
Capturing Sensor Data from Mobile Phones using

Global Sensor Network Middleware

Charith Pereral∗†, Arkady Zaslavsky†, Peter Christen∗, Ali Salehi† and Dimitrios Georgakopoulos†

∗Research School of Computer Science, The Australian National University,Canberra, ACT 0200, Australia
†CSIRO ICT Center, Canberra, ACT 0200, Australia

Abstract—Mobile phones play increasingly bigger role in our
everyday lives. Today, most smart phones comprise a wide variety
of sensors which can sense the physical environment. The Internet
of Things vision encompasses participatory sensing which is
enabled using mobile phones based sensing and reasoning. In
this research, we propose and demonstrate our DAM4GSN
architecture to capture sensor data using sensors built into the
mobile phones. Specifically, we combine an open source sensor
data stream processing engine called ‘Global Sensor Network
(GSN)’ with the Android platform to capture sensor data.
To achieve this goal, we proposed and developed a prototype
application that can be installed on Android devices as well as a
AndroidWrapper as a GSN middleware component. The process
and the difficulty of manually connecting sensor devices to sensor
data processing middleware systems are examined. We evaluated
the performance of the system based on power consumption of
the mobile client.

I. INTRODUCTION

Mobile phones have built-in sensors that can be used to

measure different parameters such as motion, position and

various environmental conditions. The sensing capability and

data processing power of mobile phones have been increased

during the past decade. A decade ago, there weren’t any

processors in mobile phones. The industry has evolved and

latest mobile phones comprise 1.4 GHz dual-core processors

and 1GB ram. This enables significant potential to build sensor

networks using mobile phones. One of the major challenges

in sensor networks is deployment of sensors. Deployment of

traditional sensor network requires to bear significant cost

and effort. However, sensors in mobile phones do not require

a deployment. Mobile phones are already in the hands of

5.6 billion [12] people around the world. Therefore, it is

cheap to use these sensors built into the mobile phones.

This fact motivates us to capture sensor data using mobile

phones. Without putting substantial effort into typical sensor

deployment, sensors built-in to the mobile phones can be

utilised to understand mobile users and the environments

around them. The raw data produced by these sensors built-in

the mobile phones need to be collected and processed. Sensor

data stream processing engines provide a solution for this [1].

Internet of Things (IoT) [14] is a concept that is closely

related to and motivated by sensor networks. The European

Union has defined the IoT vision and explained the applica-

tions in detail in [8]. Mobile phones are a critical component

in the IoT as they are capable of performing more computation

than other smart objects [10].

Using mobile phones as sensors has a significant advantage

over unattended wireless sensor networks. We do not need

to put extra effort to power the built-in sensors in mobile

phones. Mobile phones are powered (charged) by human

beings regularly. Furthermore, sensors built into mobile phones

can provide more coverage than static sensors.

The availability of cheap, cost effective and widely available

sensors built-in to mobile phones enable a whole new range of

applications across a wide variety of domains, such as health-

care, smart home and office, social networks, safety, public

parks, shopping malls, environmental monitoring, transporta-

tion and logistics. In addition, it is very easy to distribute ap-

plications for mobile phones. Almost all the mobile platforms

provide easy methods to download and install applications

for mobile phones such as iPhone (App Store iOS), Android

(Android Market), Windows (Windows Phone Marketplace)

and Blackberry (Blackberry App World). This has enabled the

possibility to reach millions of users very easily.

Mobile phone sensing is a fairly new field which emerged

with the increasing sensing capability of modern mobiles

phones. Lane et al. [11] has conducted a survey on mobile

phone sensing. Mobile sensing does raise many question in

term of security and privacy. These two issues are discussed

in detail in [9], [2]. As mentioned earlier, sensor data col-

lection and processing is also an important component in

mobile phone sensing systems. Sensor data stream processing

engines such as Global Sensor Network [6] provides basic

functionalities that required by such a system.

Let’s introduce an application scenario. A farmer visits his

field of crops and collects sensor data from variety of different

sensors deployed. The mobile phone annotates collected raw

sensor data with various context information such as location,

time, etc. and sends them to GSN for storage, analysis, and in-

terpretation. Our main contribution, DAM4GSN architecture,

allows GSN to capture context annotated sensor data from low-

level computational devices such as mobile phones without

porting GSN itself into mobile phones.

The rest of the paper is organised as follows. Section II

presents an overview on sensing capability of the mobile

phones. Section III describes the Global Sensor Network

middleware in brief. A detailed description about the entire

system, including client configuration, server configuration,

and data formats is provided in Section IV. The life cycle

of the developed wrappers is discussed in Section V. Section

VI provides a detailed explanation of wrapper development.

CharithMini
Text Box
Charith Perera, Arkady Zaslavsky, Peter Christen, Ali Salehi, Dimitrios Georgakopoulos, Capturing Sensor Data from Mobile Phones using Global Sensor Network Middleware, Proceedings of the IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, September, 2012, Pages 24-29 (6) More: www.charithperera.net

Finally, Section VIII presents the performance evaluation of

the proposed system.

II. MOBILE PHONE SENSORS

In this research, we focus on the Android platform and

Android enabled mobile phones. Most modern mobile phones

have variety of different sensors built into them. These sensors

can be divided into three main categories: motion sensors

(accelerometer, gravity, gyroscope, linear accelerometer, and

rotation vector), position sensors (orientation, geomagnetic

field, and proximity), and environment sensors (light, pres-

sure, humidity and temperature). Figure 1 shows the sensors

supported by smart phones based on the Android platform 4.0.

Accelerometer

Gravity

Ambient
Temperature

Light

Magnetic
Field

Orientation

Pressure

Proximity

Humidity

Rotation Vector

Gyroscope

 Linear
Acceleration

Fig. 1. Sensors in Mobile Phones

Even though, the Android platform supports twelve different

sensors, the mobile phones may not have all these sensors built

into them. Sensors built into a mobile phone could be varied

depending on the hardware manufacturer. There are few other

sensors built into the mobile phones: microphone as the audio

sensor, camera as the video sensor, digital compass, and Global

Positioning System(GPS) sensors. In this research, we do not

consider these types of sensors. The details of the sensors

supported by the latest Android platform 4.0 are available at

[5]. A description and the unit of measure are also provided

for each raw sensor readings.

Even though the sensing capability of a mobile phone is

limited to few sensors, it can be easily extended by using

Personal Area Network (PAN) technologies such as IrDA,

Bluetooth, Wireless USB, Z-Wave, Near field communication

(NFC) and ZigBee1. PAN technologies can connect additional

sensing devices to the mobile phones.

Access to the sensors built into the mobile phones to retrieve

raw sensor readings are the challenges that we have addressed.

We propose to connect mobile phones to a data stream process-

ing engine. We use Global Sensor Network (GSN) middleware

as our data stream processing engine to accomplish this task.

The advantage to connecting mobile phones to a data stream

processing engine is that, raw sensor data can be queried and

1IrDA [irda.org]; Bluetooth [bluetooth.com]; Wireless USB [usb.org]; Z-
Wave [www.z-wave.com]; Near field communication [nfc-forum.org]; ZigBee
[zigbee.org]

manipulated with other sensors connected to the engine. GSN

allows us to build virtual sensors that can be used to combine

verity of different sensors together to create complex outputs.

The next section briefly describes the Global Sensor Network

middleware.

III. GLOBAL SENSOR NETWORK

The Global Sensor Network (GSN) [1], [13] is a plat-

form aimed at providing flexible middleware to address the

challenges of sensor data integration and distributed query

processing. It is a generic data stream processing engine.

GSN has gone beyond the traditional sensor network re-

search efforts such as routing, data aggregation, and energy

optimisation. The design of GSN is based on four basic

principles: simplicity, adaptivity, scalability, and light-weight

implementation. GSN middleware simplifies the procedure

of connecting heterogeneous sensor devices to applications.

Specifically, GSN provides the capability to integrate, discover,

combine, query, and filter sensor data through a declarative

XML-based language and enables zero-programming deploy-

ment and management. The above reasons lead us to choose

GSN as our data processing engine over other alternative

solutions.

The GSN is based on a container based architecture. A

detailed explanation is provided in [1]. The Virtual Sensor is

the key element in the GSN. A virtual sensor can be any kind

of data producer, for example, a real sensor, a wireless camera,

a desktop computer, a mobile phone, or any combination of

virtual sensors. Typical, a virtual sensor can have multiple

input data streams but have only one output data stream.

A Wrapper is a piece of Java code that does the data

acquisition for a specific type of device. The GSN is capable

of retrieving data from various data sources. Wrappers are

used to accomplish this task. Wrappers transform the raw

data into the GSN standard data model that can be queried

and manipulated later. All the wrapper classes need to extend

the AbstractWrapper class. Typically, third party libraries are

initialised in the wrapper constructor. Each sensor needs to

have a specific wrapper that can be used to retrieve raw sensor

data. In order to connect a Mica2 [3] sensor, for example

the GSN should have a corresponding wrapper that can talk

to Mica2 sensors and retrieve data from it. Currently, the

GSN provides a wrapper for all TinyOS [15] based sensors.

Likewise, in order to connect Android phone’s built-in sensors

to the GSN, it has to have a wrapper that can retrieve raw

sensor data from Android phones. Android Wrapper which

we developed for GSN is around 400 line of code. We discuss

GSN wrappers in general and wrapper’s life cycle in details in

the Section V. We also provide a detailed explanation about the

Android Wrapper in Section VI. The GSN is an open source

middleware platform and implementation is available in [7].

IV. DAM4GSN ARCHITECTURE

We discuss the proposed Data Acquisition Model For GSN

(DAM4GSN) architecture by dividing it into three separate

sections: server configuration, client configuration, and data

formats. The server configuration section explains how the

GSN server needs to be configured in order to collect sensor

data from mobile phones. The client configuration section

explains how the mobile phone needs to be configured in order

to read the sensor data through built-in sensors and send them

to the GSN server. The data format section explains how the

communication between GSN server and mobile phone can be

done and how the data packets are formatted.

Global Sensor Network (GSN) Middleware

Applications

End UsersServices

Fig. 2. Collect Data through Mobile Phones

The overall system architecture is depicted in Figure 2. The

GSN middleware gathers raw sensor data from mobile phones

and organizes them according to the GSN standard data model

and sends data to applications or services when requested.

A. Server Level Configuration

The GSN server configuration that needs to be done in order

to collect sensor data from mobile phones is twofold. First, a

wrapper needs to be developed in order to retrieve data from

mobile devices. The second step is to define a virtual sensor.

Defining a virtual sensor in the GSN server is beyond the

scope of this paper. A detailed description about defining a

virtual sensor is provided in [1], [7], [6]. However, we provide

a segment of a virtual sensor definition in Figure 3. A Virtual

Sensor Definition (VSD) file provides the information to the

GSN that is required to create a Virtual Sensor. This definition

is an XML file that contains a predefined set of elements. Here,

we only focus on the address element as pointed out in the

Figure 3.

<virtual-sensor name="AndroidHandler80" priority="10">

 <streams>
 <stream name="input1">
 <source alias="source1" sampling-rate="1" storage-size="1">
 <address wrapper="android">
 </address>

 </source>

 </stream>
 </streams>
</virtual-sensor>

Fig. 3. Virtual Sensor Definition File

This is the element that tells the GSN which wrapper to use

to retrieve sensor data. Based on this virtual sensor definition,

a virtual sensor will be created and an AndroidWrapper will be

initialised and used to retrieve sensor data to the GSN server.

The communication between the GSN server and client ap-

plication in the mobile phone can be done through a wrapper.

Therefore, we developed a GSN wrapper to accomplish this

task. The communication between the wrapper and mobile

device is based on client-server architecture.

The communication has two phases. Phase (1) communica-

tion happens only once where the client sends metadata to the

GSN server. Then, the GSN server configures the wrapper

based on the metadata and gets ready to accept the raw

sensor data which is constructed by the client using the same

metadata.

After the connection has been established, the client will

start sending sensor data to the GSN server according the

preconfigured frequency. We developed a generic wrapper that

can accommodate any type of sensor reading. For example,

one phone may be configured to sense only temperature. In

another instance, another phone may be configured to sense

temperature, humidity, pressure and accelerometer values. Our

wrapper can handle any of these configurations. The wrapper

can dynamically change its internal data structures to facilitate

any sensing scenario. A detailed description on wrapper devel-

opment is available in [6], [7], [1]. The GSN server procedure

can be explained as follows.

Server Procedure:

Input : ListOfClientConnections(C) = {c1 . . . cn}
ReadTheV irtualSensorDefinition();
Wrapper ←− IdentifytheMatchingWrapper(V SD);
V irtualSensor ←− CreateTheV irtualSensor(Wrapper);
for i := 1 to size(C) step 1 do

ci ←− C{c1 . . . cn};
connection←− isClientsF irstConnection(ci);
do if connection;

metaData←− getMetaData(ci);
createDataStructure(metaData);

else

sensorData←− getSensorData(ci);
mapSensorDataToGSNDataModel(sensorData);

end

end

end

B. Client Level Configuration

Mobile users use different versions of the Android operating

systems in their hand held devices [5]. Therefore, we built

the client application to support all different platforms. When

the application starts running, it automatically identifies the

sensors built into the mobile phone hardware. Each sensor

will be enabled only if it is supported by both hardware and

software layers as shown in Figure 4 (a). Then, the users

can select the required sensors that they wants to be used

for sensing. After selecting the sensors, the client application

requires the GSN server IP address, the port number, and

sensing frequency to be configured in the preferences screen

as shown in the Figure 4 (b). After configuration is done, the

user needs to connect the device to the selected GSN server

via WiFi or 3G.

(a) (b)

Fig. 4. Client Application

The connection will be established based on the metadata

packet sent to the GSN server by the client application.

The details of the metadata packet is discussed in Section

IV-C. After a connection between the GSN server and mobile

application is established, the user can press ‘Start Sensing’

in the options menu to start the sensing service. The client

application will generate and send sensor data packets based

on the selected sensors and the sensing frequency to the GSN

server. The format of the sensor data packet is discussed in

Section IV-C.

Client Procedure:

Input : ListOfSelectedSensors(S) = {S1 . . . Sn}
Output : sensorDataPacket

IdentifySupportedSensors();
S = LetTheUserToSelectSensors();
metaData = GeneratetheMetaDataPacket(S);
connection←− ConnectToGSNServer(metaData);
if connection;

while (UserStopSensing)
sensorData = GenerateSensorDataPacket(S);
SendDataPacketToGSNServer(sensorData)

end

end

C. Data Format

We define a data packet format for the communication

between GSN server and the mobile phone. Our proposed

format consists of two parts: metadata and sensor data. A

Metadata packet is used to establish the connection between

the mobile phone and the GSN server. Figure 5 shows a sample

metadata packet. It consists of twelve Boolean values.

1 1 0 1 1 1 1 1 0 1 0 0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Fig. 5. Metadata Packet

Each index corresponds to a sensor in the mobile phone:

accelerometer (1), gravity (2),gyroscope (3), linear accelera-

tion (4), rotation vector (5), magnetic field (6),orientation (7),

proximity (8),temperature (9),light (10), pressure (11), humid-

ity (12). The Boolean value of the each index is true if the

mobile device is configured to use the corresponding sensor.

For example, Figure 5 shows a sample metadata packet where

the mobile phone is configured to sense using Accelerometer

Sensor, Gravity Sensor, Linear Acceleration Sensor, Rotation

Vector Sensor, Magnetic Field Sensor, Orientation Sensor,

Orientation Sensor, Proximity Sensor, and Light Sensor. Only

the indexes correspond to above sensors have the value true.

The total size of the metadata packet is 12 bits. The metadata

packet size does not vary from devices to device. It is a fixed

size packet.

A full sensor data packet includes all 27 floating point

sensor readings. In contrast to the metadata packet, length of

the sensor data packet can be varied. The length of the packet

can be varied from four bytes (one float value) to 108 bytes

(27 float values). The client application generates sensor data

packet in the same order as the selected sensors in the metadata

packet. Let’s consider the same configuration as previously

explained in metadata.

The client application checks whether the first sensor, ac-

celerometer sensor, is configured to be sensed. If the corre-

spondent value returns true, then the sensor readings related

to accelerometer will be appended to the sensor data packet.

Like wise all the sensors are validated and values are appended

to the sensor data packet and finally sends to the GSN server.

GSN server can correctly understand the sensor data packet

based on the metadata packet in similar way.

V. GSN WRAPPER’S LIFE CYCLE

The life cycle of a wrapper, depicted in Figure 6, begins

with the virtual sensor definition (VSD). When a user defines

a VSD file, it triggers the virtual sensor creation processes.

This process triggers the specified wrapper to be created.

The wrapper that correspond to each stream source is defined

under the address element in a VSD file. This process sends

a Wrapper Connection Request (WCR) to the wrapper repos-

itory in the GSN server. A Wrapper Connection Request is

an object which contains a wrapper name and its initialisation

parameters as defined in the Virtual Sensor. Whenever a WCR

is generated at the virtual sensor loader, it will be sent to the

wrapper repository. Then the following steps are followed:

Look for wrapper instance
matching request

Wrapper instantiation
and initialization Failure

Success

No
instance

found

Instance
successfully
created

Register
stream-source

Query at wrapper
instance

Start
Instance
Found

Fig. 6. Life Cycle of Android Wrapper

• First, wrapper repository looks for a wrapper instance

that matches to the wrapper connection request. If found,

then the stream-source query will be registered with the

wrapper and returns true. Sensor data will be captured

based on the registered query.

• If there aren’t any WCR in the repository, the wrapper

repository creates a new appropriate wrapper object.

Then, the newly created object would be added to the

wrapper repository. Finally, the stream-source query will

be registered with the wrapper and returns true.

• If there aren’t any WCR in the repository and wrapper

repository does not have an appropriate wrapper it returns

false. The virtual sensor loader fails to load a virtual

sensor if at least one of the stream sources required by

an input stream fails. For example, if the user define a

virtual sensor as depicted in the Figure 3 and if the GSN

wrapper repository does not have an Android wrapper,

then the virtual sensor would fail.

VI. ANDROID WRAPPER

In this section we discuss the Android wrapper we created.

We provide the details about how to create a wrapper accord-

ing to the GSN standards. A code segment of the Android

wrapper is presented in Figure 7. Our objective of the code

demonstration is to explain the few methods that are essential

in wrapper creation. The depicted code can be explained as a

template for wrapper creation.

All the wrappers need to extend the Java class

gsn.wrapper.AbstractWrapper. Therefore, all the wrappers are

subclasses of AbstractWrapper. There are four methods that

need to be implemented by the subclasses. Those methods are

numbered 1-4 in the Figure 7. The methods are 1. boolean

initialise(), 2. void finalise(), 3. String getWrapperName(), 4.

DataField[] getOutputFormat()

public class EmptyWrapper extends AbstractWrapper {
 public boolean initialize () {
 1. Wait for the Client to send meta data packet
 2. Analyse the Meta data packet and identify the enabled
 sensors in the client side
 3. createDataFieldCollection (enabledSensors)
 return true;
 }
 public void run () {
 while (isActive()) {
 1. Wait for the Client to send Sensor data
 2. mapSensorData(sensorData, enabledSensors)
 …..........................
 StreamElement streamElement = new StreamElement (...);
 postStreamElement(streamElement)
 }
 }
 public DataField[] getOutputFormat () { …. }
 public String getWrapperName() {…. }
 public void finalize () {….}
}
private DataField[]
 createDataFieldCollection(boolean[] enabledSensors) {...}
private void
 mapSensorData(String[] sensorData, boolean[] enabledSensors) {..}
}

1

2

3
4

5

6

7

Fig. 7. Android Wrapper

A new thread is created for each wrapper in GSN. After

creating the wrapper object, initialise() method is called as

shown in number (1). All the communication using third party

libraries should happen within this method. For example, a

camera wrapper may talk to a third party API in order to talk

to the camera and retrieve the camera images. In the Android

wrapper we developed, initialise() method creates a socket and

waits until the client mobile phone send the metadata packet.

Metadata packet is required to determine the data structure.

Once the meta packet is received, it is analysed and identified

the client side sensing capability. This will determine the

sensors available in the client mobile phone. This information

is passed into the createDataFieldCollection() as shown in

number (6).

The method finalise() is called at the end of the wrappers

life cycle. This is the last chance you get to release all

the resources. This method can be used to close all the

connections we established with the outer world. Concretely,

all the resources acquired during the initialise() method should

be released here. For example, if you open a file in the

initialisation phase, you should close it in the finalisation

phase. In the Android wrapper, all the client communication

resources such as sockets and ports are released in this method.

The method getWrapperName() returns the name of the

wrapper. The method getOutputFormat() returns a DataField

object that provides a description of the data structure pro-

duced by the wrapper.

The run() method is responsible for retrieving sensor data

from sensors and forwarding them to the GSN middleware.

In the Andorid wrapper, run() method waits until the mobile

phone clients send the sensor data. Once the data is received,

mapSensorData() method maps the newly received data to the

GSN data model structure which is created in the wrapper ini-

tialisation phase. However, the packet format of the metadata

and sensor data packet need to be matched. After the data has

been inserted into the GSN data model, querying, filtering and

other functionalities provided by GSN can be done over the

mobile phone sensor data.

VII. PERFORMANCE ADVANTAGE

There are several advantages in our approach over the

existing GSN communication model.

• GSN assumes that sensors are connected to a server

that is running GSN middleware. However, installing

and configuring GSN in many computers would be a

overwhelming task. GSN middleware requires certain

amount of processing power [13] as well. In contrast,

our approach demonstrated how the sensor data can be

captured through a client device (in our scenario, a mobile

phone) and send them to the GSN server over a network.

In GSN side we only need to develop a single wrapper

that can transform sensor data packets into GSN model as

demonstrated in the AndroidWrapper. As we do not port

(install) GSN into mobile devices, scalability is preserved

at the server level, probably in the cloud.

• Any form of update may only be required to be done

in the client side (i.e in mobile phones or computers).

No update is required in GSN server. In contrast, if we

connect a sensor such as SunSPOT to the GSN server

via wired connection, then we have to develop a separate

SunSPOT wrapper for GSN, which we may need to

manually develop it, compile it and then attach it to the

Fig. 8. Performance Evaluation. All the sensors available in the mobile phone are used for the evaluation. Energy consumption in mJ per minute

GSN server. Any requirement of update may need to

perform the above process repetitively in the GSN server.

• Sensing capability of the mobile phones can be extended

by attaching additional hardware components. It is not

required to do any changes in wrappers in GSN server.

• Our approach can be used by any mobile device or

low end computing devices (e.g. iPhone, iPad, Windows

phone, Blackberry, etc.). The only capability that a mobile

device need to have is sensor packet generation and

network communication. These functionalities are com-

monly available in modern devices.

VIII. EVALUATION

We conducted all evaluations and experiments using a

Samsung Galaxy S mobile phone which runs Android platform

2.3 and PowerTutor2 app. GSN instance was installed on

a laptop with Intel Core i7 CPU and 6GB ram. Network

communications are through CSIRO ict center wifi network.

Each sensor consumes different amount of power. Accelerom-

eter, gravity, linear acceleration sensors consume 0.20 mA

(each). Further, proximity and light sensors consume 0.75 mA

(each). Magnetic field sensor consumes 4.00 mA. In addition,

linear acceleration and orientation sensors consume 4.20 mA

(each). According to above information, rotation vector sensor.

magnetic field sensor and orientation sensor consume 21 times

more power than accelerometer, gravity, linear acceleration

sensor and 5.6 times more power than proximity and light

sensors.

The three graphs depicted in Figure 8 shows how the energy

cost varies with the sampling rate. According to the graph,

network communication cost is always higher than the CPU

energy cost. Therefore, network communication parameters

such as sampling rate should be carefully planned in order

to utilise the sensors built into the mobile phones in an

efficient manner. Further, data compression techniques can

be employed to reduce the amount of data to be sent to the

GSN. