
Dynamic Configuration of Sensors Using Mobile

Sensor Hub in Internet of Things Paradigm

Charith Perera ∗#1, Prem Jayaraman ∗2, Arkady Zaslavsky ∗3, Peter Christen #4, Dimitrios Georgakopoulos ∗5

#Research School of Computer Science, The Australian National University, Canberra, ACT 0200, Australia
4
peter.christen@anu.edu.au

∗CSIRO ICT Center, Canberra, ACT 2601, Australia
1
charith.perera@csiro.au,

2
prem.jayaraman@csiro.au,

3
arkady.zaslavsky@csiro.au,

5
dimitrios.georgakopoulos@csiro.au

Abstract—Internet of Things (IoT) envisions billions of sensors
to be connected to the Internet. By deploying intelligent low-
level computational devices such as mobile phones in-between
sensors and cloud servers, we can reduce data communication
with the use of intelligent processing such as fusing and filtering
sensor data, which saves significant amount of energy. This is also
ideal for real world sensor deployments where connecting sensors
directly to a computer or to the Internet is not practical. Most of
the leading IoT middleware solutions require manual and labour
intensive tasks to be completed in order to connect a mobile
phone to them. In this paper we present a mobile application
called Mobile Sensor Hub (MoSHub). It allows variety of different
sensors to be connected to a mobile phone and send the data to the
cloud intelligently reducing network communication. Specifically,
we explore techniques that allow MoSHub to be connected
to cloud based IoT middleware solutions autonomously. For
our experiments, we employed Global Sensor Network (GSN)
middleware to implement and evaluate our approach. Such
automated configuration reduces significant amount of manual
labour that need to be performed by technical experts otherwise.
We also evaluated different methods that can be used to automate
the configuration process.

I. INTRODUCTION

As we are moving towards the Internet of Things (IoT), the

number of sensors deployed around the world is growing at

a rapid pace. Market research has shown a significant growth

of sensor deployments over the past decade and has predicted

a significant increment of the growth rate in the future. Due

to advances in sensor technology, sensors are getting more

powerful, cheaper and smaller in size, which has stimulated

large scale deployments. Ultimately, these sensors will gener-

ate big data [1]. As shown in Figure 2, communication of

data from a sensor to a cloud application (or middleware)

costs significant amount of energy in comparison to local data

processing. Minimizing such communication using intelligent

filtering and fusing techniques will save enormous amount of

cost in IoT paradigm due to the magnitude.

Typical structure of a sensor network is presented in Figure

1. It comprises the most common components in a sensor

network. As we have shown, with the orange coloured arrows,

data flows from right to left. Data is generated by the low-

end sensor nodes and high-end sensor nodes. Then, data is

collected by mobile and static sink nodes. The sink nodes

send the data to low-end computational devices. These devices

perform a certain amount of processing on the sensor data.

Then, the data is sent to high-end computational devices to be

processed further. Finally, data reaches the cloud where it will

be shared, stored, and processed significantly.

Cloud (Internet)

Static Sink

Node

Sensor Networks (SN
2
)

Mobile Sink
Node

High-end
Computational

Devices

Low-end
Computational

Devices

Sink
Nodes

High-end
Sensor
Nodes

Low-end
Sensor
Nodes

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1Layer 6

Fig. 1. Layered structure of a sensor network: These layers are identified
based on the capabilities posed by the devices. In IoT, this layered architecture
may have additional number of sub layers as it is expected to comprises large
variety of sensing capabilities.

Based on the capabilities of the devices involved in a sensor

network, we have identified six layers. Information can be

processed in any layer. Capability means the processing, mem-

ory, communication, and energy capacity. Capabilities increase

from layer one to layer six. Based on our identification of

layers, it is evident that an ideal system should understand

the capability differences, and perform data management ac-

cordingly. For example, processing in the first three layers

could reduce data communication. However, devices in the

first three layers do not have a sufficient amount of energy

and processing power to do comprehensive data processing.

Mobile phones have computational capabilities so it can fuse

and filter data, which will help to reduce communication cost.

The rest of this paper is organized as follows: Section II

describes the background and related work. The motivations

and our contribution of this paper is presented in Section III.

In Section IV, we explain our proposed solution including

MoSHub application in detail. Implementation and results of

the evaluations are presented in Section V and VI respectively.

Section VII summarizes the lessons learned from this research.

