Charith Perera, Arkady Zaslavsky, Peter Christen, Ali Salehi, Dimitrios Georgakopoulos, Capturing Sensor Data from Mobile
Phones using Global Sensor Network Middleware, Proceedings of the IEEE 23rd International Symposium on Personal Indoor and
Mobile Radio Communications (PIMRC), Sydney, Australia, September, 2012, Pages 24-29 (6) More: www.charithperera.net

Capturing Sensor Data from Mobile Phones using
Global Sensor Network Middleware

Charith Pereral*’, Arkady Zaslavsky!, Peter Christen*, Ali Salehif and Dimitrios Georgakopoulos'
*Research School of Computer Science, The Australian National University,Canberra, ACT 0200, Australia
TCSIRO ICT Center, Canberra, ACT 0200, Australia

Abstract—Mobile phones play increasingly bigger role in our
everyday lives. Today, most smart phones comprise a wide variety
of sensors which can sense the physical environment. The Internet
of Things vision encompasses participatory sensing which is
enabled using mobile phones based sensing and reasoning. In
this research, we propose and demonstrate our DAM4GSN
architecture to capture sensor data using sensors built into the
mobile phones. Specifically, we combine an open source sensor
data stream processing engine called ‘Global Sensor Network
(GSN)’ with the Android platform to capture sensor data.
To achieve this goal, we proposed and developed a prototype
application that can be installed on Android devices as well as a
AndroidWrapper as a GSN middleware component. The process
and the difficulty of manually connecting sensor devices to sensor
data processing middleware systems are examined. We evaluated
the performance of the system based on power consumption of
the mobile client.

I. INTRODUCTION

Mobile phones have built-in sensors that can be used to
measure different parameters such as motion, position and
various environmental conditions. The sensing capability and
data processing power of mobile phones have been increased
during the past decade. A decade ago, there weren’t any
processors in mobile phones. The industry has evolved and
latest mobile phones comprise 1.4 GHz dual-core processors
and 1GB ram. This enables significant potential to build sensor
networks using mobile phones. One of the major challenges
in sensor networks is deployment of sensors. Deployment of
traditional sensor network requires to bear significant cost
and effort. However, sensors in mobile phones do not require
a deployment. Mobile phones are already in the hands of
5.6 billion [12] people around the world. Therefore, it is
cheap to use these sensors built into the mobile phones.
This fact motivates us to capture sensor data using mobile
phones. Without putting substantial effort into typical sensor
deployment, sensors built-in to the mobile phones can be
utilised to understand mobile users and the environments
around them. The raw data produced by these sensors built-in
the mobile phones need to be collected and processed. Sensor
data stream processing engines provide a solution for this [1].

Internet of Things (IoT) [14] is a concept that is closely
related to and motivated by sensor networks. The European
Union has defined the IoT vision and explained the applica-
tions in detail in [8]. Mobile phones are a critical component
in the IoT as they are capable of performing more computation
than other smart objects [10].

Using mobile phones as sensors has a significant advantage
over unattended wireless sensor networks. We do not need
to put extra effort to power the built-in sensors in mobile
phones. Mobile phones are powered (charged) by human
beings regularly. Furthermore, sensors built into mobile phones
can provide more coverage than static sensors.

The availability of cheap, cost effective and widely available
sensors built-in to mobile phones enable a whole new range of
applications across a wide variety of domains, such as health-
care, smart home and office, social networks, safety, public
parks, shopping malls, environmental monitoring, transporta-
tion and logistics. In addition, it is very easy to distribute ap-
plications for mobile phones. Almost all the mobile platforms
provide easy methods to download and install applications
for mobile phones such as iPhone (App Store i0S), Android
(Android Market), Windows (Windows Phone Marketplace)
and Blackberry (Blackberry App World). This has enabled the
possibility to reach millions of users very easily.

Mobile phone sensing is a fairly new field which emerged
with the increasing sensing capability of modern mobiles
phones. Lane et al. [11] has conducted a survey on mobile
phone sensing. Mobile sensing does raise many question in
term of security and privacy. These two issues are discussed
in detail in [9], [2]. As mentioned earlier, sensor data col-
lection and processing is also an important component in
mobile phone sensing systems. Sensor data stream processing
engines such as Global Sensor Network [6] provides basic
functionalities that required by such a system.

