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Abstract— We are currently observing emerging solutions to
enable the Internet of Things (IoT). Efficient and feature rich
IoT middeware platforms are key enablers for IoT. However,
due to complexity, most of these middleware platforms are
designed to be used by IT experts. In this paper, we propose
a semantics-driven model that allows non-IT experts (e.g. plant
scientist, city planner) to configure IoT middleware components
easier and faster. Such tools allow them to retrieve the data
they want without knowing the underlying technical details of
the sensors and the data processing components. We propose
a Context Aware Sensor Configuration Model (CASCoM) to
address the challenge of automated context-aware configuration
of filtering, fusion, and reasoning mechanisms in IoT middleware
according to the problems at hand. We incorporate semantic
technologies in solving the above challenges. We demonstrate the
feasibility and the scalability of our approach through a prototype
implementation based on an IoT middleware called Global Sensor
Networks (GSN), though our model can be generalized into any
other middleware platform. We evaluate CASCoM in agriculture
domain and measure both performance in terms of usability and
computational complexity.

I. INTRODUCTION

The Internet of Things (IoT), an emerging paradigm, pro-

vides a networked infrastructure that enables things to be

connected anytime, anyplace, with anything and anyone, ide-

ally using any path, any network and any service [1]. The

things in IoT are accompanied with sensors and actuators. It

is estimated that there are about 1.5 billion Internet-enabled

PCs and over 1 billion Internet-enabled mobile phones today.

By 2020, there will be 50 to 100 billion devices1 connected to

the Internet [1]. Since these smart devices comprise sensors,

it is evident that there would be many sensors deployed

around us in the future. Even today, sensors are used in

many domains such as agriculture, environmental monitoring

[2]. In order to analyse and understand a given phenomenon

extensively, data generated from appropriate sensors need to

be fed into more sophisticated applications. These applications

are designed to produce certain results once they are given

required sensor data as inputs. IoT middleware solutions help

to retrieve data from sensors and feed them into applications

easily by acting as a mediator between the hardware layer

1We use terms objects, things, smart objects, devices, nodes to give the
same meaning as they are frequently used in IoT related documentation
interchangeably.

and the application layer. In order to perform such a binging

act, middleware solutions need to be configured themselves

depending on the context information and user requirements.

Our objective is to automate and simplify the configuration of

an IoT middleware and improve its usability so non-IT experts

can use it efficiently and effectively. Our contribution can be

listed as follows:

• We develop a configuration model called CASCoM to

enrich an existing IoT middleware. This model helps

non-IT experts to configure sensors and data processing

components using a single-click quickly and easily. As

the final outcome, CASCoM produces data streams that

can be fed into applications/services easily where further

processing may occur.

• Our model automates the configuration process which is

a significant improvement over the current Global Sensor

Network (GSN) [3] approach where all the configurations

need to be done manually by IT experts.

• CASCoM is completely driven by semantic annotated

data at the back end. Therefore, new sensors and data

processing components can be added at any time. No

changes are required in the application.

• CASCoM allows the users to discover additional context

information.

• We provide a cost calculation model that considers and

combines software and hardware costs when configuring

sensors and data processing components. It also allows

users to define their own priorities.

• CASCoM is capable of suggesting and advising future

sensor deployments, if the existing sensors are incapable

of fulfilling user requirement.

The remainder of this paper is organized as follows. In

Section II, we describe the background and motivation behind

our work. The problem we addressed in this paper is compre-

hensively analysed and presented with use-case scenarios in

Section III. In Section IV, we propose our solution, CASCoM,

in detail. Implementation details are explained in Section V. In

Section VI, we evaluate the CASCoM in both qualitative and

quantitative methods. Related work are reviewed in Section

VII. Finally, we present the conclusions and future directions.
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II. BACKGROUND

Broadly, configuration in IoT paradigm can be catego-

rized into two: sensor-level configuration and system-level

configuration. Sensor-level configuration focuses on changing

a sensor’s behaviour by configuring its embedded software

parameters such as sensing schedule, sampling rate, data com-

munication frequency, communication patterns and protocols.

In this paper, we are focused on developing a system-level

configuration model for IoT midddleware platforms. Specifi-

cally, our proposed model identifies, composes, and configures

both sensors and data processing components according to the

user requirements.

