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Abstract—As we are moving towards the Internet of Things
(IoT), the number of sensors deployed around the world is
growing at a rapid pace. Market research has shown a signif-
icant growth of sensor deployments over the past decade and
has predicted a substantial acceleration of the growth rate in
the future. It is also evident that the increasing number of
IoT middleware solutions are developed in both research and
commercial environments. However, sensor search and selection
remain a critical requirement and a challenge. In this paper, we
present CASSARAM, a context-aware sensor search, selection,
and ranking model for Internet of Things to address the research
challenges of selecting sensors when large numbers of sensors
with overlapping and sometimes redundant functionality are
available. CASSARAM proposes the search and selection of
sensors based on user priorities. CASSARAM considers a broad
range of characteristics of sensors for search such as reliability,
accuracy, battery life just to name a few. Our approach utilises
both semantic querying and quantitative reasoning techniques.
User priority based weighted Euclidean distance comparison in
multidimensional space technique is used to index and rank
sensors. Our objectives are to highlight the importance of sensor
search in IoT paradigm, identify important characteristics of
both sensors and data acquisition processes which help to select
sensors, understand how semantic and statistical reasoning can
be combined together to address this problem in an efficient
manner. We developed a tool called CASSARA to evaluate the
proposed model in terms of resource consumption and response
time.

Index Terms—Internet of Things, context awareness, IoT mid-
dleware, sensors, sensor discovery, search and selection, sensor
indexing and ranking, semantic and probabilistic reasoning,
querying, multidimensional data fusion.

I. INTRODUCTION

The numbers of sensors deployed around the world are

increasing at a rapid pace. These sensors continuously generate

enormous amounts of data. Collecting and storing data from all

the available sensors may not create additional value or solve

the problem of efficient sensor data processing. Further, it may

not be feasible due to large scale, resource limitations, and cost

factors. When significant amounts of sensors are available to

choose from, it becomes a challenge and a time consuming

task to select the appropriate sensors. We describe the term

appropriate in section III.

Sensing as a service (SensaaS) model is expected to build

on top of the IoT infrastructure and services. SensaaS model

envisions that sensors and/or sensor data streams would be

available to use over the Internet following some utility

arrangements. Currently, several middleware solutions that

are expected to facilitate such model are under development.

OpenIoT [1], GSN [2], Cosm [3] are some examples. These

middleware solutions strongly focus on connecting sensor

devices to software system and related functionalities [1].

However, when more and more sensors get connected to the

Internet, the sensor search functionality becomes critical.

This paper addresses the growing challenge of sensor search

and selection in IoT solutions and research. Traditional web

search approach will not work in IoT sensor selection and

search domain as text based search approaches cannot capture

the critical characteristics of a sensor accurately. Another

approach that can be followed is meta data annotation (e.g.

basic details related to each sensor such as sensor type,

manufacturer, capability). Even if we maintain meta data

on sensors (e.g. stored in sensor’s storage) or in the cloud,

interoperability will be a significant issue. Further, a user study

done by Broring et al. [4] has described an approach where 20

participants were asked to enter metadata for a weather station

sensor using a simple user interface. Those 20 persons made

45 mistakes in total. The requirement of re-entering metadata

in different places (e.g. enter metadata into GSN once and

again enter metadata into OpenIoT) arises when we do not

have common descriptions.

Recently, W3C Incubator Group released the Semantic Sen-

sor Network XG Final Report that defines SSNO ontology [5].

SSNO describes sensors, their characteristics and relationships

between concepts. SSNO strengthens sensor interoperability

and accuracy avoiding error-prone manual data entry. Fur-

ther, inconsistencies in sensor descriptions can be avoided

by letting the sensor hardware manufactures to produce and

make available sensor descriptions using ontologies so that

IoT solution developers can retrieve and incorporate (e.g.

mapping) them into their system. Ontology based sensor

description and data modelling is useful for IoT solutions.

This approach also allows semantic querying. Our proposed

solution allows the users to express their priorities in terms of

sensor characteristics and it will search and select appropriate

sensors. In our model, both quantitative reasoning and seman-

tic querying techniques are employed to improve the efficiency

and performance of the system by utilizing strengths of both

techniques.

