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Abstract—Internet of Things (IoT) will connect billions of
sensors deployed around the world together. This will create
an ideal opportunity to build a sensing-as-a-service platform.
Due to large number of sensor deployments, there would be
number of sensors that can be used to sense and collect similar
information. Further, due to advances in sensor hardware
technology, new methods and measurements will be intro-
duced continuously. In the IoT paradigm, selecting the most
appropriate sensors which can provide relevant sensor data to
address the problems at hand among billions of possibilities
would be a challenge for both technical and non-technical
users. In this paper, we propose the Context Awareness for
Internet of Things (CA4IOT) architecture to help users by
automating the task of selecting the sensors according to the
problems/tasks at hand. We focus on automated configuration
of filtering, fusion and reasoning mechanisms that can be
applied to the collected sensor data streams using selected
sensors. Our objective is to allow the users to submit their
problems, so our proposed architecture understands them and
produces more comprehensive and meaningful information
than the raw sensor data streams generated by individual
sensors.

Keywords-Internet of Things, Context Awareness, Archi-
tecture, Sensor Networks, Sensing-as-a-Service, Middleware,
Context Discovery and Reasoning, Semantic Technology

I. INTRODUCTION

The Internet of Things (IoT) is the next phase of the

evolution of the Internet. The internet has passed several

phases since it was invented in the early 1980s. The Internet

expanded from few computers communicating with each

other to billions of computational nodes to billions of mobile

phones over the time. Now it is moving towards a phase

where all objects around us will be connected to the Internet

and will be able to communicate with each other. The

European Commission has predicted that by 2020 there will

be 50 to 100 billion devices connected to the Internet [1].

As depicted in Figure 1, the number of things connected to

the Internet exceeds the number of people on Earth in 2008.

The things that we expect to connect to the Internet will
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Figure 1. Growing number of things connected to the Internet [2]

comprise sensors, actuators and processing capability that

will make themselves intelligent. In that perspective, con-

necting sensors and actuators together over a network is not

totally new to the field of computer science and engineering.

Sensor networks [3] have been used and researched over

many decades. However in early days, the focuses were on

building specialised applications such as detecting a wild

fire in a forest. Further research efforts were focused on

low-level operations such as energy optimisation, routing,

mobility and reliability. In contrast, the IoT is more focused

on high-level tasks such as collecting, storing, querying, and

understanding sensor data. However, sensor networks are the

backbone of the IoT.

When large numbers of sensors are deployed and start

collecting data, traditional application based approaches

becomes infeasible. Therefore, significant amount of mid-

dleware solutions have been introduced by researchers. An

evaluation and comparison of a subset of available mid-

dleware solutions that focused on sensor networks, perva-

sive/ubiquitous computing, and the IoT are presented in [4],

[5], [6], [7]. Each middleware solution focuses on different

aspects in IoT such as device management, interoperability,

platform portability, context-awareness, security and privacy

and many more. Even though, some solutions address mul-

tiple aspects, an ideal middleware solution that addresses all

the aspects required by the IoT is yet to be designed.

Our objective is not to introduce such an ideal middleware

solution. Our goal is to design an solution to help users to

automating the task of selecting the sensors according to the

problems/tasks at hand. Further Explanations are provided

in Section II. Our proposed approach, called CA4IOT, can

be adopted into any IoT middleware solution.

The paper is organised in sections as follows. Section

II defines the problem and the motivations to address it.

Section III identifies the functional requirements that need

to be addressed in order to solve the problem. In Section

IV, we overview the CA4IOT layered architecture. Section

V presents a detailed explanation of CA4IOT architecture in

component level. In Section VI we introduce a use case to

further explain the execution process of CA4IOT architec-

ture with justifications in step by step. Finally, Section VII

presents some concluding remarks and future work.

