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Abstract—The Internet of Things (IoT) is part of the Internet of
the future and will comprise billions of intelligent communicating
“things” or Internet Connected Objects (ICO) which will have
sensing, actuating, and data processing capabilities. Each ICO
will have one or more embedded sensors that will capture
potentially enormous amounts of data. The sensors and related
data streams can be clustered physically or virtually, which raises
the challenge of searching and selecting the right sensors for a
query in an efficient and effective way. This paper proposes a
context-aware sensor search, selection and ranking model, called
CASSARAM, to address the challenge of efficiently selecting a
subset of relevant sensors out of a large set of sensors with
similar functionality and capabilities. CASSARAM takes into
account user preferences and considers a broad range of sensor
characteristics, such as reliability, accuracy, location, battery life,
and many more. The paper highlights the importance of sensor
search, selection and ranking for the IoT, identifies important
characteristics of both sensors and data capture processes,
and discusses how semantic and quantitative reasoning can be
combined together. This work also addresses challenges such as
efficient distributed sensor search and relational-expression based
filtering. CASSARAM testing and performance evaluation results
are presented and discussed.

Index Terms—Internet of Things, context awareness, sensors,
search and selection, indexing and ranking, semantic querying,
quantitative reasoning, multi-dimensional data fusion.

I. INTRODUCTION

THE number of sensors deployed around the world is

increasing at a rapid pace. These sensors continuously

generate enormous amounts of data. However, collecting data

from all the available sensors does not create additional value

unless they are capable of providing valuable insights that

will ultimately help to address the challenges we face every

day (e.g. environmental pollution management and traffic

congestion management). Furthermore, it is also not feasible

due to its large scale, resource limitations, and cost factors.

When a large number of sensors are available from which to

choose, it becomes a challenge and a time consuming task to
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select the appropriate1 sensors that will help the users to solve

their own problems.

The sensing as a service [1] model is expected to be built

on top of the IoT infrastructure and services. It also envisions

that sensors will be available to be used over the Internet either

for free or by paying a fee through midddleware solutions.

Currently, several middleware solutions that are expected to

facilitate such a model are under development. OpenIoT [2],

GSN [3], and xively (xively.com) are some examples. These

middleware solutions strongly focus on connecting sensor

devices to software systems and related functionalities [2].

However, when more and more sensors get connected to the

Internet, the search functionality becomes critical.

This paper addresses the problem mentioned above as we

observe the lack of focus on sensor selection and search in

existing IoT solutions and research. Traditional web search

approach will not work in the IoT sensor selection and search

domain, as text based search approaches cannot capture the

critical characteristics of a sensor accurately. Another approach

that can be followed is that of metadata annotation. Even if

we maintain metadata on the sensors (e.g. stored in a sensor’s

storage) or in the cloud, interoperability will be a significant

issue. Furthermore, a user study done by Broring et al. [4] has

described how 20 participants were asked to enter metadata for

a weather station sensor using a simple user interface. Those

20 people made 45 mistakes in total. The requirement of re-

entering metadata in different places (e.g. entering metadata

on GSN once and again entering metadata on OpenIoT, etc.)

arises when we do not have common descriptions. Recently,

the W3C Incubator Group released Semantic Sensor Net-

work XG Final Report, which defines an SSN ontology [5].

The SSN ontology allows describing sensors, including their

characteristics. This effort increases the interoperability and

accuracy due to the lack of manual data entering. Furthermore,

such mistakes can be avoided by letting the sensor hardware

manufactures produce and make available sensor descriptions

using ontologies so that IoT solution developers can retrieve

and incorporate (e.g. mapping) them in their own software

system.

Based on the arguments above, ontology based sensor

description and data modelling is useful for IoT solutions.

This approach also allows semantic querying. Our proposed

solution allows the users to express their priorities in terms

of sensor characteristics and it will search and select appro-

priate sensors. In our model, both quantitative reasoning and

semantic querying techniques are employed to increase the

1We describe the term appropriate in Section III.
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performance of the system by utilizing the strengths of both

techniques.

In this paper, we propose a model that can be adopted by

any IoT middleware solution. Moreover, our design can be run

faster using MapReduce based techniques, something which

increases the scalability of the solution. Our contributions can

be summarized as follows. We have developed an ontology

based context framework for sensors in IoT which allows

capturing and modelling context properties related to sensors.

This information allows users to search the sensors based on

context. We have designed, implemented and evaluated our

proposed CASSARAM model and its performance in a com-

prehensive manner. Specifically, we propose a Comparative-

Priority Based Weighted Index (CPWI) technique to index

and rank sensors based on the user preferences. Furthermore,

we propose a Comparative-Priority Based Heuristic Filtering

(CPHF) technique to make the sensor search process more effi-

cient. We also propose a Relational-Expression based Filtering

(REF) technique to support more comprehensive searching.

Finally, we propose and compare several distributed sensor

search mechanisms.

The rest of this paper is structured as follows: In Section II,

we briefly review the literature and provide some descriptions

of leading IoT middleware solutions and their sensor searching

capabilities. Next, we present the problem definitions and mo-

tivations in Section III. Our proposed solution, CASSARAM,

is presented with details in Section IV. Data models, the

context framework, algorithms, and architectures are discussed

in this section. The techniques we developed to improve

CASSARAM are presented in Section V. In Section VI,

we provide implementation details, including tools, software

platforms, hardware platforms, and the data sets used in this

research. Evaluation and discussions related to the research

findings are presented in Section VII. Finally, we present a

conclusion and prospects for future research in Section VIII.

II. BACKGROUND AND RELATED WORK

Ideally, IoT middleware solutions should allow the users to

express what they want and provide the relevant sensor data

back to them quickly without asking the users to manually

select the sensors which are relevant to their requirements.

Even though IoT has received significant attention from both

academia and industry, sensor search and selection has not

been addressed comprehensively. Specifically, sensor search

and selection techniques using context information [6] have

not been explored substantially. A survey on context aware

computing for the Internet of Things [6] has recognised sensor

search and selection as a critical task in automated sensor

configuration and context discovery processes. Another review

on semantics for the Internet of Things [7] has also recognised

resource (e.g., a sensor or an actuator) search and discovery

functionality as one of the most important functionalities that

are required in IoT. Barnaghi et al. [7] have highlighted the

need for semantic annotation of IoT resources and services.

Processing and analysing the semantically annotated data are

essential elements to support search and discovery [7]. This

justifies our approach of annotating the sensors with related

context information and using that to search the sensors.

The following examples show how existing IoT middleware

solutions provide sensor searching functionality.

Linked Sensor Middleware (LSM) [8], [9] provides some

sensor selection and searching functionality. However, they

have very limited capabilities, such as selecting sensors based

on location and sensor type. All the searching needs to be done

using SPARQL, which is not user-friendly to non-technical

users. Similar to LSM, there are several other IoT middleware

related projects under development at the moment. GSN [3] is

a platform aiming at providing flexible middleware to address

the challenges of sensor data integration and distributed query

processing. It is a generic data stream processing engine. GSN

has gone beyond the traditional sensor network research efforts

such as routing, data aggregation, and energy optimisation.

