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Abstract— We are currently observing emerging solutions to
enable the Internet of Things (IoT). Efficient and feature rich
IoT middeware platforms are key enablers for IoT. However,
due to complexity, most of these middleware platforms are
designed to be used by IT experts. In this paper, we propose
a semantics-driven model that allows non-IT experts (e.g. plant
scientist, city planner) to configure IoT middleware components
easier and faster. Such tools allow them to retrieve the data
they want without knowing the underlying technical details of
the sensors and the data processing components. We propose
a Context Aware Sensor Configuration Model (CASCoM) to
address the challenge of automated context-aware configuration
of filtering, fusion, and reasoning mechanisms in IoT middleware
according to the problems at hand. We incorporate semantic
technologies in solving the above challenges. We demonstrate the
feasibility and the scalability of our approach through a prototype
implementation based on an IoT middleware called Global Sensor
Networks (GSN), though our model can be generalized into any
other middleware platform. We evaluate CASCoM in agriculture
domain and measure both performance in terms of usability and
computational complexity.

I. INTRODUCTION

The Internet of Things (IoT), an emerging paradigm, pro-
vides a networked infrastructure that enables things to be
connected anytime, anyplace, with anything and anyone, ide-
ally using any path, any network and any service [1]. The
things in IoT are accompanied with sensors and actuators. It
is estimated that there are about 1.5 billion Internet-enabled
PCs and over 1 billion Internet-enabled mobile phones today.
By 2020, there will be 50 to 100 billion devices! connected to
the Internet [1]. Since these smart devices comprise sensors,
it is evident that there would be many sensors deployed
around us in the future. Even today, sensors are used in
many domains such as agriculture, environmental monitoring
[2]. In order to analyse and understand a given phenomenon
extensively, data generated from appropriate sensors need to
be fed into more sophisticated applications. These applications
are designed to produce certain results once they are given
required sensor data as inputs. IoT middleware solutions help
to retrieve data from sensors and feed them into applications
easily by acting as a mediator between the hardware layer

'We use terms objects, things, smart objects, devices, nodes to give the
same meaning as they are frequently used in IoT related documentation
interchangeably.
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and the application layer. In order to perform such a binging
act, middleware solutions need to be configured themselves
depending on the context information and user requirements.
Our objective is to automate and simplify the configuration of
an IoT middleware and improve its usability so non-IT experts
can use it efficiently and effectively. Our contribution can be
listed as follows:

o We develop a configuration model called CASCoM to
enrich an existing IoT middleware. This model helps
non-IT experts to configure sensors and data processing
components using a single-click quickly and easily. As
the final outcome, CASCoM produces data streams that
can be fed into applications/services easily where further
processing may occur.

o Our model automates the configuration process which is
a significant improvement over the current Global Sensor
Network (GSN) [3] approach where all the configurations
need to be done manually by IT experts.

e« CASCoM is completely driven by semantic annotated
data at the back end. Therefore, new sensors and data
processing components can be added at any time. No
changes are required in the application.

o CASCoM allows the users to discover additional context
information.

e We provide a cost calculation model that considers and
combines software and hardware costs when configuring
sensors and data processing components. It also allows
users to define their own priorities.

o CASCoM is capable of suggesting and advising future
sensor deployments, if the existing sensors are incapable
of fulfilling user requirement.

The remainder of this paper is organized as follows. In
Section II, we describe the background and motivation behind
our work. The problem we addressed in this paper is compre-
hensively analysed and presented with use-case scenarios in
Section III. In Section IV, we propose our solution, CASCoM,
in detail. Implementation details are explained in Section V. In
Section VI, we evaluate the CASCoM in both qualitative and
quantitative methods. Related work are reviewed in Section
VIL. Finally, we present the conclusions and future directions.
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II. BACKGROUND

Broadly, configuration in IoT paradigm can be catego-
rized into two: sensor-level configuration and system-level
configuration. Sensor-level configuration focuses on changing
a sensor’s behaviour by configuring its embedded software
parameters such as sensing schedule, sampling rate, data com-
munication frequency, communication patterns and protocols.
In this paper, we are focused on developing a system-level
configuration model for IoT midddleware platforms. Specifi-
cally, our proposed model identifies, composes, and configures
both sensors and data processing components according to the
user requirements.

The challenge of configuring an IoT middleware solution
can be understood by analysing an existing middleware such
as Global Sensor Networks (GSN) [3]. The high-level archi-
tecture and the data flow diagram of the GSN middleware
is presented in [3]. Wrappers perform the hardware-level
communication with sensors. Each and every sensor that
needs to be connected to the GSN middleware should have a
corresponding wrapper. In order to retrieve sensor data, users
are required to define their requirements using a XML file
called Virtual Sensor Definition (VSD) [3]. Once the wrapper
receives data, it forwards them to the Virtual Sensor (VS) as
specified in the VSD. Similarly, multiple wrapper may send
data to a single VS. A VS may have any number of input
data streams and produces exactly one output data stream. In
GSN, sensor data can be processed in three layers: (1)virtual
sensors layer, (2) query processing layer, and (3) applications
and services layer (outside GSN middelware).

The query processing layer can perform filtering and inte-
gration tasks based on SQL-like specifications. However, data
processing tasks that cannot be accomplished using SQL need
to be performed either in layer 1 or 3. Layer 3 consists of
sophisticated applications (and services) that take specific data
streams and perform complex data processing operations. For
example, an application may take air temperature, air humidity,
and leaf wetness as the input data stream. Then, it generates a
map by visualizing how a certain type of disease may spread
across an agricultural field. Such complex data processing and
modelling tasks are out of the scope of GSN’s processing
capabilities. The responsibility of an IoT middleware (such
as GSN) is to generate the appropriate data streams (that the
applications require as inputs) without (or with minimum) user
intervention. In order to accomplish this, layer 1, which we
focus in this paper, needs to play a critical role. The virtual
sensors layer allows to apply data processing operations (less
complex operations compared to layer 3) over the sensor data.
In the existing GSN, all the data processing components in
layer 1 need to be developed by the user and need to be
manually selected based on the user requirements. Performing
such task manually is tedious and cumbersome for non-IT
experts (such as plant scientists and environmentalists).

Let us discuss the term data processing components in
relation to layer 1. Data processing can be defined as ma-
nipulation of input data with an application program to obtain

desired output. In layer 1, data processing components per-
form operations such as filtering, fusing, reasoning, anomaly
detection, unit conversion, missing value estimation, noise
reduction, feature extraction and so on. Operations should
be able to be performed within acceptable time frame (i.e.
in real-time, ideally before the next data packets arrive) as
we are dealing with data streams. In order to fulfil the user
requirements, several data processing components’ may be
required to compose together.

In addition to the manual configuration activities that need
to be performed, there are several weaknesses in the current
approach. Figure 3(a) illustrates the activity diagram of the
existing configuration work-flow of the GSN middleware.

e Users need to know the low-level details such as data
types and measurement units of the sensors in order to
define the VSD manually.

o It is extremely difficult to memorise different combina-
tions of sensor types that can be used to fulfil user re-
quirements (which sensors need to be composed together
to detect an event?).

e Users need to know the availability of data processing
components, their input/output data types and their capa-
bilities to develop a strategy. Data processing operations
need to be applied on data in the correct sequence.

e There is no way to find out the strategies to overcome
the issues when existing hardware resources (i.e. existing
sensors) and software resources (i.e. data processing
components) are incapable of producing the results that
users require.

o Further, the solutions designed by users may not be the
optimum solution (e.g. due to the variability of hardware
and software costs).

In existing GSN middleware, many configuration files and
programming codes need to be manually defined by the users
(without any help from GSN). An ideal IoT middleware
configuration model should address all the above mentioned
challenges. The configuration model we propose in this paper
is applicable towards several other emerging paradigms, such
as sensing as a service [4].

III. PROBLEM ANALYSIS

This section describes and analyses the problem we address
in this paper with concrete examples and scenarios. Figure 1
illustrates the problem in general. The explanations are based
on agriculture and environmental monitoring domains. The
proposed solution helps users to overcome difficulties listed

2We use the term components, but can be called functions, methods, and
modules.
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above. Our research question is ‘How to develop a model
that allows non-IT experts to configure sensors and data
processing mechanisms in an IoT middleware according to
the user requirements?’. Extended explanations are provided
in [5].

Let us introduce the notations that we are going to use
in this paper: Sensor (S?) where t=type (e.g. each sensor
type is represented by a different number: 1=air temperature,
2=air humidity, 3=leaf wetness, 4=Carbon Monoxide, 5=Car-
bon Dioxide, 6=Molecular Oxygen, 7=Methane, 8=Nitrogen
Dioxide); Wrapper (W); Virtual Sensor (V'S); data process-
ing component (Cf;) where f=function (e.g. each function
is represented using a unique number. l=airStressDetector,
2=phytophtoraMonitor, 3=pollutionDetector) and id = devel-
oper unique identifier.

Figure 2 illustrates two scenarios from two different do-
mains. Each of them has different user requirements that
lead to two different execution flows. We selected these two
scenario due to the fact that, together, they allow us to show-
case the full capabilities of CASCoM. In use case 1, a plant
scientist wants to monitor whether the experimental crops can
be infected by Phytophtora [6] disease or not. Phytophtora is
a fungal disease which can enter a field through a variety of
sources. The development and associated attack of the crop
depends strongly on the climatological conditions within the
field. Humidity plays a major role in the development of Phy-
tophtora. Both temperature and whether or not the leaves are
wet are also important indicators to monitor Phytophtora. The
following facts explain Phytophtora monitoring (simplified for
demonstration purposes). It is important to highlight that rule-
based reasoning does not intended to replace rule engines [7].
The objective here is to create the data items that are required
by the application.

o IF airTemperature < o AND airHumidity < 8 THEN airStress level

= low ELSE airStress level = high

o IF airStress = high AND leafWetness > 6 THEN PhytophtoraDisease

= Can-be-infected ELSE = Cannot-be-infected

One of the responsibility of an IoT middleware is to
combine different sensors and data processing components
autonomously and produce a data stream. A user can feed
the data stream into an application for further complex pro-
cessing such as visualization and modelling that allows the
user to achieve their objectives. The main challenge is that
the plant scientist may not know (or remember) the above
facts (rules). Further, we should not expect a plant scientist
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Fig. 2. Use cases that illustrates the need of CASCoM

to write XML or Java code as part of the configuration.
An ideal IoT middleware should help the scientist (non-IT
expert) to overcome these challenges by providing tools that
are easy to use. The scientist should be able to configure
the middleware according to the problems/tasks at hand with
minimum effort. Additionally, advanced customization will be
useful to optimize the configuration process. Comparatively,
use case 1 is less complex as there is only one way to
monitor the disease (above rules). For example, the sensor
types and data processing components need to be used are
straight forward.

o Use case (1) Solution: ((S!,5%) = C},83) = C?

Configuration becomes a complex task in the use case 2. In
this scenario, an environmental scientist wants to measure the
environmental pollution in Canberra, Australia. In comparison
to the use case 1, there are many different ways to measure
and visualize pollution. Different sensors and data process-
ing components can be combined together to fulfil the user
requirements as listed below.

o Use case (2) Solution 1: (54,55, 56,57, 58) = C3

o Use case (2) Solution 2: (5°,58) = C32,

o Use case (2) Solution 3: (S!,55,57) = C3,

In such circumstances, it is important to consider con-
text information (e.g. accuracy, reliability) and cost of data
acquisition (e.g. data communication time and computation
time). This allows a user to make the final decision on which
solution to be used depending on the cost and context factors.
Both hardware and software costs need to be considered.
Additionally, users may need to discover additional context
information [2]. Depending on the user requirements and layer
3 application requirements, the required output data stream
may vary. Sample outputs, in relation to use case 1, are listed
below.

e Output 1: airTemperature [double], airHumidity [double], airStress

[string],
leafWetness [double], PhytophtoraDisease [boolean]

e Output 2: PhytophtoraDisease [boolean], location [string], bat-

teryLevel[double]

Finally, when existing resources are insufficient to satisfy
the user requirements, it is very important to advice the users

regarding possible improvements.