II. PROBLEM DEFINITION AND MOTIVATION

The IoT envisions an era where billions of things are

connected to the Internet. In Figure 2, the predicted growth
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of things connected to the Internet is presented based on

sectors. Utilities, automotive, healthcare and retail industries

will contribute to the growth significantly.
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Figure 2. Estimated numbers of things (nodes) connected to the Internet
based on sectors are presented in millions [8]

Let’s define the problem in detail. In order to deal with

growing number of sensors, significant numbers of middle-

ware solutions are proposed. These middleware solutions

such as GSN [9], [10], provide high-level data processing

capabilities such as querying, filtering, and fusing. However,

in the existing state of the art middleware solutions users

have to select the sensors they want. For example, let’s

consider an environmental scientist who is studying and

analysing environmental pollution. He wants to measure

environmental pollution in Canberra, Australia. In the cur-

rent approaches, he should know what sensors measure

environmental pollution, how many relevant sensors are

connected to the middleware solution he is using, the specific

locations in term of GPS coordinates, and so on.

This would not be an issue if there are only few hun-

dreds of sensors. However, we are moving towards an

era where billions of sensors would be available to use

through middleware solutions. In this situation, manually

selecting the relevant sensors is not feasible. Users such as

environmental scientists are non-technical personals who do

not have extensive knowledge in computer science. They

are only interested in acquiring relevant data so they can

use the data to build models, simulations, understand and

solve their problems. Therefore, there is a clear gap between

what the user wants and what is available. We can further

explain the problem using Figure 3. Based on the scenario

we introduced previously, there is no single sensor that is

capable of measuring environmental pollution. For exam-

ple, environmental pollution can be simply attributed in to

three sub categories: land pollution, air pollution, and water

pollution. Each category can be measured by large number

of sensors. Three example sensors are depicted in Figure

3. This illustration provides a way to understand how the

manually selection of sensors could be extremely complex.

“How to reduce the complexity of selecting appropriate

sensors by understanding the user requirements /problems?”

is the problem we have addressed in this paper. Ideally,

IoT middleware solutions should allow the users to express

what they want and provide the relevant sensor data back

to the users quickly without asking the users to manually

selecting sensors which relevant to their requirements. In

this paper, we propose an architectural approach to automate

the configuration of filtering, fusing and reasoning sensors

according to the user’s requirements. Specifically, when

a user requests environmental pollution measurements in

Canberra, our approach combines all relevant sensor data

together and provides to the user as a single data stream so

the user can feed them to their own system to extract further

information on environmental pollution.
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Figure 3. Gap between high-level user requirements and low-level sensors

There are several other motivations to address this prob-

lem. In the recent past, cloud computing [11] and everything-

as-a-service (XaaS) have gained significant attention. There-

fore, sensing-as-a-service [12] envisions to provide sensing

capabilities as a service over cloud technologies to the

consumers. Such a model will be benefited by our approach,

because the consumers are non-technical. In addition, even

though there are significant amount of IoT and sensor net-

work middleware solutions proposed, the problem we focus

here is largely unaddressed and unattended. In addition,

our solution can be used as a service so other innovative

application can be built on top.

III. FUNCTIONAL REQUIREMENTS

In order to design the architecture for CA4IOT, we

evaluate the problem in depth to identify the functional

requirements of the proposed solution. These functionalities

are reflected in the CA4IOT architecture discussed in details

in Section V. Some of the ideas presented in this section will

get clearer when we explain the execution process using an

example scenario in Section VI.



Ability to connect sensors to the IoT middleware

easily: This is an important functionality where billions of

sensors are expected to be connected to IoT middleware

solutions. Due to the scale, it is not feasible to connect

sensors manually by technical people. We demonstrated how

the connecting sensors can be automated in [13]. In addition,

IEEE 1451 [14] and SensorML [15] allow to make the

automation process more sophisticated.

Ability to understand and maintain context infor-

mation (what, when, who, how, why) about sensors:

Context information about sensors needs to be acquired and

stored with appropriate annotations which make it easy to

retrieve them later. Up-to-date information such as sensor

capabilities, location, sampling rate, nearby sensors, battery

life, etc. need to be maintained. This knowledge is required

to select appropriate sensors based on the users’ request.

