart
factory system (SFS) [36]. The key attributes of SFS and its sub-
systems are self-awareness, self-organisation, self-maintenance,
self-prediction, self-configuration and self-comparison [12]. This
section presents the review of early studies that presented BDA
in the context of SFS and IloT systems [12] in consideration of the
aforementioned autonomy related attributes (Table 1).
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3.1. Mass product customisation towards IloT lean manufacturing

Although the main objective of IloT systems is to maximise
production considering massive customisation in accordance with
customer requirements, the existing literature still lacks an end-
to-end predictive analytics framework. = Computational
intelligence-based methods, such as self-organising map (SOM)
algorithms, are used to optimise big data for feeding in the
production systems and enable massively customised product
manufacturing [70]. The neural network-based SOM algorithm ef-
fectively enables smart production cycle in SFS. The cycle is based
on a close loop within a sequence of operations, including smart
design, manufacturing, production and services whereby feed-
back is collected after each cycle and subsequent operations at
each stage are improved. Clustering-based big data optimisation
is another approach whereby k-means clustering algorithms are
used to cluster the attributes from customer data. The produced
clusters are used to intelligently improve the design process
in the product life cycle [71]. Another alternate for massive
product customisation is the adoption of cloud-based manufac-
turing systems whereby big data integration is performed in
cloud computing systems [72]. However, the resultant big data
are integrated from multiple sources, such as social media data
streams relevant to customer behaviour and IloT data streams
from manufacturing systems. This type of cloud-based man-
ufacturing benefits from open innovation and cross-continent
physically isolated product manufacturing.

3.2. Industrial time series modelling

The achievement of zero-defect in SFS is a major challenge.
In SFS, all manufacturing components are perceived to be highly
connected to ensure high-quality production. The term zero-
defect refers to ensuring high-quality production during the ex-
ecution of a complete manufacturing process [45]. To this end,
industrial time series modelling ensures the proper monitoring of
all manufacturing components during operations. However, data
collection from multiple components results in high-dimensional
data streams. The neo-fuzzy neuron (NFN) time series modelling
method is adopted by IIoT systems. NFN can collaboratively con-
nect the input data streams with the final outputs. NFN ben-
efits from the convergence of input data, which results in de-
creased data streams and thus less iteration for learning model
generation [73].

3.3. Intelligent shop floor monitoring

The term physical Internet (PI) refers to the integration of
cloud manufacturing with wireless and networking technologies.
PI in IloT systems provides the backbone to IloTs and smart
manufacturing object tracking systems based on radio-frequency
identification. These smart manufacturing objects represent dif-
ferent forms of products during manufacturing after each pro-
cess [47]. However, IIoT systems need to track these smart objects
during production to ensure that analytic processes provide intel-
ligent shop monitoring. Researchers have proposed a BDA-based
approach for the trajectory clustering of moving objects in shop
floors. Although initial findings have been previously presented,
a component-based BDA architecture is still necessary to develop
highly optimised and intelligent smart object tracking systems for
shop floor monitoring [47]. Performance analysis and exception
diagnosis model have been proposed and tested using Petri nets
and decision tree algorithms [47]. The model shows feasibility,
and its real implementation in IloT systems may help correctly
quantify the results.

3.4. Industrial microgrids

Massive data production in IloT systems is evident due to
feature-rich sensory and large-scale deployment of IloTs in SFS
[74]. Therefore, manufacturing and environmental data, along
with energy consumption data, can lead towards optimised en-
ergy utilisation in SFS. The application of BDA processes on these
data silos can help improve planning, managing and utilising
energy. Researchers have proposed BDA analytics methods for
industrial-level microgrid planning in SFS. However, quantifiable
studies that can lead towards efficient microgrid planning in IloT
systems are still required [74].