II. BACKGROUND AND RELATED WORK

This work is based on two of our previous research ef-

forts. In [2], we proposed a model called DAM4GSN that

CharithMini
Text Box
Charith Perera, Prem Jayaraman, Arkady Zaslavsky, Peter Christen, Dimitrios Georgakopoulos, Dynamic Configuration of Sensors Using Mobile Sensor Hub in Internet of Things Paradigm, Proceedings of the IEEE 8th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Melbourne, Australia, April, 2013, Pages 473-478 (6) More: www.charithperera.net

captures data using sensors built into the mobile phones. In

this paper, we extend the support towards connecting external

sensor. Further, we improved GSN middleware in such a way

that it can dynamically generate custom wrappers1 for each

MoSHub at run time instead of using a generic wrapper. In

[3], we proposed ASCM4GSN architecture that automates the

process of developing wrappers. We developed a XML based

specification called Sensor Device Definition (SDD) that is

capable of generating GSN wrappers. Focus of paper [3] was

to generate wrapper for sensors that uses manufacture released

APIs. However, we utilized this technique in this work to

generate customized wrappers for each MoSHub.

There are several other commercial solutions avail-

able: TWINE (supermechanical.com), Ninja Blocks (nin-

jablocks.com), and Smart Things (smartthings.com). All these

solutions focus on event detection using If-THEN rules in

smart environments. However, none of them support complex

query processing capabilities similar to GSN. Their, automated

configuration works only with limited number of devices they

supports. Further, our plugin architecture allows to add more

capabilities to MoSHub via existing app stores.

The Global Sensor Network (GSN) [4], the IoT middleware

we employed in this work, is a platform aimed at providing

flexible middleware to address the challenges of sensor data

integration and distributed query processing. It is a generic

data stream processing engine. GSN has gone beyond the

traditional sensor network research efforts such as routing,

data aggregation, and energy optimisation. The design of

GSN is based on four basic principles: simplicity, adaptivity,

scalability, and light-weight implementation. GSN middleware

simplifies the procedure of connecting heterogeneous sensor

devices to applications. Specifically, GSN provides the capa-

bility to integrate, discover, combine, query, and filter sensor

data through a declarative XML-based language and enables

zero-programming deployment and management. Further, we

are engaged in extending GSN middleware towards OpenIoT

[5] by adding more capabilities. The above reasons lead us to

choose GSN for our experiments. Our findings do not depend

on any specific middleware and remain open to be used in any

solution that needs mobile devices to be used as sensor hubs.

0 50 100 150 200 250 300

0

500

1000

1500

2000

CPU + Network Cost

CPU Cost

Network Cost

Sampling Rate (Seconds)

E
n
e

rg
y

C
o

n
s
m

p
ti
o

n
 (

m
J
)

Fig. 2. This graph shows how the energy consumption of Mobile Sensor
Hub varies with the sampling rate. Only the network communication between
server and MoSHub is considered.

1A program code (e.g. Java) that directly communicates with a sensor and
retrieves data. It is a Java class that adheres to a specification.

III. MOTIVATIONS AND OUR CONTRIBUTION

As depicted in Figure 1, sensor data passes through different

layers. In order to save network communication cost, we

should be able to filter sensor data. Low computational devices

such as mobile phones can be used to achieve above task.

However, we need to understand what kind of operations

can be done in mobile phones and what kind of operation

need to be performed in server computers depending on their

complexity and CPU cost. State-of-the-art mobile phones have

many capabilities that make them ideal to be used in sensor

data management in IoT domain. Mobile phones have built

in wireless communication capabilities such as bluetooth,

and WiFi. Further, these capabilities can be extended by

connecting ZibBee modules via microUSB ports. Therefore,

mobile phones can ideally be used as sensor data collecting

devices. Technologies such as 3G and 4G allows transferring

collected data to the cloud from place where WiFi networks are

not available (e.g. environmental monitoring and agricultural

domain). Latest mobile phones have up to 1.7 GHz Dual or

Quad Krait CPU, 2 GB RAM and 8 GB internal storage.

Therefore, mobile phones can ideally be used as sensor data

processing devices as well.