Ability to understand the user requirement / request /

problem: CA4IOT needs to reason and understand the user

request. For example, as explained in Figure 3, CA4IOT

should be able to understand the relationship between en-

vironmental pollution and low-level sensors such as tem-

perature sensors and pH sensors. This can be achieved

by maintaining knowledge about application domains using

knowledge bases. In addition, these knowledge bases should

be able to extend easily by plugin additional knowledge

bases which contain knowledge on different application

domains when necessary.

Ability to fill the gap between high-level user re-

quirements and low-level sensors capabilities: Reasoning

(e.g. semantic or statistical) is essential to understand the

relationship between high-level user requirements and low-

level sensor capabilities as explained in Figure 3. Further

reasoning is required to identify relevant context informa-

tion based on given sensor reading and also to generate

new knowledge (e.g. read GPS location coordinates of two

sensors and decide they are nearby).

Ability to extract high-level context information using

low-level raw sensor data: There are many operations that

can be applied to the sensor data. An operation could be as

simple as averaging or as complex as combining multiple

sensor readings and calculate a single reading or generating

missing values by evaluating historic sensor data. Mostly,

data fusion operations are used to generate new context

knowledge.

Ability to manage users: This is about acquiring, reason-

ing and storing user information. When users make requests,

CA4IOT needs to keep track of them in term of the their

requirements, output format required, additional constraints

such as sampling rate, data volume, and so on. Further,

CA4IOT needs to provide a mechanism to interact with the

users which will allow to define their requirement easily.

These functionalities allow us to achieve our main objec-

tive as depicted in Figure 4 in three steps. In Step 1, user

provides his requirement to CA4IOT. CA4IOT understands

the user problem and selects the appropriate sensors as

shown in step 2. In step 3, CA4IOT combines the sensor

data retrieved from selected sensors as a single data stream

and sends them to the user. The next section provides an

overview on layered architecture of CA4IOT.
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Figure 4. Functional objective of CA4IOT

IV. LAYERED ARCHITECTURE

This section provides a high-level overview of the

CA4IOT architecture based on layers. As we mentioned

earlier, CA4IOT is not focused on providing a complete

software solution that addresses all the requirements needed

in IoT paradigm. Instead, we focus on a single problem

as discussed in Section II. As a result, layered architecture

depicted in Figure 5 intended only to address that specific

problem. We recommend not to employ CA4IOT as a stan-

dalone middleware, but to combine the architecture, models,

and techniques into existing IoT middleware solutions which

intend to fulfill the demands in IoT paradigm.

The CA4IOT architecture consists of four layers: Data,

Semantics, and Context Dissemination Layer (DSCDL), Pro-

cessing and Reasoning Layer (CPRL), Context and Seman-

tic Discovery Layer (CSDL), and Sensor Data Acquisition

Layer (SDAL).

However, there are two other layers (User layer and

sensing layer) that interact with CA4IOT. They are not part

of CA4IOT. However, they are essential for a successful

interaction and execution. Each layer is designed to per-

form a specific action. Most of the IoT, sensor network,

and context management middleware solutions always have

similar layers with similar names. We have named each layer

based on its responsibility. The following describes each

layer briefly. Here, we introduce the components that belong

to each layer though we discuss the components in detail in

Section V.

User Layer (UL): This is the layer that represents the

users and it is not a core layer in CA4IOT. Users can be

human users, applications, or services. User Oriented Front

End (UOFE) is a part of this layer and therefore, it is not a

core component in CA4IOT architecture.

Data, Semantics, and Context Dissemination Layer

(DSCDL): This layer is responsible to manage users. The

components belong to this layer are data dispatcher, request

manager, and publish/subscribe.