The rest of this paper is structured as follows: In Section

II, we highlight our vision and where the findings of this

paper is going to be fit in. We describe CA4IOT (Context

Awareness for Internet of Things) architecture in brief in order

to emphasize the importance of this research. At the end, we
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briefly review relevant literature. Next, we explain problem

definitions and motivation in Section III. At the end, we list

main research contributions of this paper. In Section IV, we

discuss a real world application related to agricultural domain.

Our proposed solution, CASSARAM, is presented in detail in

Section V. Data models, context frameworks, algorithms, and

architectures are also discussed. In Section VI, we provide

implementation details including tools, software platforms,

hardware platforms, and data sets used in this work. We

also discuss assumptions made during the experiments and

results of the experiments. Discussion on research findings is

presented in Section VII. Finally, we present conclusions and

prospects for future work in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section, we briefly explain our broader vision of

automated (context-aware) configuration of filtering, fusion

and reasoning mechanisms, according to the problems/tasks at

hand in IoT paradigm. This will be a significant enhancement

over current paradigms, where resources are configured stati-

cally and a priori. This vision is part of OpenIoT project [1].

In our previous work, we explained the complete architecture

called CA4IOT [6] that facilitates above vision. Here, we

briefly introduce CA4IOT and explain how CASSARAM

would fit and benefit from CA4IOT vision.

Manually selecting and configuring relevant sensors and

data fusion operators when large numbers of sensors are

available to use is not feasible [6] or is very hard. For

example, users such as environmental scientists (i.e. non-

technical personnel) may not have sufficient knowledge in

computer science but they need to retrieve sensor data for their

work. They are only interested in acquiring relevant data so

they can use the data to build models, simulations, understand

and solve their problems.

Let us consider a scenario where an environmental scientist

wants to measure environmental pollution in Canberra. There

is no single sensor that is capable of measuring environmen-

tal pollution. For example, environmental pollution can be

roughly attributed to three sub categories: land pollution, air

pollution, and water pollution. Each category can be measured

by a large number of (different types) sensors. Furthermore,

there is high level context information that may not become

available by processing data retrieved from a single sensor

directly. Data retrieved from multiple sensors need to be

fused together dynamically at run time to generate such high

level context. Manual selection of sensors and data fusion

operators in order to facilitate automated sensor configuration

could be complex in IoT due to its scale and dynamic na-

ture. Therefore “How to efficiently select appropriate sensors

by understanding the user requirements /problems despite

inherent complexity of the challenge?” is the problem we

addressed in CA4IOT. CA4IOT helps the users by automating

the task of selecting sensors according to problems/tasks at

hand. It focuses on breaking down the user requirements and

understanding which sensors can provide relevant information

to the users. Once this is completed, CA4IOT needs to find
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Fig. 1. CA4IOT Architecture supports sensing as a service model. Detailed
description of this architecture and the execution process is presented in [6].

the most suitable sensors and that is exactly where the thrust

of this paper fits in. This problem becomes more challenging

when alternatives are available. (e.g. User wants to gather data

from 100 temperature sensors located in specific area where

25000 sensors are available while each sensor has different

characteristics in terms of accuracy, reliability, cost, etc.).

CA4IOT vision is illustrated in Figure 1.

Ideally, IoT middleware solutions should empower users to

express what they want and provide the relevant sensor data

back to the users quickly without asking the users to manu-

ally select sensors which are relevant to their requirements.

Even though IoT has received significant attention both in

academia and industry, sensor search and selection have not

been addressed properly. The following examples show how

existing IoT middleware solutions provide sensor searching

functionality.

Linked Sensor Middleware (LSM) [7], [8] provides some

sensor selection and searching functionality. However, LSM

has limited capabilities such as selecting sensors based on

location and sensor types. All the searching needs to be done

using SPARQL query language which is not very intuitive.