GSN lists all the available sensors in a combo-box which users

need to select. However, GSN lacks semantics to model the

metadata. Another approach is Microsoft SensorMap [10]. It

only allows users to select sensors by using a location map,

by sensor type and by keywords. xively (xively.com) is also

another approach which provides a secure, scalable platform

that connects devices and products with applications to provide

real-time control and data storage. This also provides only

keyword search. The illustrations of the search functionalities

provided by the above mentioned IoT solutions are presented

in [11]. Our proposed solution CASSARAM can be used to

enrich all the above mentioned IoT middleware solutions with

a comprehensive sensor search and selection functionality.

In the following, we briefly describe some of the work

done in sensor searching and selection. Truong et al. [12]

propose a fuzzy based similarity score comparison sensor

search technique to compare the output of a given sensor with

the outputs of several other sensors to find a matching sensor.

Mayer et al. [13] considers the location of smart things/sensors

as the main context property and structures them in a logical

structure. Then, the sensors are searched by location using tree

search techniques. Search queries are distributively processed

in different paths/nodes of the tree. Elahi et al. [14] propose

a content-based sensor search approach (i.e. finding a sensor

that outputs a given value at the time of a query). Dyser is

a search engine proposed by Ostermaier et al. [15] for real-

time Internet of Things, which uses statistical models to make

predictions about the state of its registered objects (sensors).

When a user submits a query, Dyser pulls the latest data to

identify the actual current state to decide whether it matches

the user query. Prediction models help to find matching sensors

with a minimum number of sensor data retrievals. Very few

related efforts have focused on sensor search based on context

information. Perera et al. [11] have compared the similarities

and differences between sensor search and web service search.

It was found that context information has played a significant

role in web service search (especially towards web services

composition). According to a study in Europe [16], there

are over 12,000 working and useful Web services on the

Web. Even in such conditions, choice between alternatives

(depending on context properties) has become a challenging

problem. The similarities strengthen the argument that sensor

selection is an important challenge at the same level of

complexity as web services. On the other hand, the differences
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show that sensor selection will become a much more complex

challenge over the coming decade due to the scale of the IoT.

De et al. [17] have proposed a conceptual architecture,

an IoT platform, to support real-world and digital objects.

They have presented several semantic ontology based models

that allow capturing information related to IoT resources (e.g.

sensors, services, actuators). However, they are not focused

on sensors and the only context information considered is

location. In contrast, CASSARAM narrowly focuses on sen-

sors and considers a comprehensive set of context information

(see Section IV-F). Guinard et al. [18] have proposed a web

service discovery, query, selection, and ranking approach using

context information related to the IoT domain. Similarly,

TRENDY [19] is a registry-based service discovery protocol

based on CoAP (Constrained Application Protocol) [20] based

web services with context awareness. This protocol has been

proposed to be used in the Web of Things (WoT) domain with

the objective of dealing with a massive number of web services

(e.g. sensors wrapped in web services). Context information

such as hit count, battery, and response time are used to

select the services. An interesting proposal is by Calbimonte

et al. [21], who have proposed an ontology-based approach

for providing data access and query capabilities to streaming

data sources. This work allows the users to express their

needs at a conceptual level, independent of implementation.

Our approach, CASSARAM, can be used to complement

their work where we support context based sensor search

and they provide access to semantically enriched sensor data.

Furthermore, our evaluation results can be used to understand

the scalability and computational performance of their working

big data paradigm as both approaches use the SSN ontology.

Garcia-Castro et al. [22] have defined a core ontological model

for Semantic sensor web infrastructures. It can be used to

model sensor networks (by extending the SSN ontology),

sensor data sources, and the web services that expose the

data sources. Our approach can also be integrated into the

uBox [23] approach, to search things in the WoT domain

using context information. Currently, uBox performs searches

based on location tags and object (sensor) classes (types) (e.g.

hierarchy local/class/actuator/light).

The following table summarises the different research ef-

forts that have addressed the challenge of sensor search. Table

I lists the efforts and the number of sensors used in their

experiments.

TABLE I: Number of sensors used in experimental evaluations

of different sensor search approaches

Approach Number of sensors used in experiments

Truong et al. [13] 42

Elahi et al. [14] 250

Ostermaier et al. [15] 385

Mayer et al. [13] 600

Calbimonte et al. [24]2 1400

LSM [9] 100,000

III. PROBLEM DEFINITION AND MOTIVATION

The problem that we address in this paper can be defined

as follows. Due to the increasing number of sensors available,

we need to search and select sensors that provide data which

will help to solve the problem at hand in the most efficient

and effective way. Our objective is not to solve the users

problems, but to help them to collect sensor data. The users

can further process such data in their own ways to solve their

problems. In order to achieve this, we need to search and

select sensors based on different pieces of context information.

Mainly, we identify two categories of requirements: point-

based requirements (non-negotiable) and proximity-based (ne-

gotiable) requirements. We examined the problem in detail

in [11] by providing real world application scenarios and

challenges.

First, there are the point-based requirements that need be

definitely fulfilled. For example, if a user is interested in

measuring the temperature in a certain location (e.g. Canberra),

the result (e.g. the list of sensors) should only contain sensors

that can measure temperature. The user cannot be satisfied by

being providing with any other type of sensor (e.g. pressure

sensors). There is no bargain or compromise in this type

of requirement. Location can be identified as a point-based

requirement. The second is proximity-based requirements that

need be fulfilled in the best possible way. However, meeting

the exact user requirement is not required. Users may be

willing to be satisfied with a slight difference (variation). For

example, the user has the same interest as before. However, in

this situation, the user imposes proximity-based requirements

in addition to their point-based requirements. The user may

request sensors having an accuracy of around 92%, and

reliability 85%. Therefore, the user gives the highest priority to

these characteristics. The user will accept sensors that closely

fulfil these requirements even though all other characteristics

may not be favourable (e.g. the cost of acquisition may be

high and the sensor response may be slow). It is important to

note that users may not be able to provide any specific value,

so the system should be able to understand the user’s priorities

and provide the results accordingly, by using comparison

techniques.

Another motivation behind our research are statistics and

predictions that show rapid growth in sensor deployment

related to the IoT and Smart Cities. It is estimated that

today there about 1.5 billion Internet-enabled PCs and over

1 billion Internet-enabled mobile phones. By 2020, there will

be 50 to 100 billion devices connected to the Internet [25].

Furthermore, our work is motivated by the increasing trend

of IoT middleware solutions development. Today, most of

the leading midddleware solutions provide only limited sensor

search and selection functionality, as mentioned in Section II.

We highlight the importance of sensor search functionality

using current and potential applications. Smart agriculture [26]

projects such as Phenonet [27] collects data from thousands of

sensors. Due to heterogeneity, each sensor may have different

context values, as mentioned in Section IV-F. Context infor-

mation can be used to selectively select sensors depending on

the requirements and situations. For example, CASSARAM

helps to retrieve data only from sensors which have more

energy remaining when alternative sensors are available. Such

action helps to run the entire sensor network for a much longer

time without reconfiguring and recharging. The sensing as a
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TABLE II: Common Algorithmic Notation Table

Symbol Definition

O
Ontology consists of sensor descriptions and context
property values related to all sensors

P
UserPrioritySet contains user priority value for all con-
text properties

Q
Query consists of point-based requirements expressed in
SPARQL

N/NAll
Number of sensors required by the user / Total number
of sensors available

SFiltered This contains the results of the query Q

SResults ResultsSet contains selected number of sensors

SIndexed IndexedSensorSet store the index values of the sensors

M
Multidimensional space where each context property is
represented by a dimension and sensors are plotted

UI
UserInput consists of input values provided by the users
via the user interface

SC/SC Values of all the sliders / Value of a slider

Pw This contains user priority value converted into weights
using normalization

pi/p
w
i

Value of ith context property / Value of ith context
property in normalized form

CP/CP
ContextPropertySet consists of all context information /
value of ith context property

NCP NormalizedContextPropertySet

M Margin of error

Sj This is the jth sensor

CP
Sj

i CP value of ith property of jth sensor.

CP ideal CP values of the ideal sensors that user prefers

service [28] architectural model envisions an era where sensor

data will be published and sold through the cloud. Consumers

(i.e., users) will be allowed to select a number of sensors and

retrieve data for some period as specified in an agreement by

paying a fee. In such circumstances, allowing consumers to

select the sensors they want based on context information is

critical. For example, some consumers may be willing to pay

more for highly accurate data (i.e., highly accurate sensors)

while others may be willing to pay less for less accurate data,

depending on their requirements, situations, and preferences.

IV. CONTEXT-AWARE SENSOR SEARCH, SELECTION AND

RANKING MODEL

In this section, we present the proposed sensor selection

approach step by step in detail. First, we provide a high-level

overview of the model, which describes the overall execution

flow and critical steps. Then, we explain how user preferences

are captured. Next, the data representation model and proposed

extensions are presented. Finally, the techniques of semantic

querying and quantitative reasoning are discussed with the help

of some algorithms. All the algorithms presented in this paper

are self-explanatory and the common algorithmic notations

used in this paper are presented in Table II.

A. High-level Model Overview

The critical steps of CASSARAM are presented in Fig.

1. As we mentioned earlier our objective is to allow the

users to search and select the sensors that best suit their

requirements. In our model, we divide user requirements

into two categories (from the user’s perspective): point-based

requirements and proximity-based requirements, as discussed

in Section III. Algorithm 1 describes the execution flow of

CASSARAM. At the beginning, CASSARAM identifies the

point-based requirements, the proximity-based requirements,

and the user priorities. First, users need to select the point-

based requirements. For example, a user may want to col-

lect sensor data from 1,000 temperature sensors deployed in

Canberra. In this situation, the sensor type (i.e., temperature),

location (i.e., Canberra) and number of sensors required (i.e.,

1,000) are the point-based requirements. Our CASSARAM

prototype tool provides a user interface to express this infor-

mation via SPARQL queries. In CASSARAM, any context

property can become a point-based requirement. Next, users

can define the proximity-based requirements. All the context

properties we will present in Section IV-F are available to

be defined in comparative fashion by setting the priorities

via a slider-based user interface, as depicted in Fig. 2. Next,

each sensor is plotted in a multi-dimensional space where

each dimension represents a context property (e.g. accuracy,

reliability, latency). Each dimension is normalized [0,1] as

explained in Algorithm 3. Then, the Comparative-Priority

Based Weighted Index (CPWI) is generated for each sensor

by combining the user’s priorities and context property values

as explained in Section IV-E. The sensors are ranked using

the CPWI and the number of sensors required by the user is

selected from the top of the list.

B. Capturing User Priorities

This is a technique we developed to capture the user’s

priorities through a user interface, as shown in Fig. 2. CAS-

SARAM allows users to express which context property is

more important to them, when compared to others. If a user

does not want a specific context property to be considered in

the indexing process, they can avoid it by not selecting the

check-box correlated with that specific context property. For

example, according to Fig. 2, energy will not be considered

when calculating the CPWI. This means the user is willing to

accept sensors with any energy consumption level. Users need

to position the slider of each context property if that context

property is important to them. The slider scale begin from 1,

which means no priority (i.e., the left corner). The highest

User

Query which 
contains the user 
requirements

Ontology 
contains 
sensor 

descriptions 
and all 

context data 
required

Selected number of 
sensors which 

satisfy the 
'point based' 
requirements 

imposed by the 
user using the 

query

Generate likelihood 
index of each sensor 
using an user priority 

based weighted 
Euclidean distance in 

multi-dimensional 
space technique

Search
Rank sensors based on 

index and select 'n' number 
of sensors where 'n' is 

number of sensors 
requested by the user 

Index

Rank

Select

Fig. 1: High level Overview of CASSARAM
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Algorithm 1 Execution Flow of CASSARAM

Require: (O), (P), (Q), (N ), (M).

1: Output: SResults

2: SFiltered ← queryOntology(O,Q)
3: if cardinality(SFiltered) < N then

4: return SResults ← SFiltered

5: else

6: P← capture user priorities(UI)
7: M← Plot sensors in multidimensional space(SResults)
8: SIndexed ← calculate CPWI(SResults,M)
9: SResults ← rank sensors(SIndexed)

10: SResults ← select sensors(SResults, N)
11: return SResults

12: end if

priority can be set by the user as necessary with the help of a

scaler, where a higher scale makes the sliders more sensitive

(e.g. 102 = 1 to 100, 103, 104). Algorithm 2 describes the user

priority capturing process.

As depicted in Fig. 2, if the user wants more wieght to be

placed on the reliability of a sensor than on its accuracy, the

reliability slider need to be placed further to the right than

the accuracy slider. A weight is calculated for each context

property. Therefore, higher priority means higher weight. As

a result, sensors with high reliability and accuracy will be

ranked highly. However, those sensors may have high costs

due to the low priority placed on cost.

C. Data Modelling and Representation

In this paper, we employed the Semantic Sensor Network

Ontology (SSN) [5] to model the sensor descriptions and

context properties. The main reasons for selecting the SSN

ontology are its interoperability and the trend towards ontology

usage in the IoT and sensor data management domain. A

comparison of different semantic sensor ontologies is pre-

sented in [29]. The SSN ontology is capable of modelling

a significant amount of information about sensors, such as

sensor capabilities, performance, the conditions in which it can

Algorithm 2 User Priority Capturing

Require: (UI), (SC)

1: Output: Pw

2: P← extract user priorities(UI)
3: SCHighest ← get maximum priority(SC)
4: SCLowest ← get minimum priority(SC)
5: SCRange ← SCHighest − SCLowest

6: for each context property priority pi ∈ P do

7: pwi ← (pi ÷ SRange)
8: if pwi ≥ 0 then

9: add pwi to Pw

10: else

11: continue

12: end if

13: end for

14: return Pw

W
1

W
2

W
3

Fig. 2: A weight of W1 is assigned to the reliability property. A weight
of W2 is assigned to the Accuracy property. A weight of W3 is assigned
to the availability property. A weight of W4, the default weight, is assigned
to the cost property. High priority means always favoured, and low priority
means always disfavoured. For example, if the user makes cost a high priority
(more towards the right), that means CASSARAM tries to find the sensors
that produce data at the lowest cost. Similarly, if the user makes accuracy a
high priority, that means CASSARAM tries to find the sensors that produce
data with high accuracy.

be used, etc. The details are presented in [5]. The SSN on-

tology includes the most common context properties, such as

accuracy, precision, drift, sensitivity, selectivity, measurement

range, detection limit, response time, frequency and latency.

However, the SSN ontology can be extended unlimitedly by

a categorization with three classes: measurement property,

operating property, and survival property. We depict a sim-

plified segment of the SSN ontology in Fig. 3. We extend

the quality class by adding several sub-classes based on our

context framework, as listed in Section IV-F. All context

property values are stored in the SSN ontology in their original

measurement units. CASSARAM normalizes them on demand

to [0,1] to ensure consistency. Caching techniques can be used

to increase the execution performances. Due to technological

advances in sensor hardware development, it is impossible to

statically define upper and lower bounds for some context

properties (e.g. battery life will be improved over time due

to advances in sensor hardware technologies). Therefore, we

propose Algorithm 3 to dynamically normalize the context

properties.