The challenge of configuring an IoT middleware solution

can be understood by analysing an existing middleware such

as Global Sensor Networks (GSN) [3]. The high-level archi-

tecture and the data flow diagram of the GSN middleware

is presented in [3]. Wrappers perform the hardware-level

communication with sensors. Each and every sensor that

needs to be connected to the GSN middleware should have a

corresponding wrapper. In order to retrieve sensor data, users

are required to define their requirements using a XML file

called Virtual Sensor Definition (VSD) [3]. Once the wrapper

receives data, it forwards them to the Virtual Sensor (VS) as

specified in the VSD. Similarly, multiple wrapper may send

data to a single VS. A VS may have any number of input

data streams and produces exactly one output data stream. In

GSN, sensor data can be processed in three layers: (1)virtual

sensors layer, (2) query processing layer, and (3) applications

and services layer (outside GSN middelware).

The query processing layer can perform filtering and inte-

gration tasks based on SQL-like specifications. However, data

processing tasks that cannot be accomplished using SQL need

to be performed either in layer 1 or 3. Layer 3 consists of

sophisticated applications (and services) that take specific data

streams and perform complex data processing operations. For

example, an application may take air temperature, air humidity,

and leaf wetness as the input data stream. Then, it generates a

map by visualizing how a certain type of disease may spread

across an agricultural field. Such complex data processing and

modelling tasks are out of the scope of GSN’s processing

capabilities. The responsibility of an IoT middleware (such

as GSN) is to generate the appropriate data streams (that the

applications require as inputs) without (or with minimum) user

intervention. In order to accomplish this, layer 1, which we

focus in this paper, needs to play a critical role. The virtual

sensors layer allows to apply data processing operations (less

complex operations compared to layer 3) over the sensor data.

In the existing GSN, all the data processing components in

layer 1 need to be developed by the user and need to be

manually selected based on the user requirements. Performing

such task manually is tedious and cumbersome for non-IT

experts (such as plant scientists and environmentalists).

Let us discuss the term data processing components in

relation to layer 1. Data processing can be defined as ma-

nipulation of input data with an application program to obtain

desired output. In layer 1, data processing components per-

form operations such as filtering, fusing, reasoning, anomaly

detection, unit conversion, missing value estimation, noise

reduction, feature extraction and so on. Operations should

be able to be performed within acceptable time frame (i.e.

in real-time, ideally before the next data packets arrive) as

we are dealing with data streams. In order to fulfil the user

requirements, several data processing components2 may be

required to compose together.

In addition to the manual configuration activities that need

to be performed, there are several weaknesses in the current

approach. Figure 3(a) illustrates the activity diagram of the

existing configuration work-flow of the GSN middleware.

• Users need to know the low-level details such as data

types and measurement units of the sensors in order to

define the VSD manually.

• It is extremely difficult to memorise different combina-

tions of sensor types that can be used to fulfil user re-

quirements (which sensors need to be composed together

to detect an event?).

• Users need to know the availability of data processing

components, their input/output data types and their capa-

bilities to develop a strategy. Data processing operations

need to be applied on data in the correct sequence.

• There is no way to find out the strategies to overcome

the issues when existing hardware resources (i.e. existing

sensors) and software resources (i.e. data processing

components) are incapable of producing the results that

users require.

• Further, the solutions designed by users may not be the

optimum solution (e.g. due to the variability of hardware

and software costs).

In existing GSN middleware, many configuration files and

programming codes need to be manually defined by the users

(without any help from GSN). An ideal IoT middleware

configuration model should address all the above mentioned

challenges. The configuration model we propose in this paper

is applicable towards several other emerging paradigms, such

as sensing as a service [4].

III. PROBLEM ANALYSIS

This section describes and analyses the problem we address

in this paper with concrete examples and scenarios. Figure 1

illustrates the problem in general. The explanations are based

on agriculture and environmental monitoring domains. The

proposed solution helps users to overcome difficulties listed

2We use the term components, but can be called functions, methods, and
modules.

Our objective is 

to help the user 
to overcome 

these challenges

A user wants to 

monitor / detect 
/ discover

 a phenomenon
User does not know which data 

processing components to use 

User does not know how to 

configure the IoT middleware

User does not know which 

sensors to use to retrieve data

Fig. 1. The problem definition in general



above. Our research question is ‘How to develop a model

that allows non-IT experts to configure sensors and data

processing mechanisms in an IoT middleware according to

the user requirements?’. Extended explanations are provided

in [5].