The above-mentioned capabilities show that mobile phones

can be used as hubs. Mobile phones can offer the func-

tionality of collect, process, and communicate sensor data

to the cloud for further processing. The research challenge

is how to connect mobile phones into an IoT middleware

solution autonomously. At a given time, variety of different

sensors may connected to a mobile phone locally. However,

IoT middleware does not know about details of those sensors

(what type of data or how much data to be expected from each

mobile phone). In such a situation, how an IoT middleware

can be configured autonomously so it can accept data streams

send by mobile phones or similar devices. This is the research

question we addressed in this paper.

Accelerometer

Gravity

Ambient
Temperature

Light

Magnetic
Field

Orientation

Pressure

Proximity

Humidity

Rotation Vector

Gyroscope

 Linear
Acceleration

(a) Sensors built-in to the mobile phone

(b) External sensors that communicate with mobile phones

Fig. 3. Sensors in Smart Environments

The vision of the IoT is heavily energised by statistics

and predictions. We present some statistics to justify our

focus on the IoT and mobile computing and to show the

magnitude of the challenges. It is estimated that there about

1.5 billion Internet-enabled PCs and over 1 billion Internet-

enabled mobile phones today. These two categories will be

joined with Internet-enabled devices (smart objects [6])) in

the future. By 2020, there will be 50 to 100 billion devices

connected to the Internet [7].

In this paper, we propose a lightweight mobile application,

called Mobile Sensor Hub (MoSHub), which allows to connect

and retrieve sensor data using wireless communication tech-

niques such as WiFi and bluetooth from external sensors easily.

We employed a plug-in architecture called Android Interface

Definition Language (AIDL)2 provided in Android platform to

facilitate plug and play configuration between external sensors

and MoSHub application.

We propose a model that can configure the communication

between mobile phone-based MoSHub and server-based GSN

middleware. This automated configuration reduces significant

amount of manual labour need to be performed by technical

experts otherwise. We extended and applied our previously

proposed ASCM4GSN [3] approach to generate programming

code at runtime which enable dynamic configuration.

Finally, we compare two possible approaches that can be

used to automate the configuration in many perspective as

presented in Section V in order to explore the most suitable

approach to be used in MoSHub. We also carried out prelim-

inary evaluations on scalability of the plug-in architecture.

IV. OUR APPROACH

In this section, we discuss our proposed solution in detail.

First, we provide a high-level overview of our approach. Next,

we explain how both client side and server side autonomous

configuration works. Then, we describe the MoSHub ap-

plication. Throughout our discussion, we highlight possible

alternative approaches and justifications on our choice. In

Section V, we evaluate and justify what approach is more

appropriate based on experimentation results.

A. High-level Overview of the System

The high level communication between MoSHub and GSN

server is depicted in Figure 4. We can explain how automated

configuration works in order of activities as follows. MoSHub

is an application that need to be installed in an Android mobile

phone, which is intended collect data from both the internal

and external sensors. Even though we use the term mobile

phone, in actual architecture what we need is some device

that has the capabilities, similar to a mobile phone, such as

WiFi, bluetooth, CPU, memory. In the future, we expect there

would be devices, powered by Android, specifically design for

IoT paradigm. Such environment will add more value to our

research and open up more opportunities. Different types of

sensors can be connected to MoSHub via different wireless

2http://developer.Android.com/guide/components/aidl.html

S
1

S
2

S
7

S
3

S
4

S
5

S
6

Sensor
Plugin 1

Sensor
Plugin 2

A
p

p
lic

a
ti
o

n
 P

ro
g
ra

m
m

in
g
 I

n
te

rf
a

c
e

 (
A

P
I)

Sensors Mobile Phone

D
a

ta
 S

tr
e

a
m

e
r

C
o

n
fi
g
u

ra
ti
o

n
 H

a
n

d
le

r

Sensor
Plugin 3

Mobile

Sensor

Hub

Global Sensor
Network Server

1

Sends microSDD
to GSN

GSN generates
customised
HoSHub wrapper
and VS

GSN sends
Configuration details

HoSHub streaming
data to GSN

2

3

4

5

Fig. 4. Main steps of the automated dynamic configuration process that
connects a MoSHub to a GSN server. Numbers show the order of execution.

technologies. Then, MoSHub generates a micro sensor device

definition (µSDD) file based on sensors connected to it. µSDD

is different from GSN virtual sensor definition (VS) and it

is somewhat similar to SDD [3]. Figure 5 shows a µSDD

definition file snippet.

<micro-sensor-device-definition name="Samsung_Galaxy_S_I9000">

.............