3.5. Monitoring machine health

Prognostic health monitoring (PHM) helps find the machine
behaviour for value creation during mechanical operations and
facilitate machine data collection and management for the early
diagnoses and prediction of machine faults. Several studies have
performed analysis of PHM data [75-77]. In accordance with
multiple International Standards Organisation and International
Electrotechnical Commission and Society of Automotive Engi-
neering standards, the authors of [76] analysed ontological mod-
els developed from PHM data. These ontological models represent
the hierarchical and semantic relationships amongst different
machine components. The remaining useful life of machine com-
ponents, faults, errors and failures during machine operations has
also been explored. Studies have also presented dependency and
failure mode analyses of different machine components. The anal-
ysis of PHM data helps plan and schedule machinery maintenance
activities, thereby supporting in finding maintainable machine
components before total failure. However, finding the relation-
ship amongst different attributes and the failure impact of under-
studied machine components on other components in large-scale
manufacturing environments is a challenging task [77].

3.6. Intelligent predictive and preventive maintenance

Predictive and preventive maintenance are the key require-
ments of large-scale IloT systems [11]. The BDA process can
help in off-line prediction (i.e., performing prediction on the
basis of historical data) and online maintenance (i.e.,, maintain-
ing machines without shutting down the manufacturing units).
Researchers have integrated Hadoop and Storm technologies for
big data processing and used neural network-based methods
for prediction [78]. The concept of adopting BDA for intelligent
predictive maintenance is novel. However, new avenues need to
be explored to fully realise a real-time prediction system.

4. Taxonomy

Fig. 4 presents the taxonomy that is devised on the basis of
data sources, analytics tools, analytics techniques, requirements,
industrial analytics applications and analytics types.

4.1. Data sources

In an industrial environment, numerous sources of data pro-
duction, such as sensors, enterprise resource planning (ERP) sys-
tems, manufacturing execution systems (MES), supervisory con-
trol and data acquisition (SCADA) systems, customer relationship
management (CRM) systems and machine/IoT devices. ERP sys-
tems enable organisations to employ a system that is composed
of multiple integrated applications for managing business needs
and automating many back-office functions related to technology,
services and human resources. MES helps keep the track record
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Fig. 4. Taxonomy of BDA in IloT.

of all manufacturing information in real time and receive up-
to-date data from robots, machine and IoT devices [79]. SCADA
systems are used to monitor and control a plant or equipment
in industries (e.g. telecommunications, water and waste control,
energy, oil and gas refining and transportation). CRM systems
are commonly used to manage a business—customer relationship.
Machines and IoT devices are also deployed in industries to
perform specific tasks, which generate an enormous amount of
data on a daily basis. Applying analytics solutions to the collected
data through all the above-mentioned systems, machines and
IoT devices can extract valuable information that can help in
decision-making purposes.

4.2. Analytics tools

Several analytics tools are required to gain insights into a
large amount of industrial data. These tools include analytics soft-
ware, algorithm repository, visualisation tools, modelling tools
and online analytics packages. Analytics software helps make
predictions about unknown events. An algorithm repository is
a crowd-sourced repository of algorithms that is designed by
analysts using a common set of languages and a common inter-
face. Visualisation tools help present data in advanced formats
(e.g. infographics, dials and gauges, geographic maps, sparklines,
heat maps and detailed bar, pie and fever charts). Modelling tools
are used to define and analyse data requirements for supporting
business processes within the scope of corresponding information
systems in industries. Online analytics packages help keep track
of and analyse data about web traffic.

4.3. Analytics techniques

Various analytics techniques that can help obtain value from
big industrial data are available, thereby leading to making fast
and better decisions. These analytics techniques include text an-
alytics, machine learning, data mining and statistical and natural
language processing (NLP) techniques. Text analytics helps derive
high-quality information by unveiling patterns and trends using

statistical pattern learning. Machine learning techniques enable
industrial devices and machines to enter into a self-learning
mode without being explicitly programmed. Data mining solu-
tions enable enterprises to transform raw data into knowledge.
Statistical tools help collect, summarise, analyse and interpret
large amounts of industrial data, which lead to knowledge dis-
covery. In an industrial environment, NLP tools are used to extract
and analyse unstructured data.