Let’s introduce an application scenario. A farmer visits his
field of crops and collects sensor data from variety of different
sensors deployed. The mobile phone annotates collected raw
sensor data with various context information such as location,
time, etc. and sends them to GSN for storage, analysis, and in-
terpretation. Our main contribution, DAM4GSN architecture,
allows GSN to capture context annotated sensor data from low-
level computational devices such as mobile phones without
porting GSN itself into mobile phones.

The rest of the paper is organised as follows. Section II
presents an overview on sensing capability of the mobile
phones. Section III describes the Global Sensor Network
middleware in brief. A detailed description about the entire
system, including client configuration, server configuration,
and data formats is provided in Section IV. The life cycle
of the developed wrappers is discussed in Section V. Section
VI provides a detailed explanation of wrapper development.

CharithMini
Text Box
Charith Perera, Arkady Zaslavsky, Peter Christen, Ali Salehi, Dimitrios Georgakopoulos, Capturing Sensor Data from Mobile Phones using Global Sensor Network Middleware, Proceedings of the IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, September, 2012, Pages 24-29 (6) More: www.charithperera.net

Finally, Section VIII presents the performance evaluation of
the proposed system.

II. MOBILE PHONE SENSORS

In this research, we focus on the Android platform and
Android enabled mobile phones. Most modern mobile phones
have variety of different sensors built into them. These sensors
can be divided into three main categories: motion sensors
(accelerometer, gravity, gyroscope, linear accelerometer, and
rotation vector), position sensors (orientation, geomagnetic
field, and proximity), and environment sensors (light, pres-
sure, humidity and temperature). Figure 1 shows the sensors
supported by smart phones based on the Android platform 4.0.

Rotation Vector

Linear

Acceleration @— Proximity

Humidity —e @— Pressure

Orientation —@

o— Light
Gravity —e @— Gyroscope
Magnetic e— Ambient
Field T
emperature
Accelerometer
Fig. 1. Sensors in Mobile Phones

Even though, the Android platform supports twelve different
sensors, the mobile phones may not have all these sensors built
into them. Sensors built into a mobile phone could be varied
depending on the hardware manufacturer. There are few other
sensors built into the mobile phones: microphone as the audio
sensor, camera as the video sensor, digital compass, and Global
Positioning System(GPS) sensors. In this research, we do not
consider these types of sensors. The details of the sensors
supported by the latest Android platform 4.0 are available at
[5]. A description and the unit of measure are also provided
for each raw sensor readings.

Even though the sensing capability of a mobile phone is
limited to few sensors, it can be easily extended by using
Personal Area Network (PAN) technologies such as IrDA,
Bluetooth, Wireless USB, Z-Wave, Near field communication
(NFC) and ZigBee'. PAN technologies can connect additional
sensing devices to the mobile phones.

Access to the sensors built into the mobile phones to retrieve
raw sensor readings are the challenges that we have addressed.
We propose to connect mobile phones to a data stream process-
ing engine. We use Global Sensor Network (GSN) middleware
as our data stream processing engine to accomplish this task.
The advantage to connecting mobile phones to a data stream
processing engine is that, raw sensor data can be queried and

'IrDA [irda.org]; Bluetooth [bluetooth.com]; Wireless USB [usb.org]; Z-
Wave [www.z-wave.com]; Near field communication [nfc-forum.org]; ZigBee
[zigbee.org]

manipulated with other sensors connected to the engine. GSN
allows us to build virtual sensors that can be used to combine
verity of different sensors together to create complex outputs.
The next section briefly describes the Global Sensor Network
middleware.

III. GLOBAL SENSOR NETWORK

The Global Sensor Network (GSN) [1], [13] is a plat-
form aimed at providing flexible middleware to address the
challenges of sensor data integration and distributed query
processing. It is a generic data stream processing engine.
GSN has gone beyond the traditional sensor network re-
search efforts such as routing, data aggregation, and energy
optimisation. The design of GSN is based on four basic
principles: simplicity, adaptivity, scalability, and light-weight
implementation. GSN middleware simplifies the procedure
of connecting heterogeneous sensor devices to applications.
Specifically, GSN provides the capability to integrate, discover,
combine, query, and filter sensor data through a declarative
XML-based language and enables zero-programming deploy-
ment and management. The above reasons lead us to choose
GSN as our data processing engine over other alternative
solutions.