 <addressing>

 <predicate key="geographical">CSIRO ICT Center, Canberra</predicate>

 <predicate key="Device">Samsung Galaxy S I9000</predicate>

 <predicate key="LATITUDE">-35.275291</predicate>

 <predicate key="LONGITUDE">149.120585</predicate>

 </addressing>

 <data-structure>

 <data-field field-name="battery_voltage" type="double"

 description="Battery voltage of the sensor device"/>

 <data-field field-name="temperature_s1" type="double"

 description="Measures temperature"/>

 <data-field field-name="temperature_s2" type="double"

 description="Measures temperature"/>

 <data-field field-name="humidity" type="double"

 description="Measures humidity"/>

 <data-field field-name="pressure" type="double"

 description="Measures pressure"/>

 </data-structure>

.............

</micro-sensor-device-definition>

Fig. 5. Sample µSDD snippet which contains information about data produce
by all the sensors connected to a MoSHub and context such a location.

The reason for generating a µSDD without directly gen-

erating a SDD is two fold. First, though both definitions

share some amount of similarities, they should be able to

extended independently from the each other depending on

the requirements arises in the future. Second reason is the

network communication. We want keep the packet size to the

minimum, which will save energy that it take to generate the

file as well as in network communication. Further, keeping

only the minimum amount of information that is specific to

each situation makes it easier and faster to process.

MoSHub sends the µSDD to the GSN server. GSN server

then process the µSDD and generates a GSN wrapper class file

that is specific to each individual MoSHub. GSN automatically

compile the newly generated class file and add it to the

wrapper repository. However, before generating a new class

file GSN search for an existing matching class. In such case,

GSN will use that class instead of generating a new one.

The process of generating a wrapper based on a given SDD

specification is described in our previous work [3]. In that

perspective, µSDD acts same as the SDD.

Figure 6 depicts the structure of a GSN wrapper class.

The content of the class would be generated based on the

information provided in µSDD. Explanations are provided in

[2]. There are five methods in a typical GSN wrapper class.

Method (1) runs only once and method (2) to (4) may run

occasionally. In contrast, method (5) will run every time when

a new data stream receives.

public class MoSHub001Wrapper extends AbstractWrapper {
 public boolean initialize () {
 1. Analyse the micro sensor device definition and understand
 what types of data is going to be received
 2. Create data structures
 }
 public void run () {
 while (isActive()) {
 1. Wait for the client to send Sensor data (Listen to a given port)
 2. Map sensor data to data strictures (Sensor Data, Data Structures)
 …..........................
 StreamElement streamElement = new StreamElement (....);
 postStreamElement(streamElement)
 }
 }
 public DataField[] getOutputFormat () { …. }
 public String getWrapperName() {…. }

 public void finalize () {….}
}

1

2

3

4

5

Fig. 6. The Structure of a Typical MoSHub Wrapper

We tested another approach that can be used to achieve

above functionality. Without creating customize wrapper for

each MoSHub, we developed a generic MoSHub wrapper

that can retrieve any amount of sensor data. This generic

MoSHub wrapper can configure its internal data structures

depending on how many data items are sent by each MoHub.

However, during our performance evaluation, it was found that

using generic wrapper is inefficient compared to generating

customised wrapper for each sensor. Details are presented in

Section V and VII. Another ongoing study, we are conducting

focusing on adding context discovery functionality to GSN

middleware, also showed that generating customized wrapper

for each MoSHub approach is better in term of extensibility.

After generating MoSHub wrapper, GSN generates a virtual

sensor definition (VSD) using the information provided in

the µSDD. GSN VSD is explained in details in [4]. Even

though a virtual sensor definition can combine data coming

from multiple wrappers, in default automated configuration

process, GSN creates a dedicated virtual sensor definition for

each MoSHub wrapper. Figure 7 presents a sample MoSHub

virtual sensor definition. When GSN generates a VSD file,

it triggers the virtual sensor creation processes. This process

triggers the specified wrapper to be created. The wrapper

that correspond to each stream source is defined under the

address element in the VSD file. This process sends a Wrapper

Connection Request (WCR) to the wrapper repository in the

GSN server. WCR is an object, which contains a wrapper name

and its initialisation parameters as defined in the virtual sensor

definition. Whenever a WCR is generated at the virtual sensor

loader, it will be sent to the wrapper repository. Then, steps

are followed as depicted in Figure 8. A detailed description

of this process is presented in [2].