Let us introduce the notations that we are going to use

in this paper: Sensor (St) where t=type (e.g. each sensor

type is represented by a different number: 1=air temperature,

2=air humidity, 3=leaf wetness, 4=Carbon Monoxide, 5=Car-

bon Dioxide, 6=Molecular Oxygen, 7=Methane, 8=Nitrogen

Dioxide); Wrapper (W ); Virtual Sensor (V S); data process-

ing component (C
f
id) where f=function (e.g. each function

is represented using a unique number. 1=airStressDetector,

2=phytophtoraMonitor, 3=pollutionDetector) and id = devel-

oper unique identifier.

Figure 2 illustrates two scenarios from two different do-

mains. Each of them has different user requirements that

lead to two different execution flows. We selected these two

scenario due to the fact that, together, they allow us to show-

case the full capabilities of CASCoM. In use case 1, a plant

scientist wants to monitor whether the experimental crops can

be infected by Phytophtora [6] disease or not. Phytophtora is

a fungal disease which can enter a field through a variety of

sources. The development and associated attack of the crop

depends strongly on the climatological conditions within the

field. Humidity plays a major role in the development of Phy-

tophtora. Both temperature and whether or not the leaves are

wet are also important indicators to monitor Phytophtora. The

following facts explain Phytophtora monitoring (simplified for

demonstration purposes). It is important to highlight that rule-

based reasoning does not intended to replace rule engines [7].

The objective here is to create the data items that are required

by the application.

• IF airTemperature < α AND airHumidity < β THEN airStress level
= low ELSE airStress level = high

• IF airStress = high AND leafWetness > δ THEN PhytophtoraDisease

= Can-be-infected ELSE = Cannot-be-infected

One of the responsibility of an IoT middleware is to

combine different sensors and data processing components

autonomously and produce a data stream. A user can feed

the data stream into an application for further complex pro-

cessing such as visualization and modelling that allows the

user to achieve their objectives. The main challenge is that

the plant scientist may not know (or remember) the above

facts (rules). Further, we should not expect a plant scientist

(a) User Case 1 (Agriculture): A plant scientist wants 
to monitor whether the experimental crops can be  

infected by Phytophtora disease

Retrieve data from 

sensors:
Air temperature, 

Air humidity, 
Leaf wetness 

Need following data 
processing 

components: 
airStressDetector, 

phytophtoraMonitor

(b) User Case 2 (Environment): A environmental 
scientist wants to monitor environmental pollution in 

Canberra, Australia

Need following data 

processing 
components: 

(MANY) different 

components

Plant 
Scientist

Environmental 
Scientist

Retrieve data from 

sensors:
pH, Temperature 

Humidity, O
2
, CO, 

CO
2
, dust, sound 

Fig. 2. Use cases that illustrates the need of CASCoM

to write XML or Java code as part of the configuration.

An ideal IoT middleware should help the scientist (non-IT

expert) to overcome these challenges by providing tools that

are easy to use. The scientist should be able to configure

the middleware according to the problems/tasks at hand with

minimum effort. Additionally, advanced customization will be

useful to optimize the configuration process. Comparatively,

use case 1 is less complex as there is only one way to

monitor the disease (above rules). For example, the sensor

types and data processing components need to be used are

straight forward.
• Use case (1) Solution:

(

(S1, S2) ⇒ C1
1 , S

3
)

⇒ C2
1

Configuration becomes a complex task in the use case 2. In

this scenario, an environmental scientist wants to measure the

environmental pollution in Canberra, Australia. In comparison

to the use case 1, there are many different ways to measure

and visualize pollution. Different sensors and data process-

ing components can be combined together to fulfil the user

requirements as listed below.
• Use case (2) Solution 1:

(

S4, S5, S6, S7, S8
)

⇒ C3
38

• Use case (2) Solution 2:
(

S5, S8
)

⇒ C3
77

• Use case (2) Solution 3:
(

S1, S5, S7
)

⇒ C3
32

In such circumstances, it is important to consider con-

text information (e.g. accuracy, reliability) and cost of data

acquisition (e.g. data communication time and computation

time). This allows a user to make the final decision on which

solution to be used depending on the cost and context factors.

Both hardware and software costs need to be considered.