Similar to LSM, there are several other IoT middleware related

projects under development. GSN [2] is a platform aimed at

providing flexible middleware to address the challenges of

sensor data integration and distributed query processing. It

is a generic data stream processing engine. GSN has gone

beyond the traditional sensor network functionality such as

routing, data aggregation, and energy optimisation. GSN lists

all the available sensors in a combo-box which users need to

select. Another approach is Microsoft SensorMap [9]. It only

allows users to select sensors by using a location map, by

sensor type and by keywords. COSM (formerly Pachube) [3]



TABLE I
COMPARISON OF WEB SERVICES SELECTION AND SENSORS SELECTION DOMAINS

Web Service Selection Domain Sensor Selection Domain
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• Consuming single web service may not create significant value.
Therefore, web services selection and composition is critical to
generate value.

• Many alternative web services are available to use
• Can be found through directory services
• Quality of services matters
• There are free as well as paid services

• Collecting data from a single sensor may not create significant
value. Therefore, sensor selection and composition is critical to
generate value.

• Many alternative sensors will be available to use
• Middleware solutions such as OpenIoT and GSN will play a

mediator roles between sensors and sensor data consumers
• Quality of sensors (and data) matters
• There will be free as well as paid sensors

D
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re

n
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• Largely guided by standards
• Largely depend on software
• Less uncertainty (unless some hardware resources are involved. e.g.

weather information.)
• Not tangible and more reliable
• Some web services accept data as input and produce some data

based on them (e.g. data fusion)
• Data send to the consumer using web services
• Comparatively, less number of web services will be available to

access over Internet by 2020
• Typically provide more meaningful processed and refined data.

• No standards (yet)
• Largely depend on hardware and firmware
• More uncertainty
• Tangible, could be mobile and less reliable
• Some sensors may accept queries/conditions/preferences as inputs

and produce data based on them. Nevertheless, sensors do not
accept raw data with the intention of fusing data.

• Data will send to the consumer using different techniques such as
web services, IP packets, http protocols, etc.

• Comparatively, large number of sensors will be available to access
over Internet by 2020

• Typically provides less meaningful raw sensor data

is another approach which provides a secure, scalable platform

that connects devices and products with applications to provide

real-time control and data storage. COSM also offers only key-

word search. Our proposed solution CASSARAM can be used

to complement the above mentioned IoT middleware solutions

with extensive sensor search and selection functionality. Figure

2 shows some of the leading IoT middleware solutions.

In Table I, we present a comparison of similarities and dif-

ferences between sensor selection and web services selection

domains. According to a study in Europe [2], there are over

12,000 working and useful Web services on the Web. Even

in such conditions, choice between alternatives (depending on

context properties) has become a challenging problem. The

similarities strengthen the argument that sensor selection is

an important challenge at the same level of complexity as

web services. On the other hand, differences show that sensor

selection will become a much more complex challenge over

the coming decade due to the scale of IoT.

In the following, we briefly describe some of the work

done in sensor searching and selection. Truong et al. [12]

propose a fuzzy based similarity score comparison sensor

search technique to compare output of a given sensor with

outputs of several other sensors to find out a matching sensor.

Mayer et al. [13] considers location of smart things/sensors

as the main context property and structures them in a logical

structure. Then, sensors are searched by location using tree

search techniques. Search queries are distributively processed

in different paths/nodes of the tree. Elahi et al. [14] propose

a content-based sensor search approach (i.e. finding a sensor

that outputs a given value at the time of a query. Dyser is

a search engine proposed by Ostermaier et al. [15] for real-

time Internet of Things, which uses statistical models to make

predictions about the state of its registered objects (sensors).

When a user submits a query, Dyser pulls latest data to identify

the actual current state to decide whether it matches the user

query. Prediction models help to find matching sensors with

minimum number of sensors data retrievals. Very few related

efforts focus on sensor search based on context information.

III. PROBLEM DEFINITION AND MOTIVATION

The problem that we address in this paper can be defined

as following. Due to the increasing numbers of available

sensors, we need to search and select sensors that provide

data which will help to solve our problems at hand in the

most efficient and effective way. In order to accomplish

this task, we need to search and select sensors based on

context. Mainly, we identify two categories of requirements:

point-based requirements (non-negotiable or mandatory) and

proximity-based (negotiable or flexible) requirements.