Once the wrapper instance is ready to receive data, GSN

sends configuration detail to the configuration handler of

the MoSHub application. This information contains the port

number where MoSHub needs to send data. At this point,

automated configuration process completes. Finally, MoSHub

starts streaming data to the GSN. When a new sensor connects

<virtual-sensor name="MobileSensorHub001" priority="10">

 <processing-class>

 <class-name>gsn.vsensor.BridgeVirtualSensor</class-name>

 <output-structure>

<field name="battery_voltage" type="double" />

<field name="temperature_s1" type="double" />

<field name="temperature_s2" type="double" />

<field name="humidity" type="double" />

<field name="pressure" type="double" />

 </output-structure>

 </processing-class>

 <description>This Mobile Sensor Hub captures sensor reading from five

 external sensors </description>

 <life-cycle pool-size="10" />

 <addressing>

 <predicate key="geographical">CSIRO ICT Center, Canberra</predicate>

 <predicate key="LATITUDE">-35.275291</predicate>

 <predicate key="LONGITUDE">149.120585</predicate>

 </addressing>

 <storage history-size="5m" />

 <streams>

 <stream name="input1">

 <source alias="source1" sampling-rate="1" storage-size="1">

 <address wrapper="MobileSensorHub001"></address>

 <query>SELECT battery_voltage,temperature_s1,

 temperature_s2, humidity, pressure, timed FROM wrapper

 </query>

</source>

<query>SELECT battery_voltage,temperature_s1,

 temperature_s2, humidity, pressure, timed FROM source1

</query>

 </stream>

 </streams>

</virtual-sensor>

Fig. 7. Virtual sensor definition (VSD) generated by GSN middleware during
the automated configuration process using µSDD which sends by MoSHub.

Look for wrapper instance
matching request

Wrapper instantiation
and initialization Failure

Success

No instance found

Instance
successfully

created

Register stream-source
Query at wrapper instance

Start

Instance
Found

When a virtual sensor is created based on a VSD,
it triggers the process of creating wrapper instances
mentioned in the VS

Fig. 8. Wrapper life cycle of the GSN middleware

to MoSHub or existing sensor disconnects from MoSHub, the

automated configuration process need to be executed again.

B. Mobile Sensor Hub (MoSHub)

MoSHub is a mobile application that collects, combines,

processes, and sends sensor data to a GSN server. Commu-

nication between external sensors and MoSHub is conducted

through independent software layer called plug-ins. MoSHub

provides a specification that defines how developers should de-

velop plug-ins that will be able to communicate with MoSHub

application. Due to space limitation, we do not describe those

specifications in this paper. In brief, the specification guides

the developers on how to name their plug-ins, packages, and

provides an interface (including list of methods need to be

implemented, common data structures and so on) as an aidl

file. The operations that can be conducted by a given plug-in

is limited only by developers capability and Android platform.

As long as plug-ins are adhered to the provided specification,

they will be able to communicate with MoSHub application.

In order to generate µSDD file, MoSHub communicates

with every active plug-in that collects data from a external

or internal sensor. Each plug-in should at least provide the

category/name of the sensor they are communicating with

(e.g. temperature s1) and type of data that connected sensor

generates (e.g. int, double, string). Once MoSHub gathers

minimum amount of information from all the plug-ins, it

generates the µSDD file. It may also include available context

information such as location.

V. IMPLEMENTATION

We conducted all evaluations and experiments using a Sam-

sung Galaxy S GT-I9000 mobile phone, which runs Android

platform 2.3.6. GSN middleware was installed on a laptop with

Intel Core i5 CPU and 4GB RAM. Network communications

are conducted through CSIRO ICT centre WiFi network.

Figure 9 shows a web interface of GSN middleware and Figure

10 shows main user screens of the MoSHub application.

Fig. 9. This is a sample web based user interface of the GSN middleware
that shows a MoSHubs is connected to it.

(a) (b)

Fig. 10. These are main user interfaces of the MoSHup application. (a) shows
list of sensors that are connected to MoSHup though different plug-ins. (b)
shows configuration screen of the MoSHup application.