Additionally, users may need to discover additional context

information [2]. Depending on the user requirements and layer

3 application requirements, the required output data stream

may vary. Sample outputs, in relation to use case 1, are listed

below.
• Output 1: airTemperature [double], airHumidity [double], airStress

[string],
leafWetness [double], PhytophtoraDisease [boolean]

• Output 2: PhytophtoraDisease [boolean], location [string], bat-
teryLevel[double]

Finally, when existing resources are insufficient to satisfy

the user requirements, it is very important to advice the users

regarding possible improvements.

IV. THE CASCOM ARCHITECTURE

Based on the challenges we identified in Section III, we

designed a model, which is supported by a tool, to overcome

the difficulties. Context-Aware Sensor Configuration Model

(CASCoM) simplifies the IoT middleware configuration pro-

cess significantly. Figure 3 compares the execution-flow of

sensor configuration in the current GSN approach and the

CASCoM approach. As it is clearly visible, the current GSN

model requires a number of steps to be executed by IT experts.

In contrast, our proposed model allows non-IT experts to

configure IoT middleware using a single-click. All the difficul-

ties are handled internally behind the scene without the user

involvement. Additionally, we offer several advance features

that allow optimization and customization. As depicted in

Figure 4, CASCoM consists of six phases. Some phases may



or may not be visible to the users. Phases are different from

the steps needed to be followed in the CASCoM Tool.

(b) CASCoM Work-flow(a) Current GSN Work-flow
Configuration Begins

Search the task and click configure

(optional) Discover additional context

(optional) Receive advice on future improvements

(optional) Optimize the configuration

Find what type (kind) sensors need to be 
configured in order to solve the problems at hand 

Manually find whether required types of 
sensors are available to be used

Configuration Completes

Find out the low level details of those sensors 
such as data types and measurements

Find wrapper details of those selected sensors

Manually search for appropriate data 
processing components

Write the Virtual Sensor (VS), a java class, 
manually by composing different data processing 

components and compile the class

Write a new Virtual Sensor Definition 
(VSD), a XML file, manually by referring 

to correct  wrappers and data types 

Configuration Begins

Configuration Completes

Fig. 3. Configuration Execution-flow Comparison: (a) Current GSN (b)
CASCoM

CASCoM Execution Flow: In phase 1, users are facil-

itated with a graphical user interface, which is based on a

question-answer (QA) approach, that allows to express the user

requirements. Users can answer as many question as possible.

CASCoM searches and filters the tasks that the user may want

to perform. From the filtered list, users can select the desired

task. The details of the QA approach are presented later

in this section. In phase 2, CASCoM searches for different

programming components that allow to generate the data

stream required. In phase 3, CASCoM tries to find the sensors

that can be used to produce the inputs required by the selected

data processing components. If CASCoM fails to produce

the data streams required by the users due to insufficient

resources (i.e. unavailability of the sensors), it will provide

advice and recommendations on future sensor deployments in

phase 4. Phase 5 allows the users to capture additional context

information. The additional context information that can be

derived using available resources and knowledge are listed to

be selected. In phase 6, users are provided with one or more

solutions3. CASCoM calculates the costs for each solution. By

default, CASCoM will select the solution with lowest cost.

However, users can select the cost models (discussed later in

this section) as they required. Finally, CASCoM generates all

the configuration files and program codes which we listed in

Figure 3(a). Data starts streaming soon after.

Phase 1: Understand User Requirements: The objective

of this phase is to help users to search for a task that they need

to perform easily from a large number of possibilities. For

example, users are allowed to narrow down the possibilities

by mentioning facts such as domain (e.g. agriculture), and type

3Solution is a combination of sensors and data processing components that
can be composed together in order to satisfy the user requirements.

Users

Phase 1: 
Understand User 

Requirements

Phase 2: 
Select Data Processing 

Components

Phase 3: 
Select Sensors

Phase 4 
(Optional): 

Provide advice and
 Recommendations 

Phase 5 

(Optional): 
Discover Additional 

Context

Phase 6 

(Optional): 
Context-based Cost 

OptimizationApplications

Fig. 4. The Context-Aware Sensor Configuration Model (CASCoM)

of the task (e.g. event, visualization). In order to increase the

usability, CASCoM retrieves the facts from the users through a

QA model (Sample questions: Do you want to visualize data?,

Do you want to detect an event?, Do you want to monitor a

disease infection? What is the domain your task is related to?).