IV. THE CASCOM ARCHITECTURE

Based on the challenges we identified in Section III, we
designed a model, which is supported by a tool, to overcome
the difficulties. Context-Aware Sensor Configuration Model
(CASCoM) simplifies the [oT middleware configuration pro-
cess significantly. Figure 3 compares the execution-flow of
sensor configuration in the current GSN approach and the
CASCoM approach. As it is clearly visible, the current GSN
model requires a number of steps to be executed by IT experts.
In contrast, our proposed model allows non-IT experts to
configure IoT middleware using a single-click. All the difficul-
ties are handled internally behind the scene without the user
involvement. Additionally, we offer several advance features
that allow optimization and customization. As depicted in
Figure 4, CASCoM consists of six phases. Some phases may



or may not be visible to the users. Phases are different from
the steps needed to be followed in the CASCoM Tool.

(a) Current GSN Work-flow
{ @ Configuration Begins
Find what type (kind) sensors need to be B
. \configured in order to solve the problems at hand /
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Fig. 3.  Configuration Execution-flow Comparison: (a) Current GSN (b)
CAB%Y¥ICoM Execution Flow: In phase 1, users are facil-
itated with a graphical user interface, which is based on a
question-answer (QA) approach, that allows to express the user
requirements. Users can answer as many question as possible.
CASCoM searches and filters the tasks that the user may want
to perform. From the filtered list, users can select the desired
task. The details of the QA approach are presented later
in this section. In phase 2, CASCoM searches for different
programming components that allow to generate the data
stream required. In phase 3, CASCoM tries to find the sensors
that can be used to produce the inputs required by the selected
data processing components. If CASCoM fails to produce
the data streams required by the users due to insufficient
resources (i.e. unavailability of the sensors), it will provide
advice and recommendations on future sensor deployments in
phase 4. Phase 5 allows the users to capture additional context
information. The additional context information that can be
derived using available resources and knowledge are listed to
be selected. In phase 6, users are provided with one or more
solutions®>. CASCoM calculates the costs for each solution. By
default, CASCoM will select the solution with lowest cost.
However, users can select the cost models (discussed later in
this section) as they required. Finally, CASCoM generates all
the configuration files and program codes which we listed in
Figure 3(a). Data starts streaming soon after.

Phase 1: Understand User Requirements: The objective
of this phase is to help users to search for a task that they need
to perform easily from a large number of possibilities. For
example, users are allowed to narrow down the possibilities
by mentioning facts such as domain (e.g. agriculture), and type

3Solution is a combination of sensors and data processing components that
can be composed together in order to satisfy the user requirements.
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Fig. 4. The Context-Aware Sensor Configuration Model (CASCoM)

of the task (e.g. event, visualization). In order to increase the
usability, CASCoM retrieves the facts from the users through a
QA model (Sample questions: Do you want to visualize data?,
Do you want to detect an event?, Do you want to monitor a
disease infection? What is the domain your task is related to?).
When a user answer a question, the remaining questions will
be dynamically selected based on the previous answer. An
extract of the proposed Question and Answer oriented Task
Description Ontology (QA+TDO) is presented in Figure 6. In
QA+TDO, tasks can be explained by any concept as depicted
in C1, C2, etc. in Figure 5(a). Each concept should have a
‘hasQuestion’ property which links to a question (i.e. @1, Q2
and so on). In QA+TDO, C are answers to the questions. (e.g.
If Q1= What is the domain your task is related to?, then C'5
is ‘domain’ and an individual of C5 can be ‘agriculture’.).
The extensibility and scalability of this approach is discussed
in Section VL.