The GSN is based on a container based architecture. A
detailed explanation is provided in [1]. The Virtual Sensor is
the key element in the GSN. A virtual sensor can be any kind
of data producer, for example, a real sensor, a wireless camera,
a desktop computer, a mobile phone, or any combination of
virtual sensors. Typical, a virtual sensor can have multiple
input data streams but have only one output data stream.

A Wrapper is a piece of Java code that does the data
acquisition for a specific type of device. The GSN is capable
of retrieving data from various data sources. Wrappers are
used to accomplish this task. Wrappers transform the raw
data into the GSN standard data model that can be queried
and manipulated later. All the wrapper classes need to extend
the AbstractWrapper class. Typically, third party libraries are
initialised in the wrapper constructor. Each sensor needs to
have a specific wrapper that can be used to retrieve raw sensor
data. In order to connect a Mica2 [3] sensor, for example
the GSN should have a corresponding wrapper that can talk
to Mica2 sensors and retrieve data from it. Currently, the
GSN provides a wrapper for all TinyOS [15] based sensors.
Likewise, in order to connect Android phone’s built-in sensors
to the GSN, it has to have a wrapper that can retrieve raw
sensor data from Android phones. Android Wrapper which
we developed for GSN is around 400 line of code. We discuss
GSN wrappers in general and wrapper’s life cycle in details in
the Section V. We also provide a detailed explanation about the
Android Wrapper in Section VI. The GSN is an open source
middleware platform and implementation is available in [7].

IV. DAM4GSN ARCHITECTURE

We discuss the proposed Data Acquisition Model For GSN
(DAMA4GSN) architecture by dividing it into three separate
sections: server configuration, client configuration, and data

formats. The server configuration section explains how the
GSN server needs to be configured in order to collect sensor
data from mobile phones. The client configuration section
explains how the mobile phone needs to be configured in order
to read the sensor data through built-in sensors and send them
to the GSN server. The data format section explains how the
communication between GSN server and mobile phone can be
done and how the data packets are formatted.

l | Applications ‘
Global Sensor Network (GSN) Middleware

t e et 0
.8 8 €

Fig. 2. Collect Data through Mobile Phones

The overall system architecture is depicted in Figure 2. The
GSN middleware gathers raw sensor data from mobile phones
and organizes them according to the GSN standard data model
and sends data to applications or services when requested.

A. Server Level Configuration

The GSN server configuration that needs to be done in order
to collect sensor data from mobile phones is twofold. First, a
wrapper needs to be developed in order to retrieve data from
mobile devices. The second step is to define a virtual sensor.
Defining a virtual sensor in the GSN server is beyond the
scope of this paper. A detailed description about defining a
virtual sensor is provided in [1], [7], [6]. However, we provide
a segment of a virtual sensor definition in Figure 3. A Virtual
Sensor Definition (VSD) file provides the information to the
GSN that is required to create a Virtual Sensor. This definition
is an XML file that contains a predefined set of elements. Here,
we only focus on the address element as pointed out in the
Figure 3.

<virtual-sensor name="AndroidHandler80" priority="10">
<streams>
<stream name="inputl">
<source alias="sourcel" sampling-rate="1"

' <address wrapper="android">
</address>

storage-size="1">

</stream>
</streams>
</virtual-sensor>

Fig. 3. Virtual Sensor Definition File

This is the element that tells the GSN which wrapper to use
to retrieve sensor data. Based on this virtual sensor definition,
a virtual sensor will be created and an AndroidWrapper will be
initialised and used to retrieve sensor data to the GSN server.

The communication between the GSN server and client ap-
plication in the mobile phone can be done through a wrapper.

Therefore, we developed a GSN wrapper to accomplish this
task. The communication between the wrapper and mobile
device is based on client-server architecture.

The communication has two phases. Phase (1) communica-
tion happens only once where the client sends metadata to the
GSN server. Then, the GSN server configures the wrapper
based on the metadata and gets ready to accept the raw
sensor data which is constructed by the client using the same
metadata.