When a user answer a question, the remaining questions will

be dynamically selected based on the previous answer. An

extract of the proposed Question and Answer oriented Task

Description Ontology (QA+TDO) is presented in Figure 6. In

QA+TDO, tasks can be explained by any concept as depicted

in C1, C2, etc. in Figure 5(a). Each concept should have a

‘hasQuestion’ property which links to a question (i.e. Q1, Q2

and so on). In QA+TDO, C are answers to the questions. (e.g.

If Q1= What is the domain your task is related to?, then C5

is ‘domain’ and an individual of C5 can be ‘agriculture’.).

The extensibility and scalability of this approach is discussed

in Section VI.

Phase 2 and 3: Select Sensors and Data Processing

Components: CASCoM requires all the information related

to sensors and data processing components to be stored in a

repository. We extended the Software Component Ontology [8]

(SCO) as presented in Figure 6 in order to model information

about data processing components. Further, we modelled sen-

sor descriptions using semantic Sensor Ontology (SSNO) [9].

In this phase, the software components are selected in such as

a way that they can together produce the data stream required

to perform the task selected in phase 1. For example, in order

to monitor PhytophtoraDisease, first CASCoM searches for a

software components that can be used to produce the required

data. It first finds PhytophtoraDisease Detector. The inputs it

requires are air stress and leaf wetness. The phase 3 selects

the sensors that produce the output that matches the inputs of

the selected component. Leaf wetness can be measured directly

using hardware sensors. However, air stress cannot be detected

using any physical sensor. This requires CASCoM to execute

phase 2 again in order to find a software component that

produces air stress. Then CASCoM finds Air Stress Detector

which takes air temperature and air humidity as inputs and

produces air stress as the output. Further, air temperature and

air humidity can be sensed directly through hardware sensors.

The IoT middleware configuration process will be completed

once the required sensors and data processing components

are identified. The remaining phases are optional. CASCoM

performs validation as illustrated in Figure 5(b). During the

sensors and data processing components composition process,

different criteria are evaluated (e.g. data types: int, boolean

/ measurement units: Celsius, Fahrenheit) in order to verify
DataItem

Property

DataType

Criteria_1

Criteria_2

Output / Sensor

Property

DataType

Criteria_1

Criteria_2

(b)

Task

C1

Q2

C2

C3

C4

C5

Q3

Q4

Q5

Q1

(a)

Fig. 5. (a) A part of QA-TDO shows how we developed the QA model. It is
important to note the pattern (i.e. Task → Concept → Question). (b) shows
how validation can be performed using semantic data.
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DataValue
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DataValue
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Quality
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Accuracy

: hasDataValue
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ProcessingClass
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 : hasPackage                                

    

 : hasProcessingClass           
               

  

                        : hasMainMethod                     

SCO+

DataType

DataType DataType

Fig. 6. Extracts of different ontological data models used in CASCoM: QA-
TDO, SCO [8], and SSNO [9]. The colour coding refers to different prefixes.

whether the inputs and outputs are compatible.

Phase 4 (Optional): Provide Advice and Recommen-

dations: Through comparing SSNO and SCO, this phase

identities the resource insufficiencies and provide advice to

the users regrading future sensor deployments and software

component acquisition. This phase provide alternative advices

if there are multiple ways to address the insufficiencies based

on the solution (e.g. use case 2).

Phase 5 (Optional): Additional Context Discovery: With

the help of knowledge modelled in ontologies, this phase

discovers context information that can be derived by using

sensor data. ‘Context is any information that can be used to

characterise the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction

between a user and an application, including the user and

applications themselves’ [2]. Additional context information

such as sensor location and sensor battery life may be required

by applications in order to perform complex tasks such as

geographical based visualization and developing energy-aware

sensing schedules. Therefore, discovering additional context as

such is important. Each application may have a compulsory set

of inputs that it needs to perform the primary task, though they

may accept additional context information in order to provide

enhanced results.

Phase 6 (Optional): Context-based Cost Calculation:

CASCoM performs ontological reasoning to find out all possi-

ble solutions. Each solution may combine different sensors and

data processing components where their costs may different.

For example, different types of sensors can be used to monitor

environmental pollution (refer Section III). In CASCoM, cost

does not always refer to financial terms (e.g. sensors: energy,

bandwidth, latency; data processing: memory requirement,

processing time). By default, all the context parameters are

treated equally. However, users can define their priorities for

each context property in comparative fashion [10]. If the users

want more reliable sensors, the reliability can be defined with

more priority, but it may increase the cost.

V. IMPLEMENTATION

This section presents programming level details of our proof

of concept development and evaluation. Hardware and soft-

ware platforms, APIs and frameworks, semantic data models,

and sample data sets we used to evaluate the performance of

the prototype implementation are explained in this section. For

proof of concept deployment and evaluation, we used a com-

puter with Intel(R) Core i5-2557M 1.70GHz CPU and 4GB

RAM. We used the Java programming language to develop

the CASCoM tool as GSN also natively supports Java. We

employed the open source Apache Jena API (jena.apache.org)

to manipulate semantic data. In addition, we used the Apache

Commons mathematics (commons.apache.org/math) library

for advanced cost calculations based on user priorities. The

costs are calculated using a weighted Euclidean distance-

based indexing technique called Comparative Priority-based

Weighted Index (CPWI)[10].

We modelled 40 sensor descriptions according to the Seman-

tic Sensor Network Ontology (SSNO) [9]. Additional exten-

sions are added to SSNO in order to model context information

related to sensors as explained in [10]. Further, we modelled

40 data processing component descriptions according to the

Software Component Ontology Plus (SCO+). SCO+ is based

on SCO [8], but additionally supports modelling context

information such as execution time and reliability as presented

in Figure 6. We modelled context information in SCO+ using

an approach similar to SSNO. The data processing components

may take any number of inputs and produce one outputs. We

employed our previous work, CASSARAM [10] to search sen-

sors based on context properties and to calculate costs. As a re-

sult of the integration of CASCoM into the GSN middleware,

virtual sensors and virtual sensor definitions were generated

autonomously. All the other GSN components remained same.

We introduced several new components under 4 different man-

agers: [QA Manager] QA Filter, Dynamic SPARQL Generator;

[Task Manager] Solutions Finder, Solution Composer, Solution

Validator; [Services Manager] Cost Calculator, Context Dis-

covery Manager, Solution Adviser; [Configuration Manager]

VS Generator, VSD Generator, Wrapper Handler. The user

interface of the CASCoM tool is presented in Figure 7. It is a

critical component of the proposed model as it significantly

help the users to configure the IoT middleware easier and

faster.

VI. EVALUATION, DISCUSSION AND LESSONS LEARNED

We evaluated CASCoM in both qualitative and quantitative

means. We analysed and compared our proposed solution with

respect to the existing GSN configuration model briefly in

Figure 3. In order to quantify the differences between the two

approaches, we evaluated three use case scenarios. In each

use case, a user required to configure the IoT middleware in

such a way that it produces a specific data stream: (1) monitor

Phytophtora disease, (2) monitor environmental pollution, and

(3) monitor and analyse crowd movement (indoor). Further,

we selected three types of users: (1) an IT expert who was

familiar with GSN configuration process, (2) an IT expert who



Fig. 7. User interface that supports CASCoM

was not familiar with the GSN, and (3) an non-IT expert (from

medical field). For each use case, a set of basic instructions and

programming guidelines that explains the GSN configuration

process were given. First, we asked the users to configure the

GSN middleware without the support of CASCoM. Secondly,

we asked the users to configure the GSN middleware by using

CASCoM. We measured time taken by each user and results

are presented in Figure 8(a).

In Figure 8(b), we measured how much time it took to

process data in a VS using two approaches: (1) to write a

customized VS class autonomously by CASCoM and compile

it at runtime based on the user requirements (2) to use Java re-

flection (to support OSGi) so there is no compilation required.

Even though the results are obvious, it is important to examine

the differences closely, because every data item that comes

into GSN will need to go through some VS for processing.

The approach we select has direct impact on the scalability

of the GSN as it is expected to retrieve data from a large

number of sensors in real world deployments. We employed

rule-based reasoning modules which take some inputs and

produce single output (e.g. air stress detection). Then, we

increased the number of reasoning operations performed over

a single data row. We also measured initiation and execution

time separately.

In Figure 8(c), we analysed different phases of the configu-

ration process separately and compared the current approaches

with the CASCoM approach. In order to make the results

comparable, we assumed the users are IT experts who know

the GSN configuration process. Finally, in Figure 8(d), we

added more data into the ontology based semantic models and

evaluated the performance of CASCoM by measuring the total

execution time. We inserted data to the model by describing

more sensors, data processing components, and QA knowledge

(e.g. 1000 data records means 1000 sensor descriptions and

1000 data components descriptions and so on). This figure is

based on synthetically generated semantic descriptions.

Results: Figure 8(a) shows that CASCoM allows to con-

siderably reduce the time required for configuration of data

processing mechanism in IoT middleware. Specifically, CAS-

CoM allowed the three types of users to complete the given

task 50, 80 and 250 times faster (respectively) in comparison

to the existing approach. According to Figure 8(b), the Java

reflection approach takes slightly more time to specially when

initializing. Though the Java reflection approach can add more
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Fig. 8. Evaluation of CASCoM

flexibility to our model, the additional overhead increases

when the number of components and operation involved gets

increased. The overheads can grow up to an acceptable level

very quickly when GSN scales up (e.g. more user requests).

According to Figure 8(c), even IT experts who know GSN

can save time by using CASCoM up to 88%. Specially,

time taken for defining the VSD and VS class have been

significantly reduced. Both files can be generated by CASCoM

autonomously within a second even for complex scenarios.

However, the time taken to find data processing components

and sensors (and wrappers) depends on the size of the se-

mantic data model. Figure 8(d) shows how total processing

time would vary depending on the size of the semantic data

model. Approximately, a semantic model with 10,000 sensor

descriptions and 10,000 data processing components can be

processed in order to find solutions for a given user request

in less than a minute. However, most of the time is taken to

read the data model. The actual configuration process other

than reading the data model takes only 4 seconds. The actual

processing time slightly increases when the number of sensors

and data processing components that are described in the

model gets increased. In contrast, time required to read the data

model increases significantly. However, reading the model is

not a frequent repetitive activity and do not make any impact

on scalability. In addition, it is less likely that we are required

to store very large amounts of data in ontological models

in a single GSN instance. Instead, GSN supports distributed

processing (i.e. different GSN instances) where CASCoM can

collectively process large data sets.



Discussion and Lessons Learnt: Non-IT experts required

an extremely detailed guidelines (compared to IT experts)

to perform the configuration as there are not familiar with

the activities such as programming. They also required direct

verbal assistant from the authors. In addition, it was revealed

that non-IT experts and IT experts who are not familiar

with GSN were unable to configure the GSN at all without

guidelines. In contrast, simple guidelines that explain the GUI

allowed all users to complete the given task within a fairly

similar amount of time. Though the complexity of the user

requirement makes visible impact on configuration time in the

current GSN approach, it diminishes when users use CASCoM

to configure GSN.

VS are designed to be used for data pre-processing. In order

to test the capabilities of CASCOM, we also embed context

discovery functionalities into the VS. In order to process

data, we use a Java based components. We composed data

processing components together by creating and compiling a

new virtual sensor class. This process is similar to generate a

HTML file dynamically when a user requests it (via browser).

As a result, at runtime, data is processed natively. We used

this approach instead of utilizing an approach such as web

services due to the fact that IoT middleware needs to deal

with real-time data processing. The delay created by additional

overheads in web service calling creates bottlenecks to the

entire data processing process. We also refrained from using

techniques such as Java reflection due to latency and additional

overheads. Though the differences are small when considering

a single VS as in Figure 8(b), large number of virtual sensors

make significant impact on scalability of the GSN.

As CASCoM stores knowledge in ontologies, users do

not need to memorise domain knowledge (i.e. which sensor

data types are required to perform a certain task?). This is

an significant improvement over the existing approach. Due

to the employment of semantic technologies, CASCoM is

extensible into any domain. More importantly, adding new

sensor descriptions and data processing component descrip-

tions to the data model overtime allows CASCoM to compose

new solutions. Ontological reasoning allows to deal with

inconsistent usage of domain specific terminologies among

domain experts. Ontologies helped in CASCoM to deal with

performing validating task in composition of data components.

Alternative to ontologies, we could have used a configuration

file that explains which programming components and sensors

need to be used to produce the required data stream for

a given application (e.g. template-base approach). However,

such an approach will drastically reduce the interoperability

and flexibility. In IoT, ideal approaches should be able to

dynamically compose and configure sensors and data process-

ing components as it is impossible predict their availability at

give time (new sensors and data processing components may

available to use).

VII. RELATED WORK

Our solution combines technologies from different research

areas such as IoT middleware, semantic technologies, software

component composition, and context-aware computing. Mi-

crosoft SensorMap [11] (sensormap.org) is a data sharing and

visualization framework. It is a peer produced sensor network

that consists of sensors deployed by contributors around the

world. SensorMap mashes up sensor data on a map interface.

Then, it allows to selectively query sensors and visualize data.

