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Abstract—As we are moving towards the Internet of Things
(IoT), the number of sensors deployed around the world is
growing at a rapid pace. Market research has shown a significant
growth of sensor deployments over the past decade and has
predicted a significant increment of the growth rate in the
future. These sensors continuously generate enormous amounts
of data. However, in order to add value to raw sensor data
we need to understand it. Collection, modelling, reasoning, and
distribution of context in relation to sensor data plays critical
role in this challenge. Context-aware computing has proven to
be successful in understanding sensor data. In this paper, we
survey context awareness from an IoT perspective. We present
the necessary background by introducing the IoT paradigm and
context-aware fundamentals at the beginning. Then we provide
an in-depth analysis of context life cycle. We evaluate a subset
of projects (50) which represent the majority of research and
commercial solutions proposed in the field of context-aware
computing conducted over the last decade (2001-2011) based
on our own taxonomy. Finally, based on our evaluation, we
highlight the lessons to be learnt from the past and some
possible directions for future research. The survey addresses
a broad range of techniques, methods, models, functionalities,
systems, applications, and middleware solutions related to context
awareness and IoT. Our goal is not only to analyse, compare
and consolidate past research work but also to appreciate their
findings and discuss their applicability towards the IoT.

Index Terms—Internet of things, context awareness, sensor
networks, sensor data, context life cycle, context reasoning,
context modelling, ubiquitous, pervasive, mobile, middleware.

I. INTRODUCTION

C
ONTEXT awareness, as a core feature of ubiquitous

and pervasive computing systems, has existed and been

employed since the early 1990s. The focus on context-aware

computing evolved from desktop applications, web applica-

tions, mobile computing, pervasive/ubiquitous computing to

the Internet of Things (IoT) over the last decade. However,

context-aware computing became more popular with the intro-

duction of the term ‘ubiquitous computing’ by Mark Weiser

[1] in his ground-breaking paper The Computer for the 21st

Century in 1991. Then the term ‘context-aware’ was first used

by Schilit and Theimer [2] in 1994.

Since then, research into context-awareness has been es-

tablished as a well known research area in computer science.

Many researchers have proposed definitions and explanations

of different aspects of context-aware computing, as we will
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discuss briefly in Section III. The definitions for ‘context’ and

‘context-awareness’ that are widely accepted by the research

community today were proposed by Abowd et al. [3] in 1999.

During the last two decades, researchers and engineers

have developed a significant amount of prototypes, systems,

and solutions using context-aware computing techniques. Even

though the focus varied depending on each project, one aspect

remained fairly unchanged: that is the number of data sources

(e.g. software and hardware sources). For example, most of

the proposed solutions collect data from a limited number of

physical (hardware) and virtual (software) sensors. In these

situations, collecting and analysing sensor data from all the

sources is possible and feasible due to limited numbers. In

contrast, IoT envisions an era where billions of sensors are

connected to the Internet, which means it is not feasible to

process all the data collected by those sensors. Therefore,

context-awareness will play a critical role in deciding what

data needs to be processed and much more.

Due to advances in sensor technology, sensors are get-

ting more powerful, cheaper and smaller in size, which has

stimulated large scale deployments. As a result, today we

have a large number of sensors already deployed and it is

predicted that the numbers will grow rapidly over the next

decade [4]. Ultimately, these sensors will generate big data

[5]. The data we collect may not have any value unless we

analyse, interpret, and understand it. Context-aware computing

has played an important role in tackling this challenge in

previous paradigms, such as mobile and pervasive, which lead

us to believe that it would continue to be successful in the

IoT paradigm as well. Context-aware computing allows us

to store context1 information linked to sensor data so the

interpretation can be done easily and more meaningfully. In

addition, understanding context makes it easier to perform

machine to machine communication as it is a core element

in the IoT vision.

When large numbers of sensors are deployed, and start

generating data, the traditional application based approach (i.e.

connect sensors directly to applications individually and man-

ually) becomes infeasible. In order to address this inefficiency,

significant amounts of middleware solutions are introduced by

researchers. Each middleware solution focuses on different as-

pects in the IoT, such as device management, interoperability,

platform portability, context-awareness, security and privacy,

1The term ‘context’ implicitly provide the meaning of ‘information’ ac-
cording to the widely accepted definition provided by [3]. Therefore, it
is inaccurate to use the term ‘context information’ where ‘information’ is
explicitly mentioned. However, research community and documents on the
web frequently use the term ‘context information’. Therefore, we also use
both terms interchangeably.

CharithMini
Text Box
Charith Perera, Arkady Zaslavsky, Peter Christen, Dimitrios Georgakopoulos, Context Aware Computing for The Internet of Things: A Survey, IEEE Communications Surveys & Tutorials, Volume 16, Issue 1, 2014, Pages 414-454 (41) More: www.charithperera.net 



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. X, XXXX XXXX 2

and many more. Even though, some solutions address multiple

aspects, an ideal middleware solution that addresses all the

aspects required by the IoT is yet to be designed. In this survey,

we consider identifying the context-aware computing related

features and functionalities that are required by an ideal IoT

middleware solution as a key task.

There have been several surveys conducted in relation to

this field. We briefly introduce these surveys in chronologi-

cal order. Chen and Kotz [6] (2000) have surveyed context

awareness, focusing on applications, what context they use,

and how contextual information is leveraged. In 2004, Strang

and Linnhoff-Popien [7] compared the most popular context

modelling techniques in the field. Middleware solutions for

sensor networks are surveyed by Molla and Ahamed [8] in

2006. Two separate surveys were conducted by Kjaer [9] and

Baldauf et al. [10] in 2007 on context-aware systems and

middleware solutions using different taxonomies. Both surveys

compared limited numbers, but different projects with very

little overlap. c et al. [11] (2009) reviewed popular context

representation and reasoning from a pervasive computing

perspective. In 2010, Bettini et al. [12] also comprehensively

surveyed context modelling and reasoning by focusing on tech-

niques rather than projects. In the same year another survey

was done by Saeed and Waheed [13] focusing on architectures

in the context-aware middleware domain. Bandyopadhyay et

al. [14] have conducted a survey on existing popular Internet

of Things middleware solutions in 2011. In 2012, Makris et

al. [15] have conducted a survey on context-aware mobile and

wireless networking (CAMoWiN) domain where they have

identified all the possible components of a typical CAMoWiN

architecture. The latest survey is done by Bellavista et al. [16]

(2013) which is focused on context distribution for mobile

ubiquitous systems.

Our survey differs from the previous literature surveys

mentioned above in many ways. Most of the surveys evaluated

a limited number of projects. In contrast, we selected a large

number of projects (50) covering a decade, based on the unique

criteria that will be explained at the end of this section. These

projects are different in scale. Some are large scale projects

and others corresponds to small scale contributions. We took

a much broader viewpoint compared to some of the previous

surveys, as they have focused on specific elements such as

modelling, reasoning, etc. Finally and most importantly, our

taxonomy formation and organisation is completely different.

Rather than building a theoretical taxonomy and then trying

to classify existing research projects, prototypes and systems

according to it, we use a practical approach. We built our

taxonomy based on past research projects by identifying the

features, models, techniques, functionalities and approaches

they employed at higher levels (e.g. we do not consider

implementation/code level differences between different so-

lutions). We consolidated this information and analysed the

capabilities of each solution or the project. We believe this

approach allows us to highlight the areas where researchers

have mostly (priorities) and rarely (non-priorities) focused

their attention and the reasons behind. Further, we have also

used a non-taxonomical project based evaluation, where we

highlight how the different combinations of components are

designed, developed and used in each project. This allows to

discuss their applicability from an IoT perspective.
Our objectives in revisiting the literature are threefold:

1) to learn how context-aware computing techniques have

helped to develop solutions in the past, 2) how can we apply

those techniques to solve problems in the future in different

paradigms such as the IoT, and 3) to highlight open challenges

and to discuss future research directions.
This paper is organised into sections as follows: Section

II provides an introduction to the IoT. In this section, we

briefly describe the history and evolution of the Internet.

Then we explain what the IoT is, followed by a list of

application domains and statistics that show the significance

of the IoT. We also describe the relationship between sensor

networks and the IoT. Comparisons of popular IoT middleware

solutions are presented at the end of the section in order to

highlight existing research gaps. In Section III, we present

context awareness fundamentals such as context-aware related

definitions, context types and categorisation schemes, features

and characteristics, and context awareness management design

principles. In Section IV, we conduct our main discussion

based on context life cycle where we identify four stages:

acquisition, modelling, reasoning, and distribution. Section V

briefly discusses the highlights of each project, which we use

for the comparison later. Finally, Section VI discusses the

lessons learn from the literature and Section VII identifies

future research directions and challenges. Conclusion remarks

are presented in Section VIII.
For this literature review, we analyse, compare, classify a

subset of both small scale and large scale projects (50) which

represent the majority of research and commercial solutions

proposed in the field of context-aware computing based on

our own taxonomy. We selected the existing solutions to

be reviewed based on different criteria. Mainly, we selected

projects that were conducted over the last decade (2001-2011).

We also considered main focus, techniques used, popularity,

comprehensiveness, information availability, and the year of

publication, in order to make sure that our review provides a

balanced view on context-aware computing research.

II. THE INTERNET OF THINGS PARADIGM

In this section, we briefly introduce the IoT paradigm.

Our intention is not to survey the IoT, but to present some

fundamental information (e.g. how Internet evolved, what

is the IoT, statistics related to IoT, underline technologies,

characteristics, and research gaps in IoT paradigm) that will

help with understanding the historic movements and the

direction into which technology is moving today. The IoT

paradigm has its own concepts and characteristics. It also

shares significant amounts of concepts with other computer

fields. The IoT bundles different technologies (e.g. sensor

hardware/firmware, semantic, cloud, data modelling, storing,

reasoning, processing, communication technologies) together

to build its vision. We apply the existing technologies in

different ways based on the characteristics and demands of

the IoT. The IoT does not revolutionise our lives or the field

of computing. It is another step in the evolution of the Internet

we already have.
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Fig. 1. Evolution of the Internet in five phases. The evolution of Internet begins with connecting two computers together and then moved towards creating
World Wide Web by connecting large number of computers together. The mobile-Internet emerged by connecting mobile devices to the Internet. Then, peoples’
identities joined the Internet via social networks. Finally, it is moving towards Internet of Things by connecting every day objects to the Internet.

A. Evolution of Internet

Before we investigate the IoT in depth, it is worthwhile

to look at the evolution of the Internet. In the late 1960s,

communication between two computers was made possible

through a computer network [17]. In the early 1980s the

TCP/IP stack was introduced. Then, commercial use of the

Internet started in the late 1980s. Later, the World Wide Web

(WWW) became available in 1991 which made the Internet

more popular and stimulate the rapid growth. Web of Things

(WoT) [18], which based on WWW, is a part of IoT.

Later, mobile devices connected to the Internet and formed

the mobile-Internet [19]. With the emergence of social net-

working, users started to become connected together over the

Internet. The next step in the IoT is where objects around us

will be able to connect to each other (e.g. machine to machine)

and communicate via the Internet [20]. Figure 1 illustrates the

five phases in the evolution of the Internet.

B. What is the Internet of Things?

During the past decade, the IoT has gained significant

attention in academia as well as industry. The main reasons

behind this interest are the capabilities that the IoT [22], [23]

will offer. It promises to create a world where all the objects

(also called smart objects [24]) around us are connected to

the Internet and communicate with each other with minimum

human intervention [25]. The ultimate goal is to create ‘a better

world for human beings’, where objects around us know what

we like, what we want, and what we need and act accordingly

without explicit instructions [26].

The term ‘Internet of Things’ was firstly coined by Kevin

Ashton [27] in a presentation in 1998. He has mentioned

“The Internet of Things has the potential to change the

world, just as the Internet did. Maybe even more so”. Then,

the MIT Auto-ID centre presented their IoT vision in 2001

[28]. Later, IoT was formally introduced by the International

Telecommunication Union (ITU) by the ITU Internet report

in 2005 [29].

The IoT encompasses a significant amount of technologies

that drive its vision. In the document, Vision and challenges

for realising the Internet of Things, by CERP-IoT [4], a

comprehensive set of technologies was listed. IoT is a very

broad vision. The research into the IoT is still in its infancy.

Therefore, there aren’t any standard definitions for IoT. The

following definitions were provided by different researchers.

• Definition by [30]: “Things have identities and virtual

personalities operating in smart spaces using intelligent

interfaces to connect and communicate within social, envi-

ronment, and user contexts.”

• Definition by [20]:“The semantic origin of the expression is

composed by two words and concepts: Internet and Thing,

where Internet can be defined as the world-wide network

of interconnected computer networks, based on a standard

communication protocol, the Internet suite (TCP/IP), while

Thing is an object not precisely identifiable Therefore, se-

mantically, Internet of Things means a world-wide network

of interconnected objects uniquely addressable, based on

standard communication protocols.”

Internet
of 

Things

Any path
Any Network

Anything
Any device

Any Service
Any 

Business

Anyone
Anybody

Anytime
Any context

Any place
Anywhere

Fig. 2. Definition of the Internet of Things: The Internet of Things allows
people and things to be connected anytime, anyplace, with anything and
anyone, ideally using any path/network and any service [21].
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• Definition by [21]: “The Internet of Things allows people

and things2 to be connected Anytime, Anyplace, with Any-

thing and Anyone, ideally using Any path/network and Any

service.”

We accept the last definition provided by [21] for our

research work, because we believe, this definition encapsulates

the broader vision of IoT. Figure 2 illustrates the definition

more clearly. The broadness of IoT can be identified by

evaluating the application domains presented in Section II-C.

C. IoT Application Domains

The IoT, interconnection and communication between ev-

eryday objects, enables many applications in many domains.

The application domain can be mainly divided in to three cat-

egories based on their focus [23], [4]: industry, environment,

and society. The magnitude of the applications can be seen in

the statistics presented in Section II-D.

Supply chain management [31], transportation and logis-

tics [32], aerospace, aviation, and automotive are some of

the industry focused applications of IoT. Telecommunication,

medical technology [33], healthcare, smart building, home

[34] and office, media, entertainment, and ticketing are some

of the society focused applications of IoT. Agriculture and

breeding [35], [36], recycling, disaster alerting, environmental

monitoring are some of the environment focused applications.

Asin and Gascon [37] listed 54 application domains under

twelve categories: smart cities, smart environment, smart wa-

ter, smart metering, security and emergencies, retail, logistics,

industrial control, smart agriculture, smart animal farming,

domestic and home automation, and eHealth.

D. IoT Related Statistics

The vision of the IoT is heavily energised by statistics and

predictions. We present the statistics to justify our focus on

the IoT and to show the magnitude of the challenges. It is

estimated that there about 1.5 billion Internet-enabled PCs and

over 1 billion Internet-enabled mobile phones today. These two

categories will be joined with Internet-enabled devices (smart

objects [24])) in the future. By 2020, there will be 50 to 100

billion devices connected to the Internet [4].

According to BCC Research [38], the global market for

sensors was around $56.3 billion in 2010. In 2011, it was

around $62.8 billion. Global market for sensors is expected

to increase to $91.5 billion by 2016, at a compound annual

growth rate of 7.8%.

E. The Essential Component of IoT: Sensor Networks

We provide a brief introduction to sensor networks in this

section as it is the most essential component of the IoT. A

sensor network comprises one or more sensor nodes, which

communicate between themselves using wired and wireless

technologies. In sensor networks, sensors can be homogeneous

or heterogeneous. Multiple sensor networks can be connected

2We use both terms, ‘objects’ and ‘things’ interchangeably to give the same
meaning as they are frequently used in IoT related documentation. Some other
terms used by the research community are ‘smart objects’, ‘devices’, ‘nodes’.

together through different technologies and protocols. One

such approach is through the Internet. The components and

the layered structure of a typical sensor network are discussed

in Section II-F.

We discuss how sensor networks and the IoT work together

in Section II-G. However, there are other technologies that

can complement the sensing and communication infrastructure

in IoT paradigm such as traditional ad-hoc networks. These

are clearly a different technology from sensor networks and

have many weaknesses. The differences are comprehensively

discussed in [39].

There are three main architectures in sensor networks: flat

architecture (data transfers from static sensor nodes to the sink

node using a multi-hop fashion), two-layer architecture (more

static and mobile sink nodes are deployed to collect data from

sensor nodes), and three-layer architecture (multiple sensor

networks are connected together over the Internet). Therefore,

IoT follows a three-layer architecture.

Most of the sensors deployed today are wireless. There

are several major wireless technologies used to build wireless

sensor networks: wireless personal area network (WPAN) (e.g.

Bluetooth), wireless local area network (WLAN) (e.g. Wi-Fi),

wireless metropolitan area network (WMAN) (e.g. WiMAX),

wireless wide area network (WWAN) (e.g. 2G and 3G net-

works), and satellite network (e.g. GPS). Sensor networks

also use two types of protocols for communication: non-IP

based (e.g: Zigbee and Sensor-Net) and IP-based protocols

(NanoStack, PhyNet, and IPv6).

The sensor network is not a concept that emerged with

the IoT. The concept of a sensor network and related re-

search existed a long time before the IoT was introduced.

However, sensor networks were used in limited domains to

achieve specific purposes, such as environment monitoring

[40], agriculture [35], medical care [41], event detection [42],

structural health monitoring [43], etc. Further, there are three

categories of sensor networks that comprise the IoT [44]: body

sensor networks (BSN), object sensor networks (OSN), and

environment sensor networks (ESN).

Molla and Ahamed [8] identified ten challenges that need

to be considered when developing sensor network middle-

ware solutions: abstraction support, data fusion, resource con-

straints, dynamic topology, application knowledge, program-

ming paradigm, adaptability, scalability, security, and QoS

support. A comparison of different sensor network middleware

solutions is also provided based on the above parameters.

Several selected projects are also discussed in brief in order to

discover the approaches they take to address various challenges

associated with sensor networks.

Some of the major sensor network middleware approaches

are IrisNet, JWebDust, Hourglass, HiFi, Cougar, Impala,

SINA, Mate, TinyDB, Smart Object, Agilla, TinyCubus,

TinyLime, EnviroTrack, Mires, Hood, and Smart Messages.

Some of the above approaches are surveyed in [8], [45].

A survey on web based wireless sensor architectures and

applications is presented in [46].
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F. Layers in Sensor Networks

We have presented a typical structure of a sensor network

in Figure 3. It comprises the most common components in a

sensor network. As we have shown, with the orange coloured

arrows, data flows from right to left. Data is generated by

the low-end sensor nodes and high-end sensor nodes. Then,

data is collected by mobile and static sink nodes. The sink

nodes send the data to low-end computational devices. These

devices perform a certain amount of processing on the sensor

data. Then, the data is sent to high-end computational devices

to be processed further. Finally, data reaches the cloud where

it will be shared, stored, and processed significantly.