D. Filtering Using Querying Reasoning

Once the point-based requirements of the user have been

identified, they need to be expressed using SPARQL. Seman-

tic querying has weaknesses and limitations. When a query

becomes complex, the performance decreases [30]. Relational

expression based filtering can also be used; however, using

it will increase the computational requirements. Further ex-

planations are presented in Section V-B. Any of the context

properties identified in Section IV-F can become point-based

requirements and need to be represented in SPARQL. This

step produces SFiltered, where all the sensors satisfy all the

point-based requirements.

E. Ranking Using Quantitative Reasoning

In this step, the sensors are ranked based on the proximity-

based user requirements. We developed a weighted Euclidean

distance based indexing technique, called the Comparative-

Priority Based Weighted Index (CPWI), as follows.

(CPWI) =
√

∑n

i=1

[

Wi(Ud
i − Sα

i )
2
]

First, each sensor is plotted in multi-dimensional space

where each context property is represented by a dimension.

Then, users can plot an ideal sensor in the multi-dimensional
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ssn:Property

ssn:hasMeasurementCapability

ssn:hasMeasurementProperty

DUL:Physical Object

Sensor_TP0254

DUL:PhysicalPlace

ssn:Platformssn:System

ssn:sensorssn:Device

ssn:Sensing Device
SensorPlatformSTA025

Australia

cf:air_temperature

cf:air_humidity

DUL:Quality

ssn:MeassurementProperty ssn:SurvivalPropertyssn:OperatingProperty

ssn:Accuracy
:Cost

ssn:MeassurementCapability

Sensor_TP0254AirTemperatureMeassurementCapability

Sensor_TP0254AirTemperatureMeassurementAccuracy

ssn:BatteryLife

24 (xsd:float)

Individuals (Instances)

Classes related to sensor

Context Properties related Classes

Extended Sub Classes

Relationships (Sub-Classes)

Object and Datatype properties links  

ssn:for
Propert

yssn:observes

ssn:observes

ss
n:
on
Pl
at
fo
rm

DUL:hasLocation

ssn:hasDataValue

ssn:ResponseTime

:Bandwidth:Trust:Precision :Security

Fig. 3: Data model used in CASSARAM. In SSN ontology, sensors are not constrained to physical sensing devices; rather a sensor is anything that can
estimate or calculate the value of a phenomenon, so a device or computational process or combination could play the role of a sensor. A sensing device is
a device that implements sensing [5]. Sensing device is also a sub class of sensor. By following above definition, our focus is on sensors. CF (Climate and
Forecast) ontology is a domain specific external ontology. DOLCE+DnS Ultralite (DUL) ontology provides a set of upper level concepts that can be the basis
for easier interoperability among many middle and lower level ontologies. More details are provided in [5].

Algorithm 3 Flexi-Dynamic Normalization

Require: (CP), (S), (cpi),

1: Output: NCP

2: cp
Sj

i ← receive new property value∗

3: cp
highest
i ← retrieve highest(CP)

4: cplowest
i ← retrieve lowest(CP)

5: if cp
highest
i < cp

Sj

i then

6: cp
highest
i ← cp

Sj

i

7: for each cp
Sj

i ∈ CP, S do

8: update(NCP)← [
(cp

Sj
i

−cplowest
i )

(cphighest
i

−cplowest
i

)
]

9: end for

10: else

11: update(NCP)← [
(cp

Sj
i

−cplowest
i )

(cphighest
i

−cplowest
i

)
]

12: end if

13: return NCP
∗

sensors registered in the IoT middleware

space by manually entering context property values as illus-

trated in Fig. 4 by Ui. By default, CASSARAM will automat-

ically plot an ideal sensor as depicted in Ud (i.e., the highest

value for all context properties). Next, the priorities defined

by the user are retrieved. Based on the positions of the sliders

(in Fig. 2), weights are calculated in a comparative fashion.

Algorithm 4 describes the indexing process. It calculates the

CPWI and ranks the sensors using reverse-normalised tech-

niques in descending order. CASSARAM selects N sensors

from the top.

F. Context Framework

After evaluating a number of research efforts conducted in

the quality of service domain relating to web services [31],

mobile computing [32], mobile data collection [33], and sensor

ontologies [5], we extracted the following context properties

to be stored and maintained in connection with each sensor.

This information helps to decide which sensor is to be used in

a given situation. We adopt the following definition of context

for this paper. “Context is any information that can be used to

characterise the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction

between a user and an application, including the user and

applications themselves.”[34]. CASSARAM has no limitations

S
α

S
β S

γ

User Requirement

Default User 
Requirement 

U
d

U
i

1

1

0

0

0.2

0.4

0.6

0.5

0.8

0.6

0.4

0.2

0

1
0.8

Fig. 4: Sensors plotted in three-dimensional space for demonstration pur-
poses. Sα, Sβ , and Sγ represent real sensors. Ui represent the user preferred
sensor. Ud represent the default user preferred sensor. CPWI calculate
weighted distance between Sj=α||β||γ and Ui||d. Shortest distance means
sensor will rank higher because it is close to the user requirement.

Algorithm 4 Comparative-Priority Based Weighted Index

Require: (Pw), (CP), (SIndexed), (PSj ), (UI)

1: Output: SRanked

2: CP ideal
← proximity based requirements(UI)

3: plot on multi-dimensional space(CP ideal)
4: for each sensor Sj ∈ S do

5: plot on multi-dimensional space(CPSj )
6: end for

7: Indexing Formula (for Sα) =

√

∑n

i=1

[

Wi(Ud
i − Sα

i )
2
]

8: for each sensor sj ∈ S do

9: SIndexed ← calculate index(PSj ,Pw)
10: end for

11: SRanked ← reversed normalized ranking∗(SIndexed) ∗i.e.:

lowest value is ranked higher which represents the weighted distance

between use preferred sensor and the real sensors

12: return SRanked

on the number of context properties that can be used. More

context information can be added to the following list as neces-

sary. Our context framework comprises availability, accuracy,

reliability, response time, frequency, sensitivity, measurement

range, selectivity, precision, latency, drift, resolution, detection
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Algorithm 5 Comparative-Priority Based Heuristic Filtering

Require: (O), (P), (Q), (N ), (M%)

1: Output: SFiltered

2: S← query ontology(O,Q)
3: Pw ← get weighted priorities(P)
4: PPercentages ← convert weights to percentages(Pw)
5: NAll ← total numberof available sensors(O,Q)
6: N ← required number of sensors(UI)
7: NRemovable ← (NAll −N)
8: P

Percentages
ordered ← descending order(PPercentages)

9: for each priority percentage p ∈ P
Percentages
ordered do

10: SFiltered ← Query SFiltered and ordered by p

11: Remove NRemovable×(100−M) sensors from bottom.

12: end for

13: return SFiltered

Accuracy Reliability Battery Life Security

A user wants to select 
sensors and has four 

proximity-based requirements: 
Accuracy, reliability, battery life, and 

Security. According to the user 
Defined priorities, weights for each context 

Property is calculated as follows: 
accuracy (0.4), reliability (0.3), 

battery life (0.2), and security (0.1). 