Processing and Reasoning Layer (CPRL): This is the

most important layer in CA4IOT. It is responsible for data

processing, reasoning, fusing, knowledge generating and

storing. The components belong to this layer are context

registry, context knowledgebase, reasoning engine, context

and semantic discoverer generator, primary context process-

ing, secondary context processor, context provider registry,

data fusion operator, and data fusion repository.

Context and Semantic Discovery Layer (CSDL): This

layer is responsible for managing context and semantic

discoverers which includes generating, configuring, and

storing. The components belong to this layer are context

and semantic discoverers, context and semantic discoverer

generator, and context and semantic discoverers repository.

Sensor Data Acquisition Layer (SDAL): This layer

is responsible for acquiring data. This layer appears in

most the IoT, sensor network, and context management

middleware solutions with different terminologies such as

wrappers, gateways, handlers, proxies, mediators, etc. This

layer communicates with hardware and software sensors and

retrieves sensor data into CA4IOT. The components that

belong to this layer are sensor wrappers, wrapper repository,

wrapper generator, sensor device definition (SDD) local

repository, and SDD cloud repository.

Sensing Layer (SL): This layer represents all software

and hardware (physical and virtual) sensors. Further, this

layer is not a part of core CA4IOT architecture.

Sensor Data Acquisition Layer (SDAL)

Context and Semantic Discovery Layer (CSDL)

Processing and Reasoning Layer (CPRL)

Data, Semantics, and Context Dissemination Layer (DSCDL)

Sensing Layer (SL)

User Layer (UL)

Figure 5. CA4IOT architecture consists of four internal layers and two
external layers

V. THE CA4IOT ARCHITECTURE

The CA4IOT architecture consists of several components.

In Section IV, we introduced all the components under each

layer. In this section, we discuss each component includ-

ing their primary responsibilities. Figure 6 illustrates the

component-level architecture of CA4IOT. We have labelled

each component (e.g. C1, C2). However, numbering does

not reflect the execution or interaction order. Further, there

are some other elements that do not belong to CA4IOT

architecture but essential to be explained as they are evolve

in execution process. These elements are also labelled (e.g.

E1, E2).

The order of the components we explain does not nec-

essarily correspond to the order of execution. We explain

the execution process with an example scenario in Section

VI. We specify the possibility of multiple components using

the (s) notation. For example, multiple sensor wrappers are

defined as sensor wrapper(s).

• User(s) (E1): User in CA4IOT can be a human user,

application or a service. Users interact with User Oriented

Front End(s) (UOFE) to express their requirements.

• User Oriented Front End(s) (UOFE) (E2): This el-

ement is not a part of CA4IOT architecture. UOFE

can be a graphical user interface (GUI), a web service,

a natural user interface, or any other mechanism that

allows the users to express their requirement in high-

level (in abstract). UOFE element generates a XML file,

request.xml, based on the user requirements according

to the schema definition provided by CA4IOT. We use

XML to decouple the mechanism of users expressing

their requirements from the internal CA4IOT execution

process. Therefore, it significantly increases the flexibility

and creativity which allows developers to develop more

sophisticated mechanisms for the users to express their

requirements. From CA4IOT perspective, we expect only

a XML file that complies to our request definition. The

mechanism that used to create the request.xml does not

make any impact on CA4IOT.

• Sensor (Sn) (E3): It can be either physical or virtual. For

example, a physical sensor can be a temperature sensor. In

contrast, a virtual sensor can be a web service hosted by

some organisation that provides information (e.g. weather

information or business contact information).

• Data Output Mechanisms/Formats (E4): There are

many output mechanisms and data formats. For example,

data can be archived in a cloud repository. In addition,

data can be inserted into a multimodal interface and

visualisation program. Sensor data can also be produced

as open linked data. Some of the popular data formats are

XML, CVS, and JSON.

• Request Manager (RM) (C1): It is responsible for

handling user requests. Users submit their requirements

using an XML called request.xml. First, RM performs a

validation to make sure that the received request complies

with the specification. Then, RM extracts the information

and converts them into number of objects which can

be passed among different component programmatically.