4.4. Requirements

Certain requirements should be incorporated whilst develop-
ing new analytics systems for IloT. These requirements include
maturity models, functional architecture, infrastructure architec-
ture and integrated analysis. Maturity models help measure and
monitor the capabilities of analytics systems. They also help
measure the effort required to complete a specific development
stage. In summary, these models help monitor the health of an
organisation’s big data programs. Functional architecture is an
architectural model that helps identify the functions of analytics
systems and their interactions. In addition, it defines how system
functions work together to perform a specified system mission. In
an industrial environment, analytics systems must be developed
such that they can handle an enormous amount of data in real
time. In this context, big data infrastructure requires experienced
scientists to design the infrastructure from existing equipment in
an industrial paradigm. One of the key requirements for analytics
systems is that they should support the integrated analysis of
multiple types of industrial IoT data.

4.5. Industrial analytics applications

Typical industrial analytics applications across the industrial
value chain are as follows: manufacturing/operations, logistics/
supply chain, marketing/sales and research and development.
The use of predictive analytics in manufacturing can lead to
rescheduling a maintenance plan prior to machine failure by con-
sidering past machine performance history. Moreover, it can help
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Table 1
BDA implementations in IloT systems.
Ref. Problem(s) Objective(s) Analytic Mode Strengths Limitations Potential
component(s) solutions
[71] Finding accurate Self-prediction Genetic algorithm  Historical data  Smart product Needs to be Deep learning
customers’ k-means clustering development implemented for for BDA
attributes for mass Rapid response to real-time, Lacks
customisation. customer needs large-scale validation
in BDA environments
[70] Finding accurate Self-prediction Self-organising Historical data ~ Smart product Needs to be Re-enforcement
customers’ map development implemented for learning
attributes for mass Rapid response to real-time, Lacks algorithms
customisation. customer needs large-scale validation
in BDA
[72] Enabling product Self- Highlighted, but Streaming data  An end-to-end model No real implementation Use-case
customisation and configuration no real for massive implementation
personalisation Self-organisation  implementation production and
discussed personalisation
[73] Achieving Self- Neo-fuzzy neuron  Batch data Performs industrial Accuracy needs to be Using alternate
zero-defect configuration process monitoring implemented ML algorithms
problem and modelling
[47] Implementing Self-prediction Decision trees Batch data The implementation Performance values for  Using alternate
physical internet results in better different workers needs ML algorithms
concept in prediction rate to be well-defined to
manufacturing shop control the rate of
floors overestimation
[74] Developing a Self-prediction A generic Batch data An end-to-end Efforts are needed to BDA platform for
proactive and framework for approach for explore analytics for full value chain
sustainable knowledge microgrid data full value chain level analytics
microgrid discovery analysis knowledge discovery in
industrial microgrids
[78] Active preventive Self-maintenance  Neural networks Batch data Real-time active Need to be investigated Real-time BDA
maintenance maintenance with real-time platform

streaming data

develop decision support systems for industrial processes. The
appropriate use of analytics can play an important role in the lo-
gistics/supply chain (e.g. condition monitoring, supply chain opti-
misation, fleet management and strategic supplier management).
Analytics can help identify failing parts during product usage
through sensor readings and gradually improve product char-
acteristics (research and development). In the marketing field,
analytics tools enable enterprises to predict and enhance future
sales (e.g. help in determining seasonal trends that can lead to
developing an adaptive marketing strategy).

4.6. Analytics types

Analytics has four types: descriptive, real-time, predictive and
prescriptive analytics. Descriptive analytics helps gain insights
into historical data (e.g. number of defective items in the past
and the reason for the defects). Meanwhile, real-time analyt-
ics enables enterprises to become aware of current situations
(e.g., current status and location of a product and detection of a
faulty machine). By contrast, predictive analytics helps identify
potential issues that can occur in advance by using statistical
and machine learning techniques (e.g. expected inventory levels,
anticipated demand levels, and prediction of equipment failure).
Lastly, prescriptive analytics provides advice or suggestion on the
best possible action that an end user should take (e.g. whether
a machine is receiving the right raw materials in the correct
amount).