First, there are point-based requirements that need to be

definitely fulfilled. For example, if a user is interested in

measuring temperature in a certain location (e.g. Canberra), the

result (e.g. list of sensors) should only contain sensors that can

measure temperature. User cannot be satisfied by providing

any other types of sensors (e.g. pressure sensors). There is

no alternative or compromise in this type of requirements.

Location can be identified as a point-based requirement. The

second category is proximity-based requirements where users

may be willing to suffice with some variations or compromise.

For example, user has the same interest as before. However,

in this situation, a user may impose proximity-based require-

ments in addition to the point-based requirements. User may

like to have accuracy of the sensors around 92%, and reliability

85%. Therefore, the user gives highest priority to these char-

acteristics. User may accept sensors that closely fulfil his/her

requirements even though all other characteristics may not be

favourable (e.g. cost of acquisition may be high and sensor

response time may be slow). It is important to note that users

will not be able to provide any specific value so the system

should be able to understand the user priorities and provide the
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Fig. 2. Some of the leading IoT middelware solutions. Only limited searching
functionality is provided across all solutions. (a) Linked Sensor Middleware
(LSM) by Digital Enterprise Research Institute [7], [8], (b) SensorMap by
Microsoft [9], Global Sensor Network (GSN) initiated by EPFL [2].

results accordingly by using comparison techniques. One of

the motivating arguments behind this research work are current

market statistics and predictions that show rapid growth in

sensor deployments related to IoT and Smart Cities. By 2020,

there will be 50 to 100 billion devices connected to the Internet

[16]. Further, our work is motivated by increasing trend of IoT

middleware solutions development. Today, most of the leading

midddleware solutions provide only limited sensor search and

selection functionality as depicted in Figure 2.

In this paper, we propose a model that can complement any

IoT middleware solution. Our contributions can be summarised

as follows.

• We propose a context based framework for sensors in IoT

middleware which allows to capture and model sensor

characteristics. This information allows users to search

sensors based on context information.

• We modelled our proposed context framework as an

extension to Semantic Sensor Ontology (SSNO) and it

is compatible with many existing SSNO-based develop-

ments. It is envisioned that the extended SSNO can be

used in projects such as Phenonet [17] and OpenIoT [1].

• We propose CASSARAM that allows users to search and

select sensors based on user priorities. Users are able to

get not only the sensors that will provide required sensor

data but also sensors that have characteristics (i.e. context

information related to sensors and sensor data acquisition

process) that users prefer most. Our approach can be used

in Sensing-as-a-Service approach.

• We develop CASSARA tool that allows the users to

express their priorities in a comparative manner. Slider

UI components allow the comparison. CASSARA also

populates a ranked list of sensors in order from best

choice to worst.

• We propose a novel technique called Comparative

Priority-based Heuristic Filtering algorithm to make the

sensor indexing algorithms faster and more efficient.

• We evaluate CASSARAM using our prototype tool and

measure performance and efficiency in terms of compu-

tational resource consumption.

IV. REAL WORLD CHALLENGE

In this section we present a real world example application

to reinforce the arguments and to strengthen the necessity

of addressing sensor search and selection challenges. It will

also help to understand the challenges more clearly. Figure 3

shows state of the art sensor based monitoring system used in

Australian agricultural domain. Australia is the fourth largest

wheat and barley exporter after US, Canada and EU. There

are two challenges that Australian agriculture has to address:

scarcity of water resources and low soil fertility. Every year,

Australian grain breeders plant up to 1 million 10m2 plots

across the country to find the best high yielding varieties of

wheat and barley. The plots are usually located in remote

places often requiring more than four hours travel one-way to

reach. The challenge is to monitor the crop performance and

growing environment through different seasons and return the

information in an easily accessible format. The challenge of

crop growing and performance monitoring can be addressed

by deploying sensors. Querying the collected sensor data

is essential to understand what is happening in the field.