User details are sent to the publish/subscribe component

to be stored for later retrieval.

• Sensor Wrapper(s) (SW) (C2): It is responsible to com-

municate with physical and virtual sensors. Specifically,

they are used to retrieve data from sensors. For example,

when connecting to a physical sensor to CA4IOT, man-

ufacturer released sensor specific hardware APIs need to

be used within this component. These components can

be generated automatically using sensor device definition



Sensor Wrapper 

Generator (SWG)
(ASCM4GSN Tool)

SDD Local 

Repository

(SDDLR)

Sensor Wrapper 

Repository (SWR)

Sensing 

(Physical, 

Virtual) 

Layer

S1 S2 S3
S4  S5  Sn

Sensor Data Acquisition 

Layer (SDAL)

Context and 

Semantic 

Discovery 

Layer (CSDL)

Physical or Virtual Sensor (Context Sources)

Context and Semantic 

Discoverers (CSD)

SDD Cloud 

Repository

(SDDCR)

Context Provider 

Registry (CPR)
Reasoning 

Engine (RE)

Secondary Context 

Processor (SCP)

Primary Context 

Processor (PCP)

Sensor Wrappers (SW) 

(GSN Wrappers)

Processing 

and Reasoning 

Layer (CPRL)

Context 

Registry (CR)

Context 

Knowledge 

Base (CKB)

Data, 

Semantics, 

and Context 

Dissemination 

Layer (CDL)

User

(Application or Service)

User Oriented Front 

 End (UOFE)

Request

S1

Data Fusion Operator 

Repository (DFOR)

Publish/ Subscribe (P&S)
Request 

Manager (RM)

Context and 

Semantic 

Discoverers  

Repository

(CSDR)

C1

E3

E1

E2

C2

C3

<SDD>
<SDD>

<SDD>
<SDD><SDD>

<SDD>
<SDD> <SDD>

<SDD>
<SDD><SDD>

Cloud 

(Storage, Processing, 

Logs)

Analytics

(Multi-Model Interface, 

Visualization)Open Linked Data

S2 S3

S4 S5 Sn

Context and 

Semantic 

Discoverer 

Generator

(CSDG)

C4

C5

C6

C7

C8

C9

C10

Data Dispatcher (DD)

C11

C12

C13

C14

C15 C16

C17

C18C19

E4E4
E4

E4

Figure 6. CA4IOT component-level architecture

(SDD) files as explained in [13] or can be manually

developed by programmers. In order to communicate with

a specific sensor, CA4IOT should have a corresponding

wrapper attached it. For example, in order to communi-

cate with SunSPOT [16] sensor, CA4IOT should have a

SunSPOT wrapper that is capable of communicate with

SunSPOT sensor. However, in some circumstances single

wrapper can be used to communicate with different types

of devices as mentioned in [12] if the devices follow same

communication protocols and hardware APIs.

• Sensor Wrapper Repository (SWR) (C6): It holds all

the sensor wrappers that have been created before. When

CA4IOT wants to retrieve sensor data from a senor, a

request will be sent to SWR to check whether there is

a corresponding wrapper available in the repository. If

found, the wrapper will be assigned to the CSD. If not,

the request will be forwarded to the SDD local repository.

• SDD Local Repository (SDDLR) (C7): It is responsible

to handle SDD files locally. When CA4IOT could not

find a wrapper in SWR, CA4IOT will send a request to

SDDLR to check whether there is a SDD file that can be

used to generate the wrapper that is needed. If found, the

SDD file will be sent to SWG to generate the wrapper

based on the SDD.

• SDD Cloud Repository (SDDCR) (C8): This is same as

SDDLR but resides in the cloud. Developers around the

world can submit the sensor wrappers to this repository as

explained in [13]. SDDLR can communicate with SDDCR

to retrieve SDD files that are not available in SDDLR.

• Sensor Wrapper Generator (SWG) (C9): It generates

the sensor wrappers based on sensor device definition

(SDD) files and send them to SWR.

• Context and Semantic Discoverer(s) (CSD) (C3): These

components are specifically custom build to satisfy user

requirements. That means each CSD is responsible to

satisfy one user request. Further, each CSD can commu-

nicate with multiple sensor wrappers to retrieve sensor

data. CSD’s main responsibility is to collect sensor data

and bundle them together to satisfy the user requirement.

CSD uses data fusion operators to transform and extract

high-level information using raw sensor data as the user

specified in the request. These components are system

generated based on the reasoning output. After retrieving

and applying data fusion operators, CSD starts sending

data to the data dispatcher in order to be sent to the user.

• Context and Semantic Discoverers Repository (CSDR)

(C4): It holds all the CSDs created before. As we men-

tioned earlier, each CSD is custom built to address one

user request. However, a CSD can be reused if another

or same user makes exactly the same request. CSDR can



search its repository to find whether there is a CSD that

is created before that can satisfy a given user request.

• Context and Semantic Discoverers Generator (CSDG)

(C5): It is responsible for generating CSDs based on the

specification given by reasoning engine.

• Reasoning Engine (RE) (C6): It performs number of

reasoning tasks using semantic and statistical reasoning

techniques [17]. RE analyses the user problem and rea-

son what context information is required to satisfy the

user. Further, it handles the entire execution process of

CA4IOT. It is the central component that monitors and

makes decisions on the execution process.

• Primary Context Processor (PCP) (C11): Once the RE

identifies the context information that need to be collected

in order to fulfill the user requirement, PCP identifies

how to capture the required context data using existing

sensors. PCP communicates with CPR and CKB to make

the final decision considering many factors such as cost,

availability, data quality, etc.

• Secondary Context Processor (SCP) (C12): Secondary

context is any piece of context data that can be computed

using primary context data. SCP selects appropriate sen-

sors from CPR and use data fusion operators from DFR to

decide the best mechanism to capture secondary context

information that is required by the user. CKB is used to

reason the domain knowledge when required.

• Context Registry (CR) (C13): It maintains a registry of

possible context information that can be captured by using

sensors. Its responsibility is to help the reasoning engine

to extract context information that is required to fulfill the

user requirement. While CKB acts as a source of domain

knowledge, CR acts as a source of knowledge on sensors

and related information.

• Context Knowledge Base (CKB) (C14): It is responsible

to store and reason domain knowledge that is required to

understand the user requirements. Users are allowed to

express their requirement in high-level. These high-level

descriptions are domain specific. In order to understand

the user requirement, CA4IOT needs to maintain domain

knowledge (e.g. agriculture domain, smart home domain,

etc.) This CKB supports plugin architecture so new do-

main knowledge can be added when necessary. Due to

plugin architecture, CKB need to be defined according to

the specification provided. Specification confirms smooth

interoperability with existing knowledge.

• Data Fusion Repository (DFR) (C15): It holds all the

data fusion operators and provides functionalities such as

searching and reasoning. New data fusion operators can be

added to the repository as it supports plugin architecture.

However, data fusion operators need to be designed using

given specification which specify some essential data

structures and functions that increase the interoperability

of the data fusion operators. DFR maintains a compre-

hensive description of all DFOs in the repository as they

helps to select the appropriate DFO that can deliver the

expected results.

• Data Fusion Operator(s) (DFO) (C16): Each data fusion

operator is designed to accomplish one task. For example,

missing GPS value generation operator is designed to gen-

erate missing value based on historic data and predictive

algorithms. There can be multiple data fusion operators

designed to accomplish the same task. The appropriate

data fusion operator for each task is selected by RE and

SCP depending on the user requirements.

• Context Provider Registry (CPR) (C17): It is responsi-

ble to keep track of all the context providers (i.e. sensors).