Fig. 5: Visual illustration of Comparative-Priority Based Heuristic Filtering

limit, operating power range, system (sensor) lifetime, battery

life, security, accessibility, robustness, exception handling, in-

teroperability, configurability, user satisfaction rating, capacity,

throughput, cost of data transmission, cost of data generation,

data ownership cost, bandwidth, and trust.

V. IMPROVING SCALABILITY AND EFFICIENCY

In this section, we present three approaches that improve

the efficiency and the capability of CASSARAM. First, we

propose a heuristic approach that can handle a massive number

of sensors by trading off with accuracy. Second, we propose

a relational-expression based filtering technique that saves

computational resources. Third, we tackle the challenge of

distributed sensor search and selection.

A. Comparative-Priority Based Heuristic Filtering (CPHF)

The solution we discussed so far works well with small

number of sensors. However, model becomes inefficient when

the number of sensors available to search increases. Let us

consider an example to identify the inefficiency. Assume we

have access to one million sensors. A user wants to select

1,000 sensors out of them. In such situation, CASSARAM

will index and rank one million sensors using proximity-based

requirements provided by the user and select top 1,000 sensors.

However, indexing and ranking all possible sensors (in this

case one million) is inefficient and wastes significant amount

of computational resources. Furthermore, CASSARAM will

not be able to process large number of user queries due to

such inefficiency. We propose a technique called Comparative-

Priority Based Heuristic Filtering (CPHF) to make CAS-

SARAM more efficient. The execution process is explained

in Algorithm 5. The basic idea is to remove sensors that are

positioned far away from user defined ideal sensor and reduce

the number of sensors that need to be indexed and ranked.

Fig. 5 illustrates the CPHF approach with a sample scenario.

The CPHF approach can be explained as follows. First, all the

eligible sensors are ranked in descending order of the highest

weighted context property (in this case accuracy). Then, 40%

(from NRemovable) of the sensors from the bottom of the

list need to be removed. Next, the remaining sensors need to

be ordered in descending order of the next highest weighted

context property (in this case reliability). Then, 30% (from

NRemovable) of the sensors from the bottom of the list need to

be removed. This process needs to be applied for the remaining

context properties as well. Finally, the remaining sensors need

to be indexed and ranked. This approach dramatically reduces

the indexing and ranking related inefficiencies. Broadly, this

category of techniques are called Top-K selection where top

sensors are selected in each iteration. The efficiency of this

approach is evaluated and discussed in Section VII.

B. Relational-Expression Based Filtering (REF)

This section explains how computational resources can

be saved and how to speed up the sensor search and se-

lection process by allowing the users to define preferred

context property values using relational operators such as

<,>,≤, and ≥. For example, users can define an upper

bound, lower bound, or both, using relational operators. All

context properties defined by relational operators, other than

the equals sign (=), are considered to be semi-non-negotiable

requirements. According to CASSARAM, non-negotiable as

well as semi-non-negotiable requirements are defined using

semantic queries. Let us consider a scenario where a user

wants to select sensors that have 85% accuracy. However,

the user can be satisfied by providing sensors with accuracy

between 70% and 90%. Such requirements are called semi-

non-negotiable requirements. Defining such a range helps to

ignore irrelevant sensors during the semantic querying phase

without even retrieving them to the CPWI generating phase,

and this saves computational resources. Even though users

may define ranges, the sensors will be ranked considering the

user’s priorities by applying the same concepts and rules as

explained in Section IV. The efficiency of this approach is

evaluated in Section VII.

C. Distributed Sensor Searching

We have explained how CASSARAM works in an isolated

environment without taking into consideration the distributed

nature of the problem. Ideally, we expect that not all sensors

will be connected to one single server (e.g., a single middle-

ware instance). Similarly, it is extremely inefficient to store

complete sensor descriptions and related context information

in many different servers in a redundant way. Ideally, each IoT

middleware instance should keep track of the sensors that are

specifically connected to them. This means that each server

knows only about a certain number of sensors. However, in

order to deal with complex user requirements, CASSARAM

may need to query multiple IoT middleware instances to search
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(1) Chain Processing Method (2) Parallel Processing Method

(3) Hybrid 
     Processing 
     Method Search Request 

Initiator (SRI)

(SRI)(SRI)

Server
nodes

Fig. 6: Distributed Processing Approaches for CASSARAM

and select the suitable sensors. Let us consider a scenario

related to the smart agriculture domain [26]. A scientist

wants to find out whether his experimental crops have been

infected with a disease. His experimental crops are planted

in fields distributed across different geographical locations in

Australia. Furthermore, the sensors deployed in the fields are

connected to different IoT middleware instances, depending

on the geographical location. In order to help the user to find

the appropriate sensors, CASSARAM needs to query different

servers in a distributed manner. We explored the possibilities of

performing such distributed queries efficiently. We identified

three different ways to search sensors distributively, depending

on how the query/data would be transferred over the network

(i.e., path), as depicted in Fig. 6. We also identified their

strengths, weaknesses, and applicability to different situations.

1) Chain Processing: Data is sent from one node to another

sequentially as depicted in Fig. 6(a). First, a user defines his

requirements using an IoT middleware instance (e.g. GSN

installed in a particular server). Then, this server becomes the

search request initiator (SRI) for that specific user request. The

SRI processes the request and selects the 100 most appropriate

sensors. Then, the information related selected sensors (i.e. the

unique IDs of the sensors and respective CPWIs) is sent to the

next server node. The second node (i.e., that next node) merges

the incoming sensor information with the existing sensor

descriptions and performs the sensor selection algorithm and

selects the 100 best sensors. This pattern continues until the

sensor request has visited all the server nodes. This method

saves communication bandwidth by transferring only the most

essential and minimum amount of data. In contrast, due to a

lack of parallel processing, the response time could be high.

2) Parallel Processing: The SRI parallelly sends each user

search request to all available nodes. Then, each sensor node

performs the sensor searching algorithm at the same time.

Each node selects the 100 most appropriate sensors and returns

the information related selected sensors to the SRI. In circum-

stances where we have 2500 server nodes, the amount of data

(2500 × 100) received by the SRI could be overwhelming,

which would waste the communication bandwidth. The SRI

processes the sensor information (2500× 100) and selects the

final 100 most appropriate sensors. This approach becomes

inefficient when N becomes larger.

3) Hybrid Processing: By observing the characteristics of

the previous two methods, it is obvious that the optimal

distributed processing strategy should employ both chain and

parallel processing techniques. There is no single method that

works efficiently for all types of situations. An ideal distributed

processing strategy for each situation needs to be designed and

1

1

1
2

2

2

(a) (b) kth sensor

(SRI)
(SRI)

Fig. 7: Optimization: (a) wihout k-extension and (b) with k-extension.

configured dynamically depending on the context, such as the

types of the devices, their capabilities, bandwidth available,

and so on.

We can improve the efficiency of the above methods as

follows. In the parallel processing method, each node sends

information related to N sensors to the SRI as depicted in Fig.

7(a). However, at the end, the SRI may only select N sensors

(in total) despite its having received a significant amount of

sensor related information (N×numberofnodes). Therefore,

the rest of the data [(N ×numberofnodes)−N ] received by

the SRI would be wasted. For example, let us assume that a

user wants to select 10,000 sensors. Assuming that there are

2500 server nodes, the SRI may receive a significant amount

of sensor information (10, 000×2500). However, it may finally

select only 10,000 sensors. We propose the following method

to reduce this wastage, depicted in Fig. 7(b).