The challenge is to develop a sensor-searching model which

allows to search sensors based on context information. As

we mentioned earlier, it is not required to collect data from

all the sensors deployed in all the plots all the time which

is inefficient. For example, find out what sensors have more



(b) Sensors (or sensor stations) are 
depicted in red colour dots. These 
sensors generate data and upload 
to the cloud where IoT middleware 
solutions acquire data and do the 
processing accordingly.

Blimp, Phenomobile and 
Phenotower are three 
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sensor stations that capture 
different sets of sensor data 
while Phenonet is a ground 
based static sensor network
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Fig. 3. State of the art sensor based monitoring in agriculture domain.

energy and collect data only from those sensors helps to run

the entire network for much longer time without reconfiguring.

V. CASSARAM: THE PROPOSED APPROACH:

In this section, we propose a sensor selection approach

step-by-step. First, we provide a high-level overview of the

model which describes the overall execution flow and critical

steps of the model. Then, we explain how user preferences

are captured. Next, data representation model and proposed

extensions are presented. Semantic querying and quantitative

reasoning techniques are discussed.

The critical steps of CASSARAM are presented in Figure 4.

As we mentioned earlier our objective is to allow the users to

search and select sensors that best suit their requirements. In

our model, we divide user requirements into two categories:

point-based requirements and proximity-based requirements.

Point-based requirements are also called non-negotiable re-

quirements and they must be satisfied exactly as specified by

the user. In contrast, proximity-based requirements, which are

also called negotiable, may or may not be satisfied exactly

as specified by the user. Results that are closest to the user

requirements would be selected.

Algorithm 1 describes the execution flow of CASSARAM.

Common algorithmic notations used in this paper are pre-

sented below: Ontology (O) consists of sensor descriptions and

context property values related to all sensors, UserPrioritySet

(P) contains user priority values for all context properties,

Query (Q) consists of point-based requirements expressed

in SPARQL, Number of sensors (N) required by the user,

ResultsSet (SResults) contains selected number of sensors,

IndexedSensorSet (SIndexed), Multidimensional Space (M)

where each context property is represented by a dimension,

UserInput (UI) consists of input values provided to CAS-

SARAM by the users via user interface, ScalingInformation

(SC) defines the scale of the slider, WeightedUserPrioritySet

(PWeighted) provides details on how user has prioritised con-

text properties, ContextPropertySet (CP) consists of all context

information, NormalizedContextPropertySet (NCP).
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Fig. 4. High level Overview of CASSARAM

At the beginning, CASSARAM identifies point-based re-

quirements, proximity-based requirements, and user priorities.

First, users need to select the point-based requirements. For

example, a user may want to collect sensor data from 1000

temperature sensors deployed in Canberra. In this situation,

sensor type (i.e.temperature), location (i.e. Canberra) and

number of sensors required (i.e. 1000) are point-based require-

ments. Our CASSARA prototype tool provides user interface

to express this information via SPARQL queries. SPARQL

query is dynamically built when users select the context

properties. In CASSARAM, any context property can become

a point-based requirement. Then users can define proximity-

based requirements. All context properties we discuss in this

section are available to be defined in comparative fashion by

setting priorities via a slider-based user interface as depicted in

Figure 7. Next, each sensor is plotted into a multidimensional

space where each dimension is represented by a context

property (e.g. accuracy, reliability, latency). Each dimension is

normalized 0 to 1. Then, Comparative Priority-based Weighted

Index (CPWI) is generated for each sensor combining user

priorities and context properties. Finally, sensors are ranked

according to CPWI and the number of sensors required by the

user are selected from the top of the list.

Algorithm 1 Execution Flow of CASSARAM

Require: (O), (P), (Q), (N), (SResults), (SIndexed), (M).