Cloud (Internet)

Static Sink 

Node

Sensor Networks (SN
2
)

Mobile Sink 
Node

High-end 
Computational 

Devices 

Low-end 
Computational 

Devices 

Sink 
Nodes

High-end 
Sensor 
Nodes 

Low-end 
Sensor 
Nodes 

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1Layer 6

Fig. 3. Layered structure of a sensor network: These layers are identified
based on the capabilities posed by the devices. In IoT, this layered architecture
may have additional number of sub layers as it is expected to comprises large
verity of in sensing capabilities.

Based on the capabilities of the devices involved in a sensor

network, we have identified six layers. Information can be

processed in any layer. Capability means the processing, mem-

ory, communication, and energy capacity. Capabilities increase

from layer one to layer six. Based on our identification of

layers, it is evident that an ideal system should understand the

capability differences, and perform data management accord-

ingly. It is all about efficiency and effectiveness. For example,

perform processing in the first few layers could reduce data

communication. However, devices in the first few layers do

not have a sufficient amount of energy and processing power

to do comprehensive data processing [47]. IoT research needs

to find more efficient and effective ways of data management,

such as collecting, modelling, reasoning, distributing.

G. Relationship Between Sensor Networks and IoT

In earlier sections we introduced both IoT and sensor

network concepts. In this section we explain the relation-

ship between the two concepts. Previously, we argued that

sensor networks are the most essential components of the

IoT. Figure 4 illustrates the big picture. The IoT comprises

sensors and actuators. The data is collected using sensors.

Then, it is processed and decisions are made. Finally, actuators

perform the decided actions. This process is further discussed

in Section IV. Further, integration between wireless sensor

networks and the IoT are comprehensively discussed in [48].

The difference between sensor networks (SN) and the IoT is

largely unexplored and blurred. We can elaborate some of the

characteristics of both SN and IoT to identify the differences.

• SN comprises of the sensor hardware (sensors and ac-

tuators), firmware and a thin layer of software. The IoT

comprises everything that SN comprises and further it com-

prises a thick layer of software such as middleware systems,

frameworks, APIs and many more software components. The

software layer is installed across computational devices (both

low and high-end) and the cloud.

• From their origin, SNs were designed, developed, and used

for specific application purposes, for example, detecting bush

fire [44]. In the early days, sensor networks were largely

used for monitoring purposes and not for actuation [49]. In

contrast, IoT is not focused on specific applications. The

IoT can be explained as a general purpose sensor network

[50]. Therefore, the IoT should support many kinds of

applications. During the stage of deploying sensors, the IoT

would not be targeted to collect specific types of sensor

data, rather it would deploy sensors where they can be used

for various application domains. For example, company may

deploy sensors, such as pressure sensors, on a newly built

bridge to track its structural health. However, these sensors

may be reused and connect with many other sensors in

order to track traffic at a later stage. Therefore, middleware

solutions, frameworks, and APIs are designed to provide

generic services and functionalities such as intelligence,

semantic interoperability, context-awareness, etc. that are

required to perform communication between sensors and

actuators effectively.

• Sensor networks can exist without the IoT. However, the IoT

cannot exist without SN, because SN provides the majority

of hardware (e.g. sensing and communicating) infrastructure

support, through providing access to sensors and actuators.

There are several other technologies that can provide access

to sensor hardware, such as wireless ad-hoc networks. How-

ever, they are not scalable and cannot accommodate the needs

of the IoT individually [39], though they can complement the

IoT infrastructure. As is clearly depicted in Figure 4, SN are

a part of the IoT. However, the IoT is not a part of SN.

Sensor Network                           

Middleware + Frameworks + APIs

Applications

Users

Services

Other 
Technologies

Internet of Things

Sensors Actuators

Firmware

Fig. 4. Relationship between sensor networks and IoT.

H. Characteristics of the IoT

In Section II-G, we highlighted the differences between sen-

sor networks and the IoT. Further, we briefly explore the char-

acteristics of the IoT from a research perspective. Based on
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previous research efforts we identified seven major character-

istics in the IoT [4]: intelligence, architecture, complex system,

size considerations, time considerations, space considerations,

and everything-as-a-service. These characteristics need to be

considered when developing IoT solutions throughout all the

phases from design, development, implement and evaluation.

• Intelligence: This means the application of knowledge.

First the knowledge needs to be generated by collecting

data and reasoning it. Transforming the collected raw data

into knowledge (high-level information) can be done by

collecting, modelling, and reasoning the context. Context can

be used to fuse sensor data together to infer new knowledge.

Once we have knowledge, it can be applied towards more

intelligent interaction and communication.

• Architecture: IoT should be facilitated by a hybrid architec-

ture which comprises many different architectures. Primarily

there would be two architectures: event driven [51] and time

driven. Some sensors produce data when an event occurs (e.g.

door sensor); the rest produce data continuously, based on

specified time frames (e.g. temperature sensor). Mostly, the

IoT and SN are event driven [52]. Event-Condition-Action

(ECA) rules are commonly used in such systems.

• Complex system: The IoT comprises a large number of

objects (sensors and actuators) that interact autonomously.

New objects will start communicating and existing ones will

disappear. Currently, there are millions of sensors deployed

around the world [53]. Interactions may differ significantly

depending on the objects capabilities. Some objects may

have very few capabilities, and as such store very limited

information and do no processing at all. In contrast, some

objects may have larger memory, processing, and reasoning

capabilities, which make them more intelligent.

• Size considerations: It is predicted that there will be 50-

100 billion devices connected to the Internet by 2020 [4]. The

IoT needs to facilitate the interaction among these objects.

The numbers will grow continuously and will never decrease.

Similar to the number of objects, number of interactions may

also increase significantly.

• Time considerations: The IoT could handle billions of

parallel and simultaneous events, due to the massive number

of interactions. Real-time data processing is essential.

• Space considerations: The precise geographic location of a

object will be critical [54] as location plays a significant role

in context-aware computing. When the number of objects get

larger, tracking becomes a key requirement. Interactions are

highly dependent on their locations, their surroundings, and

presence of other entities (e.g. objects and people).

• Everything-as-a-service: Due to the popularity of cloud

computing [55], consuming resources as a service [56]

such as Platform-as-a-Service (PaaS), Infrastructure-as-a-

Service (IaaS), Software-as-a-Service (SaaS), has become

main stream. Everything-as-a-service [57] model is highly

efficient, scalable, and easy to use. IoT demands significant

amounts of infrastructure to be put in place in order to make

its vision a reality, where it would follow a community or

crowd based approach. Therefore, sharing would be essential,

where an everything-as-a-service model would suit mostly

sensing-as-a-service [5].

I. Middleware Support for IoT

As we mentioned at the beginning, the IoT needs to be

supported by middleware solutions. “Middleware is a software

layer that stands between the networked operating system and

the application and provides well known reusable solutions

to frequently encountered problems like heterogeneity, inter-

operability, security, dependability [58].” The functionalities

required by IoT middleware solutions are explained in detail in

[4], [19], [20], [21], [29]. In addition, challenges in developing

middleware solutions for the IoT are discussed in [59]. We

present the summary of a survey conducted by Bandyopad-

hyay et al. [14]. They have selected the leading middleware

solutions and analyse them based on their functionalities,

each one offers, device management, interoperation, platform

portability, context-awareness, and security and privacy. Table

I shows the survey results. By the time we were preparing

this survey, some of the middleware solutions listed (i.e. GSN

and ASPIRE) were in the processing of extending towards

next generation solutions (i.e. EU FP7 project OpenIoT (2012-

2014) [60]) by combining each other’s strengths.

TABLE I
IOT MIDDLEWARE COMPARISON [14]

Middleware DM I PP CA SP

Hydra [61] X X X X X

ISMB [62] X × X × ×

ASPIRE [63] X × X × ×

UBIWARE [64] X × X X ×

UBISOAP [65] X X X × ×

UBIROAD [66] X X X X X

GSN [67] X × X × X

SMEPP [68] X × X X X

SOCRADES [69] X X X × X

SIRENA [70] X X X × X

WHEREX [71] X X X × ×

Legend: Device Management (DM), Interoperation (I), Platform
Portability (PP), Context Awareness (CA), Security & Privacy (SP)

J. Research Gaps

According to Table I, it can be seen that the majority of the

IoT middleware solutions do not provide context-awareness

functionality. In contrast, almost all the solutions are highly

focused on device management, which involves connecting

sensors to the IoT middleware. In the early days, context-

awareness was strongly bound to pervasive and ubiquitous

computing. Even though there were some middleware solu-

tions that provided an amount of context-aware functionality,

they did not satisfy the requirements that the IoT demands.

We discuss the issues and drawbacks with existing solutions, in

detail, in Section V. We discuss some of the research directions

in Section VII.
In this section, we introduced the IoT paradigm and high-

lighted the importance of context-awareness for the IoT. We

also learnt that context-awareness has not been addressed in

existing IoT focused solutions, which motivates us to survey

the solutions in other paradigms to evaluate the applicability

of context-aware computing techniques toward IoT. In the next

section we discuss context-aware fundamentals that helps us

understand the in-depth discussions in the later sections.
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III. CONTEXT AWARENESS FUNDAMENTALS

This section discusses definitions of context and context

awareness, context-aware features, types of context and cat-

egorisation schemes, different levels and characteristics of

context-awareness, and finally, context management design

principles in the IoT paradigm.

A. Context-awareness Related Definitions

1) Definition of Context: The term context has been defined

by many researchers. Dey et al. [72] evaluated and highlighted

the weaknesses of these definitions. Dey claimed that the

definition provided by Schilit and Theimer [2] was based on

examples and cannot be used to identify new context. Further,

Dey claimed that definitions provided by Brown [73], Franklin

and Flachsbart [74], Rodden et al. [75], Hull et al. [76], and

Ward et al. [77] used synonyms to refer to context, such as

environment and situation. Therefore, these definitions also

cannot be used to identify new context. Abowd and Mynatt

[78] identified the five W’s (Who, What, Where, When, Why)

as the minimum information that is necessary to understand

context. Schilit et al. [79] and Pascoe [80] have also defined

the term context. Dey claimed that these definitions were too

specific and cannot be used to identify context in a broader

sense and provided a definition for context as follows:

“Context is any information that can be used to characterise

the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a

user and an application, including the user and applications

themselves [3].”

We accept the definition of context provided by Abowd et al.

[3] to be used in this research work, because this definition can

be used to identify context from data in general. If we consider

a data element, by using this definition, we can easily identify

whether the data element is context or not. A number of

dictionaries have also defined and explained the word context:

• Synonyms [81]: “Circumstance, situation, phase, position,

posture, attitude, place, point; terms; regime; footing, stand-

ing, status, occasion, surroundings, environment, location,

dependence.”

• Definition by FOLDOC [82]: “That which surrounds, and

gives meaning to, something else.”

• Definition by WordNet [83]: “Discourse that surrounds a

language unit and helps to determine its interpretation”

• Definition by Longman [84]: “The situation, events, or

information that are related to something and that help you

to understand it”

In addition, Sanchez et al. [85] explained the distinction

between raw data and context information as follows:

• Raw (sensor) data: Is unprocessed and retrieved directly

from the data source, such as sensors.

• Context information: Is generated by processing raw sen-

sor data. Further, it is checked for consistency and meta data

is added.

For example, the sensor readings produced by GPS sensors

can be considered as raw sensor data. Once we put the GPS

sensor readings in such a way that it represents a geographical

location, we call it context information. Therefore in general,

the raw data values produced by sensors can be considered as

data. If this data can be used to generate context information,

we identify these data as context. Therefore, mostly what we

capture from sensors are data not the context information.

Ahn and Kim [86] define context (also called compound

events) as a set of interrelated events with logical and timing

relations among them. They also define an event as an occur-

rence that triggers a condition in a target area. There are two

categories of events: discrete events and continuous events. If

the sampling rate is p:

• Discrete events: An event that occurs at time t and t +

p, there are considered to have been two separate event

instances. (e.g. a door open, lights on, etc.)

• Continuous events: An event instance lasting for at least

time p, where an event occurring at time t and t + p, cannot

be considered as two separate events. (e.g. raining, having a

shower, driving a car, etc.)

2) Definition of Context-awareness: The term context

awareness, also called sentient, was first introduced by Schilit

and Theimer [2] in 1994. Later, it was defined by Ryan et al.

[87]. In both cases, the focus was on computer applications

and systems. As stated by Abowd et al. [3], those definitions

are too specific and cannot be used to identify whether a given

system is a context-aware system or not. Therefore, Dey has

defined the term context-awareness as follows:

“A system is context-aware if it uses context to provide rel-

evant information and/or services to the user, where relevancy

depends on the user’s task. [3]”

We accept the above definition on context-awareness to be

used in our research work, because we can use this definition

to identify context-aware systems from the rest. If we consider

a system, by using this definition we can easily identify

whether this system is a context-aware system or not. Context

awareness frameworks typically should support acquisition,

representation, delivery, and reaction [72]. In addition, there

are three main approaches that we can follow to build context-

aware applications [88].

• No application-level context model: Applications perform

all the actions, such as context acquisition, pre-processing,

storing, and reasoning within the application boundaries.

• Implicit context model: Applications uses libraries, frame-

works, and toolkits to perform context acquisition, pre-

processing, storing, and reasoning tasks. It provides a stan-

dard design to follow that makes it easier to build the

applications quickly. However, still the context is hard bound

to the application.

• Explicit context model: Applications uses a context man-

agement infrastructure or middleware solution. Therefore,

actions such as context acquisition, pre-processing, storing,

and reasoning lie outside the application boundaries. Context

management and application are clearly separated and can be

developed and extend independently.

3) Definition of Context Model and Context Attribute: We

adopt the following interpretations of context model and con-

text attributes provided by Henricksen [89] based on Abowd

et al. [3] in our research work.
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“A context model identifies a concrete subset of the context

that is realistically attainable from sensors, applications and

users and able to be exploited in the execution of the task.

The context model that is employed by a given context-aware

application is usually explicitly specified by the application

developer, but may evolve over time [89].”

“A context attribute is an element of the context model

describing the context. A context attribute has an identifier,

a type and a value, and optionally a collection of properties

describing specific characteristics [89].”

4) Definition of Quality of Context: There are number of

definitions and parameters that have been proposed in the

literature regarding quality of context (QoC). A survey on QoC

is presented in [16]. QoC is defined using a set of parameters

that expresses the quality of requirements and properties of the

context data. After evaluating a number of different parameter

proposals in the literature, [16] has defined QoC based on three

parameters: context data validity, context data precision, and

context data up-to-dateness. QoC are being used to resolve

context data conflicts. Further, they claim that QoC is depend

on quality of the physical sensor, quality of the context data,

and quality of the delivery process.

B. Context-aware Features

After analysing and comparing the two previous efforts con-

ducted by Schilit et al. [79] and Pascoe [80], Abowd et al. [3]

identified three features that a context-aware application can

support: presentation, execution, and tagging. Even though,

the IoT vision was not known at the time these features are

identified, they are highly applicable to the IoT paradigm as

well. We elaborate these features from an IoT perspective.

• Presentation: Context can be used to decide what infor-

mation and services need to be presented to the user. Let

us consider a smart [22] environment scenario. When a user

enters a supermarket and takes their smart phone out, what

they want to see is their shopping list. Context-aware mobile

applications need to connect to kitchen appliances such as a

smart refrigerator [90] in the home to retrieve the shopping

list and present it to the user. This provides the idea of

presenting information based on context such as location,

time, etc. By definition, IoT promises to provide any service

anytime, anyplace, with anything and anyone, ideally using

any path/network.

• Execution: Automatic execution of services is also a critical

feature in the IoT paradigm. Let us consider a smart home

[22] environment. When a user starts driving home from

their office, the IoT application employed in the house should

switch on the air condition system and switch on the coffee

machine to be ready to use by the time the user steps into

their house. These actions need to be taken automatically

based on the context. Machine-to-machine communication

is a significant part of the IoT.

• Tagging: In the IoT paradigm, there will be a large number

of sensors attached to everyday objects. These objects will

produce large volumes of sensor data that has to be collected,

analysed, fused and interpreted [91]. Sensor data produced

by a single sensor will not provide the necessary information

that can be used to fully understand the situation. Therefore,

sensor data collected through multiple sensors needs to

be fused together. In order to accomplish the sensor data

fusion task, context needs to be collected. Context needs

to be tagged together with the sensor data to be processed

and understood later. Context annotation plays a significant

role in context-aware computing research. We also call this

tagging operation as annotation as well.

C. Context Types and Categorisation Schemes

Different researchers have identified context types differ-

ently based of different perspectives. Abowd et al. [3] in-

troduced one of the leading mechanisms of defining context

types. They identified location, identity, time, and activity as

the primary context types. Further, they defined secondary

context as the context that can be found using primary context.

For example, given primary context such as a person’s identity,

we can acquire many pieces of related information such as

phone numbers, addresses, email addresses, etc.

However, using this definition we are unable to identify the

type of a given context. Let us consider two GPS sensors

located in two different locations. We can retrieve GPS values

to identify the position of each sensor. However, we can

only find the distance between the two sensors by performing

calculations based on the raw values generated by the two

sensor. The question is, ‘what is the category that distance

belongs to?’ ‘is it primary or secondary?’ The distance is not

just a value that we sensed. We computed the distance by

fusing two pieces of context. The above definition does not

represent this accurately.

Thus, we define a context categorisation scheme (i.e. pri-

mary and secondary) that can be used to classify a given data

value (e.g. single data item such as current time) of context

in terms of an operational perspective (i.e. how the data was

acquired). However, the same data value can be considered

as primary context in one scenario and secondary context in

another. For example, if we collect the blood pressure level

of a patient directly from a sensor attached to the patient,

it could be identified as primary context. However, if we

derive the same information from a patient’s health record

by connecting to the hospital database, we call it secondary

context. Therefore, the same information can be acquired using

different techniques. It is important to understand that the

quality, validity, accuracy, cost and effort of acquisition, etc.

may varied significantly based on the techniques used. This

would be more challenging in the IoT paradigm, because there

would be a large amount of data sources that can be used

to retrieve the same data value. To decide which source and

technique to use would be a difficult task. We will revisit this

challenge in Section VI. In addition, a similar type of context

information can be classified as both primary and secondary.

For example, location can be raw GPS data values or the

name of the location (e.g. city, road, restaurant). Therefore,

identifying a location as primary context without examining

how the data has been collected is fairly inaccurate. Figure 5

depicts how the context can be identified using our context

type definitions.
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TABLE II
DIFFERENT CONTEXT CATEGORISATION SCHEMES AND THEIR SCOPES
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User X X X X X

Computing (System) X X X X X

Physical (Environment) X X X X X X

Historical X

Social X

Networking X

Things X

Sensor X

Who (Identity) X X X

Where (Location) X X X

When (Time) X X X X X

What (Activity) X X

Why X

Sensed X X

Static X

Profiled X X

Derived X X

Operational X

Conceptual X

Objective X

Cognitive X

External (Physical) X

Internal (Logical) X

Low-level (Observable) X X

High-level (Non-Observable) X X

• Primary context: Any information retrieved without using

existing context and without performing any kind of sensor

data fusion operations (e.g. GPS sensor readings as location

information).