5. Frameworks and case studies

Value creation is a major sustainability factor in modern enter-
prises whereby BDA processes are becoming the primary driver in
creating values for customers and enterprises [80]. IIoT systems
are no exception. BDA processes can facilitate the amalgamation

of customer and enterprise data to ensure massively customised
production with zero defects. lloT systems essentially integrate
historical and real-time stored and streaming data at various
levels. This multisource data integration leads to highly effective
designs for new business models. Enterprises focus on different
aspects of industry-wide value creation mechanisms, such as
defining value propositions, value capturing mechanisms, value
networks and value communication strategies for internal and
external stakeholders [18]. Ideally, BDA processes can facilitate
enterprise-level value creation whereby inbound intelligence is
obtained by creating value for internal enterprise operations.
Alternatively, outbound intelligence leads towards value creation
for customers. Despite these opportunities, unlocking the per-
ceived value from BDA technologies is challenging. The existing
literature presents only a few such frameworks and use cases as
follows.

5.1. SnappyData

SnappyData is an open-source BDA framework that integrates
Apache’s Spark and GemFire technologies [81]. Apache’s Spark
is adopted for big data processing, whereas GemFire facilitates
highly scalable in-memory transactional data storage. The
strength of SnappyData is its unified BDA engine that facilitates
the performance of different types of analytical operation, such
as online transaction processing, online analytical processing
and streaming the data analytics of operational data. Despite its
high performance, SnappyData still underperforms in cases with
highly streaming data, which causes a bottleneck in real-time
interactive visualisation performance.

5.2. Ipanera

Soilless food production systems, such as Ipanera, are being
aligned with IloT systems [82]. Ipanera continuously monitors
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water level and fertiliser quality in a field and generates in-
sights for self-configuration. Although researchers have presented
the concept, the Ipanera architecture involves multiple layers of
physical devices and systems. It includes sensor nodes at the end
points that actively collect data streams and transfer them to
nearby IIoT clusters. These clusters are responsible for end point
management, communication and configuration in a field. In ad-
dition, IIoT clusters provide feedback to end points to reconfigure
their data collection behaviour. IIoT clusters transfer data streams
to distributed analytics servers that run Apache’s Hadoop [83],
MapReduce [84] and Spark [85] technologies for data processing
and BDA. Ipanera provides support for streaming analytics that
is used to trigger alerts for end points in case a new event is
detected. Persistent storage and on-the-air configurations are two
innovative features of the Ipanera architecture. This architecture
is currently under development; hence, the complete design of
the proposed architecture is still unavailable.

5.3. Fault detection classification

Large-scale distributed cyber manufacturing systems are based
on multiple interconnected but geographically dispersed manu-
facturing units [86]. The fault detection and classification (FDC)
framework finds manufacturing faults in products. The core of
the FDC architecture is the integration of [oT devices into CPS and
cloud computing technologies. IoT devices in production facilities
continuously collect and analyse data streams to detect various
signals that are transferred to back-end cloud servers. These
cloud servers execute BDA processes to detect and classify faulty
products using deep belief networks based on deep learning
methods [87,88]. FDC was analysed by deploying it in a car
headlight manufacturing unit that produced reliable results.

5.4. BDA architecture for cleaner production

The term cleaner production refers to ensuring reduced envi-
ronmental impacts during the execution of the entire product life
cycle. It is based on three phases [89]. The first phase is about
product design and manufacturing. The second phase involves
product use, service provisioning and maintenance. The third
phase is concerned with product remanufacturing, reuse and
recycling. Considering the importance of such clean technologies,
researchers have proposed a four-stage BDA architecture. In the
first stage, the architecture considers value creation objectives
during a product’s life cycle, such as improving product designs
and ensuring energy efficiency, proactive maintenance and en-
vironmental efficiency. In the second stage, big data acquisition
and integration are performed using IoT devices. In the third
stage, big data are processed using Apache’s Hadoop and Storm
technologies. Finally, BDA processes are executed in the fourth
stage whereby the architecture provides clustering, classification,
association rule mining and prediction-related algorithms. The
proposed architecture was evaluated and tested on an axial com-
pressor manufacturing unit. The annual reports of the production
unit show that the proposed architecture realises all the value
creation objectives for cleaner production.