Phase 2 and 3: Select Sensors and Data Processing
Components: CASCoM requires all the information related
to sensors and data processing components to be stored in a
repository. We extended the Software Component Ontology [8]
(SCO) as presented in Figure 6 in order to model information
about data processing components. Further, we modelled sen-
sor descriptions using semantic Sensor Ontology (SSNO) [9].
In this phase, the software components are selected in such as
a way that they can together produce the data stream required
to perform the task selected in phase 1. For example, in order
to monitor PhytophtoraDisease, first CASCoM searches for a
software components that can be used to produce the required
data. It first finds PhytophtoraDisease Detector. The inputs it
requires are air stress and leaf wetness. The phase 3 selects
the sensors that produce the output that matches the inputs of
the selected component. Leaf wetness can be measured directly
using hardware sensors. However, air stress cannot be detected
using any physical sensor. This requires CASCoM to execute
phase 2 again in order to find a software component that
produces air stress. Then CASCoM finds Air Stress Detector
which takes air temperature and air humidity as inputs and
produces air stress as the output. Further, air temperature and
air humidity can be sensed directly through hardware sensors.
The IoT middleware configuration process will be completed
once the required sensors and data processing components
are identified. The remaining phases are optional. CASCoM
performs validation as illustrated in Figure 5(b). During the
sensors and data processing components composition process,
different criteria are evaluated (e.g. data types: int, boolean
/ measurement units: Celsius, Fahrenheit) in order to verify

Dataltem
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: | Property | |[Criteria_1] :
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H A \ 4 H
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(a) (b) Output / Sensor

Fig. 5. (a) A part of QA-TDO shows how we developed the QA model. It is
important to note the pattern (i.e. Task — Concept — Question). (b) shows
how validation can be performed using semantic data.
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whether the inputs and outputs are compatible.

Phase 4 (Optional): Provide Advice and Recommen-
dations: Through comparing SSNO and SCO, this phase
identities the resource insufficiencies and provide advice to
the users regrading future sensor deployments and software
component acquisition. This phase provide alternative advices
if there are multiple ways to address the insufficiencies based
on the solution (e.g. use case 2).

Phase 5 (Optional): Additional Context Discovery: With
the help of knowledge modelled in ontologies, this phase
discovers context information that can be derived by using
sensor data. ‘Context is any information that can be used to
characterise the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves’ [2]. Additional context information
such as sensor location and sensor battery life may be required
by applications in order to perform complex tasks such as
geographical based visualization and developing energy-aware
sensing schedules. Therefore, discovering additional context as
such is important. Each application may have a compulsory set
of inputs that it needs to perform the primary task, though they
may accept additional context information in order to provide
enhanced results.

Phase 6 (Optional): Context-based Cost Calculation:
CASCoM performs ontological reasoning to find out all possi-
ble solutions. Each solution may combine different sensors and
data processing components where their costs may different.
For example, different types of sensors can be used to monitor
environmental pollution (refer Section III). In CASCoM, cost
does not always refer to financial terms (e.g. sensors: energy,
bandwidth, latency; data processing: memory requirement,
processing time). By default, all the context parameters are
treated equally. However, users can define their priorities for
each context property in comparative fashion [10]. If the users
want more reliable sensors, the reliability can be defined with
more priority, but it may increase the cost.

V. IMPLEMENTATION

This section presents programming level details of our proof
of concept development and evaluation. Hardware and soft-
ware platforms, APIs and frameworks, semantic data models,
and sample data sets we used to evaluate the performance of
the prototype implementation are explained in this section. For
proof of concept deployment and evaluation, we used a com-
puter with Intel(R) Core i5-2557M 1.70GHz CPU and 4GB
RAM. We used the Java programming language to develop
the CASCoM tool as GSN also natively supports Java. We
employed the open source Apache Jena API (jena.apache.org)
to manipulate semantic data. In addition, we used the Apache
Commons mathematics (commons.apache.org/math) library
for advanced cost calculations based on user priorities. The
costs are calculated using a weighted Euclidean distance-
based indexing technique called Comparative Priority-based
Weighted Index (CPWI)[10].