1: Output: SResults

2: SFiltered ← queryOntology(O,Q)
3: if cardinality(SFiltered) < N then

4: return SResults ← SFiltered

5: else

6: P← captureUserPriorities(UI)
7: M←Plot Sensors in Multidimensional Space (SResults)

8: SIndexed ← calculateCPWI(SResults,M)
9: SResults ← rankSensors(SIndexed)

10: SResults ← selectSensors(SResults,N)
11: return SResults

12: end if



User priority capturing (UPC) is a technique we developed

to capture user priorities through a user interface shown in

Figure 5. CASSARAM allows users to express what context

property is more important to them compared to others. If a

user does not want a specific context property to be considered

in the indexing process, they can avoid it by not selecting the

check-box correlating to that specific context property. For

example, according to Figure 5, energy will not be considered

when calculating CPWI. This means user is willing to accept

sensors with any energy consumption level.

W
1

W
2

W
3

Fig. 5. Weight W1 is assigned to reliability property. Weight W2 is assigned
to Accuracy property. Weight W3 is assigned to availability property and
finally weight W4, default weight, is assigned to cost property. High priority
means always favourable and low priority means always unfavourable. For
example, if user makes cost a high priority (more towards right), that means
CASSARAM tries to find the sensors that produce data at the lowest cost.
Similarly, if user makes accuracy a high priority, that means CASSARAM
tries to find the sensors that produce data with high accuracy.

As depicted in Figure 5, if users want more reliable sensors

to be ranked higher compared to accuracy of the sensors, the

reliability slider need to be placed more to the right compared

to the accuracy slider. A weight is calculated for each context

property. Therefore, more priority means higher weight. As

a result, sensors with high reliability and accuracy will be

ranked higher. However, those sensors may have high costs

due to low priority placed on cost property.

In this paper, we use Semantic Sensor Network Ontology

(SSNO) [5] to model sensor descriptions and context prop-

erties. Main reasons to select SSNO are interoperability and

the trend moving towards ontology usage in IoT and sensor

data management domain. A comparison of different semantic

sensors ontologies are presented in [18]. The SSNO is capable

of modelling significant amounts of information about sensors

such as sensor capabilities, performance, the conditions in

which sensors can be used, etc. Details are presented in

[5]. SSNO includes most common context properties such as

accuracy, precision, drift, sensitivity, selectivity, measurement

range, detection limit, response time, frequency and latency.

SSNO can be extended unlimitedly by sub classing three

classes: measurement property, operating property, and sur-

vival property. We extend the quality class by adding several

sub-classes based in order to facilitate our context framework.

In the next step, which we call ”Ranking Using Quantitative

Reasoning” sensors are ranked based on proximity-based user

requirements. We developed a weighted Euclidean distance-

based indexing techniques called Comparative Priority-based

Weighted Index (CPWI) as follows.

(CPWI) =
√

∑n

i=1

[

Wi(Ud
i − Sα

i )
2
]

First, each sensor is plotted in multidimensional space where

each context property is represented by a dimension. Then,

users can plot an ideal sensor in the multidimensional space

by manually entering context property values as illustrated in

Figure 6 by Ui. By default, CASSARAM will automatically

plot an ideal sensor as depicted in Ud (i.e. highest value for

all context properties). Next, user priorities are retrieved and

weights are calculated in comparative fashion.
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Fig. 6. Sensors plotted in three-dimensional space for demonstration
purposes. Sα, Sβ , and Sγ represent real sensors. CPWI calculate weighted
distance between Sj and Ui||d. Shortest distance means sensor will rank
higher because it is close to the user requirement.

We use the following context framework (i.e. context prop-

erties listed below) after evaluating a number of research

proposals carried out in the areas of quality of service domain

related web services [20], mobile computing [21], and sensor

ontologies [5], we extracted following context properties to

be stored and maintained about each sensor. This information

helps to decide which sensor to be used in a given situation.

We adopt the following definition to our work. “Context is any

information that can be used to characterise the situation of an

entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application,

including the user and applications themselves.”[22]. CAS-

SARAM has no constraints on a number of context properties

that can be used. Our context framework comprises availabil-

ity, accuracy, reliability, response time, frequency, sensitivity,

measurement range, selectivity, precision, latency, drift, reso-

lution, detection limit, operating power range, system (sensor)

lifetime, battery life, security, accessibility, robustness, excep-

tion handling, interoperability, configurability, user satisfaction

rating, capacity, throughput, cost of data transmission, cost of

data generation, data ownership cost, bandwidth, and trust. The

list is extendible with more context attributes if necessary.