All the sensors that connect to CA4IOT are registered

in CPR by providing all the information such as its

capabilities and availability. This help to identify the

available sensors to be used to satisfy the user requests

when required. Once the RE identifies which context

information is required, CPR is used to find the sensors

that provide the matching context information (sensor

data) that can be used to fulfill the user requirement.

• Publish/Subscribe (P/S) (C18): Information about the

users is stored here so they can be retrieved later once the

sensor data is prepared to be delivered. User information

stored in P/S helps to find out delivery requirements such

as frequency, data format, etc.

• Data Dispatcher (DD) (C19): It is responsible to deliver

the sensor data produced by CSD to the user based on

the user requirement such as frequency, format, etc. DD

communicates with P/S to gather information about the

user. In addition, all the CSDs produce its output in a

CA4IOT standard output format. DD transform the data

into user required format.

VI. USE CASE

Previously, in Section IV and V, we discussed CA4IOT

architecture both in layered and component-level perspec-

tive. We discussed each component in isolated fashion with

little focus on execution process and interaction among

components. Still some of the fact may seem unclear without

proper examples. Therefore, in this section, we provide

a detailed scenario based on real-world smart agriculture

domain with hypothetical facts. We explain each step from

the beginning to the end in order as depicted in Figure 7.

There are number of different execution processes that can

be occurred in CA4IOT. However, in here, we focus only

on explaining the scenario where user submits a request and

CA4IOT provides the relevant data to the user. First, we

explain the background information and then present the

execution process and interaction details with the help of

background information and hypothetical facts.

A. Background Information

Every year, Australian grain breeders plant up to 1 million

10m2 plots across the country to find the best high yielding



varieties of wheat and barley. The plots are usually located

in remote places often requiring more than four hours

travel one-way to reach. The challenge is to monitor the

crop performance and growing environment throughout the

season and return the information in an easily accessible

format. The challenge of crop growing and performance

monitoring can be addressed by deploying sensors. Further,

querying the collected sensor data is essential to understand

what is happening in the field. In order to answer complex

and sophisticated queries, significant amount of context data

need to be stored with the raw sensor data. In addition,

semantics also need to be attached to the raw sensor data.

Let’s consider a scenario. John, a plant scientist, who is

looking after a experimental crops growing facility, wants

to know whether the crops are infected by Phytophtora

disease. Phytophtora [18] is a fungal disease which can enter

a field through a variety of sources. Humidity plays a major

role in the development of Phytophtora. Both temperature

and whether or not the leaves are wet are also important

indicators to monitor Phytophtora. Based on the above real

world information we created the following hypothetical

facts. We assume that these are the only rules that make

impact on detecting Phytophtora disease (store in CKB).

• IF airTemperature < 12 AND airHumidity < 25% THEN
airStress level = low

• IF airTemperature ≥ 12 AND airHumidity ≥ 25% THEN
airStress level = high

• IF airStress = high AND leafWetness > 50 THEN Phytophtora

disease = infected ELSE = not-infected

B. Execution Process
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Figure 7. Execution and interaction process of CA4IOT

Step 1: John, a plant scientist (i.e. user), expresses his

request (Do any of the plots have infected by Phytophtora

disease?) using User Oriented Front End (UOFE). UOFE

automatically generates a request, a request.xml file, based

on the user expression. Then, the request is sent to the

Request Manager (RM). John also wants the data in the

format of JSON in a frequency rate of 1 minute.

Step 2: RM validates the request.xml and extracts the user

information and send them to the Publish/Subscribe (P/S).

Then, RM sends the user request to Reasoning Engine (RE).

Step 3: RE communicates with Context Knowledge Base

(CKB) and Context Registry (CR) to identify the context

information related to the users request. Based on the

rules provided previously and the domain ontology support,

RE identifies airStress and the leafWetness as the context

information that is required to answer the John’s request. RE

lists down all the context information required and sends the

whole list to the Primary Context Processor (PCP).