5.5. Smart maintenance initiative: Railway case study

Apart from SFS, Japan is attempting to upgrade its railway
system to a new level by adopting IloT systems for the smart
maintenance of railway tracks [90]. To achieve its ‘smart mainte-
nance vision’, Japan’s railway is adopting IloT, BDA and automa-
tion technologies. The ‘smart maintenance vision’ will provide a
solution to four challenges: (1) ensuring condition-based mainte-
nance, (2) providing work support through artificial intelligence
(AI), (3) managing railway assets and (4) performing database
integration. The progress details of Japan’s railway towards this
vision are available in this report [90] for interested readers.

6. Opportunities, research challenges, and future technologies

Considering the vision of IloT systems, BDA will evidently help
enterprises in the value creation process. BDA processes will max-
imise operational efficiency, reduce product development cost,
ensure massively customised production and streamline the sup-
ply chain management. However, this review shows that the
existing literature is considerably lagging behind this vision. Ta-
ble 2 presents the summary of research challenges and their
perceived solutions to fully adopt IloT systems in BDA.

6.1. Opportunities

The adoption of BDA processes in IloT systems results in
multidimensional research opportunities.

6.1.1. Automation and Al

The enrichment of intelligent features can lead towards highly
optimised and automated industrial processes [91,92]. Therefore,
Al will be the core component of big data optimisation and
analytics, which will result in highly efficient industrial pro-
cesses [93]. Future IloT systems will integrate and ingest big
data from various online and off-line and inbound and outbound
operations. The integration of customer and enterprise data will
result in high-dimensional, multi-million variable datasets. Al
methods will help optimise and analyse such big datasets [94,95].

6.1.2. Human-machine interaction

Wearable computing and augmented reality technologies are
leading towards new human-machine interaction models and
interfaces [96,97]. The enrichment of such interaction models
with real-time knowledge patterns from big data systems will
result in highly productive and rich user interfaces. In addi-
tion, robotics technologies (for physical and virtual robots) will
be widely adopted by future IloT systems. Therefore, BDA pro-
cesses will enrich intelligence to produce highly autonomous and
self-sustaining non-obtrusive systems.

6.1.3. Cybersecurity, privacy, and ethics

Cybersecurity will become an essential requirement due to
connected intelligence in IIoT systems. BDA processes will help
provide real-time cyber threat intelligence by analysing security
attacks, privacy leaks, unauthorised data access and unethical
data collection [98]. In addition, BDA processes will help analyse
network and information security-related enterprise data to find
anomalies, outliers, threats, attacks and vulnerabilities across IloT
systems [99].

6.1.4. Universal standards

The adoption of BDA processes is still in its initial stage; thus,
existing systems may not be compliant with universal standards
across all or multiple industries [2,100]. New universal standards
are required to define the type of big data that the industries can
collect from customers, determine how data should be secured,
preserved and shared and identify the stakeholders who will
benefit from the data. In addition, standards must also ensure the
perceived benefits to customers in exchange for their personal
data. These universal standards will help address ethical issues
in big data systems and create value for customers by providing
personalised products and services.



M.H. ur Rehman, I. Yaqoob, K. Salah et al. / Future Generation Computer Systems 99 (2019) 247-259 255

6.1.5. Protocols for interoperability

Practically, multiple industries are involved in the entire
process—from customer data acquisition to finished product/
service and supply chain management [2]. Interoperability is a
major consideration among different industries; however, new
protocols are required to realise fully interoperable IloT systems.
These protocols can lead towards value creation for enterprises,
although a few questions must be addressed, such as what are the
interoperability parameters, how will BDA processes be executed
in cross-industry systems and how will heterogeneity in data,
computing technologies and industrial production systems be
handled. A well-defined interoperability protocol can help answer
these questions.

6.1.6. End-to-end industrial analytics

Big data in IloT systems evolves from multiple inbound and
outbound data sources, such as customer data and operational
data from finance, marketing, human resources, IoT devices, CPS
and manufacturing systems [101]. Nevertheless, existing systems
manage all these data sources separately to execute BDA pro-
cesses. An opportunity exists to develop an end-to-end industrial
analytics pipeline that can handle big data from various data
sources in parallel and find highly correlated knowledge patterns
that emerge across entire IloT systems [102].

6.1.7. Precision manufacturing

BDA processes can help enrich precision manufacturing sys-
tems [103]. The classification and categorisation of customers’
needs and behaviour-related data can lead towards innovative
product designs. Enterprises will be able to offer the right prod-
ucts and services to the right customers. Precision manufacturing
will considerably help in equal value creation for customers and
enterprises. Early examples of precision manufacturing systems
are available in the healthcare industry [104]. However, these
systems should be integrated into IloT systems [103].

6.2. Research challenges and future technologies

Considering the opportunities, research efforts are required to
improve the entire technology ecosystem for IloT systems.

6.2.1. Big data process integration into IloT systems

Ideally, IloT systems should execute real-time highly inter-
active big data applications. In practice, however, considerable
effort is required for planning, creating, deploying, maintaining
and continuously improving domain-specific big data processes
for each industry. Future BDA processes should be able to pro-
vide real-time knowledge patterns and industry-wide intelligence
through single dashboard applications. In this regard, all legacy
and state-of-the art data sources should be vertically aligned
such that enterprises can easily analyse and correlate different
industrial processes and operations.

6.2.2. Orchestrating BDA applications using concentric computing
Concentric computing systems provide computational and
storage support through different devices and systems [8]. Thus,
massive heterogeneity should be addressed in terms of processing
capabilities, in-memory and disc-based storage systems, battery-
powered and fully powered devices and systems and multiple
communication channels with varying bandwidth capacities [17].
Big data applications on top of concentric computing systems
should be designed by considering efficiency objectives in terms
of storage, in-network data movement, energy consumption, pri-
vacy, security and real-time knowledge availability [105,106]. In
this regard, priority should be given to devices and systems near
data sources. This approach can help maximise value creation

for enterprises in terms of operating cost for big data systems.
Given that maximum data collection, filtration and processing are
performed before data arrive in cloud computing systems, the
operational costs for data storage and cloud service utilisation
will therefore be minimised [80]. Another benefit of concentric
computing systems is their ability to ensure real-time or near
real-time intelligence near end points, [oT devices and other data
sources in IloT systems [36].

6.2.3. Emerging and complimentary technologies for IloT systems

On the one hand, BDA adoption is increasing in IloT systems.
On the other hand, IloT systems should address massive hetero-
geneity without compromising overall operational efficiency due
to emerging, complementary technologies, such as IoT. Consider-
ing this condition, a few technologies will become integral parts
of future IloT systems.

Virtualisation is the essence of distributed systems, such as
cloud computing systems and concentric computing systems.
Virtualisation is traditionally performed at multiple levels, such
as operating systems, networks, storage, applications and hard-
ware. Operating system-level virtualisation is the most common
whereby operating system kernels and functions are virtualised
as virtual machines (VMs). However, the mobility of IoT devices
requires continuous VM migration among different computer
servers [2,107]. Containerisation is the emerging technology that
is gradually replacing VMs by sharing a single kernel among
different applications on the same type of operating systems.
Containerisation technologies offers more secure and faster pro-
cessing; hence, they have become highly beneficial for addressing
timeliness and latency issues when BDA processes are executed
using VMs [108].

Large enterprises traditionally adopt highly coupled SOAs,
which are difficult to test and result in high maintenance cost.
Microservices are emerging alternatives to SOAs whereby highly
scalable and loosely coupled cloud services are orchestrated [ 109].
The microservice architecture can be adopted best for BDA pro-
cesses because these processes should be executed across mul-
tiple platforms and devices in IloT systems [110]. The details of
microservice architecture’s implementation are available in [111]
for interested readers.

The multipoint, multisite and high-dimensional data produc-
tion in IloT systems results in complex big datasets. Graph and
network theories can help reduce this massive complexity [112].
Graph data structures and big graph analytics methods can be
adopted to separate, map and analyse big data in different graph
formats. The adoption of big graph analytics can lead towards
efficient and highly optimised execution of BDA processes across
[IoT systems.