In this method, the SRI forwards the search request to

each server node parallelly, as depicted in step (1) in Fig.

7b. Each node selects the 10,000 most appropriate sensors.

Without sending information about these 10,000 sensors to

the SRI, each server node sends only information about the

kth sensor (the UID and CPWI of every kth sensor). (I.e.,

If k = 1, 000, then the server node sends only the 1000th,

2000th, 3000th, . . . 10,000th sensors). Therefore, instead of

sending 10,000 records, now each server node returns only 10

records. Once the SRI receives the sensor information from all

the server nodes, it processes and decides which portions need

to be retrieved. Then, the SRI sends requests back to the server

nodes and now each node returns the exact portion specified

by the SRI (e.g. the 5th server node may return only the first

2000 sensors instead of sending 10,000 sensors) as depicted

in (2). In this method, k plays a key role and has a direct

impact on the efficiency. k needs to be chosen by considering

N as well as other relevant context information as mentioned

earlier. For example, if we use a smaller k, then information

about more sensors would be sent to the SRI during step (1),

but with less wastage in step (2). In contrast, if we use a larger

k, then less information would be sent to the SRI during step

(1), but there would be comparatively more wastage in step

(2). Furthermore, machine learning techniques can be used to

customize the value of k for each server node, depending on

the user’s request and context information, such as the types of

the sensors, energy, bandwidth availability, etc. The suitability

of each approach is discussed in Section VII-B.

VI. IMPLEMENTATION AND EXPERIMENTATION

In this section, we describe the experimental setup, datasets

used, and assumptions. The experimental scenarios we used

are explained at the end. The discussions related to the

experiments are presented in Section VII.
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Fig. 8: First, users need to select, in the UI, the context properties about which they are concerned. Then, users need to set the scale. The slider becomes
more sensitive when the scale is increased. Next, the slider attached to each context property needs to be positioned to express its priority. The ideal value
related to each context property can be entered. The values can be entered in native measurement units (e.g., accuracy in percentage, latency in milliseconds).
All the values are normalized by CASSARAM. The default is ‘best possible’ (i.e., highest accuracy, lowest cost, lowest latency). Later, users can decide
whether to use the optimization functionality or not, by selecting that option. Users can also define the margin of error as a percentage (the default is 50%).
Based on the user’s preferences, CASSARAM generates the SPARQL appropriately. Finally, users need to specify the number of sensors they require.

We analysed and evaluated the proposed model using a

prototype, called ‘CASSARA Tool’, which we developed using

Java. The user interface of ‘CASSARA Tool’ is presented in

Fig. 8 with a self-explanatory description. The data was stored

in a MySQL database. Our tool allows capturing user prefer-

ences and the priorities of the various context properties of the

sensors. We used a computer with an Intel(R) Core i5-2557M

1.70GHz CPU and 4GB RAM to evaluate our proposed model.

We also reproduced the experimentations using a higher-end

computer with more CPU and RAM and the results showed

that the graphs are similar in shape though the exact values are

different. In order to perform mathematical operations such as

a Euclidean distance calculation in multi-dimensional space,

we used the Apache Commons mathematics [35] library. It is

an open source optimized library of lightweight, self-contained

mathematics and statistics components, addressing the most

common problems not available in the Java programming

language. As we used a Semantic Sensor Ontology (SSN)

[5] to manage the sensor descriptions and related data, we

employed open source Apache Jena API [36] to process

and manipulate the semantic data. Our evaluation used a

combination of real data and synthetically generated data.

We collected environmental linked data from the Bureau of

Meteorology [37] and data sets from both the Phenonet project

[27] and the Linked Sensor Middleware (LSM) project [8],

[9]. The main reasons for combining the data were the need

for a large amount of data and the need to control different

aspects (e.g., the context information related to the sensors

needed to be embedded into the data set, because real data that

matches our context framework is not available in any public

data sets at the moment) to better understand the behaviour

of CASSARAM in different IoT related real world situations

and scenarios where real data is not available. We make the

following assumptions in our work. We assume that the sensor

descriptions and context information related to the sensors

have already been retrieved from the sensor manufacturers in

terms of ontologies, and been into the SSN ontology. Similarly,

we assume that the context data related to the sensors, such

as accuracy, reliability, etc., have been continually monitored,

measured, managed, and stored in the SSN ontology by the

software systems. In order to evaluate the distributed process-

ing techniques, we proposed an experimental test involving

four computational nodes. All the nodes are connected to a

private organizational network (i.e., The Australian National

University IT Network). The hardware configurations of the

three additional devices are as follows: (1) Intel Core i7 CPU

with 6GB RAM, (2) Intel Core i5 CPU with 4GB, and (3)

Intel Core i7 with 4G. The details are presented in Section

VII-B.

We evaluated the performance of CASSARAM using dif-

ferent combinations of relational operators, such as <,>,=
,≤,≥. The scenarios numbered in Figs. 9i–9l correspond to

the scenario numbers listed below. All the experiments retrieve

five context properties. (1) Do not use any relational operator.

(2) 1 out of 5 context properties are restricted by ≥ (e.g., the

accuracy is to be greater than 80%) (3) 2 out of 5 (e.g., the

accuracy is to be greater than 80% AND reliability greater than

85%), (4) 3 out of 5, (5) 4 out of 5. All 5 context properties

are restrained (6) by ≥, (7) by ≤, (8) by =, (9) by <, (10)

by >. (11) 1 out of 5 context properties are restricted by two

relational operators (e.g., the accuracy is to be greater than ≥

80% AND less than ≤ 95%), (12) 2 out of 5, (13) 3 out of

5, (14) 4 out of 5; All 5 context properties are restrained (15)

by ≤ and ≥, (16) by < and >. We increased the number of

restrictions imposed using additional relational operators. (17)

defined two ranges for each context properties (e.g., (accuracy

≥ 80% AND ≤ 95%) OR (accuracy ≥ 50% AND ≤ 60%)).

(18) defined three ranges.
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VII. EVALUATION AND DISCUSSION

We evaluated CASSARAM using different methods and

parameters as depicted in Figs. 9a–9l. In this section, we

explain the evaluation criteria which we used for each ex-

periment and discuss the lessons we learned. Fig. 9a shows

how the storage requirement varies depending on the number

of sensor descriptions. We stored the data according to the

SSN ontology, as depicted in Fig. 3. We conducted two

experiments where we stored 10 context properties and 30

context properties from the context framework we proposed

in Section IV-F. To store one million sensor descriptions, it

took 6.4 GB (10 context properties) and 17.8 GB (30 context

properties). It is evident that the storage requirements are

correlated with the number of triples: a single triple requires

about 0.193 KB storage space (for 100,000+ sensors). Though

storage hardware is becoming cheaper and available in high

capacities, the number of context properties need to store

should be decided carefully in order to minimize the storage

requirements, especially when the number of sensor is in the

billions.

Fig. 9b shows how much time it takes to select sensors

as the number of sensors increases. Each step (i.e., searching,

indexing and ranking) has been measured separately. Semantic

querying requires significantly more processing time than

indexing and ranking. Furthermore, as the number of context

properties retrieved by a query increases, the execution time

also increases significantly. Furthermore, it is important to

note that MySQL can join only 61 tables, which only allows

retrieving a maximum of 10 context properties from the SSN

ontology data model. Using alternative data storage or running

multiple queries can be used to overcome this problem.