Our approach completely automates the configuration process

by eliminating the requirement of hand picking sensors. Linked

Sensor Middleware (LSM) [12] (lsm.deri.ie) is a platform that

provides wrappers for real time data collection and publishing.

It also provides a web interface for sensor search, linked

stream data query, data annotation and visualisation. LSM

mainly focuses on linked data publishing. Sensor selection

needs to be done manually in order to retrieve sensor data.

Cosm (formerly Pachube) (cosm.com) is a platform for Inter-

net of Things devices. Cosm allows different data sources to be

connected to it. Then, it provides functionalities such as event

triggering and data filtering. It acts as a mediator between

sensors and applications where users need to manually select

and configure sensors.

Context-awareness is a critical functionality that needs to

be embedded into IoT middleware solutions [2]. Context

information (e.g. accuracy, reliability, cost) plays a significant

role in selecting sensors and data processing components

[10]. To support this, CASCoM provides context discovery

functionalities by using semantic knowledge and fusing raw

sensor data. The SensorMashup [13] platform offers a vi-

sual composer for sensor data streams. Data sources and

intermediate analytical tools are described by reference to

an ontology, enabling an integrated discovery mechanism for

such sources. Selection of data sources and analytical tools

based on user requirement need to be done manually by users.

Khemakhem et al. [14] use multiple ontologies to discover and

compose software components by focusing on non-functional

proprieties. Web service (WS) composition using ontologies

[15] is similar to software component composition performed

in CASCoM with a functional point of view but significantly

different in implementation and execution point of view.

Software component composition is much simpler compared

to WS composition [16] due to lack of overheads. Our solution

employs simple data processing components which perform

single tasks. We eliminate the burden of interoperability of

software components, so they are designed to be used in

GSN according to a given specification and stored locally.

Therefore, it is not required to handle network communication

and complex data structures. However, software components

are allowed to call external web services though such actions

are not encouraged due to latency that may effect real-time

processing. Several projects [8] have designed and developed

ontologies to describe software components. Such approaches

have helped them to perform dynamic composition of soft-

ware components. A process of software component matching

using ontologies has been explained in [17]. In our work

we employed the Software Component Ontology discussed

in [8]. Semantic Sensor Ontology (SSNO) [9] also allowed

us to model sensor descriptions. Noguchi et al. [18] have



proposed a mechanism that generates connection between

different software components in order to process sensor data

and detect events. In contrast, our objective is to produce the

data streams required by the users so they can be further

analysed extensively using sophisticated applications.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the CASCoM approach

that allows non-IT experts to configure IoT middleware ef-

ficiently and effectively. The semantic technologies allow to

capture user requirements and configure the sensors and data

processing components accordingly by handling the low-level

technical details without overwhelming the users. Our model

supports single-click configuration by eliminating sequences of

manual activities needed to be carried out by users otherwise.

CASCoM makes the configuration process much easier by

providing a sophisticate graphical user interface to express

user requirements. In addition, our model has the capability

to advise users on future sensor deployments in situations

where user requirements cannot be satisfied using existing

resources. CASCoM also allows to discover additional context

information. Users are not required to know any underling

technical details. Instead they are offered an user interface

where they may select additional context. We propose a cost

model that calculates the cost of data acquisition based on

sensors and data processing components combined. CASCoM

selects the most optimized solution by default, though it

allows advance customization through context prioritization.

We integrated our model into an IoT middleware called Global

Sensor Networks. CASCoM has significantly increased the

usability and capability of the GSN middleware.

We have shown that it is possible to offer a sophisticated

configuration model to support non-IT experts. Semantic tech-

nologies are used extensively to support this model. We used

ontologies to model sensor descriptions and data processing

component descriptions. We also developed a ontology to or-

ganize additional knowledge that is required for understanding

user requirements. Using our proof of concept implementation,

both IT and non-IT experts were able to configure the GSN

in significantly less time. In future, we plan to extend our

configuration model into sensor-level. To achieve this, we

will develop a model that can be used to configure sensors

autonomously without human intervention in highly dynamic

smart environments in the Internet of Things paradigm. Our

approach will explore and identify sensors that are deployed

across a given environment autonomously. Future plans in-

clude amalgamation of both sensor-level configuration with

system-level configuration. Such complete solution will make

sensor deployments much faster and easier. CASCoM will

stimulate the adaptation of IoT among non technical users due

to improved usability.
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