VI. EVALUATION

In this section, we present results of several experiments we

conducted in order to evaluate the performance and suitability

of the approaches we proposed. Figure 11 graph shows a com-

parison of two approaches we explained earlier, in Section IV,

in four different perspectives. Four comparisons are conducted

using different measurement units: processing time (in mil-

liseconds), memory (KB), lines of code (number of lines), and

automated configuration time (in milliseconds). A MoSHub

with eight sensors connected to it used for evaluations. In order

to combine all perspectives into one graphs, we converted

all of them to percentages. Static predefined single wrapper

(SPSW) approach is kept as 100%. Dynamically generated

customized wrappers (DGCW) approach is graphed in com-

pared to SPSW. Therefore, this graph show how much DGCW

approach is efficient or inefficient compared to SPSW as a per-

centage. For example, DGCW takes 18% less processing time

than SPSW. Figure 12 shows how storage requirement of the

GSN middleware varies when number of MoSHubs connected

to GSN increases in two different approaches. Figure 13 shows

how much time it takes to generate a wrapper based on micro

sensor device definitions (µSDD) when complexity increases.

Interpretation of these results are presented in Section VII.

Processing Time Memory Lines of Code Configuration Time

0

20

40

60

80

100

120

140

Static Predefined Single Wrapper (SPSW)

Dynamically Generated Cutomized Wrapper (DGCW)

P
e
rc

e
n
ta

g
e
 (

%
)

Fig. 11. Comparison of SPSW and DGCW Approaches

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000 Static Predefined Single Wrapper (SPSW)
Dynamically Generated Cutomized Wrapper
(DGCW) (Worst Case)
Dynamically Generated Cutomized Wrapper
(DGCW) (Best Case)

Number of MosHubs

S
to

ra
g
e
 R

e
q
u
ir
m

e
n
t
(M

B
)

Fig. 12. Storage Requirments of SPSW and DGCW (Estimated)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

20

40

60

80

100

120

Number of Data Items to be Captured

T
o
ta

l
T

im
e
 t
o
 G

e
n
e
ra

te
 W

ra
p
p
e
rs

 i
n
 m

ili
s
e
c
o
n
d
s
 (

m
s
)

Fig. 13. Performance Measurement of GSN Wrapper Generation

VII. LESSONS LEARNED AND FUTURE WORK

Our ultimate objective is to develop a mobile application

that can be used to collect data from external sensors, intel-

ligently process, and communicate them to servers over the

Internet. In order to achieve above objective, both client (i.e.

mobile application) and server (i.e. IoT middleware) should be

able to configure themselves autonomously so they can work

together efficiently. In this work, we explored approaches that

can be used to automate the configuration process. Further, we

employed plug-in architecture to increase the support towards

external sensors. Lessons we leant can be listed as follows:

• As depicted in Figure 11, DGCW can reduce data stream

processing time up to 18%. Therefore, generating customized

wrapper for each MoSHub based on the sensors (e.g. number

of sensors and type of sensors) connected to them, is more

efficient than using a generic wrapper that dynamically

changes its data structures at runtime. In SPSW, all the exact

details about data structure need to be understand via XML

descriptions and then dynamically initialize during runtime

(i.e. during wrapper initialization phase).

• When consider memory requirements, 11% can be saved

by following DGCW approach. Further, wrapper in DGCW

approach uses up to 22% less lines of code compared to

wrapper in SPSW depending on the class complexity (This

is true until the number of data items need to be captured

stays below 25). In contrast, DGCW approach take more time

to configure each MoSHub to GSN middleware. However,

each MoSHub will need to configure itself with GSN only

when number of sensors connected to it changes. This will

not happen regularly. Therefore, DGCW approach is more

efficient when all four factor considered together.

• In DGCW approach, GSN needs to generate a customised

wrapper code for each MoSHub. A typical wrapper is around

15-25KB in size. In SPSW approach, GSN needs only one

wrapper. If we consider storage requirement factor in isolate

manner, it seems SPSW is more efficient as depicted in

Figure 12. However, due to advances in computer hardware,

storage is much cheaper than processing. For example,

we can store one million different wrappers in a 20GB

storage space. Therefore, when we take runtime efficiency

into account, higher storage requirement of DGCW can be

neglected. Further, GSN loads only one wrapper for each

MoSHub to the memory. Therefore, no additional memory

will be used in DGCW approach.