Step 4: PCP communicates with Context Provider Reg-

istry (CPR) to detect the sensors which can provide the

context information listed in the list provided by RE. PCP

detects that leafWetness can be directly acquired by a sensor

as the primary context data. However, airStress cannot be

identified directly from a sensor. Therefore, airStress is

sent to the Secondary Context Processor (SCP) for further

processing. The context information that cannot be acquired

directly using sensors are sent to SCP.

Step 5: SCP interacts with Context Provider Registry

(CPR) and Data Fusion Operator Repository (DFOR) and

identifies which sensors and DFOs can be combined together

to produce the remaining required context information.

SCP identifies that airStress can be calculated by using

two other primary context information: airTemperature and

airHumidity. Further, the numerical comparison operator

and AND operator also required to derive airStress. Once

the primary and secondary context information acquisition

mechanisms are identified, those detailed are sent to the

Context and Semantic Discoverer Generator (CSDG).

Step 6: CSDG generates the Context and Semantic Con-

text Discoverer (CSD) based on the details provided by PCP

and SCP. CSD is equipped with all the necessary details

that allow acquiring context data from appropriate sensors,

applying necessary data fusion techniques and sending the

data to the Data Dispatcher (DD).

Step 7: DD retrieves user details from the P/S and

transform the sensor data according to the user requested

format. Finally, DD sends the data to the user. As depicted

in Figure 8, the final data stream combines number of data

parameter such as airTemperature, airHumidity, airStress,

phytophtora-DiseaseStatus, timestamp, geographicalLoca-

tion and several other relevant context information that John

can use to find answers to his problem. CA4IOT is not

intended to provide direct answers the problems submitted

by the users. Instead, it provides the user with necessary

information that allows them to find the solution to their

problem very easily.



{
“timeStamp”: “2012-06-24 T 10:45 UTC”,

“user”: “John”

“samplingRate”: “60 sec”
“totalNumberOfPlots”: “25180”

“geographicalLocation” :
    […......
       {
         “longitude”: “149.120575”

         “latitude”: “-35.275291”

         “plotNumber”: “12458”
         “airTemperature” : “5.1C”

         “airHumidity” : “20%”
         “airStress” : “low”

         “phytophtoraDisease”: “not-infected”
       }
       

      {
        “longitude”: “147.452236”
        “latitude”: “-36.452563”

        “plotNumber”: “22459”
        “airTemperature” : “5.8C”

        “airHumidity” : “14%”

        “airStress” : “low”
        “phytophtoraDisease”: “not-infected”
       }
    ….......]
 }

Parameters and data values are 
only used for demonstration 

purposes. The real data stream 

would contain many data fields

Figure 8. Sample data in JSON format which DD sends to John

VII. CONCLUSIONS AND FUTURE WORK

We identified through literature that there are signifi-

cant amount of middleware solutions that exist for sen-

sor data management related IoT, sensor networks, perva-

sive/ubiquitous computing, and context management fields.

The problem is that they are strong in some aspect while

weak in many other aspects. We also noticed that significant

amount of solutions have overlapped and reinvented the

wheel. Therefore, we decided to focus on one problem and

propose a solution to tackle that problem where other IoT

middleware projects can adopt our proposed architectural

designs, models, and techniques to solve this particular

problem within their own middleware solutions.

This paper examined various aspects of context-aware

IoT and presented the vision of CA4IOT. We presented an

architecture that enhances the context aware capability of

IoT middleware solutions and enables to build a sensing-

as-a-service platform. The CA4IOT architecture has been

proposed and designed with links to OpenIoT [19], Phenonet

[20] and SenseMA projects that CSIRO is involved in. We

have implemented the components in sensor data acquisi-

tion layer (SDAL) and the details are presented in [13].

We will continue developing CA4IOT and project details,

technical documents, and source code will be available in

https://sourceforge.net/projects/CA4IOT/ in due course.
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