After the connection has been established, the client will
start sending sensor data to the GSN server according the
preconfigured frequency. We developed a generic wrapper that
can accommodate any type of sensor reading. For example,
one phone may be configured to sense only temperature. In
another instance, another phone may be configured to sense
temperature, humidity, pressure and accelerometer values. Our
wrapper can handle any of these configurations. The wrapper
can dynamically change its internal data structures to facilitate
any sensing scenario. A detailed description on wrapper devel-
opment is available in [6], [7], [1]. The GSN server procedure
can be explained as follows.

Server Procedure:
Input : ListO fClientConnections(C) = {c1 ... cn}
ReadT heVirtualSensor De finition();
Wrapper «— IdentifytheM atchingW rapper(V SD);
VirtualSensor «— CreateTheVirtual Sensor(Wrapper);
for i := 1 to size(C) step 1 do
ci +— C{er...enls
connection «— isClientsFirstConnection(c;);
do if connection;
metaData +— getMetaData(c;);
create DataStructure(metaData);
else
sensorData «— getSensorData(c;);
mapSensorDataT oGS N DataM odel(sensor Data);
end
end
end

B. Client Level Configuration

Mobile users use different versions of the Android operating
systems in their hand held devices [5]. Therefore, we built
the client application to support all different platforms. When
the application starts running, it automatically identifies the
sensors built into the mobile phone hardware. Each sensor
will be enabled only if it is supported by both hardware and
software layers as shown in Figure 4 (a). Then, the users
can select the required sensors that they wants to be used
for sensing. After selecting the sensors, the client application
requires the GSN server IP address, the port number, and
sensing frequency to be configured in the preferences screen
as shown in the Figure 4 (b). After configuration is done, the
user needs to connect the device to the selected GSN server
via WiFi or 3G.

ACCElerarmeter

Arnbiient Terperatre

Carnect Ta GSH Server

(a) (b)

Preferences

Fig. 4. Client Application

The connection will be established based on the metadata
packet sent to the GSN server by the client application.
The details of the metadata packet is discussed in Section
IV-C. After a connection between the GSN server and mobile
application is established, the user can press ‘Start Sensing’
in the options menu to start the sensing service. The client
application will generate and send sensor data packets based
on the selected sensors and the sensing frequency to the GSN
server. The format of the sensor data packet is discussed in
Section IV-C.

Client Procedure:
Input : ListO f SelectedSensors(S) = {S1...Sn}
Output : sensor DataPacket
Identi fySupportedSensors();
S = LetTheUserToSelectSensors();
metaData = Generatethe MetaDataPacket(S);
connection <— ConnectToGSN Server(metaData);
if connection;
while (UserStopSensing)
sensorData = GenerateSensor DataPacket(S);
SendDataPacketToGSN Server(sensor Data)
end
end

C. Data Format

We define a data packet format for the communication
between GSN server and the mobile phone. Our proposed
format consists of two parts: metadata and sensor data. A
Metadata packet is used to establish the connection between
the mobile phone and the GSN server. Figure 5 shows a sample
metadata packet. It consists of twelve Boolean values.

1/1/0({12(2/12|1|/1{0/1|0(0
m @ 6 @ G 6 @O 6 (© @) 1) (12)
Fig. 5.

Metadata Packet

Each index corresponds to a sensor in the mobile phone:
accelerometer (1), gravity (2),gyroscope (3), linear accelera-
tion (4), rotation vector (5), magnetic field (6),orientation (7),
proximity (8),temperature (9),light (10), pressure (11), humid-
ity (12). The Boolean value of the each index is true if the

mobile device is configured to use the corresponding sensor.
For example, Figure 5 shows a sample metadata packet where
the mobile phone is configured to sense using Accelerometer
Sensor, Gravity Sensor, Linear Acceleration Sensor, Rotation
Vector Sensor, Magnetic Field Sensor, Orientation Sensor,
Orientation Sensor, Proximity Sensor, and Light Sensor. Only
the indexes correspond to above sensors have the value true.
The total size of the metadata packet is 12 bits. The metadata
packet size does not vary from devices to device. It is a fixed
size packet.

A full sensor data packet includes all 27 floating point
sensor readings. In contrast to the metadata packet, length of
the sensor data packet can be varied. The length of the packet
can be varied from four bytes (one float value) to 108 bytes
(27 float values). The client application generates sensor data
packet in the same order as the selected sensors in the metadata
packet. Let’s consider the same configuration as previously
explained in metadata.

The client application checks whether the first sensor, ac-
celerometer sensor, is configured to be sensed. If the corre-
spondent value returns true, then the sensor readings related
to accelerometer will be appended to the sensor data packet.
Like wise all the sensors are validated and values are appended
to the sensor data packet and finally sends to the GSN server.
GSN server can correctly understand the sensor data packet
based on the metadata packet in similar way.

V. GSN WRAPPER’S LIFE CYCLE

The life cycle of a wrapper, depicted in Figure 6, begins
with the virtual sensor definition (VSD). When a user defines
a VSD file, it triggers the virtual sensor creation processes.
This process triggers the specified wrapper to be created.
The wrapper that correspond to each stream source is defined
under the address element in a VSD file. This process sends
a Wrapper Connection Request (WCR) to the wrapper repos-
itory in the GSN server. A Wrapper Connection Request is
an object which contains a wrapper name and its initialisation
parameters as defined in the Virtual Sensor. Whenever a WCR
is generated at the virtual sensor loader, it will be sent to the
wrapper repository. Then the following steps are followed:

Start
Instance

Found

Register
stream-source
Query at wrapper
instance

Success

Fig. 6. Life Cycle of Android Wrapper

Look for wrapper instance
matching request

Instance
R No successfully
instance
created
found

Wrapper instantiation
and initialization

o First, wrapper repository looks for a wrapper instance
that matches to the wrapper connection request. If found,
then the stream-source query will be registered with the
wrapper and returns true. Sensor data will be captured
based on the registered query.

o If there aren’t any WCR in the repository, the wrapper
repository creates a new appropriate wrapper object.
Then, the newly created object would be added to the
wrapper repository. Finally, the stream-source query will
be registered with the wrapper and returns true.

o If there aren’t any WCR in the repository and wrapper
repository does not have an appropriate wrapper it returns
false. The virtual sensor loader fails to load a virtual
sensor if at least one of the stream sources required by
an input stream fails. For example, if the user define a
virtual sensor as depicted in the Figure 3 and if the GSN
wrapper repository does not have an Android wrapper,
then the virtual sensor would fail.

VI. ANDROID WRAPPER

In this section we discuss the Android wrapper we created.
We provide the details about how to create a wrapper accord-
ing to the GSN standards. A code segment of the Android
wrapper is presented in Figure 7. Our objective of the code
demonstration is to explain the few methods that are essential
in wrapper creation. The depicted code can be explained as a
template for wrapper creation.

All the wrappers need to extend the Java class
gsn.wrapper.AbstractWrapper. Therefore, all the wrappers are
subclasses of AbstractWrapper. There are four methods that
need to be implemented by the subclasses. Those methods are
numbered 1-4 in the Figure 7. The methods are 1. boolean
initialise(), 2. void finalise(), 3. String getWrapperName(), 4.
DataField[] getOutputFormat()

public class EmptyWrapper extends AbstractWrapper {
public boolean initialize () {
1. Wait for the Client to send meta data packet
2. Analyse the Meta data packet and identify the enabled
sensors in the client side
3. createDataFieldCollection (enabledSensors)
return true;

}
public void run () { e
while (isActive()) {
1. Wait for the Client to send Sensor data
2. mapSensorData(sensorData, enabledSensors)

StreamElement streamElement = new StreamElement (...);
postStreamElement(streamElement)

}

}

public DataField[] getOutputFormat () { }e
public String getWrapperName() {.... } 9
public void finalize () {....} o

}
private DataField[]
createDataFieldCollection(boolean[] enabledSensors) {...}0
private void
mapSensorData(String[] sensorData, boolean[] enabledSensors) {..} 0
}

Fig. 7. Android Wrapper

A new thread is created for each wrapper in GSN. After
creating the wrapper object, initialise() method is called as
shown in number (1). All the communication using third party
libraries should happen within this method. For example, a
camera wrapper may talk to a third party API in order to talk
to the camera and retrieve the camera images. In the Android
wrapper we developed, initialise() method creates a socket and

waits until the client mobile phone send the metadata packet.
Metadata packet is required to determine the data structure.
Once the meta packet is received, it is analysed and identified
the client side sensing capability. This will determine the
sensors available in the client mobile phone. This information
is passed into the createDataFieldCollection() as shown in
number (6).