Similarly, it is much more efficient to run multiple queries

than to run a single query if the number of sensors is less

than 10,000 (e.g., 8 ms to retrieve 5 context properties and

24 ms to retrieve 10 context properties when querying 10,000

sensors). In addition, Fig. 9c shows how much memory is

required to select sensors as the number of sensors increases. It

is evident that having more context properties requires having

more memory. The memory requirements for querying do not

change much up to 10,000 (ranging from 10 MB to 25 MB).

When the number of sensors exceeds 10,000, the memory

requirements grow steadily, correlated with the number of

sensors. In comparison, indexing and ranking require less

memory.

Fig. 9d shows the processing time taken by the sensor

indexing process as the number of context properties and the

number of sensors increase. Reducing the number of sensors

needing to be indexed below 10,000 allows speeding up CAS-

SARAM. The processing time starts to increases significantly

after 100,000 sensors. Similarly, Fig. 9e shows the memory

usage by the sensor indexing process as the number of context

properties and sensors increases. Even though the memory

requirements increase slightly, the actual increase is negligible

when the number of sensors is still less than 100,000. After

that, the memory requirements increase substantially, but are

still very small compared to the computational capabilities

of the latest hardware. Furthermore, the number of context

properties involved does not have any considerable impact

during the indexing process. The differences only become

visible when the number of sensors reaches one million. Still,

the memory required by the process is 30 MB. Java garbage

collection performs its task more actively when processing

large numbers of sensors, which makes the difference invisible.

Fig. 9f and 9g compare the time taken by the sensor

selection process and the memory it requires, with and without

the CPHF algorithm, as the number of sensors increases. The

number of sensors that the user requires is kept at 50 in

all experiments (N=50). Five context properties are retrieved,

indexed, and ranked. The complexity of CPHF (due to the

SPARQL subqueries) has not affected significantly the total

processing time of CASSARAM. Instead, CPHF has saved

some time in the indexing and ranking phases. In contrast,

CPHF requires more memory when querying, due to its com-

plexity. However, it requires significantly less memory when

transferring data to the next phase for indexing. Therefore,

CPHF is efficient as it does not require holding millions

of pieces of sensor information in multiple phases in CAS-

SARAM. Furthermore, CPHF returns only a limited number

of sensors whereas the non-CPHF approach returns all sensors

available to CASSARAM, which consumes more resources

including more processing time and a significant amount of

memory and temporary storage. Fig. 9h shows how the accu-

racy changes when the Margin of Error (M%) value changes

in the CPHF algorithm and the number of sensors increases.

The scenario presented in Fig. 5 has been evaluated. The

accuracy of the CPHF approach increases when the margin

of error (M) increases. However, a lower M leads CASSRAM

towards low resource consumption. Therefore, there is a trade-

off between accuracy and resource consumption. The optimum

value of M can be dynamically learned by machine learning

techniques based on which context properties are prioritized

by the users in each situation and how the normalized weights

are distributed between the context properties.

In Fig. 9i and Fig. 9j, we evaluated how processing time

and memory requirements change when relational expressions

are used during the semantic querying phase. We tested

different scenarios with and without relational expressions

(e.g. <,>,=,≤,≥) as described at the end of Section VI.

For all experiments, we queried 100,000 sensors. When at least

one relation operator is used in SPARQL, the processing time

and the memory requirements increase by 100%. However,

neither the number of relational operators used nor the type of

relational operators used make any impact on either processing

time or memory requirements. Therefore, it is efficient to use

multiple relational operators (as much as possible) so as to

reduce the number of sensors retrieved by the querying phase.

This helps to reduce the amount of data needing to be handled

in the other phases.

Finally, in Figs. 9k and 9l, we extensively evaluated how

REF affects the processing time and memory requirements in

CASSARAM, as the number of sensors and context properties

increases. As we mentioned earlier, REF adds more processing

overhead, which affects the processing time and memory.

There is a significant difference in processing time when

the number of sensors needing to be queried is less than

100,000. However, when the number of sensors increases
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Fig. 9: Experimental Results

beyond 100,000, the difference becomes insignificant. In con-

trast, the differences in memory requirements are negligible

when the number of sensors is less than 10,000: but it starts

to become visible after that. Furthermore, the processing time

increases significantly after 10,000 sensors. We also learned

that allocating more memory for CASSARAM can speed up

the entire sensor selection process.

In contrast, CASSARAM can also be used under limited

resources though it takes a much longer time to respond.

According to the extensive evaluations we conducted, it is

evident that CPHF and REF techniques can be used to improve

the efficient of CASSARAM. Even though this paper is

specifically focused on sensor selection in the IoT domain,

the proposed model and the concepts we employed can be

used in many other domains, such as web service selection.

Furthermore, the results we obtained through these evaluations

are also applicable to any other approach that employs an

ontology model similar to the SSN ontology and requires a

large number of records. Even though we tested our solution

with millions of sensor descriptions, in practice it is highly

unlikely that millions of sensors would connect to a single

middleware instance. Practically, IoT middleware solutions

will store data in a distributed manner in different instances,

and need to be searched in a distributed fashion, as explained

in Section V-C. By parallel processing, the amount of time it

takes to process millions of sensor data descriptions can be

reduced drastically.

A. Evaluating Alternative Storage Options

In the evaluations conducted earlier (Figs. 9a–9l), we used

Jena SDB/MySQL-backed RDF storage to store the data. In

order to evaluate the performance of CASSARAM when using

alternative storage options, we here employ a Jena TDB-

backed approach (jena.apache.org/documentation/tdb). In Fig.
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Fig. 10: Results of alternative storage usage and distributed sensor searching

10a, we compare the processing times taken by both the Jena

SDB/MySQL and the Jena TDB approach. Furthermore, in

Fig. 10b, we compare the memory usage by the SDB and TDB

approaches. According to the Berlin SPARQL Benchmark

[30], Jena TDB is much faster than Jena SDB. We also

observed similar results both in 5 context data processing

as well as in 10 context data processing. Specifically, Jena

TDB is 10 times faster than SDB when processing 10 context

properties, where the dataset consists of half a million sensor

descriptions. The Jena SDB approach consumed less memory

than the Jena TDB approach when the dataset was less than

100,000 sensor descriptions. However, after that, the Jena

TDB approach consumes less memory than the Jena SDB.

Specifically, Jena TDB uses 50% less memory than Jena

SDB when processing 10 context properties, where the dataset

consists of half a million sensor descriptions. Therefore it is

evident that Jena TDB is more suitable when the number of

sensor descriptions goes beyond 100,000.

Despite the differences we observed in our evaluation,

there are several factors that need to be considered when

selecting underlying storage solutions. As evaluated on the

Berlin SPARQL Benchmark, there are several other storage

options available, such as Sesame (openrdf.org), Virtuoso TS,

Virtuoso RV, and D2R Server [30]. Jena TDB offers faster load

times and better scale, but has the worst query performance.

Sesame seems better all-round for low data sizes assuming

infrequent loads. In contrast, Jena SDB provides moderate

performance, offering load times, query performance, and

scalability between the Jena TDB and Sesame. Based on these

evaluations, at the time at which this paper was written, there

is no superior solution that has all good qualities. Due to the

lack of extensive usage and the short existence of Sesame,

SDB/MySQL can be seen as a better choice especially when

considering database functionalities such as backup, concur-

rent and parallel processing. As we do not expect frequent

loading/ unloading of datasets such as sensor descriptions, it

is evident that SDB outperforms TDB in query processing

(excluding data loading) [30]. As we expect more updates

(transactions) to occur, SDB would be a better choice.