• Secondary context: Any information that can be computed

using primary context. The secondary context can be com-

puted by using sensor data fusion operations or data retrieval

operations such as web service calls (e.g. identify the dis-

tance between two sensors by applying sensor data fusion

operations on two raw GPS sensor values). Further, retrieved

context such as phone numbers, addresses, email addresses,

birthdays, list of friends from a contact information provider

based on a personal identity as the primary context can also

be identified as secondary context.

We acknowledge location, identity, time, and activity as

important context information. The IoT paradigm needs to

consider more comprehensive categorisation schemes in a

hierarchical manner, such as major categories, sub categories

and so on. Operational categorisation schemes allow us to

understand the issues and challenges in data acquisition tech-

niques, as well as quality and cost factors related to context.

In contrast, conceptual categorisation allows an understanding

of the conceptual relationships between context. We have to

integrate perspective in order to model context precisely. We

compare different context categorisation schemes in Table IV.
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Primary Secondary

Categories of Context (Operational Perspective)
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)

Location data from GPS 
sensor (e.g. longitude and 
latitude)

Distance of two sensors 
computed using GPS values

Image of a map retrieved 
from map service provider

Identify opening door activity 
from a door sensor

Predict the user activity based 
on the user calender

Find the user activity based on 
mobile phone sensors such as 
GPS, gyroscope, accelerometer  

Retrieve friend list from users 
Facebook profile

Identify a face of a person 
using facial recognition system

Identify user based on 
RFID tag

Read time from a clock

Calculate the season based 
on the weather information

Predict the time based on the 
current  activity and calender

Fig. 5. Context categorisation in two different perspectives: conceptual
and operational. It shows why both operational and conceptual categorisation
schemes are important in IoT paradigm as the capture different perspectives.

In addition to the two categorisation schemes we discussed

earlier there are several other schemes introduced by different

researchers focusing on different perspectives. Further, we

highlight relationships between different context categories
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TABLE III
RELATIONSHIP BETWEEN DIFFERENT CONTEXT CATEGORIES
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User

Computing (System) 3

Physical (Environment) 3 3

Historical 3 2 2

Social 3 2 2 2

Networking 3 2 3 2 2

Things 3 2 2 2 2 2

Sensor 3 2 1 2 2 2 2

Who (Identity) 2 2 2 2 2 2 2 2

Where (Location) 3 3 2 2 2 2 2 3 3

When (Time) 3 3 3 2 3 3 3 3 3 3

What (Activity) 3 2 2 2 2 2 2 2 3 3 3

Why 3 3 3 2 3 3 3 3 3 3 3 3

Sensed 1 1 1 2 1 1 1 1 1 1 1 1 1

Static 2 3 3 2 3 3 3 3 3 3 3 3 3 3

Profiled 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3

Derived 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3

Operational 3 3 3 2 3 3 3 3 3 3 3 3 3 2 2 2 2

Conceptual 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2

Objective 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 3 2

Cognitive 1 3 3 2 3 3 3 3 3 3 3 3 1 3 2 1 1 3 2 3

External (Physical) 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 3 2 2 2 3

Internal (Logical) 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 1 1 2 2 2 1 3

Low-level (Observable) 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2 3 3 2 2 2 3 1 3

High-level (Non-Observable) 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 1 1 2 2 2 1 1 3

Notes: We denote row labels as (P) and column labels as (Q). 1 means (P) ∩ (Q) ≈ very high; 2 means (P) ∩ (Q) ≈ moderate; 3 means
(P) ∩ (Q) ≈ very low.

(also called context types) in different perspectives in Table II

and in Table III. These context categories are not completely

different from each other. Each category shares common

characteristics with the others. The similarities and difference

among categories are clearly presented in Table III. Further,

we have listed and briefly explained three major context cate-

gorisation schemes and their categories proposed by previous

researchers. In Table II, we present each categorisation effort

in chronological order from left to right.

• Schilit et al. [79] (1994): They categorised context into three

categories using a conceptual categorisation based technique

on three common questions that can be used to determine

the context.

1) Where you are: This includes all location related in-

formation such as GPS coordinates, common names

(e.g. coffee shop, university, police), specific names

(e.g. Canberra city police), specific addresses, user

preferences (e.g. user’s favourite coffee shop).

2) Who you are with: The information about the people

present around the user.

3) What resources are nearby: This includes information

about resources available in the area where the user is

located, such as machinery, smart objects, and utilities.

• Henricksen [89] (2003): Categorised context into four cat-

egories based on an operational categorisation technique.

1) Sensed: Sensor data directly sensed from the sensors,

such as temperature measured by a temperature sensor.

Values will be changed over time with a high frequency.

2) Static: Static information which will not change over

time, such as manufacturer of the sensor, capabilities

of the sensor, range of the sensor measurements.

3) Profiled: Information that changes over time with a low

frequency, such as once per month (e.g. location of

sensor, sensor ID).

4) Derived: The information computed using primary con-

text such as distance of two sensors calculated using

two GPS sensors.

• Van Bunningen et al. [95] (2005): Instead of categorising

context, they classified the context categorisation schemes

into two broader categories: operational and conceptual.

1) Operational categorisation: Categorise context based on

how they were acquired, modelled, and treated.

2) Conceptual categorisation: Categorise context based on

the meaning and conceptual relationships between the

context.

Based on the evaluation of context categorisation, it is evi-
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TABLE IV
COMPARISON OF CONTEXT CATEGORISATION SCHEMES

Categorisation Schemes Pros Cons

C
o

n
ce

p
tu

al

Where, when, who,
what, objective

• Provide a broader guide that helps to identify the
related context

• Less comprehensive

• Do not provide information about operational
aspects such as cost, time, complexity, tech-
niques, and effort of data acquisition

• Do not provide information about frequency of
update required

User, computing,
physical, environmental,
time, social, networking,
things, sensors contexts

• More clear and structured method to organise context
• More extensible and flexible
• More comprehensive

• Do not provide information about operational
aspects such as cost, time, complexity, tech-
niques, and effort of data acquisition

• Do not provide information about frequency of
update required

Why, cognitive
• Allow to model mental reasoning behind context • Do not provide information about core context,

relationships between context or operational
aspects such as cost, time, complexity, tech-
niques, and effort of data acquisition

O
p

er
at

io
n

al

Sensed, static, profiled,
derived

• Provide information about programming and coding
level

• Provide information about context source and com-
putational complexity

• Allow to track information such as frequency of
update required, validation, quality, etc.

• Provide information about cost and effort of data
acquisition

• Weak in representing the relationship among
context

• Difficult to classify context information due to
ambiguity. Same piece of data can belong to
different categories depending to the situation
(e.g. location can be derived as well as sensed)

Internal (physical),
internal (logical),

low-level (observable),
high-level

(non-observable)

• Provide information about context sources and the
process of accessing data (e.g. whether more rea-
soning is required or not)

• Provide information about cost and effort of data
acquisition

• Provide information about computational complexity

• Weak in representing the relationship among
context

• Difficult to classify context information due to
ambiguity. Same piece of data can belong to
different categories depending to the situation
(e.g. temperature can be physical or virtual
sensor)

dent that no single categorisation scheme can accommodate all

the demands in the IoT paradigm. We presented a comparison

between conceptual and operational categorisation schemes

in Table IV. To build an ideal context-aware middleware

solution for the IoT, different categorisation schemes need to

be combined together in order to complement their strengths

and mitigate their weaknesses.

D. Levels of Context Awareness and characteristics

Context awareness can be identified in three levels based

on the user interaction [104].

• Personalisation: It allows the users to set their preferences,

likes, and expectation to the system manually. For example,

users may set the preferred temperature in a smart home

environment where the heating system of the home can

maintain the specified temperature across all rooms.

• Passive context-awareness: The system constantly moni-

tors the environment and offers the appropriate options to

the users so they can take actions. For example, when a user

enters a super market, the mobile phone alerts the user with

a list of discounted products to be considered.

• Active context-awareness: The system continuously and

autonomously monitors the situation and acts autonomously.

For example, if the smoke detectors and temperature sensors

detect a fire in a room in a smart home environment, the

system will automatically notify the fire brigade as well as

the owner of the house via appropriate methods such as

phone calls.

In addition, Van Bunningen et al. [95] has identified com-

prehensively, and discussed, eight characteristics of context:

context 1) is sensed though sensors or sensor networks, 2) is

sensed by small and constrained devices, 3) originates from

distributed sources, 4) is continuously changing, 5) comes

from mobile objects 6) has a temporal character 7) has a spatial

character, 8) is imperfect and uncertain.

E. Context Awareness Management Design Principles

Martin et al. [105] have identified and comprehensively

discussed six design principles related to context-aware man-

agement frameworks (middleware). Further, Ramparany et al.

[106] and Bernardos et al. [107] have also identified several

design requirements. We summarise the findings below with

brief explanations. This list is not intended to be exhaustive.

Only the most important design aspects are considered.

• Architecture layers and components: The functionali-

ties need to be divided into layers and components in a

meaningful manner. Each component should perform a very

limited amount of the task and should be able to perform

independently up to a large extent.

• Scalability and extensibility: The component should be

able to added or removed dynamically. For example. new

functionalities (i.e. components) should be able to be add

without altering the existing components (e.g. Open Services

Gateway initiative). The component needs to be developed

according to standards across the solutions, which improves

scalability and extensibility (e.g. plug-in architectures).

• Application programming interface (API): All the func-

tionalities should be available to be accessed via a com-

prehensive easy to learn and easy to use API. This allows
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the incorporation of different solutions very easily. Further,

API can be used to bind context management frameworks to

applications. Interoperability among different IoT solutions

heavily depends on API and their usability.

• Debugging mechanisms and tools: Debugging is a crit-

ical task in any software development process. In the IoT

paradigm, debugging would be difficult due to the exponen-

tial number of possible alternative interactions. In order to

win the trust of the consumers, the IoT should prove its

trustworthiness. Integrated debug mechanisms inbuilt into

the framework will help to achieve this challenge. For

example, the justifications behind the results produced by the

reasoners should be available to be evaluated to find possible

inaccuracies so further development can be carried out. Some

initial work in this area is presented in the Intelligibility

Toolkit [108].

• Automatic context life cycle management: Context-aware

frameworks should be able to be understand by the available

context sources (i.e. physical and virtual sensors), their data

structure, and automatically built internal data models to

facilitate them. Further, raw context needs to be retrieved and

transformed into appropriate context representation models

correctly with minimum human intervention.

• context model in-dependency: Context needs to be mod-

elled and stored separately from context-aware framework

related code and data structures, which allows both parts to

be altered independently.

• Extended, rich, and comprehensive modelling: Context

models should be able to extend easily. The IoT will need to

deal with enormous amount of devices, and will be required

to handle vast amounts of domain specific context. It also

needs to support complex relationships, constrains, etc. In

an ideal context-aware framework for the IoT, multiple dif-

ferent context representation models should be incorporated

together to improve their efficiency and effectiveness.

• Multi-model reasoning: No single reasoning model can

accommodate the demands of the IoT. We will discuss

reasoning in Section IV-C. Each reasoning model has its own

strengths and weaknesses. An ideal framework should incor-

porate multiple reasoning models together to complement

each others’ strengths and mitigate their weaknesses.

• Mobility support: In the IoT, most devices would be

mobile, where each one has a different set of hardware and

software capabilities. Therefore, context-aware frameworks

should be developed in multiple flavours (i.e. versions),

which can run on different hardware and software config-

urations (e.g. more capabilities for server level software and

less capabilities for mobile phones).

• Share information (real-time and historic): In the IoT,

there is no single point of control. The architecture would

be distributed. Therefore, context sharing should happen at

different levels: framework-to-framework and framework-

to-application. Context model in-dependency has been dis-

cussed earlier and is crucial in sharing.

• Resource optimisation: Due to the scale (e.g. 50 billion de-

vices), a small improvement in data structures or processing

can make a huge impact in storage and energy consumption.

This stays true for any type of resource used in the IoT.

• Monitoring and detect event: Events play a significant role

in the IoT, which is complement by monitoring. Detecting an

event triggers an action autonomously in the IoT paradigm.

This is how the IoT will help humans carry out their day-

to-day work easily and efficiently. Detecting events in real

time is a major challenge for context-aware frameworks in

the IoT paradigm.

IV. CONTEXT LIFE CYCLE

A data life cycle shows how data moves from phase to

phase in software systems (e.g. application, middleware).

Specifically, it explains where the data is generated and where

the data is consumed. In this section we consider movement

of context in context-aware systems. Context-awareness is no

longer limited to desktop, web, or mobile applications. It

has already become a service: Context-as-a-Service (CXaaS)

[109]. In other terms, context management has become an

essential functionality in software systems. This trend will

grow in the IoT paradigm.

There are web-based context management services

(WCXMS) that provide context information management

throughout the context’s life cycle. Hynes et al. [109] have

classified data life cycles into two categories: Enterprise

Lifecycle Approaches (ELA) and Context Lifecycle

Approaches (CLA).

ELA are focused on context. However, these life cycles

are robust and well-established, based on industry standard

strategies for data management in general. In contrast, CLA

are specialised in context management. However, they are not

tested or standardised strategies as much as ELA. We have

selected ten popular data life cycles to analyse in this survey.

In the following list, 1-5 belong to ELA category and 6-10

belong to CLA category. Three dots (...) denotes reconnecting

to the first phase by completing the cycle. The right arrow

(→) denotes data transfer form one phase to another.

1) Information Lifecycle Management (ILM) [110]: cre-

ation and receipt → distribution → use → maintenance

→ disposition → ...

2) Enterprise Content Management (ECM) [111]: capture

→ manage → store → preserve → deliver → ...

3) Hayden’s Data Lifecycle [112]: collection → relevance

→ classification → handling and storage → transmis-

sion and transportation → manipulate, conversion and

alteration → release → backup → retention destruction

→ ...

4) Intelligence Cycle [113]: collection → processing →

analysis→ publication → feedback → ...

5) Boyd Control Loop (also called OODA loop) [114]:

observe → orient → decide → act → ...

6) Chantzara and Anagnostou Lifecycle [115]: sense (con-

text provider) → process (context broker) → disseminate

(context broker) → use (service provider) → ...

7) Ferscha et al. Lifecycle [116]: sensing → transformation

→ representation → rule base → actuation → ...

8) MOSQUITO [117]: context information discovery →

context information acquisition → context information

reasoning → ...
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9) WCXMS Lifecycle [109]: (context sensing → context

transmission → context acquisition → ... ) → context

classification → context handling → (context dissemi-

nation → context usage → context deletion → context

request →... ) → context maintenance → context dispo-

sition →...

10) Baldauf et al. [10]: sensors → raw data retrieval →

reprocessing → storage → application.

In addition to the life cycles, Bernardos et al. [107] iden-

tified three phases in a typical context management system:

context acquisition, information processing, and reasoning and

decision. After reviewing the above life cycles, we derived an

appropriate (i.e. minimum number of phases but includes all

essential) context life cycle as depicted in Figure 6.

Context 

Acquisition

Context 

Modelling

Context 
Reasoning

Context 

Dissemination

Fig. 6. This is the simplest form of a context life cycle. These four steps
are essential in context management systems and middleware solutions. All
the other functions that may offer by systems are value added services.

This context life cycle consists of four phases. First, context

needs to be acquired from various sources. The sources could

be physical sensors or virtual sensors (context acquisition).

Second, the collected data needs to be modelled and represent

according to a meaningful manner (context modelling). Third,

modelled data needs to be processed to derive high-level

context information from low-level raw sensor data (context

reasoning). Finally, both high-level and low-level context

needs to be distributed to the consumers who are interested

in context (context dissemination). The following discussion

is based on these four phases.

A. Context Acquisition

In this section we discuss five factors that need to be consid-

ered when developing context-aware middleware solutions in

the IoT paradigm. The techniques used to acquire context can

be varied based on responsibility, frequency, context source,

sensor type, and acquisition process.

1) Based on Responsibility: Context (e.g. sensor data)

acquisition can be primarily accomplished using two methods

[118]: push and pull. A comparison is presented in Table V.

• Pull: The software component which is responsible for

acquiring sensor data from sensors make a request (e.g.

query) from the sensor hardware periodically (i.e. after

certain intervals) or instantly to acquire data.

• Push: The physical or virtual sensor pushes data to the

software component which is responsible to acquiring sensor

data periodically or instantly. Periodical or instant pushing

can be employed to facilitate a publish and subscribe model.

2) Based on Frequency: Further, in the IoT paradigm,

context can be generated based on two different event types:

instant events and interval events VI.

• Instant (also known as threshold violation): These events oc-

cur instantly. The events do not span across certain amounts

of time. Open a door, switch on a light, or animal enters

experimental crop field are some types of instant events. In

order to detect this type of event, sensor data needs to be

acquired when the event occurs. Both push and pull methods

can be employed.

• Interval (also known as periodically): These events span a

certain period of time. Raining, animal eating a plant, or

winter are some interval events. In order to detect this type

of event, sensor data needs to be acquired periodically (e.g.

sense and send data to the software every 20 seconds). Both

push and pull methods can be employed.

3) Based on Source: In addition, context acquisition meth-

ods can be categorised into three categories [119] based on

where the context came from. A comparison is presented in

Table VII.

• Acquire directly from sensor hardware: In this method, con-

text is directly acquired from the sensor by communicating

with the sensor hardware and related APIs. Software drivers

and libraries need to be installed locally. This method is

typically used to retrieve data from sensors attached locally.

Most devices and sensors today require some amount of

driver support and can be connected via USB, COM, or serial

ports. However, wireless technologies are becoming popular

in the sensor community, which allows data transmission

without driver installations. In the IoT paradigm most objects

will communicate with each other via a wireless means.

• Acquire through a middleware infrastructure: In this

method, sensor (context) data is acquired by middleware

solutions such as GSN. The applications can retrieve sensor

data from the middleware and not from the sensor hardware

directly. For example, some GSN instances will directly

access sensor hardware and rest of the GSN instances will

communicate with other GSN instances to retrieve data.

• Acquire from context servers: In this method, context is

acquired from several other context storages (e.g. databases,

RSS (Really Simple Syndication) feeds, web services) via

different mechanisms such as web service calls. This mech-

anism is useful when the hosting device of the context-aware

application has limited computing resources. Resource-rich

context servers can be used to acquire and process context.

4) Based on Sensor Types: There are different types of

sensors that can be employed to acquire context. In general

usage, the term ‘sensor’ is used to refer to tangible sensor

hardware devices. However, among the technical community,

sensors are refer to as any data source that provides relevant

context. Therefore, sensors can be divided into three categories

[120]: physical, virtual, and logical. A comparison is presented

in Table VIII.
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TABLE V
COMPARISON OF CONTEXT ACQUISITION METHODS BASED ON RESPONSIBILITY (PUSH, PULL)

Criteria Push Pull

Pros
• Sensor hardware make the major decisions on sensing and

communication
• Can be both instant or interval sensing and communication

• Software of the sensor data consumer makes the major
decisions on sensing and communication

• Decision on when to collect data is based on reasoning
significant amount of data in software level

• Can be both instant or interval sensing and communication

Cons
• Decision on when to send data based on reasoning less

amount of data
• Sensors are required to program when the requirements are

changed

• More communication bandwidth is required where soft-
ware level has to send data requests to the sensors all the
time

Applicability

Can be used when sensors know about when to send the data and
have enough processing power and knowledge to reason locally.
(e.g. event detection where one or small number of sensors can
reason and evaluate the conditions by their own without software
level complex data processing and reasoning.)

Can be used when sensors do not have knowledge on when to
send the data to the consumer. (e.g. event detection where large
amount of data need to be collected, processed, and reasoned in
order to recognize the event.)

TABLE VI
COMPARISON OF CONTEXT ACQUISITION METHODS BASED ON FREQUENCY (INSTANT, INTERVAL)

Criteria Instant Interval

Pros
• Save energy due to no redundant network communications

are involved
• More accurate data can be gather as the network transmis-

sion would be triggered as soon as the conditions are met

• Either sensors can be configured to sense and communicate
with data consumers in a predefined frequency or the sensor
data consumers can retrieve data explicitly from the sensors
in a predefined frequency

• Sensors do not need to be intelligent/knowledge or have
significant processing and reasoning capabilities

• Allows to understand the trends or behaviour by collecting
sensor data over time

Cons
• More knowledge is required to identify the conditions and

the satisfaction of the conditions
• Hardware level (i.e. sensor) or software level should know

exactly what to look for
• Difficult to detect events which require different types of

data from number of different sensors
• Comparatively consume more energy for data processing

• May waste energy due to redundant data communication
• Less accurate as the sensor readings can be change over the

interval between two data communications
• Reasoning need to be done in software level by the data

consumer which will miss some occurrence of events due
to above inaccuracy

Applicability

Can be used to detect frost events or heat events in agricultural
domain. In smart home domain, this method can be used to detect
some one entering to a room via door sensors. Ideally, applicable
for the situations where expected outcome is well-known by either
hardware level (i.e. sensors) or software level

Can be used to collect data from temperature sensors for con-
trolling air condition or measure air pollution where actions are
not event oriented but monitoring oriented. Ideally, applicable for
the situations where expected outcome is not known by either
hardware level (i.e. sensors) or software level

TABLE VII
COMPARISON OF CONTEXT ACQUISITION METHODS BASED ON SOURCE (DIRECT SENSORS, MIDDLEWARE, CONTEXT SERVERS)

Criteria Direct Sensor Access Through Middleware Through Context Server

Pros • Efficient as it allows direct communi-
cation with the sensors

• Have more control over sensor con-
figuration and data retrieval process

• Easy to manage and retrieve context
as most of the management tasks are
facilitated by the middleware.

• Can retrieve data faster with less ef-
fort and technical knowledge

• Less resources required
• Can retrieve data faster with less ef-

fort and technical knowledge

Cons
• Significant technical knowledge is re-

quired including hardware level em-
bedded device programming and con-
figuring

• Significant amount of time, effort,
cost involved

• Updating is very difficult due to tight
bound between sensor hardware and
consumer application

• Require more resources (e.g. process-
ing, memory, storage) as middleware
solutions need to be employed

• Less control over sensor configuration
• Moderately efficient as data need to

be retrieve through middleware

• No control over sensor configuration
• Less efficient as the context need to be

pulled from server over the network

Applicability

Can be used for small scale scientific exper-
iments. Can also be used for situation where
limited number of sensors are involved

IoT application will use this methods in
most cases. Can be used in situations where
large number of heterogeneous sensors are
involved

Can be used in situations where signifi-
cant amount of context are required but
have only limited resources (i.e. cannot
employ context middleware solutions due
to resource limitations) that allows run the
consumer application
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TABLE VIII
COMPARISON OF CONTEXT ACQUISITION METHODS BASED ON SENSOR TYPES (PHYSICAL, VIRTUAL, LOGICAL)

Criteria Physical Sensors Virtual Sensors Logical Sensors

Pros
• Error detection is possible and rela-

tively easy
• Missing value identification is also

relatively easy
• Have access to low-level sensor con-

figuration therefore can be more effi-
cient

• Provide moderately meaningful data
• Provide high-level context informa-

tion
• Provided data are less processed
• Do not need to deal with hardware

level tasks

• Provide highly meaningful data
• Provide high-level context informa-

tion
• Usually more accurate
• Do not need to deal with hardware

level tasks

Cons
• Hardware deployment and mainte-

nance is costly
• Have to deal with sensor and hard-

ware level programming, design, de-
velopment, test, debug

• Provide less meaningful and low-level
raw sensor data

• Difficult to find errors in data
• Filling missing values is not easy as

they are mostly non-numerical and
unpredictable

• Difficult to find error in data
• Filling missing values is not easy as

they are mostly non-numerical
• Do not have control over data produc-

tion process
• License fees and other restrictions

may apply

Applicability

Can be used to collect physically observable
phenomenon such as light, temperature, hu-
midity, gas, etc.

Can be used to collect information that can-
not be measure physically such as calendar
details, email, chat, maps, contact details,
social networking related data, user prefer-
ences, user behaviour, etc.

Can be used to collect information that
are costly and impossible to collect di-
rectly through single physical sensor where
advance processing and fusing data from
multiple sensors are required (e.g. weather
information, activity recognition, location
recognition, etc.).

• Physical sensors: These are the most commonly used type

of sensors and they are tangible. These sensors generate

sensor data by themselves. Most of the devices we use today

are equipped with a variety of sensor (e.g. temperature,

humidity, microphone, touch). A discussion on commonly

used sensor data types and sensors is presented in [121].

The data retrieved from physical sensors is called low-level

context. They are less meaningful, trivial, and vulnerable to

small changes. IoT solutions needs to understand the physical

world using imperfect, conflicting and imprecise data.

• Virtual sensors: These sensors do not necessarily generate

sensor data by themselves. Virtual sensors retrieve data from

many sources and publish it as sensor data (e.g. calendar,

contact number directory, twitter statuses, email and chat

applications). These sensors do not have a physical presence.

They commonly use web services technology to send and

receive data.

• Logical sensors (also called software sensors): They com-

bine physical sensors and virtual sensors in order to produce

more meaningful information. A web service dedicated to

providing weather information can be called a logical sensor.

Weather stations use thousands of physical sensors to collect

weather information. They also collect information from

virtual sensors such as maps, calendars, and historic data.

Finally, weather information is produced by combing both

physical and virtual sensors. In addition, the android mobile

operating system consists of a number of software sensors

such as gravity, linear accelerometer, rotation vector, and

orientation sensors.

5) Based on Acquisition Process: There are three ways to

acquire context: sense, derive, and manually provided.

• Sense: The data is sensed through sensors, including the

sensed data stored in databases (e.g. retrieve temperature

from a sensor, retrieve appointments details from a calendar).

• Derive: The information is generated by performing compu-

tational operations on sensor data. These operations could be

as simple as web service calls or as complex as mathemat-

ical functions run over sensed data (e.g. calculate distance

between two sensors using GPS coordinates). The necessary

data should be available to apply any numerical or logical

reasoning technique.

• Manually provided: Users provide context information man-

ually via predefined settings options such as preferences (e.g.

understand that user doesn’t like to receive event notifications

between 10pm to 6.00am). This method can be use to retrieve

any type of information.

B. Context Modelling

We discuss the basic definition of context modelling in

Section III-A3. Context modelling is also widely refereed to

as context representation. There are several popular context

modelling techniques [10], [122] used in context-aware com-

puting. Before we present the discussion on context mod-

elling techniques, let’s briefly introduce context modelling

fundamentals. Context models can be static or dynamic. Static

models have a predefined set of context information that will

be collected and stored [103]. The requirements that need to be

taken into consideration when modelling context information

are identified and explained in [12] as heterogeneity and mo-

bility, relationships and dependencies, timeliness (also called

freshness), imperfection, reasoning, usability of modelling

formalisms, and efficient context provisioning. Typically, there

are two steps in representing context according to a model:

• Context modelling process: In the first step, new context

information needs to be defined in terms of attributes, char-

acteristics, relationships with previously specified context,

quality-of context attributes and the queries for synchronous

context requests.

• Organize context according to the model: In the second step,

the result of the context modelling step needs to be validated.

Then the new context information needs to be merged and

added to the existing context information repository. Finally,
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the new context information is made available to be used

when required.

The first step performs the actual modelling of context.

However, the factors and parameters that are considered for

the modelling context are very subjective. It varies from one

solution to another. We use two examples to demonstrate the

variance. Currently, there is no standard to specify what type

of information needs to be considered in context modelling.

We discussed context categories proposed by the researcher

in Section III-C. Even though these categories provide high-

level guidelines towards choosing relevant context, choosing

specific context attributes is a subjective decision.

Example 1: MoCA [49] has used an object oriented ap-

proach to model context using XML. There are three sections

in the proposed context model: structural information (e.g.

attributes and dependencies among context types), behavioural

information (e.g. whether the context attribute has a constant

or variable value), and context-specific abstractions (e.g. con-

textual events and queries).

Example 2: W4 Diary [123] uses a W4 (who, what, where,

when) based context model to structure data in order to

extract high-level information from location data. For ex-

ample, W4 represents context as tuples (e.g. Who: John,

What: walking:4km/h, Where: ANU, Canberra, When: 2013-

01-05:9.30am).

In the IoT paradigm, context information has six states

[124]: ready, running, suspended, resumed, expired, and termi-

nated. These states are also similar to the process states in an

operating system. They align context to an event. An example

scenario from the smart agriculture domain can be used to

explain the state transition of context.

• Ready: Every context is in the ready state at the initial stage

(e.g. possible event can be ‘an animal eating crop’).

• Suspended: When the context seems to be invalid tem-

porally (e.g. sensors detect that animal stops eating crop

temporarily).

• Resumed: When the context becomes valid from being

suspended (e.g. sensors detect animal starts to eat crop

again).

• Expired: When the context has expired and further informa-

tion is not available (e.g. sensor data has not been received

by the system for the last 60 seconds where all sensor data is

considered to be expired (based on policy) within 20 seconds

from the time it is collected).

• Terminated: When the context is no longer valid (i.e.

inferred something else) and further information is not avail-

able (e.g. sensors detects that animal moves away from the

crops).

The most popular context modelling techniques are sur-

veyed in [6], [7]. These surveys discuss a number of systems

that have been developed based on the following techniques.

Each of the following techniques has its own strengths and

weaknesses. We discuss context modelling techniques at a

high-level. The actual implementations of these techniques

can vary widely depending on application domain (e.g. imple-

mentation details may differ from embedded environments to

mobile environments to cloud based environments). Therefore,

our focus is on conceptual perspective of each modelling

technique no on specific implementation. Our discussion is

based on the six most popular context modelling techniques:

key-value, markup schemes, graphical, object based, logic

based, and ontology based modelling. A comparison of these

models is presented in Table X.

1) Key-Value Modelling: It models context information as

key-value pairs in different formats such as text files and

binary files. This is the simplest form of context representation

among all the other techniques. They are easy to manage

when they have smaller amounts of data. However, key-value

modelling is not scalable and not suitable to store complex data

structures. Further, hierarchical structures or relationships can-

not be modelled using key-value pairs. Therefore, lack of data

structuring capability makes it difficult to retrieve modelled

information efficiently. Further, attaching meta information

is not possible. The key-value technique is an application

oriented and application bounded technique that suits the

purpose of temporary storage such as less complex application

configurations and user preferences.

2) Markup Scheme Modelling (Tagged Encoding): It mod-

els data using tags. Therefore, context is stored within tags.

This technique is an improvement over the key-value mod-

elling technique. The advantage of using markup tags is

that it allows efficient data retrieval. Further, validation is

supported through schema definitions. Sophisticated validation

tools are available for popular markup techniques such as

XML. Range checking is also possible up to some degree

for numerical values. Markup schemas such as XML are

widely used in almost all application domains to store data

temporarily, transfer data among applications, and transfer data

among application components. In contrast, markup languages

do not provide advanced expressive capabilities which allow

reasoning. Further, due to lack of design specifications, context

modelling, retrieval, interoperability, and re-usability over dif-

ferent markup schemes can be difficult. A common application

of markup based modelling is modelling profiles. Profiles are

commonly developed using languages such as XML. However,

the concept of markup languages are not restricted only to

XML. Any language or mechanism (e.g. JSON) that supports

tag based storage allows markup scheme modelling. An ex-

ample of popular markup scheme modelling is Composite

Capabilities/Preference Profiles (CC/PP) [125]. There are a

significant number of similar emerging applications such as

ContextML [126] in context-aware computing. Tuples are also

used to model context [103].

3) Graphical Modelling: It models context with relation-

ships. Some examples of this modelling technique are Unified

Modelling Language (UML) [127] and Object Role Modelling

(ORM) [128]. In terms of expressive richness, graphical mod-

elling is better than markup and key-value modelling as it

allows relationships to be captured into the context model.

Actual low-level representation of the graphical modelling

technique could be varied. For example, it could be a SQL

database, noSQL database, XML, etc. Many other extensions

have also been proposed and implemented using this technique

[89]. Further, as we are familiar with databases, graphical

modelling is a well known, easy to learn, and easy to use
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TABLE IX
COMPARISON OF SEMANTIC WEB ONTOLOGY LANGUAGES (RDF(S), OWL(2))

RDF(S) OWL(2)

P
ro

s

• Provide basic elements to describe and organize
knowledge. Further, OWL is build on top of RDFS

• Relatively simple
• Faster processing and reasoning

• Improved version of RDFS. Therefore adaptability from RDF(S) to OWL is high
• Increasing number of tools are supported
• More expressive (e.g. larger vocabulary/constraints, rules, more meaningful)
• Higher machine interoperability (e.g. strong syntax)
• W3C approved standard for semantics (since 2004)
• Comes in three versions (i.e. OWL light, OWL DL, OWL Full) where each one

has more expressive and reasoning power that previous

C
o

n
s • Lack of inconsistency checking and reasoning

• Limited expressiveness (e.g. no cardinality support)
• Relatively Complex
• Low performance (e.g. require more computation power and time)

technique. Databases can hold massive amounts of data and

provide simple data retrieval operations, which can be per-

formed relatively quickly. In contrast, the number of different

implementations (i.e. different databases and other solutions)

makes it difficult with regards to interoperability. Further,

there are limitations on data retrieval mechanisms such as

SQL. In addition, sophisticated context retrieval requirements

may demand very complex SQL queries to be employed. The

queries can be difficult to create, use, and manage even with

the sophisticated tools that exist today. Adding context infor-

mation and changing the data structure is also difficult in later

stages. However, some of the recent trends and solutions in the

noSQL [129] movement allows these structure alteration issues

to be overcome. Therefore, graphical modelling techniques can

be used as persistent storage of context.

4) Object Based Modelling: Object based (or object ori-

ented) concepts are used to model data using class hierarchies

and relationships. Object oriented paradigm promotes encapsu-

lation and re-usability. As most of the high-level programming

languages support object oriented concepts, modelling can

integrated into context-aware systems easily. Therefore, object

based modelling is suitable to be used as an internal, non-

shared, code based, run-time context modelling, manipulation,

and storage mechanism. However, it does not provide inbuilt

reasoning capabilities. Validation of object oriented designs is

also difficult due to the lack of standards and specifications.

5) Logic Based Modelling: Facts, expressions, and rules

are used to represent information about the context. Rules

are used by other modelling techniques, such as ontologies,

as well. Rules are primarily used to express policies, con-

straints, and preferences. It provides much more expressive

richness compared to the other models discussed previously.

Therefore, reasoning is possible up to a certain level. The

specific structures and languages that can be used to model

context using rules are varied. However, lack of standardisation

reduces the re-usability and applicability. Furthermore, highly

sophisticated and interactive graphical techniques can be em-

ployed to develop logic based or rule based representations.

As a result, even non-technical users can add rules and logic

to the systems during run time. Logic based modelling allows

new high-level context information to be extracted using low-

level context. Therefore, it has the capability to enhance other

context modelling techniques by acting as a supplement.

6) Ontology Based Modelling: The context is organised

into ontologies using semantic technologies. A number of

different standards (RDF, RDFS, OWL) and reasoning capa-

bilities are available to be used depending on the requirement.

A wide range of development tools and reasoning engines

are also available. However, context retrieval can be com-

putationally intensive and time consuming when the amount

of data is increased. According to many surveys, in context-

aware computing and sensor data management, ontologies are

the preferred mechanism of managing and modelling context

despite its weaknesses. Due to its popularity and wider adap-

tation during the last five years in both academia and industry

we present a brief discussion on semantic modelling and

reasoning. However, our intention is not to survey semantic

technologies but to highlight the applicability of semantics

in a context-aware domain from an IoT perspective. Com-

prehensive and extensive amounts of information on semantic

technology are available in [130], [131], [132].

Khoo [134] has explained the evolution of the web in

four stages: basic Internet as Web 1.0, social media and

user generated content as web 2.0, semantic web as web 3.0

and IoT as web 4.0. In this identification, semantic web has

been given a separate phase to show its importance and the

significant changes that semantic technologies can bring to the

web in general.

Ontology is the main component in semantic technology

that allows it to model data. Based on the previous approaches

and survey [7], one of the most appropriate formats to manage

context is ontologies. Ontologies offer an expressive language

to represent the relationships and context. IT also provides

comprehensive reasoning mechanisms as well. Ontologies also

allow knowledge sharing and they decouple the knowledge

from the application and program codes [119].

There are several reasons to develop and use ontologies

in contrast to other modelling techniques. The most common

reasons are to [135], [136] share a common understanding of

the structure of information among people or software agents,

analyse domain knowledge, separate domain knowledge from

operational knowledge, enable reuse of domain knowledge,

high-level knowledge inferring, and make domain assumptions

explicit. Due to the dynamic nature, the IoT middleware solu-

tions should support applications which are not even known at

the middleware design-time. Ontologies allow the integration

of knowledge on different domains into applications when

necessary.

Studer et al. [137] defined the concept of ontology as

follows. “An ontology is a formal, explicit specification of

a shared conceptualisation. A conceptualisation refers to an

abstract model of some phenomenon in the world by having
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TABLE X
COMPARISON OF CONTEXT MODELLING AND REPRESENTATION TECHNIQUES

Techniques Pros Cons Applicability

Key-Value

• Simple
• Flexible
• Easy to manage when small in size

• Strongly coupled with applications
• Not scalable
• No structure or schema
• Hard to retrieve information
• No way to represent relationships
• No validation support
• No standard processing tools are

available

Can be used to model limited amount of data
such as user preferences and application con-
figurations. Mostly independent and non-related
pieces of information. This is also suitable for
limited data transferring and any other less com-
plex temporary modelling requirements.

Markup
Scheme
Tagged

Encoding
(e.g. xml)

• Flexible
• More structured
• Validation possible through schemas
• Processing tools are available

• Application depended as there are
no standards for structures

• Can be complex when many levels
of information are involved

• Moderately difficult to retrieve in-
formation

Can be used as intermediate data organisation
format as well as mode of data transfer over
network. Can be used to decouple data structures
used by two components in a system. (e.g.
SensorML [133] for store sensor descriptions,
JSON as a format to data transfer over network)

Graphical
(e.g.

databases)

• Allows relationships modelling
• Information retrieval is moderately

easier
• Different standards and implemen-

tations are available.
• Validation possible through con-

straints

• Querying can be complex
• Configuration may be required
• Interoperability among different im-

plementation is difficult
• No standards but governed by de-

sign principles

Can be used for long term and large volume of
permanent data archival. Historic context can be
store in databases.

Object
Based

• Allows relationships modelling
• Can be well integrated using pro-

gramming languages
• Processing tools are available

• Hard to retrieve information
• No standards but govern by design

principles
• Lack of validation

Can be used to represent context in program-
ming code level. Allows context runtime manip-
ulation. Very short term, temporary, and mostly
stored in computer memory. Also support data
transfer over network.

Logic
Based

• Allows to generate high-level con-
text using low-level context

• Simple to model and use
• support logical reasoning
• Processing tools are available

• No standards
• Lack of validation
• Strongly coupled with applications

Can be used to generate high-level context using
low-level context (i.e. generate new knowledge),
model events and actions (i.e. event detection),
and define constrains and restrictions.

Ontology
Based

• Support semantic reasoning
• Allows more expressive representa-

tion of context
• Strong validation
• Application independent and allows

sharing
• Strong support by standardisations
• Fairly sophisticated tools available

• Representation can be complex
• Information retrieval can be com-

plex and resource intensive

Can be used to model domain knowledge and
structure context based on the relationships de-
fined by the ontology. Rather than storing data
on ontologies, data can be stored in appropriate
data sources (i.e. databases) while structure is
provided by ontologies.

identified the relevant concepts of that phenomenon. Explicit

means that the type of concepts used, and the constraints

on their use are explicitly defined. For example, in medical

domains, the concepts are diseases and symptoms, the re-

lations between them are causal and a constraint is that a

disease cannot cause itself. Formal refers to the fact that

the ontology should be machine readable, which excludes

natural language. Shared reflects the notion that an ontology

captures consensual knowledge, that is, it is not private to

some individual, but accepted by a group.” Another acceptable

definition has been presented by Noy and McGuinness [136].

Further ontologies are discussed extensively as principles,

methods, and applications in perspective [138].

Some of the requirements and objectives behind design-

ing an ontology are simplicity, flexibility and extensibility,

generality, and expressiveness [139]. In addition, some of

the general requirements in context modelling and represen-

tation are unique identification, validation, reuse, handling

uncertainty, and incomplete information [11]. A further eight

principles for developing ontologies are identified by Korpipaa

and Mantyjarvi [140] as: domain, simplicity, practical access,

flexibility and expandability, facilitate inference, genericity,

efficiency, and expressiveness.

Ontologies consists of several common key components

[141], [142] such as individuals, classes, attributes, relations,

function terms, restrictions, rules, axioms, and events. Further-

more, there are two steps in developing ontologies. First, the

domain and scope need to be clearly defined. Then existing

ontologies need to be reviewed to find the possibilities of

leverage existing in ontologies. One of the main goals of

ontologies is the reusability of shared knowledge. By the time

this survey was prepared, there were several popular domains

that design, develop, and use ontologies. Sensor domain is one

of them. A survey of the semantic specification of sensors

is presented in [143]. They have evaluated and compared a

number of ontologies and their capabilities.

There are several popular semantic web ontology languages

that can be used to develop ontologies: RDF [144], RDFS

[145], OWL [146]. The current recommendation is OWL 2

which is an extended version of OWL. A significant amount

of OWL usage has been noticed in the context modelling ad

reasoning domain [11]. It further emphasises the requirement
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of having the modelling language, reasoning engines, and

mechanism to define rules as a bundle, rather than choosing

different available options arbitrarily, to get the real power of

semantic technologies. SWRL is one of the available solutions

to add rules in OWL [12]. SWRL is not a hybrid approach

as it is fully integrated into ontological reasoning. In contrast,

when the amount of data becomes larger and structure be-

comes complex, ontologies can becomes exceedingly complex

causing the reasoning process to be resource intensive and

slow. However, some of the main reasons to choose OWL as

the context modelling mechanism are [119], [142].

• W3C strongly supports the standardisation of OWL. There-

fore, a variety of development tools are available for integrat-

ing and managing OWL ontologies, which makes it easier to

develop and share.

• OWL allows interoperability among other context-aware

systems. These features, such as classes, properties and

constraints, and individuals are important for supporting

ontology reuse, mapping and interoperability.

• OWL supports a high-level of inference / reasoning support.

• OWL is more expressive. For example, it provides cardi-

nality constraints, which enables imposing additional restric-

tions on the classes.

We compare the two most popular web ontology languages,

RDF(S) and OWL(2) in Table IX, to highlight the fundamental

differences.

After evaluating several context modelling techniques, it

was revealed that incorporating multiple modelling techniques

is the best way to produce efficient and effective results, which

will mitigate each other’s weaknesses. Therefore, no single

modelling technique is ideal to be used in a standalone fashion.

There is a strong relationship between context modelling and

reasoning. For example, some reasoning techniques prefer

some modelling techniques. However, it should not limit the

employability of different context reasoning and modelling

techniques together. In the next section we discuss reasoning

context-aware computing.

C. Context Reasoning Decision Models

Context reasoning can be defined as a method of deduc-

ing new knowledge, and understanding better, based on the

available context [147]. It can also be explained as a process

of giving high-level context deductions from a set of contexts

[97]. The requirement of reasoning also emerged due to two

characteristics of raw context: imperfection (i.e. unknown, am-

biguous, imprecise, or erroneous) and uncertainty. Reasoning

performance can be measured using efficiency, soundness,

completeness, and interoperability [11]. Reasoning is also

called inferencing. Contest reasoning comprises several steps.

Broadly we can divide them into three phases [148].

• Context pre-processing: This phase cleans the collected

sensor data. Due to inefficiencies in sensor hardware and

network communication, collected data may be not accurate

or missing. Therefore, data needs to be cleaned by filling

missing values, removing outliers, validating context via

multiple sources, and many more. These tasks have been

extensively researched by database, data mining, and sensor

network research communities over many years.

• Sensor data fusion: It is a method of combining sensor

data from multiple sensors to produce more accurate, more

complete, and more dependable information that could not

be achieve through a single sensor [149]. In the IoT, fusion is

extremely important, because there will be billions of sensors

available. As a result, a large number of alternative sources

will exist to provide the same information.

• Context inference: Generation of high-level context infor-

mation using lower-level context. The inferencing can be

done in a single interaction or in multiple interactions.

Revisiting an example from a different perspective, W4 Diary

[123] represented context as tuples (e.g. Who: John, What:

walking:4km/h, Where: ANU,Canberra, When: 2013-01-

05:9.30am). This low-level context can be inferred through a

number of reasoning mechanisms to generate the final results.

For example, in the first iteration, longitude and latitude

values of a GPS sensor may be inferred as PurplePickle

cafe in canberra. In the next iteration PurplePickle cafe

in canberra may be inferred as John’s favourite cafe. Each

iteration gives more accurate and meaningful information.

There are a large number of different context reasoning

decision models, such as decision tree, naive Bayes, hidden

Markov models, support vector machines, k-nearest neighbour,

artificial neural networks, Dempster-Shafer, ontology-based,

rule-based, fuzzy reasoning and many more. Most of the

models originated and are employed in the fields of artificial

intelligence and machine learning. Therefore, these models are

not specific to context-reasoning but commonly used across

many different fields in computing and engineering.
We present the results of a survey conducted by Lim and

Dey [108] in Figure 7. They have investigated the popularity

of context reasoning decision models. The survey is based

on literature from three major conferences over five years:

Computer-Human Interaction (CHI) 2003-2009, Ubiquitous

Computing (Ubicomp) 2004-2009, and Pervasive 2004-2009.
In the IoT paradigm, there are many sensors that sense

and produce context information. The amount of information

that will be collected by over 50 billion sensors is enormous.

Therefore, using all this context for reasoning in not feasible

for many reasons, such as processing time, power, storage,

etc. Furthermore, Guan et al. [97] has proved that using

more context will not necessarily improve the accuracy of

the inference in a considerable manner. They have used two

reasoning models in their research: back-propagation neural

networks and k-nearest neighbours. According to the results,

93% accuracy has been achieved by using ten raw context.

Adding 30 more raw context to the reasoning model has

increased the accuracy by only 1.63%. Therefore, selecting

the appropriate raw context for reasoning is critical to infer

high-level context with high accuracy.
Context reasoning has been researched over many years.

The most popular context reasoning techniques (also called

decision models) are surveyed in [11], [12], [147]. Our inten-

tion in this paper is not to survey context reasoning techniques

but to briefly introduce them so it will help to understand and

appreciate the role of context reasoning in the IoT paradigm.
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Fig. 7. (a) Counts of model types used in 109 of 114 reviewed context-aware applications. (b) Counts for 50 recognition applications; classifiers are used
most often for applications that do recognition [108].

We classify context reasoning techniques broadly into six

categories: supervised learning, unsupervised learning, rules,

fuzzy logic, ontological reasoning and probabilistic reasoning.

A comparison of these techniques is presented in Table XI

1) Supervised learning: In this category of techniques, we

first collect training examples. Then we label them according

to the results we expect. Then we derive a function that can

generate the expected results using the training data. This

technique is widely used in mobile phone sensing [150] and

activity recognition [151]. Decision tree is a supervised learn-

ing technique where it builds a tree from a dataset that can be

used to classify data. This technique has been used to develop

a student assessment system in [152]. Bayesian Networks is

a technique based on probabilistic reasoning concepts. It uses

directed acyclic graphs to represent events and relationships

among them. It is a widely used technique in statistical

reasoning. Example applications are presented in [141], [153].

Bayesian networks are commonly used in combining uncertain

information from a large number of sources and deducing

higher-level contexts. Artificial neural networks is a technique

that attempts to mimic the biological neuron system. They are

typically used to model complex relationships between inputs

and outputs or to find patterns in data. Body sensor networks

domain has employed this technique for pervasive healthcare

monitoring in [154]. Support vector machines are widely used

for pattern recognition in context-aware computing. It has

been used to detect activity recognition of patients in the

healthcare domain [155] and to learn situations in a smart

home environment [156].

2) Unsupervised learning: This category of techniques

can find hidden structures in unlabelled data. Due to the

use of no training data, there is no error or reward signal

to evaluate a potential solution. Clustering techniques such

as K-Nearest Neighbour is popularly used in context-aware

reasoning. Specifically, clustering is used in low-level (sensor

hardware level) sensor network operations such as routing

and high level tasks such as indoor and outdoor positioning

and location [157]. Unsupervised neural network techniques

such as Kohonen Self-Organizing Map (KSOM) are used to

classify incoming sensor data in a real-time fashion [158].

Noise detection and outlier detection are other applications

in context-aware computing. Applications of unsupervised

learning techniques in relation to body sensor networks are

surveyed in [154]. The unsupervised clustering method has

been employed to capturing user contexts by dynamic profiling

in [159].

3) Rules: This is the simplest and most straightforward

methods of reasoning out of all of them. Rules are usually

structure in an IF-THEN-ELSE format. This is the most

popular method of reasoning according to Figure 7. It allows

the generation of high level context information using low

level context. Recently, rules have been heavily used when

combined with ontological reasoning [160], [161], [162].

MiRE [163] is a minimal rule engine for context-aware mobile

devices. Most of the user preferences are encoded using rules.

Rules are also used in event detection [164], [165]. Rules are

expected to play a significant role in the IoT, where they are

the easiest and simplest way to model human thinking and

reasoning in machines. PRIAMOS [166] has used semantic

rules to annotate sensor data with context information. Appli-

cation of rule based reasoning is clearly explained in relation

to context-aware I/O control in [167].

4) Fuzzy logic: This allows approximate reasoning instead

of fixed and crisp reasoning. Fuzzy logic is similar to prob-

abilistic reasoning but confidence values represent degrees of

membership rather than probability [168]. In traditional logic

theory, acceptable truth values are 0 or 1. In fuzzy logic partial

truth values are acceptable. It allows real world scenarios to

be represented more naturally; as most real world facts are

not crisp. It further allows the use of natural language (e.g.

temperature: slightly warm, fairly cold) definitions rather than

exact numerical values (e.g. temperature: 10 degrees Celsius).

In other words it allows imprecise notions such as tall, short,

dark, trustworthy and confidence to be captured, which is

critical in context information processing. In most cases, fuzzy

reasoning cannot be used as a standalone reasoning technique.

It is usually used to complement another techniques such as

rules based, probabilistic or ontological reasoning. Gaia [169]

has used fuzzy logic in context providers to handle uncertainty.

Several examples of applying fuzzy logic to represent context

information are presented in [170], [171].

5) Ontology based: : It is based on description logic,

which is a family of logic based knowledge representations

of formalisms. Ontological reasoning is mainly supported

by two common representations of semantic web languages:

RDF(S) [144] and OWL(2) [146]. We discussed ontology

based modelling in Section IV-B6. Semantic web languages

are also complemented by several semantic query languages:
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TABLE XI
COMPARISON OF CONTEXT REASONING DECISION MODELLING TECHNIQUES

Techniques Pros Cons Applicability

Supervised
Learning

(Artificial neural
network,
Bayesian
Networks,
Case-based
reasoning,

Decision tree
learning, Support
vector machines)

• Fairly accurate
• Number of alternative models are

available
• Have mathematical and statistical

foundation

• Require significant amount of
data

• Every data element need to be
converted in to numerical values

• Selecting feature set could be
challenging

• Can be more resource intensive
(processing, storage, time)

• less semantic so less meaningful
• Training data required
• Models can be complex
• Difficult to capture existing

knowledge

For situation where the feature set is easily
identifiable, possible out comes are known,
and large data sets (for training as well) are
available in numerical terms. (For example:
activity recognition, missing value identifi-
cation)

Unsupervised
Learning

(Clustering,
k-Nearest

Neighbour)

• No training data required
• No need to know the possible out-

come

• Models can be complex
• Less semantic so less meaningful
• Difficult to validate
• Outcome is not predictable
• Can be more resource intensive

(processing, storage, time)

For situations where possible out comes are
not known (For example: unusual behaviour
detection, analysing agricultural fields to
identify appropriate location to plant a spe-
cific type of crop)

Rules

• Simple to define
• Easy to extend
• Less resource (e.g. processing, stor-

age) intensive

• Should define manually
• Can be error prone due to manual

work
• No validation or quality checking

For situations where raw data elements need
to be converted in to high level context
information. Suitable to be used to define
events.

Fuzzy Logic

• Allow more natural representation
• Simple to define
• Easy to extend
• Less resource (e.g. processing, stor-

age) intensive
• Can handle uncertainty

• Should define manually
• Can be error prone due to manual

work
• No validation or quality checking
• May reduce the quality (e.g. pre-

cision) of the results due to nat-
ural representation

For situation where low-level context need
to be converted in to high-level more natural
context information. This type of simplifi-
cation will make it easy to process further.
For example, control automated irrigation
system where water will be released when
the system detect the soil is ‘dry’

Ontology based
(First-Order

Predicate Logic)

• Allow complex reasoning
• Allow complex representation
• More meaningful results
• Validation and quality checking is

possible
• Can reason both numerical and tex-

tual data

• Data need to be modelled in
a compatible format (e.g. OWL,
RDF)

• Limited numerical reasoning
• Low performance (e.g. require

more computation power and
time)

For situations where knowledge is criti-
cal. For example, store and reason domain
knowledge about agricultural domain. It al-
lows the context information to be store
according to the ontology structure and au-
tomatically reason later when required

Probabilistic logic
(Dempster-Shafer,

hidden Markov
Models, naive

Bayes)

• Allows to combine evidence
• Can handle unseen situations
• Alternative models are available
• Can handle uncertainty
• provide moderately meaningful re-

sults

• Should know the probabilities
• Reason numerical values only

For situations where probabilities are
known and combing evidence from different
sources are essential. For example, evidence
produced from a camera, infra-red sensors,
acoustics sensor, and motion detector can be
combined to detect a wind animal infiltrate
to a agricultural field

RDQL, RQL, TRIPLE and number of reasoning engines:

FACT [172], RACER, Pellet [173]. Rules such as SWRL

[160] are increasingly popular in ontological reasoning. The

advantage of ontological reasoning is that it integrates well

with ontology modelling. In contrast, a disadvantage is that

ontological reasoning is not capable of finding missing values

or ambiguous information where statistical reasoning tech-

niques are good at that. Rules can be used to minimise

this weakness by generating new context information based

on low-level context. Missing values can also be tackled

by having rules that enable missing values to be replaced

with suitable predefined values. However, these mechanism

will not perform accurately in highly dynamic and uncertain

domains. Ontological reasoning is heavily used in a wide

range of applications, such as activity recognition [151],

hybrid reasoning [151], and event detection [165]. A survey

on semantic based reasoning is presented in [147]. It also

compares a number of context aware frameworks based on

modelling technique, reasoning techniques, and architectures

used in their systems. Comprehensive and extensive amounts

of information on semantic technology are available in [130],

[131], [132]. In addition, a semantic based architecture for

sensor data fusion is presented in [174], [175], [176].

6) Probabilistic logic: This category of techniques allows

decisions to be made based on probabilities attached to the

facts related to the problem. It can be used to combine

sensor data from two different sources. Further, it can be

used to identify resolutions to conflicts among context. Most

often these techniques are used to understand occurrence of

events. Probabilistic logic has been used in [168] to encode

access control policies. Dempster-Shafer, which is based on

probabilistic logic, allows different evidence to be combined

to calculate the probability of an event. Dempster-Shafer is

commonly used in sensor data fusion for activity recognition.
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In [171], [177], it has been used to understand whether there

is a meeting in the room. Other example applications are pre-

sented in [178], [179]. hidden Markov Models [180] are also

a probabilistic technique that allows state to be represented

using observable evidence without directly reading the state.

For example, it provides a method to bridge the gap between

raw GPS sensor measurements and high level information such

as a user destination, mode of transportation, calendar based

observable evidence such as user calendar, weather, etc. hidden

Markov Models are commonly used in activity recognition in

context-aware domains. For example, it has been used to learn

situation models in a smart home [156].

Up to now, we have presented and discussed a number of

context modelling and reasoning techniques. However, it is

clear that each technique has its own strengths and weakness.

No single technique can be used to accomplish perfect results.

Therefore, the best method to tackle the problem of context

awareness it to combine multiple models in such a way that,

as a whole, they reduce weaknesses by complementing each

other. For example, Alternative Context Construction Trees

(ACCT) [181] is an approach that enables the concurrent

evaluation and consolidation of different reasoning models

such as logic rules, Bayesian networks and CoCoGraphs [182].

There are two reasons that context information can become

uncertain, as discussed in V-A16. Therefore, employing or

incorporating strategies that can reason under uncertainty such

as Bayesian networks, Dempster-Shafer or fuzzy logic is

essential in such situations. The process of how the multiple

techniques can be combined together is presented in [12],

[183]. We briefly explain the hybrid context modelling and

reasoning approach as follows.

At the lowest level, statistical techniques can be used to fuse

sensor data. Then, fuzzy logic can be employed to convert

fixed data in to more natural terms. In the future, Dempster-

Shafer can be used to combine sensor data from different

sources. In addition, machine learning techniques, such as

support vector machines and artificial neural networks, can

be used for further reasoning. After completing statistical

reasoning, the high level data can be modelled using semantic

technologies such as ontologies. Ontological reasoning can be

applied to infer additional context information using domain

knowledge at the higher level. A similar process is explained

in detail in [183].

D. Context Distribution

Context distribution is a fairly straightforward task. It pro-

vides methods to deliver context to the consumers. From

the consumer perspective this task can be called context

acquisition, where the discussion we presented in Section

IV-A is completely applicable. Therefore all the factors we

discussed under context acquisition need to be considered for

context distribution as well. Other than that there are two other

methods to that are used commonly in context distribution:

• Query: Context consumer makes a request in terms of a

query, so the context management system can use that query

to produce results.

• Subscription (also called publish / subscribe): Context con-

sumer can be allowed to subscribe with a context manage-

ment system by describing the requirements. The system

will then return the results periodically or when an event

occurs (threshold violation). In other terms, consumers can

subscribe for a specific sensor or to an event. However, in

underline implementations, queries may also use to define

subscriptions. Further, this method is typically use in real

time processing.

V. EXISTING RESEARCH PROTOTYPES AND SYSTEMS

In this section, first we present our evaluation framework

and then we briefly discuss some of the most significant

projects and highlight their significance. Later, we identify

the lessons we can learn from them towards context-aware

development in the IoT paradigm in Section VI. The projects

are discussed in the same order as in Table XIII. Our taxonomy

is summarized in Table XII.

A. Evaluation Framework

We used abbreviations as much as possible to make sure

that the structure allowed all 50 projects to be presented in a

single page, which enables the readers to analyse and identify

positive and negative patterns that we have not explicitly

discussed. In Table XIII, we use a dash (–) symbol across

all columns to denote that the functionality is either missing

or not mentioned in related publications that are available.

In order to increase the readability, we have numbered the

columns of the Table XIII corresponding to the taxonomy

numbered below. Our taxonomy and several other features

that will provide additional value in IoT solutions are visually

illustrated in Figure 8.

1) Project Name: This is the name given to the project

by the authors of the related publications. Most of the project

names are abbreviations that are used to refer to the project.

However, some project do not have an explicit project name,

here we used a dash (–) symbol.

2) Citation: We provide only one citation due to space

limitations. Other citations are listed under each project’s

descriptions and highlights in Section V.

3) Year: Table XIII is ordered according to chronological

order (i.e. from oldest to newest) based on the year of

publication.

4) Project Focus: Based on our evaluation, each project

has its own focus on whether to build a system, a toolkit, or a

middleware solution. The following abbreviations are used to

denote the focus: system (S), toolkit (T), and middleware (M).

Systems focus on developing an end-to-end solution where

it involves hardware, software and application layer. Systems

cannot be used as middleware. It is designed to provide one

or a few tasks. Building different functionalities on top of the

system is not an option. Systems are designed and developed

for a use by the end users. Toolkits are not designed to be used

by the end users. They are employed by system, application,

and middleware developers. They provide very specific func-

tionalities. Toolkits are usually designed according to well-

known design principles and standards and always released
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with proper documentation that shows how to use them at

programming code level. Middleware [58] can be explained as

a software layer that lies between the hardware and application

layers. It provides reusable functionalities that are required

by the application to meet complex customer requirements.

They are usually built to address common issues in application

development such as heterogeneity, interoperability, security,

and dependability. A goal of middleware is to provide a set

of programming abstractions to help software development

where heterogeneous components need to be connected and

communicate together. Middleware is designed to be used by

application developers, where the middleware solution handles

most of the common functionalities leaving more time and

effort for the application developers to deal with application

functionalities.

5) Modelling: This has been discussed in detail in Section

IV-B. We use the following abbreviations to denote the context

modelling techniques employed by the project: key-value

modelling (K), markup Schemes (M), graphical modelling (G),

object oriented modelling (Ob), logic-based modelling (L), and

ontology-based modelling (On).

6) Reasoning: This has been discussed in detail in Section

IV-C. We use the following abbreviations to denote the context

reasoning techniques employed by the project: supervised

learning (S), un-supervised learning (U), rules (R), fuzzy logic

(F), ontology-based (O), and probabilistic reasoning (P). The

symbol (X) is used where reasoning functionality is provided

but the specific technique is not mentioned.

7) Distribution: This has been discussed in detail in Sec-

tion IV-D. We use the following abbreviations to denote

the context distribution techniques employed by the project:

publish/subscribe (P) and query (Q).

8) Architecture: This varied widely from one solution to

another. Architecture can be classified into different categories

based on different perspectives. Therefore, there is no common

classification scheme that can be used for all situations. We

consider the most significant architectural characteristics to

classify the solution. Different architectural styles are num-

bered as follows. (1) Component based architecture where

the entire solution is based on loosely coupled major com-

ponents, which interact each other. For example, Context

Toolkit [72] has three major components which perform the

most critical functionalities of the system. (2) Distributed

architecture enables peer-to-peer interaction in a distributed

fashion, such as in Solar [184]. (3) Service based architecture

where the entire solution consists of several services working

together. However, individual access to each service may not

be provided in solutions such as Gaia [168]. (4) Node based

architecture allows to deployment of pieces of software with

similar or different capabilities, which communicate and col-

lectively process data in sensor networks [85]. (5) Centralised

architecture which acts as a complete stack (e.g. middleware)

and provides applications to be developed on top of that, but

provides no communication between different instances of the

solution. (6) Client-server architecture separates sensing and

processing from each other, such as in CaSP [185].

9) History and Storage: Storing context history is critical

[186] in both traditional context-aware computing and the IoT.

Historic data allows sensor data to be better understood. Even

though most of the IoT solutions and applications are focused

on real time interaction, historic data has its own role to play.

Specifically, it allows user behaviours, preferences, patterns,

trends, needs, and many more to be understood. In contrast,

due to the scale of the IoT, storing all the context for the long

term may not feasible. However, storage devices are getting

more and more powerful and cheap. Therefore, it would be a

tradeoff between cost and understanding. The symbol (X) is

used denote that context history functionality is facilitated and

employed by the project.

10) Knowledge Management: This functionality is broader

than any others. Most of the tasks that are performed by

IoT middleware solutions require knowledge in different per-

spectives, such as knowledge on sensors, domains, users,

activities, and many more. One of the most popular techniques

to represent knowledge in context-aware computing is using

ontologies. However, several other techniques are also avail-

able such as rules. Knowledge can be used for tasks such as

automated configuration of sensors to IoT middleware, auto-

matic sensor data annotation, reasoning, and event detection.

The symbol (X) is used to denote that knowledge management

functionality is facilitated and employed by the project in some

perspective.

11) Event Detection: This is one of the most important

functionalities in IoT solutions. IoT envisions machine-to-

machine (M2M) and machine-to-person communication. Most

of these interactions are likely to occur based on an event.

Events can referred to many things, such as an observable

occurrence, phenomenon, or an extraordinary occurrence. We

define one or more conditions and identify it as an occurrence

of an event once all the defined conditions are satisfied. In

the IoT, sensors collect data and compare it with conditions to

decide whether the data satisfies the conditions. An occurrence

event is also called a event trigger. Once an event has

been triggered, a notification or action may be executed. For

example, detecting current activity of a person or detecting a

meeting status in a room, can be considered as events. Mostly,

event detection needs to be done in real-time. However, events

such as trends may be detected using historic data. The symbol

(X) is used to denote that event detection functionality is

facilitated and employed by the project in some perspective.

12) Context Discovery and Annotation: We use the follow-

ing abbreviations to denote context discovery and annotation

facilitated and employed by the project: context discovery

(D) and context annotation (A). Context annotation allows

context related information and raw sensors data to be at-

tached, modelled, and stored. Some of the most common and

basic information that needs to be captured in relation to

context are context type, context value, time stamp, source, and

confidence. Context-aware geographical information retrieval

approach [162] has proposed a mechanism to map raw sensor

data to semantic ontologies using SWRL. This is critical

in all types of systems. Even though, statistical reasoning

systems can use raw sensor data directly, semantic mapping

before the reasoning allows more information to be extracted.

Context information only becomes meaningful when it is

interpreted with respect to the user. This can be achieved by
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knowledge base integration and reasoning using ontologies.

Another application is discussed in [161]. Ontologies and other

context modelling techniques allow structure data to be more

meaningful which express relationships among data.

End-users in the IoT paradigm are more interested in high-

level information compared to low-level raw sensor data [50].

The following examples explain the difference between high-

level information and low-level raw sensor data. It is raining

(high-level information) can be derived from humidity is 80%

(low-level sensor data). Further, high-level sensor data can be

explained as semantic information as it provides more meaning

to the end users. Challenges of semantic sensor webs are

identified and discussed in [187]. This is the most common

form of discovery.

13) Level of Context Awareness: Context-awareness can

be employed at two levels: low (hardware) level and high (soft-

ware) level. At the hardware level, context-awareness is used to

facilitate tasks such as efficient routing, modelling, reasoning,

storage and event detection (considering energy consumption

and availability) [188]. At the hardware level, data and knowl-

edge available for decision making is less. Further, sensors are

resource constraint devices, so complex processing cannot be

performed at the hardware level. However, applying context-

aware technologies in the hardware level allows resources to

be saved, such as network communication costs by preliminary

filtering. The software level has access to a broader range

of data and knowledge as well as more resources, which

enables more complex reasoning to be performed. We use

the following abbreviations to denote the level of context

awareness facilitated and employed by the project: high level

(H) and low level (L).

14) Security and Privacy: This is a major concern in

context-aware computing in all paradigms. However, the IoT

paradigm will intensify the challenges in security and privacy.

In the IoT, sensors are expected to collect more information

about users (i.e. people) in all aspects. This includes both

physical and conceptual data, such as location, preferences,

calendar data, and medical information to name a few. As

a result, utmost care needs to be taken when collecting,

modelling, reasoning, and with persistent storage. Security and

privacy need to be handled at different levels in the IoT. At

the lowest level, the hardware layer should ensure security

and privacy during collecting and temporary storage within

the device. Secure protocols need to ensure communication

is well protected. Once the data is received, application level

protection needs to be in placed to monitor and control who

can see or use context and so on. Different projects use

different techniques such as policies, rules, and profiles to

provide security and privacy. The symbol (X) denoted the

presence of security and privacy related functionality in the

project, in some form.

15) Data Source Support: There are different sources

that are capable of providing context. Broadly we call them

sensors. We discussed different types of sensors in Section III.

Based on the popularity of the data sources supported by each

solution, we selected the following classification. (P) denotes

that the solution supports only physical sensors. Software

sensors (S) denotes that the solution supports either virtual

sensors, logical sensors or both. (A) denotes that the solution

supports all kinds of data sources (i.e. physical, virtual, and

logical). (M) denotes that the solution supports mobile devices.
16) Quality of Context: We denote the presence of conflict

resolution functionality using (C) and context validation func-

tionality using (V). Conflict resolution is critical in the context

management domain [189]. There has to be a consistency in

collecting , aggregating, modelling, and reasoning. In the IoT

paradigm, context may not be accurate. There are two reasons

for context information not to be certain. First is that the sensor

technology is not capable of producing 100% accurate sensor

data due to various technical and environmental challenges.

Secondly, even with sensors that produce 100% accurate

sensor data, reasoning models are not 100% accurate. In

summary, problems in sensor technology and problems in

reasoning techniques contribute to context conflicts. There are

two types of context conflicts that can occurred and they are

defined in [189]:

• Internal context conflict: Fusing two or more context ele-

ments that characterises the situation from different dimen-

sions of the same observed entity in a given moment may

lead to internal context conflict. (e.g. motion sensor detects

that a user is in the kitchen and calendar shows that the

user is supposed to be in a meeting. Therefore, it is unable

to correctly deduce the current location by fusing two data

sources: calendar and motion sensor.)

• External context conflicts: The context con-

flict/inconsistency that may occur between two or more

bits of context that describe the situation of an observed

entity from the same point of view. (e.g. two motion sensors

located in the same area provide two completely different

readings, where one sensor detects a person and other sensor

detects three people.)

Context validation ensures that collected data is correct and

meaningful. Possible validations are checks for range, limit,

logic, data type, cross-system consistency, uniqueness, cardi-

nality, consistency, data source quality, security, and privacy.
17) Data Processing: We denote the presence of context

aggregation functionality using (A) and context filter function-

ality using (F). Aggregation can be explained in different ways;

for example, Context Toolkit [72] has a dedicated component

called context aggregator to collect data related to a specific

entity (e.g. person) from different context sources and act as

a proxy to context applications. They do not perform any

complex operations; just collect similar information together.

This is one of the simplest forms of aggregation of context.
Context filter functionality makes sure the reasoning engine

processes only important data. Specially in IoT, processing all

the data collected by all the sensors is not possible due to

scale. Therefore, IoT solutions should process only selected

amounts of data that allows it to understand context accurately.

Filtering functionality can be presented in different solutions

in different forms: filter data, filter context sources, or filter

events. Filtering helps both at the low (hardware) level and

software level. At the hardware level, it helps to reduce the

network communication cost by transmitting only important

data. At the high-level, filtering can save process energy by

only processing important data.
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TABLE XII
TBL:SUMMARIZED TAXONOMY USED IN TABLE XIII

Taxonomy Description

5 Modelling
Key-value modelling (K), Markup schemes (M), Graphical modelling (G), Object oriented
modelling (Ob), Logic-based modelling (L), and Ontology-based modelling (On)

6 Reasoning
Supervised learning (S), Un-supervised learning (U), rules (R), Fuzzy logic (F), Ontology-based
(O), and Probabilistic reasoning (P)

7 Distribution Publish/subscribe (P) and Query (Q)

8 Architecture
Component based architecture (1) , Distributed architecture (2), Service based architecture (3),
Node based architecture (4) , Centralised architecture (5), Client-server architecture (6)

9 History and Storage Available (X)

10 Knowledge Management Available (X)

11 Event Detection Available (X)

12 Context Discovery and Annotation context Discovery (D) and context Annotation (A)

13 Level of Context Awareness High level (H) and Low level (L).

14 Security and Privacy Available (X)

15 Data Source Support Physical sensors (P), Software sensors (S), Mobile devices (M), Any type of sensor (A)

16 Quality of Context Conflict resolution (C), context Validation (V)

17 Data Processing Aggregate (A), Filter (F)

18 Dynamic Composition Available (X)

19 Real Time Processing Available (X)

20 Registry Maintenance Available (X)

Context processing can be classified into three categories

(also called layers) [11]. Typical methods and techniques used

in each layer are also presented as follows:

• Activity and context recognition layer: Feature extraction,

classification, clustering, fuzzy rules

• Context and representation layer: Conceptual models, logic

programming, ontology based representation and reasoning,

databases and query languages, rule based representation

and reasoning, cased based representation and reasoning,

representing uncertainty, procedural programming

• Application and adaptation layer: Rules, query languages,

procedural programming

Data fusion, which is also considered a data processing

technique, is critical in understanding sensor data. In order

to lay a solid foundation to our discussion, we adopt the

definition provided by Hall and Llinas [149] on sensor data

fusion. “Sensor data fusion is a method of combining sen-

sor data from multiple sensors to produce more accurate,

more complete, and more dependable information that could

not be possible to achieve through a single sensor [149].”

For example, in positioning, GPS does not work indoors.

In contrast, there are a variety of other indoor positioning

schemes that can be used. Therefore, in order to continuously

track the positioning regardless of indoor or outdoor, sensor

data fusion is essential [78]. Data fusion methods, models,

and classification techniques in the wireless sensor networks

domain are comprehensively surveyed in [190].

In order to identify context, it is possible to combine data

from different data sources. For example, consider a situation

where we want to identify the location of a user. The possible

sources that can be used to collect evidence regarding the

location are GPS sensors, motion sensor, calendar, email,

social networking services, chat clients, ambient sound (sound

level, pattern), users nearby, camera sensors, etc. This long list

shows the possible alternatives. It is always a tradeoff between

required resource (e.g. processing power, response time) and

accuracy. Processing and combining all the above sensor read-

ings would produce a more accurate result; however, it would

require more resources and time. There is a significant gap

between low-level sensor readings and high-level ‘situation-

awareness’ [123]. Collecting low-level sensor data is becoming

significantly easier and cheaper than ever due to advances in

sensing technology. As a result, enormous amounts of sensor

data (e.g. big data [5]) is available. In order to understand

big data, a variety of different reasoning techniques need to

employed as we discussed in Section IV-C.
18) Dynamic Composition: As explained in Solar [184],

IoT solutions must have a programming model that allows

dynamic composition without requiring the developer or user

to identify specific sensors and devices. Dynamic organising is

critical in environments like the IoT, because it is impossible

to identify or plan possible interaction at the development

stage. Software solutions should be able to understand the

requirements and demands on each situation, then organise

and structure its internal components according to them.

Components such as reasoning models, data fusion operators,

knowledge bases, and context discovery components can be

dynamically composed according to the needs. The symbol

(X) denoted the presence of dynamic composition functional-

ity in the project in some form.
19) Real Time Processing: Most of the interactions are

expected to be processed in real time in the IoT. This func-

tionality has been rarely addressed by the research community

in the context-aware computing domain. The most important

real time processing task is event detection as we explained

in Section V-A11. However, context reasoning, and query pro-

cessing can also be considered as essential real time processing

tasks. Real time processing solutions are focused on processing

faster than traditional methods, which allows sensor stream

data processing [211]. The symbol (X) denoted the presence

of real time processing functionality in some form.
20) Registry Maintenance and Lookup Services: We use

the (X) symbol to denote the presence of registry maintenance

and lookup services functionality in the project. This func-

tionality allows different components such as context sources,

data fusion operators, knowledge bases, and context consumers

to be registered. This functionality is also closely related to
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TABLE XIII
EVALUATION OF SURVEYED RESEARCH PROTOTYPES, SYSTEMS, AND APPROACHES
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

Context Toolkit [72] 2001 T K X Q 1,5 X – – – H – A – A – – –

Solar [184] 2002 M K,M,Ob R P 2 – – X D H X P X A X – –

Aura [191] 2002 M M R P 2 – – X D H – A – – – – X

CoOL [192] 2003 T On R,O Q 1 – X X D H – S – – – – X

CARISMA [193] 2003 M M R Q 2 – – – – H – M C – – – –

CoBrA [119] 2004 M On R,O Q 1 X X X – H X A – – – – –

Gaia [168] 2004 M F,On S,P, F Q 2,3 X X X D H X A – – X – X

SOCAM [194] 2004 M On R,O Q,P 3 X X X D H – A – A – – X

CARS [195] 2005 S K U – – – – X A H – P – – – – –

CASN [188] 2005 M F,On F,O P 2 – X – D L – P – – – – –

SCK [142] 2005 M M,On R,O Q 1 X X X A,D H – A V – – – X

TRAILBLAZER [196] 2005 S K R Q 2 – – – D L – P – – – – –

BIONETS [197] 2006 M On R,O Q 1 – X – A H – A – – – – –

PROCON [86] 2006 S K R Q 2 – – X D L – P – A,F – – –

CMF (MAGNET) [85] 2006 M M R P,Q 2,4 X – – D H – A C – X – –

e-SENSE [44] 2006 M – R Q 2,4 – X – D H X P – F – – –

HCoM [198] 2007 M G,On R,O Q 5 X X – D H – S V F – – X

CMS [106] 2007 M On O P,Q 1,2 X – X S H – A – A – – X

MoCA [199] 2007 M M,Ob O P,Q 4,5 – – X D H X A V – – X X

CaSP [185] 2007 M M,On O P,Q 6 X – – D H – A – – – – X

SIM [200] 2007 M K,G R – 2 X – – – H – P C A – – –

— [124] 2007 M On O Q – – X D H – P V A – – –

COSMOS [201] 2008 M Ob R Q 2,4 – – X – H – P – A X – X

DMS-CA [202] 2008 S M R Q 5 – – X – H – A – – – – –

CDMS [203] 2008 M K,M R Q 2 X – X D H – A – A,F – – X

— [141] 2008 M On O,P Q 5 – X – D H – – V – – – –

— [204] 2008 M On R,O P,Q 5 – – X D H – P – A – – –

AcoMS [88] 2008 M M,G,On R,O P 5 – X X A H – P – – – – X

CROCO [118] 2008 M On R,O Q X X – D H X A C,V – – – X

EmoCASN [205] 2008 S K R Q 2,4 – – – D L – P – – – – –

Hydra [61] 2009 M K,On,Ob R,O Q 3 X X X – H X P V – – – –

UPnP [206] 2009 M K,M R Q 4 X – X D H X A – A X – X

COSAR [151] 2009 M On S,O Q 5 – X X A H – P – – – – –

SPBCA [161] 2009 M On R,O Q 2 – – X A H X A – – – – –

C-CAST [207] 2009 M M R P,Q 5 X – X D H – A – – – – X

— [208] 2009 M On O P 5 X – X D H – A – A – – –

CDA [209] 2009 M Ob – Q 4,6 – – – – H – V – – – – X

SALES [210] 2009 M M R Q 2,4 – – X D L – P – F – – X

MidSen [52] 2009 M K R P,Q 5 – X X D H – P – – – – X

SCONSTREAM [211] 2010 S G R Q 5 X – X – H – P – – – X –

— [101] 2010 M M P Q 2,4 X – X – H – A – F X – –

Feel@Home [212] 2010 M G,On O P,Q 2,4 – X X – H X A – – – – X

CoMiHoC [213] 2010 M Ob R,P Q 5 – X X D H – A V – – – –

Intelligibility [108] 2010 T – R,S,P Q 1,5 – – X D H – A V – – – –

ezContext [105] 2010 M K,Ob R Q 5 X X X – H – A – A – – X

UbiQuSE [214] 2010 M M R Q 5 X – X D,A H – A – – – X –

COPAL [215] 2010 M M R P,Q 1,5 – – X D H X V A,F – X X

Octopus [50] 2011 S X X P 2,4 – – X D H – A – A X – –

— [216] 2011 M – X P 2 – – – D H – P – A – – X

— [153] 2011 S K,Ob S,P 2,4 X X X D,A H – M V A,F – – X

Notes: Refer Section V-A for the meanings of the abbreviations and symbols used in the table
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dynamic composition where it needs to select relevant and

matching components to be composed together. Registries

need to be updated to reflect (dis)appearing components.

B. Evaluation of Research Efforts

Context Toolkit [72] aims to facilitating development and

deployment of context-aware applications. This is one of the

earliest efforts of providing framework support for context-

aware application development. Context Toolkit contains a

combination of features and abstractions to support context-

aware application developers. It introduces three main abstrac-

tions: context widget (to retrieve data from sensors), context

interpreter (to reason sensor data using different reasoning

techniques), and context aggregator. The research around

Context Toolkit is still active and a number of extensions

have been developed to enhance its context-aware capabilities.

Enactor [217] provides a context decision modelling facility

to the Context Toolkit. Further, the Intelligibility Toolkit [108]

extends the Enactor framework by supporting more decision

models for context reasoning. Context Toolkit identifies the

common features required by context-aware applications as

capture and access of context, storage, distribution, and inde-

pendent execution from applications.

Aura [191] is a task oriented system based on distributed

architecture which focuses on different computational devices

used by human users every day. The objective is to run a set

of applications called personal aura in all devices in order

to manage user tasks in a context-aware fashion across all

the devices smoothly. Aura addresses two major challenges.

First, aura allows a user to preserve continuity in his/her

work when moving between different environments. Second,

it is capable of adapting to the on-going computation of a

particular environment in the presence of dynamic resource

variability. Aura consists of four major components: context

observer (collects context and send it to task and environment

managers), task manager (also called prism, four different

kinds of changes: user moves to another environment, envi-

ronment, task, and context), environment manager (handles

context suppliers and related service), and context suppliers

(provides context information). XML based markup schemes

are used to describe services. .

CARISMA [193] (Context-Aware Reflective middleware

System for Mobile Applications) is focused on mobile systems

where they are extremely dynamic. Adaptation (also called

reflection) is the main focus of CARISMA. context is stored

as application profiles (XML based), which allows each appli-

cation to maintain meta-data under two categories: passive and

active. The passive category defines actions that middleware

would take when specific events occur using rules, such as

shutting down if battery is low. However, conflicts could

arise when two profiles defines rules that conflict each other.

The active category allows relationships to be maintained

between services used by the application, the policies, and

context configurations. This information tells how to behave

under different environmental and user conditions. A conflict

resolution mechanism is also introduced in CARISMA based

on macroeconomic techniques. An auction protocol is used

to handle the resolution as they support greater degrees of

heterogeneity over other alternatives. In simple terms, rules

are used in auctions with different constraints imposed on the

bidding by different agents (also called applications). Final

decisions are made in order to maximise the social welfare

among the agents.

CoBrA [119] (Context Broker Architecture) is a broker-

centric agent architecture that provides knowledge sharing and

context reasoning for smart spaces. It is specially focused

on smart meeting places. CoBrA addresses two major issues:

supporting resource-limited mobile computing devices and

addressing concerns over user privacy. Context information is

modelled using OWL ontologies. Context brokers are the main

elements of CoBrA. A context broker comprises the following

four functional components: context knowledge base (provides

persistent storage for context information), context reasoning

engine (performs reasoning over context information stored

in storage), context acquisition module (retrieve context from

context sources), and policy management module (manages

policies, such as who has access to what data). Even though the

architecture is centralised, several brokers can work together

through a broker federation. Context knowledge is represented

in Resource Description Framework (RDF) triples using Jena.

Gaia [168] is a distributed context infrastructure uncertainty

based reasoning. Ontologies are used to represented context

information. Gaia has employed a Prolog based probabilistic

reasoning framework. The architecture of Gaia consists of

six key components: context provider (data acquisition from

sensors or other data sources), context consumer (different par-

ties who are interest in context), context synthesiser (generate

high-level context information using raw low-level context),

context provider lookup service (maintains a detailed registry

of context providers so the appropriate context providers can

be found based on their capabilities when required), context

history service (stores history of context), and ontology server

(maintains different ontologies).

SOCAM [194] (Service Oriented Context-Aware Middle-

ware) is an ontology based context-aware middleware. It

separates the ontologies into two levels: upper level ontology

for general concepts and lower level ontologies domain spe-

cific descriptions. SOCAM architecture comprises several key

components: context provider (acquires data from sensors and

other internal and external data sources and converts the con-

text in to OWL representation), context interpreter (performs

reasoning using reasoning engine and stores the processed

context information in the knowledge base), context-aware

services (context consumers), and services locating service

(context providers and interpreter are allowed to register so

other components can search for appropriates providers and

interpreters based on their capabilities).

e-SENSE [44] enables ambient intelligence using wireless

multi-sensor networks for making context-rich information

available to applications and services. e-SENSE combines

body sensor networks (BSN), object sensor networks (OSN),

and environment sensor networks (ESN) to capture context in

the IoT paradigm. The features required by context-aware IoT

middleware solutions are identified as sensor data capturing,

data pre-filtering, context abstraction data source integration,
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context extraction, rule engine, and adaptation.

HCoM [198] (Hybrid Context Management) is a hybrid

approach which combines semantic ontology and relational

schemas. This approach claims that standard database man-

agement systems alone cannot be used to manage context. In

contrast, semantic ontologies may not perform well in terms

of efficiency and query processing with large volumes of

data. So the hybrid approach is required. HCoM architecture

consists of five layers: acquisition layer, pre-processing layer,

data modelling and storage layer, management modelling

layer, and utilising layer. HCoM has identified several key

requirements that a context management solution should have

that are encapsulated in several components: context manager

(aggregates the results and sends the data to reasoning engine),

collaboration manager (if context selector decides the existing

context information is not sufficient to perform reasoning, the

collaboration manager attempts to gather more data from other

possible context sources), context filter (once the context is

received, it validates and decide whether it needs to be stored

in RCDB), context selector (based on the user request, it

decides what context should be used in reasoning processing

based on the accuracy, time, and required computational

resources), context-onto (manages the ontologies and acts as a

repository), rules and policy (users are allowed to add rules to

the system), RCDB (stores the captured context in a standard

database management system), rule-mining (a data base that

consists of rules that tell what actions to perform when), and

interfaces (provides interface to the context consumers).

MoCA [199] is a service based distributed middleware

that employs ontologies to model and manage context. The

primary conceptual component is context domain. The context

management node (CMN) is infrastructure that is responsible

for managing the context domain. Similar to most of the other

context management solutions, the three key components in

MoCA are: context providers (responsible for generating or

retrieving context from other sources available to be used by

the context management system), context consumers (consume

the context gathered and processed by the system), and context

service (responsible for receiving, storing, and disseminating

context information). MoCA uses an object oriented model for

context handling, instead of an ontology-based model due to

the weaknesses posed by ontologies in terms of scalability and

performance. XML is used to model context. The XML files

are fed into the context tool in order to check validation. Then

the program codes are generated automatically to acquire data.

These program codes will acquire context and insert the data

into context repositories.

CaSP [185] (Context-aware Service Platform) is a context

gathering framework for mobile solutions based on middle-

ware architecture. The platform provides six different function-

alities: context sensing, context modelling, context association,

context storage, and retrieval. The paper also provides a com-

prehensive evaluation of existing context sensing solutions.

CaSP consists of typical context management components

which handle the mentioned functionalities.

SIM [200] (Sensor Information Management) is focused

on the smart home domain which addresses location track-

ing. SIM uses an agent based architecture according to the

standard specifications provided in Foundation for Intelligent

Physical Agents. Its emphasis is on collecting sensor data from

multiple sources and aggregating them together to analyse

and derive more accurate information. SIM collects two types

of information: node level and attribute level. In node level,

node ID, location, and priority are collected. Attributes are

stored in attribute information base comprising attribute and

the corresponding measurement. A location tracking algorithm

has been introduced using a mobile positioning device. A

position manager handles tracking. SIM has the capability to

resolve conflicts in sensor information based on sensor priority.

Conflict resolution is handled by a context manager with the

help of aggregation, classification, and decision components.

Even though SIM is not focused on hardware level context

management, the approach is closer to low-level instead of

high-level compared to other projects.

COSMOS [201] is middleware that enables the processing

of context information in ubiquitous environments. COSMOS

consists of three layers: context collector (collects information

from the sensors), context processing (derives high level

information from raw sensor data), and context adaptation

(provides access to the processed context for the applications).

In contrast to the other context solutions, the components of

COSMOS are context nodes. In COSMOS, each piece of con-

text information is defined as a context node. COSMOS can

support any number of context nodes which are organised into

hierarchies. Context node is an independently operated module

that consists of its own activity manager, context processor,

context reasoner, context configurator, and message managers.

Therefore, COSMOS follows distributed architecture which

increases the scalability of the middleware.

DMS-CA [202] (Data Management System-Context Archi-

tecture) is based on smart building domain. XML is used to

define rules, contexts, and services. Further, an event driven

rule checking technique is used to reason context. Rules can

be configured by mobile devices and push them to the server

to be used by the rule checking engine. Providing a mobile

interface to build rules and queries is important in a dynamic

and mobile environment such as the IoT.

ACoMS [88] (Autonomic Context Management System)

can dynamically configure and reconfigure its context infor-

mation acquisition and pre-processing functionality to perform

fault tolerant provisioning of context information. ACoMS

architecture comprises application context subscription man-

ager stores (manages context information requests from the

applications using a subscribe mechanism), context source

manager (performs actions such as low-level communication

with context sources, context source discovery, registration,

and configuration), and reconfiguration manager (performs

monitoring tasks such as mapping context sources to context

information).

CROCO [118] (CROss application COntext management)

is an ontology based context modelling and management

service. CROCO identifies several requirements to be a cross

application, such as application plug-in capability. CROCO has

three responsibilities where they are distributed among three

separate layers: data management (perform operations such as

storing inferred data for historic use, develop and maintain fact
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database), consistency checking and reasoning (consistency

manager is responsible for checking the consistency, such as

data types, and cardinality when sensor data arrives before it is

feed in to reasoning or storage; reasoning manager performs

reasoning based on the facts stored in the fact data base),

and context update and provision (allows context consumers

to register themselves, retrieve context from context sources,

and provide query interface to the consumers).
EMoCASN [205] (Environment Monitoring Oriented Con-

text Aware Sensor Networks) proposes a context-aware model

for sensor networks (CASN). This modelling approach is

narrowly focused on managing sensor networks using low

level context such as node context, task context, and data

context. For example, CASN uses low level context such

as remaining energy of a node, location of the sensor, and

orientation of the sensor to decide energy efficient routing.
Hydra3 [61] is an IoT middleware that aims to integrate

wireless devices and sensors into ambient intelligence systems.

Hydra comprises a Context Aware Framework (CAF). CAF

provides the capabilities of both high-level, powerful reason-

ing, based on the use of ontologies and lower-level semantic

processing based on object-oriented/key-value approach. CAF

consists of two main components: Data Acquisition Com-

ponent (DAqC) and the Context Manager (CM). DAqC is

responsible for connecting and retrieving data from sensors.

CM is responsible for context management, context awareness,

and context interpretation. A rule engine called Drools plat-

form [218] has been employed as the core context reasoning

mechanism. CAF models three distinct types of context: device

contexts (e.g. data source), semantic contexts (e.g. location,

environment, and entity), and application contexts (e.g. domain

specific). Hydra identifies context reasoning rule engine, con-

text storage, context querying, and event/action management

as the key components of a context-aware framework.
C-Cast [207] is middleware that integrates WSN into

context-aware systems by addressing context acquisition, dis-

semination, representation, recognising, and reasoning about

context and situations. C-Cast lays its architecture on four

layers: sensor, context detection, context acquisition, and

application. In C-Cast, context providers (CP) are the main

components. Each context provider handles one task. For ex-

ample, WeatherCP collects weather information and Address-

bookCP collects related addresses. Any amount of CPs can be

added to the system to extend the system wide functionality.

Each context provider independently handles data acquisition,

context processing (e.g. filter and aggregate context), context

provider management (e.g. handles subscriptions), and context

access and dissemination (e.g. handles queries). C-Cast claims

that complex reasoning and intuitive reasoning can only be

achieved by using rich representation models. In contrast,

C-CAST avoids using ontologies to model context claiming

ontologies are too resource intensive.
SALES [210] (Scalable context-Aware middleware for

mobiLe EnviromentS) is a context-aware middleware that

achieves scalability in context dissemination. The main com-

3The name ‘Hydra’ has changes its name due to name conflict between
another project registered under same name in Germany. The new name of
the middleware is the ‘LinkSmart’ middleware.

ponents of this middleware are nodes. These nodes are not

sensor nodes but servers, computers, laptops, PDAs, and

mobile phones. SALES consists of four types of nodes. XML

schemes are used to store and transfer context.

MidSen [52] is context-aware middleware for WSN. The

system is based on Event-Condition-Action (ECA) rules. It

highlights the importance of efficient event detection by pro-

cessing two algorithms: event detection algorithm (EDA) and

context-aware service discovery algorithm (CASDA). MidSen

has proposed a complete architecture to enable context aware-

ness in WSN. It consists of the following key components:

knowledge manager, application notifiers, knowledge base,

inference engine, working memory, application interface, and

network interface.

Feel@Home [212] is a context management framework that

supports interaction between different domains. The proposed

approach is demonstrated using three domains: smart home,

smart office, and mobile. The context information is stored

using OWL [146]. Feel@Home supports two different inter-

actions: intra-domain and cross domain. The cross domain

interaction is essential in the IoT paradigm. Further, this is

one of the major differences between sensor networks and

the IoT. Sensor networks usually only deal with one domain.

However, IoT demands the capability of dealing with multiple

domains. In addition, context management frameworks should

not be limited to a specific number of domains. Feel@Home

consists of three parts: user queries, global administration

server (GAS), and domain context manager (DCM). User

queries are first received by GAS. It decides what the relevant

domain needs to be contacted to answer the user query.

Then, GAS redirects the user query to the relevant domain

context managers. Two components reside in GAS, context

entry manager (CEM) and context entry engine (CEE), which

performs the above task. DCM consists of typical context

management components such as context wrapper (gathers

context from sensors and other sources), context aggregator

(triggers context reasoning), context reasoning, knowledge

base (stores context), and several other components to manage

user queries, publish/subscribe mechanism. The answers to the

user query will return by using the same path as when received.

CoMiHoc [213] (Context Middleware for ad-HoC network)

is a middleware framework that supports context manage-

ment and situation reasoning. CoMiHoc proposes a CoMoS

(Context Mobile Spaces), a context modeling, and situation

reasoning mechanism that extends the context spaces [219].

CoMiHoc uses Java Dempster-Shafer library [220]. CoMiHoc

architecture comprises six components: context provisioner,

request manager, situation reasoner, location reasoner, commu-

nication manager, and On-Demand Multicast Routing Protocol

(ODMRP).

ezContext [105] is a framework that provides automatic

context life cycle management. ezContext comprises several

components: context source (any source that provides context,

either physical sensors, databases or web service), context

provider (retrieves context from various sources whether in

push (passive) or pull (active) method, context manager (man-

ages context modelling, storage and producing high-level

context using low-level context), context wrapper (encapsulate
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retrieved context into correct format, in this approach, key-

value pairs), and providers’ registry (maintains list of context

providers and their capabilities). JavaBeans are used as the

main data format.

Octopus [50] is an open-source, dynamically extensible

system that supports data management and fusion for IoT

applications. Octopus develops middleware abstractions and

programming models for the IoT. It enables non-specialised

developers to deploy sensors and applications without detailed

knowledge of the underlying technologies and network. Oc-

topus is focused on the smart home/office domain and its

main component is solver. Solver is a module that performs

sensor data fusion operations. Solvers can be added and

removed from the system at any time based on requirements.

Further solvers can be combined together dynamically to build

complex operations.

VI. LESSONS LEARNED

1) Development Aids and Practices: Toolkits in general

are suitable for limited scale application. Managing context

in the IoT paradigm requires middleware solutions that can

provide more functionality towards managing data. Applica-

tions should be able to be built on top of the middleware

so they can request context from the middleware. Context

Toolkit [72] has introduced the notion of having common

standard interfaces. For example, context widget component

encapsulate the communication between context sources and

the toolkit. Standardisation makes it easier to learn, use, and

extend the toolkit. Standardisation is important in the IoT

paradigm, because it increases interoperability and extendibil-

ity. For example, standardising context modelling components

will help to employ the different techniques we discussed in

Section IV-B despite the differences in inner-workings. It also

enables the addition of different components when necessary.

In such a situation, standard interfaces and structures will guar-

antee a smooth interaction between new and old components.

Further, Intelligibility Toolkit [108] provides explanations to

the users to improve the trust between users and the context-

aware applications which helps in faster adaptation of the users

towards IoT.

Making correct design decisions is a critical task in IoT.

For example, data modelling and communication can be done

using different techniques as follows where each method has

its own advantages and disadvantages [184]. 1) Binary is

smaller in size than the other three formats and also portable

due to its small size. In contrast, binary makes it difficult to

extend and modify later. 2) Objects method allows complex

data structures. 3) Attribute-value pairs method provides more

limited complexity than an object representation. In contrast,

simpler representation allows language- and platform- inde-

pendent applications. 4) XML method provides more oppor-

tunities for complex data structures. XML adds a substantial

overhead in term of network communications and processing.

CoOL [192] shows how extensions (e.g. context modelling

and reasoning) can be developed to support general purpose

service models. CoOL allows context management function-

ality to be added to any model using context management

access point, which is responsible for handle communication

between CoOL and the rest of the general purpose architecture.

Security and privacy issues in context-aware computing are

not researched and seriously considered in many solutions.

CoBrA [119] shows how an ontology based approach can be

used to manage user privacy via policies which allow it to

monitor and access contextual control context. As ontologies

are getting popular and adopted in web related developments,

such practice will makes IoT development much easier.

Octopus [50] highlights the significance of designing pro-

gramming models that enable non-technical people to deploy

sensors. As we mentioned earlier, the majority of the sensor

deployments are expected to be carried out by non-technical

users. Kim and Choi [204] models context meta-data from an

operational perspective as discussed in Section III-C, which

allows it to understand operational parameters such as com-

plexities, quality, up-to-dateness, and cost of acquisition.

2) Mobility, Validity, and Sharing: Monitoring continuity,

which is also called mobility, is an important task in the IoT.

People move from one situation to another and IoT solutions

need to track user movements and facilitate context-aware

functionalities over different forms of devices. Aura [191]

shows the requirement of having IoT middleware running

over many platforms and devices under different resource

limitations (i.e. from cloud server, computers, tablets, mobile

phones to everyday objects) where different versions (with

different capabilities) would fit on different devices.

CARISMA [193] shows how conflict resolution can be

done using profiles and rules where it stress the importance

of making decisions to optimize the return for every party

involved. In the IoT, there will be many data sources that will

provide similar information that can be used to derive the same

knowledge where conflict resolution will help to make accurate

actions. MoCA [199] also emphasizes validation of context

which has an impact on the accuracy of the reasoning. Further,

it shows how context can be modelled in formats such as XML

and then inserted into any programming language via binding

techniques (e.g. data binding in Java). In CROCO [118],

validation (e.g. consistency), conflict resolution, and privacy

concerns are given attention where they are rarely addressed

by many other solutions. Sharing context information allows

mobility and smooth transition from device to device or

situation to situation. Park et al. [153] highlight the importance

of context sharing using mobile devices, which allows more

comprehensive and accurate reasoning and high level context

recognition.

3) On Demand Data Modelling: Due to unpredictability

and broadness of IoT, data models need to be extensible on

demand. For example, IoT solutions may need to be expand

its knowledge-base towards different domains. SOCAM [194]

shows how knowledge can be separated among different levels

of ontologies: upper ontology and domain specific ontology.

In SOCAM, upper ontology models general purpose data

while domain specific ontologies model domain specific data,

which is allowed to extend to both levels independently. As

an IoT solution will be used in many different domains, the

ability to add ontologies (i.e. knowledge) when necessary is

critical for wider adaptation. SCK [142], Zhan et al. [208],
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and BIONETS [197] use different ontologies for each context

category. As we discussed in Section III-C, there are many

different types of context categories which model context in

different perspectives. Therefore, in the IoT it is important to

store different types of context as they can help in a variety

of situations. They also stresses the requirement of having

domain specific and domain independent ontologies.

4) Hybrid Reasoning: Gaia [168], Ko and Sim [141],

CDMS [203], and HCoM [198] highlight the importance of

employing multiple reasoning techniques such as Bayesian

networks, probabilistic and fuzzy logic, where each tech-

nique performs well in different situations. Incorporation of

multiple modelling and reasoning techniques can mitigate

individual weaknesses using each other’s strengths. COSAR

[151] combines statistical reasoning and ontological reasoning

techniques to achieve more accurate results.

5) Hardware Layer Support: EMoCASN [205], TRAIL-

BLAZER [196] and CASN [188] shows the importance of

embedding context-aware capabilities in low (hardware) layer

communication. Context awareness allows sensors to act more

intelligently and save energy. In the IoT a majority of the

communications are expected to happened between machines.

In such situations, context awareness becomes critical for each

individual object to optimize their actions. Further, in order

to build a fully context-aware solution, we have to embed

context-aware capabilities in both software and hardware

layers. In an environment such as the IoT where billions of

objects communicate with each other, significant amounts of

energy can be saved by following fairly simple optimisation

techniques as presented in PROCON [86]. SALES [210] shows

how context can be managed using distributed architecture

with a variety of different devices with different resource

constraints in the hardware level.

6) Dynamic Configuration and Extensions: Hydra [61] is

one of the early efforts at building IoT middleware which

focuses on connecting embedded devices to applications. It

shows how the context modelling needs to be done in or-

der to model device information. Hydra also highlights the

importance of pluggable rules that allow insertions when

necessary as it is a major requirement in IoT middleware

applications, where domains and required knowledge cannot

be predicted during the development stage. A complementary

technology has proposed by ACoMS [88]. It has proposed a

technique that allows it to automatically connect sensors to an

IoT solution using Transducer Electronic Data Sheet (TEDS)

[221] and Sensor Markup Languages (SensorML) [133]. UPnP

FRAMEWORK [206] is strongly related to a vision of the IoT

where machine-to-machine communication play a significant

role. This approach is applicable to devices such as cameras,

web cams, and microwaves; but, not for low end temperature

or humidity sensors. UPnP approach is a key technology that

enables automated configuration.

Solar [184], CMF (MAGNET) [85], and COSMOS [201]

promote the notion of dynamic composition which is critical in

IoT solutions where possible interactions cannot be identified

at the design and development stage. ezContext [105] shares

a common notion of context providers similar to C-Cast

[207] uses them to decouple context sources from the system.

Different types of context providers, which are dedicated

to communicating and retrieving data related to a specific

domain, can be employed when necessary. In line with above

solutions, COPAL [215] demonstrates the essential features

IoT middleware should have, such as loosely coupled plug-

in architecture and automated code generation via abstracts

which stimulates extendibility and usability.
7) Distributed Processing: This is a one of the most

commons tasks need to be performed by IoT solutions.

UbiQuSE [214] shows how real time query processing can

be done incorporating live streaming data and historic context

in repositories. Similarly, SCONSTREAM [211] highlights the

challenges in real-time context stream processing where real

time processing is a significant component to be successful

in the IoT. Most event detections need to be performed

in real time. Further, Feel@Home [212] shows how cross

domain context can be queried in order to answer complex

user requirements. As we mentioned earlier, there is not a

central point of management in the IoT paradigm. Therefore

communicating, sharing, and querying context managed in a

distributed fashion by different managers is essential.
8) Other Aspects: CARS [195] introduces a technique that

can be used to evaluate, test, and improve IoT solutions in

social and user point of view. As we mentioned earlier, success

of IoT depends on the user adaptation. CARS evaluates the

process of deriving high level information using low level

sensor data where users will appreciate the work done by the

software systems.
Cloud computing offers significant amounts of process-

ing and storage capabilities. With the three services mod-

els, Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS), and Software-as-a-Service (SaaS), context manage-

ment can largely benefit from cloud computing in many ways

in the IoT paradigm. In the IoT, sensors will be attached to

almost every object around us. Further, these sensors will be

deployed by ordinary users, governments, or business organi-

sations. Cloud computing allows all parties to share sensor data

based on a financial model. Sensor owners will advertise their

sensors in the cloud. The consumers who want to access those

sensors will pay the owners and acquire the sensor readings.

Therefore, the cloud model perfectly matches with the IoT

paradigm. In addition, cloud resources can be used to reason

and store large volumes of context where significant amounts

of processing power and storage are required. The cloud brings

added scalability to context management in the IoT. Further,

interoperability among different IoT solution can be achieved

by following approaches such as CDA [209]. Data matching

is the process to identify and matching records in diverse

database that refer to the same real-world entities in situations

where no entity identifiers are available, and therefore the

available attributes have to be used to conduct the matching

[222]. Context information plays a critical in data matching

where sensors can be considered as entities in the sensing as

a service model [5].

VII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

As we mentioned earlier, one of our goal in this survey is

to understand how context-aware computing can be applied
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Modelling Techniques
● Key-Value (K)
● Mark-up Scheme (M)
● Graphical (G)
● Object based (Ob)
● Logic based (L)
● Ontology based (On)

Level of context 
Awareness

● High  (software) level (H)
● Low (hardware) level (L)

Reasoning Techniques
● Supervised Learning (S)
● Unsupervised Learning (U)
● Rules (R)
● Fuzzy Logic (F)
● Ontology based (O)
● Probabilistic logic (P)

Data Storage (History)
● Data mining
● Pattern recognition
● Query optimisation
● Data management
● Data sharing
● Distributed processing
● Data warehouse

Knowledge Management
● Knowledge modelling
● Knowledge extraction
● Reasoning and inferencing
● Domain specific and 
  domain interdependent

Registry 
Maintenance

● Registration
● Lookup services
● Search

Data Processing
● Filtering (F)
● Aggregation (A)

Taxonomy

Other Functionalities

Event Management
● Real time events
● Behavioural patterns
●Trend Analysis

L
e

g
e

n
d

 

Distribution Techniques
● Query based (Q)
● Publish and Subscribe (P)

Certainty and 
Uncertainty

● Incorporation multiple 
  techniques
● Performance & accuracy

Discovery and Annotation
● Context discovery (D)
● Context annotation (A)

Architecture
● Component based (1)
● Distributed (2)
● Service based (3)
● Node based (4)
● Centralised (5)

Security and 
Privacy

● Security (S)
● Privacy (P)

Data Source Support
● Physical sensors (P)
● Software (virtual and logical) (S)
● Any sensors (A)
● Mobile devices (M)

Quality of Context
● Conflict resolution (C)
● Validation (V)

Dynamic 
Composition

● Sensors
● Reasoning techniques
● Modelling techniques
● Distribution techniques
● Acquisition techniques
● Data fusion operators

Real Time 
Processing

● Context discovery
● Context annotation
● Event detection
● Tracking
● Parallel processing

Acquisition Techniques
● Push and pull
● Instant and Interval
● Context source

● Direct sensors
● Through middleware
● Through context servers

Data Fusion
● Estimation
● Mathematical & statistical
● Multi format (video, audio, 
              numerical, textual)

Data Source 
Management

● Registration
● Quality assessment
● Capability assessment
● Communication & Protocols

Device Management
● Automated sensor  
  configuration

Run-time Configuration
● Plug-in architecture
● Hot pluggable
● Interoperability

Data Formats
●  Data transformation
●  Unit conversion
●  Alternative data structures
●  Customisation

Accessibility
● Easy to use APIs
● Documentation
● Multiple options and alternatives

Standardisation
● Communication protocols
● Programming components
● Data structures
● Modelling and storage

Resource 
Management

● Energy optimisation
● Resource optimisation
● Storage, 
● Processing
● Network communication

Consumer 
Management

● Registration
● Parallel Communication
● Profile maintenance

● Data formats
● Sampling rates
● History
● Preferences
● User requests

User Request Handling
●  Query processing
●  Knowledge building
●  Semantic understanding

Pre-Processing
● Handle imperfect data 
(inaccurate,out-of-date,
                          incomplete)
● Handle ambiguous data 
             (conflict, inconsistent)
● Missing values prediction
● Outliers detection
●Data matching

Context sharing
● Automated context sharing 
between multiple devices with 
varied resource levels

Fig. 8. Taxonomy (functionalities commonly supported in existing research prototypes and systems); Conceptual Framework (value added features that need
to be supported by ideal context-aware IoT middleware solution)
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in the IoT paradigm based on past experience. Specifically,

we evaluated fifty context-aware projects and highlighted the

lessons we can learn from them in the IoT perspective. In this

section our objective is to discuss six unique challenges in

the IoT where novel techniques and solution may need to be

employed.

1) Automated configuration of sensors: In traditional perva-

sive/ubiquitous computing, we connect only a limited number

of sensors to the applications (e.g. smart farm, smart home). In

contrast, the IoT envisions billions of sensors to be connected

together over the Internet. As a result, a unique challenge

would arise on connection and configuration of sensors to

applications. Due to the scale, it is not feasible to connect

sensors manually to an application or to a middleware [223].

There has to be an automated or at least semi-automated pro-

cess to connect sensors to applications. In order to accomplish

this task, applications should be able to understand the sensors

(e.g. sensors’ capabilities, data structures they produce, hard-

ware/driver level configuration details). Recent developments

such as Transducer Electronic Data Sheet (TEDS) [221], Open

Geospatial Consortium (OGC) Sensor Web Enablement related

standards such as Sensor Markup Languages (SensorML)

[133], sensor ontologies [143], and immature but promising

efforts such as Sensor Device Definitions [224] show future

directions to carry out the research work further, in order to

tackle this challenge.

2) Context discovery: Once we connect sensors to a soft-

ware solution, as mentioned above, there has to be a method

to understand the sensor data produced by the sensors and

the related context automatically. We discussed context cate-

gorisation techniques comprehensively in Section III-C. There

are many types of context that can be used to enrich sensor

data. However, understanding sensor data and appropriately

annotating it automatically in a paradigm such as the IoT,

where application domains vary widely, is a challenging task.

Recent developments in semantic technologies [135], [143],

[225] and linked data [226], [227] show future directions

to carry out further research work. Semantic technology is

popularly used to encode domain knowledge.

3) Acquisition, modelling, reasoning, and distribution: Af-

ter analysing acquisition, modelling, and reasoning in different

perspectives, it is evident that no single technique would serve

the requirements of the IoT. Incorporating and integrating

multiple techniques has shown promising success in the field.

Some of the early work such as [12], [183] have discussed

the process in detail. However, due to the immaturity of the

field of IoT, it is difficult to predict when and where to

employ each technique. Therefore, it is important to define

and follow a standard specification so different techniques can

be added to the solutions without significant effort. Several

design principles have been proposed by [72], [108] as a step

towards standardisation of components and techniques. The

inner-workings of each technique can be different from one

solution to another. However, common standard interfaces will

insure the interoperability among techniques.

4) Selection of sensors in sensing-as-a-service model: This

is going to be one of the toughest challenges in the IoT.

It is clear that we are going to have access to billions of

sensors. In such an environment, there could be many different

alternative sensors to be used. For example, let us consider a

situation where an environmental scientist wants to measure

environmental pollution in New York city. There are two

main problems: (1) ‘what sensors provide information about

pollution?’ [228] (2) when there are multiple sensors that can

measure the same parameter (e.g. pH concentration in a lake),

‘what sensor should be used?’ [229] In order to answer ques-

tion (1), domain knowledge needs to be incorporate with the

IoT solution. Manually selecting the sensors that will provide

information about environmental pollution is not feasible in

the IoT due to its scale. In order to answer question (2),

quality frameworks need to be defined and employed. Such a

framework should be able to rank the sensors based on factors

such as accuracy, relevancy, user feedback, reliability, cost, and

completeness. Similar challenges have been addressed in the

web service domain during the last decade [230], [231] where

we can learn from those efforts.

5) Security, privacy, and trust: This has been a challenge

for context-aware computing since the beginning. The advan-

tage of context is that it provides more meaningful information

that will help us understand a situation or data. At the same

time, it increases the security threats due to possible misuse

of the context (e.g. identity, location, activity, and behaviour).

However, the IoT will increase this challenge significantly.

Even though security and privacy issues are addressed at the

context-aware application level, it is largely unattended at

the context-aware middleware level. In the IoT, security and

privacy need to be protected in several layers: sensor hardware

layer, sensor data communication (protocol) layer, context

annotation and context discovery layer, context modelling

layer, and the context distribution layer. IoT is a community

based approach where the acceptance of the users (e.g. general

public) is essential. Therefore, security and privacy protection

requirements need to be carefully addressed in order to win

the trust of the users.

6) Context Sharing: This is largely neglected in the

context-aware middleware domain. Most of the middleware

solutions or architectures are designed to facilitate applications

in isolated factions. Inter-middleware communication is not

considered to be a critical requirement. However, in the

IoT, there would be no central point of control. Different

middleware solutions developed by different parties will be

employed to connect to sensors, collect, model, and reason

context. Therefore, sharing context information between dif-

ferent kinds of middleware solutions or different instances

of the same middleware solution is important. Sensor data

stream processing middleware solutions such as GSN [67]

have employed this capability to share sensor data among

different instances (e.g. installed and configured in different

computers and locations) where context is not the focus.

However, in contrast to sensor data, context information has

strong relationships between each other (e.g. context modelled

using RDF). Therefore, relationship models also need to

be transferred and shared among different solutions, which

enables the receiver to understand and model the context

accurately at the receivers end.
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VIII. CONCLUSIONS

The IoT has gained significant attention over the last few

years. With the advances in sensor hardware technology and

cheap materials, sensors are expected to be attached to all

the objects around us, so these can communicate with each

other with minimum human intervention. Understanding sen-

sor data is one of the main challenges that the IoT would

face. This vision has been supported and heavily invested

by governments, interest groups, companies, and research

institutes. For example, context awareness has been identified

as an important IoT research need by the Cluster of European

Research Projects on the IoT (CERP-IoT) [21] funded by

the European Union. The EU has allocated a time frame

for research and development into context-aware computing

focused on the IoT to be carried out during 2015-2020.

In this survey paper, we analysed and evaluated context-

aware computing research efforts to understand how the chal-

lenges in the field of context-aware computing have been tack-

led in desktop, web, mobile, sensor networks, and pervasive

computing paradigms. A large number of solutions exist in

terms of systems, middleware, applications, techniques, and

models proposed by researchers to solve different challenges

in context-aware computing. We also discussed some of the

trends in the field that were identified during the survey. The

results clearly show the importance of context awareness in

the IoT paradigm. Our ultimate goal is to build a foundation

that helps us to understand what has happened in the past so

we can plan for the future more efficiently and effectively.
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