The method finalise() is called at the end of the wrappers
life cycle. This is the last chance you get to release all
the resources. This method can be used to close all the
connections we established with the outer world. Concretely,
all the resources acquired during the initialise() method should
be released here. For example, if you open a file in the
initialisation phase, you should close it in the finalisation
phase. In the Android wrapper, all the client communication
resources such as sockets and ports are released in this method.

The method getWrapperName() returns the name of the
wrapper. The method getOutputFormat() returns a DataField
object that provides a description of the data structure pro-
duced by the wrapper.

The run() method is responsible for retrieving sensor data
from sensors and forwarding them to the GSN middleware.
In the Andorid wrapper, run() method waits until the mobile
phone clients send the sensor data. Once the data is received,
mapSensorData() method maps the newly received data to the
GSN data model structure which is created in the wrapper ini-
tialisation phase. However, the packet format of the metadata
and sensor data packet need to be matched. After the data has
been inserted into the GSN data model, querying, filtering and
other functionalities provided by GSN can be done over the
mobile phone sensor data.

VII. PERFORMANCE ADVANTAGE

There are several advantages in our approach over the
existing GSN communication model.

e GSN assumes that sensors are connected to a server
that is running GSN middleware. However, installing
and configuring GSN in many computers would be a
overwhelming task. GSN middleware requires certain
amount of processing power [13] as well. In contrast,
our approach demonstrated how the sensor data can be
captured through a client device (in our scenario, a mobile
phone) and send them to the GSN server over a network.
In GSN side we only need to develop a single wrapper
that can transform sensor data packets into GSN model as
demonstrated in the AndroidWrapper. As we do not port
(install) GSN into mobile devices, scalability is preserved
at the server level, probably in the cloud.

e Any form of update may only be required to be done
in the client side (i.e in mobile phones or computers).
No update is required in GSN server. In contrast, if we
connect a sensor such as SunSPOT to the GSN server
via wired connection, then we have to develop a separate
SunSPOT wrapper for GSN, which we may need to
manually develop it, compile it and then attach it to the

160

— c
3 2000 (a) % 2000 (b) Ry (c)
B 1500 £ 1500 E 120
Eé 3 100
£ 1000 £ 1000+ o 8
E 0o S 60
o 500 £© s00 % 40
z g 20
+ Z
5 0 : : 7] 0 ; " e SR . . . : . :
o 0 50 100 150 200 250 300 < 0 50 100 150 200 250 w0 0O 50 100 150 200 250 300
o Sampling Rate (Seconds) Sampling Rate (Seconds) Sampling Rate (Seconds)
Fig. 8. Performance Evaluation. All the sensors available in the mobile phone are used for the evaluation. Energy consumption in mJ per minute

GSN server. Any requirement of update may need to
perform the above process repetitively in the GSN server.

« Sensing capability of the mobile phones can be extended
by attaching additional hardware components. It is not
required to do any changes in wrappers in GSN server.

e Our approach can be used by any mobile device or
low end computing devices (e.g. iPhone, iPad, Windows
phone, Blackberry, etc.). The only capability that a mobile
device need to have is sensor packet generation and
network communication. These functionalities are com-
monly available in modern devices.

VIII. EVALUATION

We conducted all evaluations and experiments using a
Samsung Galaxy S mobile phone which runs Android platform
2.3 and PowerTutor’> app. GSN instance was installed on
a laptop with Intel Core i7 CPU and 6GB ram. Network
communications are through CSIRO ict center wifi network.
Each sensor consumes different amount of power. Accelerom-
eter, gravity, linear acceleration sensors consume 0.20 mA
(each). Further, proximity and light sensors consume 0.75 mA
(each). Magnetic field sensor consumes 4.00 mA. In addition,
linear acceleration and orientation sensors consume 4.20 mA
(each). According to above information, rotation vector sensor.
magnetic field sensor and orientation sensor consume 21 times
more power than accelerometer, gravity, linear acceleration
sensor and 5.6 times more power than proximity and light
Sensors.