B. Evaluating Distributed Sensor Searching

We evaluated distributed sensor searching using a pri-

vate network that consists of four computational nodes. We

compare two different distributed sensor search techniques,

namely, chain processing and parallel processing with/without

k-extensions, which we discussed in Section V-C. The results

are presented in Fig. 10c. Each node consists of a dataset

of one million sensor data descriptions. The four datasets

are different from each other. Five context properties are

considered for the evaluation and the context information is

stored using Jena TDB. First, we discuss the techniques from

the theoretical perspective.

Let us define some of the notations which will be used in

the following discussion: n= number of computational nodes

(in our experiments n=4), N=number of sensors requested by

the users, Si= number of sensor descriptions stored in the

ith computational node, r= size of a single sensor description

record (i.e., storage requirements), tneti,j = time taken for net-

work communication between the computational nodes i and

j, t
pro
i = time taken to query the computational node i, merge

the indexed results with the incoming results, and select the

final number N of sensors. The total time taken by chain-based

distributed sensor searching can be defined as:

Totalchain =

n
∑

i=1

t
pro
i +

n−1
∑

i=1

tneti,i+1 + tnetn,1 (1)

The total time taken by parallel distributed sensor searching

can be defined as:

TABLE III: The amount of redundant data communication saved by the parallel sensor search with k-extension strategy

Number of sensors requested by the users (N )

100 500 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

k
v
al

u
e

10 -60.7 -60.5 -60.3 -58.7 -56.7 -40.5 -20.2 141.6 344.0

in
M

eg
ab

y
te

s
(M

B
)

100 -5.9 -5.7 -4.1 -2.1 14.1 34.3 196.2 398.5

500 -1.1 0.5 2.5 18.7 38.9 200.8 403.1

1000 0.8 2.8 19.0 39.3 201.1 403.5

5000 0.9 17.1 37.3 199.2 401.5

10000 14.1 34.3 196.2 398.5

50000 10.1 172.0 374.3

100000 141.6 344.0

500000 101.2
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Totalparallel = max
{

i = [2..n] : tproi + tnet1,i

}

(2)

According to the results, it is evident that parallel processing

is more efficient than chain processing in terms of the total

processing time. However, parallel processing is inefficient in

other aspects, such as network communication and bandwidth

consumption. Therefore, we proposed k-extension to address

this issue. The evaluation of the k-extension approach is pre-

sented in Table III. In this experiment, we measured how much

data communication can be saved (i.e., due to elimination of

redundant data communication that occurs in parallel process-

ing without k-extension) by using different k values under

different N values. We measured the guaranteed minimum3

amount of data communications (measured in Megabytes) that

can be saved.

In Table III, positive values (marked in green) indicate the

minimum amount of data communication saved using the k-

extension. Although negative values (marked in orange/red)

indicate no guaranteed savings, some situations (marked in

orange) have a high chance of saving redundant data com-

munication compared to others. Equation (3) can be used to

calculate the guaranteed minimum amount of data saving by

using k- extensions.

TotalSaving =
n
∑

i=2

Sir−

{

[
n
∑

i=2

Si

k
+N + (k − 1)n]× r

}

IF (k < N) (3)

Let us consider different scenarios where chain and parallel

processing can be used. Chain processing is suitable for situ-

ations where saving computational resources and bandwidth

is more critical than response time. A parallel processing

method without k-extension is suitable when response time is

critical and N is fairly small. k-extension requires two com-

munication rounds: communication radios need to be opened

and closed twice. Such a communication pattern consumes

more energy [38], especially if the computational devices are

energy constrained. Therefore, transmitting data at once is

more efficient. However, this recommendation becomes invalid

when N becomes very large (10,000+). Our experiments

clearly show that k-extensions can be used to improve the

efficiency of the parallel sensor searching approach, especially

when N is large. The ideal value of k needs to be determined

based on N , n, and Si.

C. Application

In this section, we show where CASSARAM fits in the

big picture (Figure 11). Sensor data consumers are expected

to interact with a model called Context Aware Sensor Con-

figuration Model (CASCoM) [39]. Details explanation of

CASCoM is out of the scope of this paper. Consumers are

facilitated with a graphical user interface, which is based

on a question-answer (QA) approach, that allows to express

the requirements. Users can answer as many questions as

possible. CASCoM searches and filters the tasks that the

3Depending on the dataset and the context information stored in each node,
the parallel processing technique with k-extension will be able to save more
data communication than the guaranteed minimum level.

CASCOM

Global Sensor 
Network Middleware

CASSARAM

Semantic Data 
Models and Storage 
[Sensor descriptions,

Annotated Data, 
Domain Knowledge]

 S2 S7 S6 S5 S4 S3

Virtual Sensors

Sensor Data 
Consumer

Data 
Streaming 

to 
Consumers

Fig. 11: CASSARAM in Action

user may wants to perform. From the filtered list, users can

select the desired task (e.g. environmental pollution detection).

CASCoM searches for different programming components

that allow to capture the data stream required by consumers

(i.e. sensor data required to detect environmental pollution).

CASCoM tries to find sensors that can be used to produce the

inputs required by the selected data processing components.

To achieve this task, CASCoM employs CASSARAM. Once

the required sensor types are identified (and if multiple sensors

are available), CASSARM graphical user interface is provided

to the consumers to define their priorities. Later, the final

set of sensors and data processing components are composed

together. Required wrappers [40] and the virtual sensor [3] are

generated and sent to GSN by CASCoM. Finally, GSN starts

streaming data to the consumer as defined in the virtual sensor.

VIII. CONCLUSIONS AND FUTURE RESEARCH

With advances in sensor hardware technology and cheap

materials, sensors are expected to be attached to all the objects

around us, which will increase the number of sensors available

to be used. This means we have access to multiple sensors that

would measure a similar environmental phenomenon. Such

circumstances force us to choose between alternatives. We

need to decide which operational and conceptual sensor-related

context properties are more important than others.

In this paper, we showed how the context information

related to each sensor can be used to search and select

the sensors that are best suited to a user’s requirements.

We selected sensors based on the user’s expectations and

priorities. As a proof of concept, we built a working pro-

totype to demonstrate the functionality of our CASSARAM

and to support the experimentations using realistic applica-

tions. We also highlight how CASSARAM helps achieve

our broader sensing-as-a-service vision in the IoT paradigm.

CASSARAM allows optimizing the sensor data collection

approaches by selecting the sensors in an optimized fashion.

For example, CASSARAM can be used to find out which

sensors have more energy and collect data only from those

sensors. This helps to run the entire sensor network for a

much longer time without reconfiguring. We explored three

different techniques that improve the efficiency and scalability

of CASSARAM: comparative-priority based heuristic filtering,

relational-expression based filtering, and distributed sensor

searching. We evaluated the performance of the proposed

model extensively. In the future, we plan to incorporate

CASSARAM into leading IoT middleware solutions such as

GSN, SenseMA, and OpenIoT, to support an automated sensor
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selection functionality in distributed environments. We will

also investigate how to improve the efficiency of CASSARAM

using cluster-based sensor search and heuristic algorithms that

incorporate machine learning techniques.
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