The solution we discussed so far works well with small

number of sensors. However, model becomes inefficient when

the number of sensors available to search increases. Let us

consider an example to identify the inefficiency. Assume we

have access to one million sensors. A user wants to select

1,000 sensors out of them. In such situation, CASSARAM

will index and rank one million sensors using proximity-



based requirements provided by the user and select top 1,000

sensors. However, indexing and ranking all possible sensors

(in this case one million) is inefficient and wastes significant

amount of computational resources. Further, CASSARAM will

not be able to process large number of user queries due

to such inefficiency. We propose a technique called Com-

parative Priority-based Heuristic Filtering (CPHF) to make

CASSARAM more efficient. The basic idea is to remove

sensors that are positioned far away from user defined ideal

sensor and reduce the number of sensors that need to be

indexed and ranked.

Consider the above scenario. First, all the eligible sensors

rank in descending order of the highest weighted context

property (in this case accuracy). Then, remove 40% (from

NRemovable) of the sensors from the bottom of the list. Then

order the remaining sensors in descending order of the next

highest weighted context property (in this case reliability).

Then, remove 30% (from NRemovable) of the sensors from

the bottom of the list. This process applies for the remaining

context properties as well. Finally, index and rank the remain

sensors. This approach dramatically reduces the indexing

and ranking related inefficiencies. Broadly, this category of

techniques are called Top-K selection where top sensors are

selected in each iteration.

VI. IMPLEMENTATION AND EXPERIMENTATIONS

The aim of implementation and experimentation is to study

the performance of CASSARAM in different IoT related sce-

narios which we developed based on real world requirements.

Experimentation setup, datasets used, assumptions, experiment

testbed, and results are presented.

The proposed model analysed and evaluated using a pro-

totype which we developed using Java is called ‘CASSARA

Tool’. The data was stored in MySQL database. As shown

in Figure 7, it allows to capture user preferences regarding

their expected priorities on each characteristic of a sensor.

We used a computer with Intel(R) Core i5-2557M 1.70GHz

CPU and 4GB RAM to evaluate our proposed model. In order

to perform mathematical operations such as Euclidean dis-

tance calculation in multidimensional space, we used Apache

Commons mathematics [23] library. It is an open source

optimized library of lightweight, self-contained mathematics

and statistics components addressing the most common prob-

lems not available in the Java programming language. As

we used Semantic Sensor Ontology (SSNO) [5] to manage

sensor descriptions and related data, we employed open source

Apache Jena API [24] to process and manipulate semantic

data. We conducted each experiment 100 times and averages

are taken into account.

Our evaluation used a combination of real data and syn-

thetically generated data. We collected environmental linked-

data from the bureau of meteorology [25] and data sets from

both Phenonet project [17] and Linked Sensor Middleware

(LSM) project [7], [8]. The main reasons to combine data

are due to the need of generating a large amount of data and

the need of controlling different aspects of data (e.g. context

1
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Fig. 7. User interface of the CASSARA tool. (1) Users need to check the box
to express that they do concern about that specific context property, (2) Allows
to set the scale. Slider becomes more sensitive when scale increased, (3) Slider
attach to each context property can be configured to express the priority in
comparative fashion, (4) Ideal value related to each context property can be
entered. Defaults is zero, (5) Allows to enter SPARQL query that consists
point-based requirement. However, by default, tool generates the SPARQL
appropriately based on the context properties selected by the users, (6) Shows
list of sensors ranked according to index.

information related to sensors need to be embedded into the

data set, because real data that matches our context framework

is not available in any public data sets at the moment) to

better understand the behaviour of CASSARAM in different

IoT related real world situations and scenarios where real data

is not available.

We make the following assumptions in our work. We

assume that sensor descriptions such as sensor capabilities and

measurements are already retrieved from sensor manufacturers

and merged into SSNO. Similarly, we assume that context

data related to each sensor such as current power level, power

consumption, accuracy, reliability are retrieved by software

systems that manage such data and are available to be used.