We modelled 40 sensor descriptions according to the Seman-
tic Sensor Network Ontology (SSNO) [9]. Additional exten-
sions are added to SSNO in order to model context information
related to sensors as explained in [10]. Further, we modelled
40 data processing component descriptions according to the
Software Component Ontology Plus (SCO+). SCO+ is based
on SCO [8], but additionally supports modelling context
information such as execution time and reliability as presented
in Figure 6. We modelled context information in SCO+ using
an approach similar to SSNO. The data processing components
may take any number of inputs and produce one outputs. We
employed our previous work, CASSARAM [10] to search sen-
sors based on context properties and to calculate costs. As a re-
sult of the integration of CASCoM into the GSN middleware,
virtual sensors and virtual sensor definitions were generated
autonomously. All the other GSN components remained same.
We introduced several new components under 4 different man-
agers: [QA Manager] QA Filter, Dynamic SPARQL Generator;
[Task Manager] Solutions Finder, Solution Composer, Solution
Validator; [Services Manager] Cost Calculator, Context Dis-
covery Manager, Solution Adviser; [Configuration Manager]
VS Generator, VSD Generator, Wrapper Handler. The user
interface of the CASCoM tool is presented in Figure 7. It is a
critical component of the proposed model as it significantly
help the users to configure the IoT middleware easier and
faster.

VI. EVALUATION, DISCUSSION AND LESSONS LEARNED

We evaluated CASCoM in both qualitative and quantitative
means. We analysed and compared our proposed solution with
respect to the existing GSN configuration model briefly in
Figure 3. In order to quantify the differences between the two
approaches, we evaluated three use case scenarios. In each
use case, a user required to configure the IoT middleware in
such a way that it produces a specific data stream: (1) monitor
Phytophtora disease, (2) monitor environmental pollution, and
(3) monitor and analyse crowd movement (indoor). Further,
we selected three types of users: (1) an IT expert who was
Sfamiliar with GSN configuration process, (2) an IT expert who
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was not familiar with the GSN, and (3) an non-IT expert (from
medical field). For each use case, a set of basic instructions and
programming guidelines that explains the GSN configuration
process were given. First, we asked the users to configure the
GSN middleware without the support of CASCoM. Secondly,
we asked the users to configure the GSN middleware by using
CASCoM. We measured time taken by each user and results
are presented in Figure 8(a).

In Figure 8(b), we measured how much time it took to
process data in a VS using two approaches: (1) to write a
customized VS class autonomously by CASCoM and compile
it at runtime based on the user requirements (2) to use Java re-
flection (to support OSGi) so there is no compilation required.
Even though the results are obvious, it is important to examine
the differences closely, because every data item that comes
into GSN will need to go through some VS for processing.
The approach we select has direct impact on the scalability
of the GSN as it is expected to retrieve data from a large
number of sensors in real world deployments. We employed
rule-based reasoning modules which take some inputs and
produce single output (e.g. air stress detection). Then, we
increased the number of reasoning operations performed over
a single data row. We also measured initiation and execution
time separately.

In Figure 8(c), we analysed different phases of the configu-
ration process separately and compared the current approaches
with the CASCoM approach. In order to make the results
comparable, we assumed the users are IT experts who know
the GSN configuration process. Finally, in Figure 8(d), we
added more data into the ontology based semantic models and
evaluated the performance of CASCoM by measuring the total
execution time. We inserted data to the model by describing
more sensors, data processing components, and QA knowledge
(e.g. 1000 data records means 1000 sensor descriptions and
1000 data components descriptions and so on). This figure is
based on synthetically generated semantic descriptions.

Results: Figure 8(a) shows that CASCoM allows to con-
siderably reduce the time required for configuration of data
processing mechanism in IoT middleware. Specifically, CAS-
CoM allowed the three types of users to complete the given
task 50, 80 and 250 times faster (respectively) in comparison
to the existing approach. According to Figure 8(b), the Java
reflection approach takes slightly more time to specially when
initializing. Though the Java reflection approach can add more
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Fig. 8. Evaluation of CASCoM

flexibility to our model, the additional overhead increases
when the number of components and operation involved gets
increased. The overheads can grow up to an acceptable level
very quickly when GSN scales up (e.g. more user requests).