• In SPSW approach, there is no requirement to generate

wrapper code at runtime. So there is no delay in configuration

process. In contrast, DGCW approach needs to generate

a wrapper code every time when MoSHub needs to be

configured with GSN. (Note: This is only required when

a MoSHub connects to GSN with specific sensor configu-

ration for the first time. If a MoSHub connects to a GSN

instance with same configuration for the second time, GSN

will automatically select the previously generated wrapper

code without creating a new wrapper). DGCW approach

takes 70ms-120ms to create a wrapper code based on the

complexity as depicted in Figure 13.

• As DGCW approach generates a customized wrapper for

each MoSHub, it creates significant amount of opportunities.

For example, DGCW approach allows adding context discov-

ery functionality to GSN in the future, which is difficult to

accomplish using SPSW approach.

• According to Figure 14, plug-in architecture seems promis-

ing in term of memory requirements. A plug-in library

that comprises 15 different plug-ins needs only 40-60KB

storage space. Therefore, plug-in architecture is scalable and

suitable to be used in MoSHub. Based on our preliminary

investigation, storage requirement for plug-ins is linear. How-

ever, there is an initial storage requirement of 20KB for

meta-data and configuration information required by Android

application model. Therefore, it is ideal to combine multiple

plugins into libraries to minimize meta-data overhead.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

Plugin Library Set 1 Plugin Library Set 2 Plugin Library Set 3

Number of Plugins

S
y
s
te

m
 S

to
ra

g
e
 R

e
q
u
ir
m

e
n
ts

 f
o
r

P
lu

g
in

s
 (

K
B

)

Fig. 14. This graph shows the amount of memory (system storage of the
mobile phone) required by plug-ins when number of plug-ins increases. The
storage is measured in Kilobytes (KB). We developed three sets of plug-in
libraries where each contains 15 plug-ins. Each library comprises of different
plug-ins that are capable of retrieving data from different wasp sensors from
libelium (www.libelium.com) using WiFi and bluetooth.

• Our preliminary investigation showed us that the issue of

re-configuration MoSHub, due to local sensor connectivity

changes, can be minimized by accepting null value over

some period. The sensors, which disconnect from MoSHub

due to technical failures will establish its connection back

within limited time so we can avoid triggering costly re-

configuration process.

In our future work, we will evaluate plug-in architecture in

a comprehensive manner in order to identify the scalability

of our approach in term of energy and memory consumption

at runtime. We will extend our evaluation platform towards

different computational devices such as tablets with different

hardware specifications. Further, we will explore techniques

of using different protocols such as bluetooth, WiFi, and

ZigBee to detect sensors and then select appropriate plug-ins

autonomously which will help to retrieve data from detected

sensors using cloud repositories such as Android market.

REFERENCES

[1] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service
and big data,” in International Conference on Advances in Cloud Com-

puting (ACC-2012), Bangalore, India, July 2012.
[2] C. Perera, A. Zaslavsky, P. Christen, A. Salehi, and D. Georgakopoulos,

“Capturing sensor data from mobile phones using global sensor network
middleware,” in IEEE International Workshop on Internet-of-Things Com-

munications and Networking 2012 (PIMRC 2012-Workshop-IoT-CN12),
Sydney, Australia, September 2012.

[3] ——, “Connecting mobile things to global sensor network middleware us-
ing system-generated wrappers,” in International ACM Workshop on Data

Engineering for Wireless and Mobile Access 2012 (ACM SIGMOD/PODS

2012-Workshop-MobiDE), Scottsdale, Arizona, USA, May 2012.
[4] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for

data processing in large-scale interconnected sensor networks,” in
International Conference on Mobile Data Management, May 2007, pp.
198–205. [Online]. Available: http://dx.doi.org/10.1109/MDM.2007.36

[5] OpenIoT Consortium, “Open source solution for the internet of things into
the cloud,” January 2012, http://www.openiot.eu [Accessed on: 2012-04-
08].

[6] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects
as building blocks for the internet of things,” Internet Computing,

IEEE, vol. 14, no. 1, pp. 44 –51, jan.-feb. 2010. [Online]. Available:
http://dx.doi.org/10.1109/MIC.2009.143

[7] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelffle, “Vision and
challenges for realising the internet of things,” European Commission
Information Society and Media, Tech. Rep., March 2010, http://www.
internet-of-things-research.eu/pdf/IoT Clusterbook March 2010.pdf
[Accessed on: 2011-10-10].