Emerging technologies, such as fog computing and blockchain,
can play a pivotal role in BDA for IloT [113]. Fog computing
has been widely used in IoT devices [114], particularly those
for IIoT and smart manufacturing, for localised and timely data
processing and storage, and primarily to offset long delays that
can be incurred in a cloud environment [115]. Blockchain is
the underlying technology for bitcoins; however, it has been
foreseen as a distributed ledger that can provide decentralised
storage for data generated by IoT devices. Data are stored in
a blockchain ledger with high integrity, authenticity, resiliency
and trust [116]. All transactions are cryptographically signed by
[IoT devices and validated in a decentralised manner without an
intermediary. The data origin is validated before being recorded
on the ledger. Moreover, blockchain smart contracts can be used
to provide decentralised authentication, management and control
access to data generated by IloT devices. Smart contracts are
basically codes that are executed by all blockchain miners, and
the execution outcome is verified and agreed upon by all mining
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Table 2
Summary of research challenges and their perceived solutions.
Type Issues Causes Solutions
Cybersecurity - Internal attacks - Security vulnerabilities - Intelligent monitoring tools needed
- External attacks - Openness of systems - Deployment of end-to-end security models
is essential
- System-wide forensic analysis should be
performed periodically
Privacy - Identity breaches - Bad security models - Using data anonymisation protocols

- Personal data theft

- Business data leakage

- Absence of standard operating
procedures

- Weak data and information sharing
policies

- Privacy preserving interaction models for
users, devices, and systems

Big data processing

- Bad data integration
- Missing data streams

- High latency

Heterogeneous data sources
- Mobility and connectivity issues

- Data overloading and bandwidth
limitations

- Intelligent real time data fusion

- Device-centric big data processing
architectures

- Concentric computing models

Standardisation

- Difficulty in interoperability and

- Absence of global standardisation

- Developing Local, Regional, Industry-specific,

system integration body

and Global standards

Connectivity and - Bad and inaccurate data transfer - High mobility - Need to create always-on, ultra-high
communication available and reliable communication protocols
- Data loss - Large data streams
- High latency - Congestion
Scalability - Resource discovery - Low processing power at device-end - Near-device data processing, In-memory data

- Data offloading
- Data management

processing, Edge computing

- Massive data production
- Realtime actuation

System management - Difficult to deploy, configure, monitor,

and control large scale IIoT networks

- Cloud-centric

- Device-centric

Efficiency - High energy utilisation

- Resources-constraints

- Always-on IloT devices and systems

- Enabling energy, memory, and
computation-efficient algorithms and processes
for big data processing, management and
analytics in 1I0Ts

- Massive and continuous data

generation and device operations

- Device-overloading

- On-device data management and
analytics

nodes. Furthermore, given the limited computing, networking
and storage capacities of IloT devices, fog nodes are envisioned to
be equipped with cloud and blockchain interfaces in the future to
communicate and interface with the cloud environment and the
blockchain network [116].

7. Conclusions

The vision of Industry 4.0 to connect manufacturing systems
with distributors and consumers can only be achieved by adopt-
ing IloT and BDA processes as core components for value creation.
This paper discusses the rise of big data in IloT systems and
presents a detailed survey of related technologies, algorithms,
frameworks and case studies. A detailed taxonomy is provided
to classify the key concepts in this important research area.
Several indispensable frameworks and case studies are outlined
and discussed. Furthermore, we present a detailed discussion of
future opportunities, technologies and research challenges.

We conclude that the adoption of BDA in IloT systems is still
in its early stage. Research on complementary components of
IIoT systems, such as IoT devices, augmented reality and CPS, is
also in its infancy. Current BDA systems provide generic frame-
works for data engineering, preparation and analysis. However,
considerable efforts are required to alter existing BDA processes
to meet the demands of IloT systems. Future research should be
conducted to devise new standards for enabling interoperability
among cross-Industry 4.0 BDA platforms and to provide capability
for end-to-end reliable application processing by considering the
anatomy of concentric computing systems.
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