According to Figure 8(c), even IT experts who know GSN
can save time by using CASCoM up to 88%. Specially,
time taken for defining the VSD and VS class have been
significantly reduced. Both files can be generated by CASCoM
autonomously within a second even for complex scenarios.
However, the time taken to find data processing components
and sensors (and wrappers) depends on the size of the se-
mantic data model. Figure 8(d) shows how total processing
time would vary depending on the size of the semantic data
model. Approximately, a semantic model with 10,000 sensor
descriptions and 10,000 data processing components can be
processed in order to find solutions for a given user request
in less than a minute. However, most of the time is taken to
read the data model. The actual configuration process other
than reading the data model takes only 4 seconds. The actual
processing time slightly increases when the number of sensors
and data processing components that are described in the
model gets increased. In contrast, time required to read the data
model increases significantly. However, reading the model is
not a frequent repetitive activity and do not make any impact
on scalability. In addition, it is less likely that we are required
to store very large amounts of data in ontological models
in a single GSN instance. Instead, GSN supports distributed
processing (i.e. different GSN instances) where CASCoM can
collectively process large data sets.



Discussion and Lessons Learnt: Non-IT experts required
an extremely detailed guidelines (compared to IT experts)
to perform the configuration as there are not familiar with
the activities such as programming. They also required direct
verbal assistant from the authors. In addition, it was revealed
that non-IT experts and IT experts who are not familiar
with GSN were unable to configure the GSN at all without
guidelines. In contrast, simple guidelines that explain the GUI
allowed all users to complete the given task within a fairly
similar amount of time. Though the complexity of the user
requirement makes visible impact on configuration time in the
current GSN approach, it diminishes when users use CASCoM
to configure GSN.

VS are designed to be used for data pre-processing. In order
to test the capabilities of CASCOM, we also embed context
discovery functionalities into the VS. In order to process
data, we use a Java based components. We composed data
processing components together by creating and compiling a
new virtual sensor class. This process is similar to generate a
HTML file dynamically when a user requests it (via browser).
As a result, at runtime, data is processed natively. We used
this approach instead of utilizing an approach such as web
services due to the fact that IoT middleware needs to deal
with real-time data processing. The delay created by additional
overheads in web service calling creates bottlenecks to the
entire data processing process. We also refrained from using
techniques such as Java reflection due to latency and additional
overheads. Though the differences are small when considering
a single VS as in Figure 8(b), large number of virtual sensors
make significant impact on scalability of the GSN.

As CASCoM stores knowledge in ontologies, users do
not need to memorise domain knowledge (i.e. which sensor
data types are required to perform a certain task?). This is
an significant improvement over the existing approach. Due
to the employment of semantic technologies, CASCoM is
extensible into any domain. More importantly, adding new
sensor descriptions and data processing component descrip-
tions to the data model overtime allows CASCoM to compose
new solutions. Ontological reasoning allows to deal with
inconsistent usage of domain specific terminologies among
domain experts. Ontologies helped in CASCoM to deal with
performing validating task in composition of data components.
Alternative to ontologies, we could have used a configuration
file that explains which programming components and sensors
need to be used to produce the required data stream for
a given application (e.g. template-base approach). However,
such an approach will drastically reduce the interoperability
and flexibility. In IoT, ideal approaches should be able to
dynamically compose and configure sensors and data process-
ing components as it is impossible predict their availability at
give time (new sensors and data processing components may
available to use).

VII. RELATED WORK

Our solution combines technologies from different research
areas such as IoT middleware, semantic technologies, software

component composition, and context-aware computing. Mi-
crosoft SensorMap [11] (sensormap.org) is a data sharing and
visualization framework. It is a peer produced sensor network
that consists of sensors deployed by contributors around the
world. SensorMap mashes up sensor data on a map interface.
Then, it allows to selectively query sensors and visualize data.
Our approach completely automates the configuration process
by eliminating the requirement of hand picking sensors. Linked
Sensor Middleware (LSM) [12] (Ism.deri.ie) is a platform that
provides wrappers for real time data collection and publishing.
It also provides a web interface for sensor search, linked
stream data query, data annotation and visualisation. LSM
mainly focuses on linked data publishing. Sensor selection
needs to be done manually in order to retrieve sensor data.
Cosm (formerly Pachube) (cosm.com) is a platform for Inter-
net of Things devices. Cosm allows different data sources to be
connected to it. Then, it provides functionalities such as event
triggering and data filtering. It acts as a mediator between
sensors and applications where users need to manually select
and configure sensors.