We acknowledge these data could be stored in a distributed

manner (e.g. each GSN instance may contain descriptions

of sensors which are connected to that specific instance).

Therefore, sensor search may need to be performed in a

distributed manner. However, we do not consider distributed

aspect in this work and leave it for future work.

In order to evaluate CASSARAM, we used a data set

which comprises sensor descriptions and context information

for one million sensors. We synthetically created this data

set by combining different real data sets. In this section, we

present experimentation results with brief explanations on each

graph. Interpretations of each graph and overall discussions are

provided in Section VII.

VII. EVALUATION AND DISCUSSION

As depicted in Figure 8, semantic querying consumes

significantly more processing time compared to indexing and

ranking. Further, when the number of context properties that

are retrieved by a query increases, execution time also in-

creases significantly. MySQL can join only 61 tables which

only allows to retrieve maximum of 10 context properties

in SSNO data structure. Alternative data storage or running
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Fig. 8. This graph shows processing time taken by each step and the total
sensor selection process when the number of sensors gets increased. The
number of context properties used for indexing kept at 30 for ranking and
indexing experiences. Semantic querying use 5 and 10 context properties.
Note: Y-axis is measured in milliseconds and presented in logarithmic scale.
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Fig. 9. This graph shows processing time taken by sensor indexing process
when number of context properties and number of sensors get increased.
Synthetic context properties are used to for experiments.

multiple queries (can be efficient when having fewer sensors.

see comparison between semantic querying times ) can be

used as an alternative solution. We conclude that optimising

semantic querying will make significant impact on overall

performance of CASSARAM. As depicted in Figure 9, re-

ducing the number of indexed sensors below 10,000 allows

to perform CASSARAM faster. Processing time starts to get

increased significantly after 100,000 sensors. As depicted in

Figure 10, the complexity of CPHF (due to sub queries) has

not effected the total processing time significantly. Instead,

CPHF saved some amount of time in indexing and ranking

phases. CPHF method returns only limited number of sensors

where non-CPHF approach returns all the sensors available to

CASSARAM which consumes more resources including more

processing time, significant amount of memory and temporary

storage. According to Figure 11, accuracy of CPHF approach

increases when margin of error (M) increases. However,

lower M leads CASSRAM towards low resource consumption.

Therefore, it is a trade-off between accuracy and resource

consumption. The optimum value of M can be dynamically

learned by machine learning techniques based on what context

properties are prioritized by the users in each situation and

how the normalized weights are distributed across different
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Fig. 10. This graph compares time taken by sensor selection process with
and without CPHF algorithm when number of sensors get increased. Number
of sensors that users require kept at 50 in all experiments (N=50). 30 context
properties are retrieved via semantic querying, indexed and ranked.
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Fig. 11. This graph shows how accuracy changes when Margin of Error
(M%) value changes in CPHF algorithm and number of sensors get increased.
Number of sensors that users require kept at 50 in all experiments (N=50.)

context properties. We will investigate these possibilities in

future research.

VIII. CONCLUSIONS AND FUTURE WORK

With the advances in sensor hardware technology and cheap

materials, sensors are expected to be embedded into many

objects around us which increases the number of sensors avail-

able to us. This means that we have access to multiple sensors

that would measure similar environmental phenomenon. We

need to decide what operational and conceptual sensor related

context properties are more important than others.

In this work, we showed how context information related to

each sensor can be used to search and select sensors that are

best suited for user requirements. We selected sensors based

on user expectations and priorities. As proof of concept, we

built a working prototype to demonstrate the functionality of

our CASSARAM and to support experimentations in realistic

applications. We also highlight how CASSARAM will help

us to achieve our broader Sensing-as-a-Service vision in IoT

paradigm. In future, we plan to incorporate CASSARAM into

leading IoT middleware solutions such as GSN, SensMA, and

OpenIoT to support automated sensor selection functionality

in distributed environment. This will help us to perform more

evaluations and understand how automated sensor selection

would complement IoT middleware solutions. Further, we will



investigate how semantic and quantitative reasoning can work

together more closely to achieve efficient results and to provide

more functionality.
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