The three graphs depicted in Figure 8 shows how the energy
cost varies with the sampling rate. According to the graph,
network communication cost is always higher than the CPU
energy cost. Therefore, network communication parameters
such as sampling rate should be carefully planned in order
to utilise the sensors built into the mobile phones in an
efficient manner. Further, data compression techniques can
be employed to reduce the amount of data to be sent to the
GSN. Further evaluation on energy consumption based on data
packet size, distance, sampling rate is presented in [4].

IX. CONCLUSION

In this research work, we identified how the sensor data
can be captured using mobile phones. In our approach, we
evaluate the process of connecting a sensor to a data processing
engine called GSN. AndroidWrapper was developed in order
to retrieve sensor data from mobile phones. DAM4GSN allows

2ziyang.eecs.umich.edu/projects/powertutor

GSN to collect sensor data from low-level computational
devices such as mobile phones without porting GSN itself into
mobile phones. However, it was realised that each and every
low-level sensor, that does not have computational capabilities,
should have a wrapper talking to a GSN server in order to
collect data.

Developing such wrappers is a time consuming and te-
dious job. Therefore, in future, we intend to conduct our
research towards automating wrapper development. The pro-
posed DAM4GSN architecture will be built into the GSN
middleware in the future releases.

REFERENCES

K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for data
processing in large-scale interconnected sensor networks. In Mobile
Data Management, 2007 International Conference on, pages 198-205.
L. Cai, S. Machiraju, and H. Chen. Defending against sensor-sniffing
attacks on mobile phones. In Proceedings of the 1st ACM workshop on
Networking, systems, and applications for mobile handhelds, MobiHeld
’09, pages 31-36, New York, NY, USA, 2009. ACM.

Crossbow Technology Inc. Crossbow-manuals getting started guide.
Technical report, Crossbow Technology, September 2005.

F. Fitzek, M. Pedersen, G. P. Perrucci, and T. Larsen. Energy and link
measurements for mobile phones using ieee802.11b/g. In Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops,
2008. WiOPT 2008. 6th International Symposium on, page 36, april
2008.

Google Inc. Android developer guide: Sensors, 2011.
http://developer.android.com/guide/topics/sensors/index.html [Accessed
on: 2011-12-26].

GSN Team. Global sensors networks. Technical report, Ecole Polytech-
nique Federale de Lausanne (EPFL), 2009.

GSN Team. Global sensor networks project,

http://sourceforge.net/apps/trac/gsn/ [Accessed on: 2011-12-16].
P. Guillemin and P. Friess. Internet of things strategic research roadmap.
Technical report, The Cluster of European Research Projects, 2009.

P. Klasnja, S. Consolvo, T. Choudhury, R. Beckwith, and J. Hightower.
Exploring privacy concerns about personal sensing. In Proceedings of
the 7th International Conference on Pervasive Computing, Pervasive ’09,
pages 176-183, Berlin, Heidelberg, 2009. Springer-Verlag.

G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy. Smart objects
as building blocks for the internet of things. Internet Computing, IEEE,
14(1):44-51, 2010.

N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell.
A survey of mobile phone sensing. Communications Magazine, IEEE,
48(9):140 -150, sept. 2010.

M. Lennighan. Total telecom: Number of phones exceeds population
of world, May 2011. http://www.totaltele.com/view.aspx?ID=464922
[Accessed on: 2011-12-30].

A. Salehi. Design and implementation of an efficient data stream pro-
cessing system. PhD thesis, Ecole Polytechnique Federale de Lausanne
(EPFL), 2010.

H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. Vision and
challenges for realising the internet of things. Technical report, European
Commission Information Society and Media, 2010.

TinyOS Alliance. Tinyos, July 2010. http://www.tinyos.net/ [Accessed:
2011-12-18].

[1]

[2]

[3]
[4]

[5]

[6]

[7] 2011.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