Context-awareness is a critical functionality that needs to
be embedded into IoT middleware solutions [2]. Context
information (e.g. accuracy, reliability, cost) plays a significant
role in selecting sensors and data processing components
[10]. To support this, CASCoM provides context discovery
functionalities by using semantic knowledge and fusing raw
sensor data. The SensorMashup [13] platform offers a vi-
sual composer for sensor data streams. Data sources and
intermediate analytical tools are described by reference to
an ontology, enabling an integrated discovery mechanism for
such sources. Selection of data sources and analytical tools
based on user requirement need to be done manually by users.
Khemakhem et al. [14] use multiple ontologies to discover and
compose software components by focusing on non-functional
proprieties. Web service (WS) composition using ontologies
[15] is similar to software component composition performed
in CASCoM with a functional point of view but significantly
different in implementation and execution point of view.
Software component composition is much simpler compared
to WS composition [16] due to lack of overheads. Our solution
employs simple data processing components which perform
single tasks. We eliminate the burden of interoperability of
software components, so they are designed to be used in
GSN according to a given specification and stored locally.
Therefore, it is not required to handle network communication
and complex data structures. However, software components
are allowed to call external web services though such actions
are not encouraged due to latency that may effect real-time
processing. Several projects [8] have designed and developed
ontologies to describe software components. Such approaches
have helped them to perform dynamic composition of soft-
ware components. A process of software component matching
using ontologies has been explained in [17]. In our work
we employed the Software Component Ontology discussed
in [8]. Semantic Sensor Ontology (SSNO) [9] also allowed
us to model sensor descriptions. Noguchi et al. [18] have



proposed a mechanism that generates connection between
different software components in order to process sensor data
and detect events. In contrast, our objective is to produce the
data streams required by the users so they can be further
analysed extensively using sophisticated applications.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the CASCoM approach
that allows non-IT experts to configure IoT middleware ef-
ficiently and effectively. The semantic technologies allow to
capture user requirements and configure the sensors and data
processing components accordingly by handling the low-level
technical details without overwhelming the users. Our model
supports single-click configuration by eliminating sequences of
manual activities needed to be carried out by users otherwise.
CASCoM makes the configuration process much easier by
providing a sophisticate graphical user interface to express
user requirements. In addition, our model has the capability
to advise users on future sensor deployments in situations
where user requirements cannot be satisfied using existing
resources. CASCoM also allows to discover additional context
information. Users are not required to know any underling
technical details. Instead they are offered an user interface
where they may select additional context. We propose a cost
model that calculates the cost of data acquisition based on
sensors and data processing components combined. CASCoM
selects the most optimized solution by default, though it
allows advance customization through context prioritization.
We integrated our model into an IoT middleware called Global
Sensor Networks. CASCoM has significantly increased the
usability and capability of the GSN middleware.

We have shown that it is possible to offer a sophisticated
configuration model to support non-IT experts. Semantic tech-
nologies are used extensively to support this model. We used
ontologies to model sensor descriptions and data processing
component descriptions. We also developed a ontology to or-
ganize additional knowledge that is required for understanding
user requirements. Using our proof of concept implementation,
both IT and non-IT experts were able to configure the GSN
in significantly less time. In future, we plan to extend our
configuration model into sensor-level. To achieve this, we
will develop a model that can be used to configure sensors
autonomously without human intervention in highly dynamic
smart environments in the Internet of Things paradigm. Our
approach will explore and identify sensors that are deployed
across a given environment autonomously. Future plans in-
clude amalgamation of both sensor-level configuration with
system-level configuration. Such complete solution will make
sensor deployments much faster and easier. CASCoM will
stimulate the adaptation of IoT among non technical users due
to improved usability.
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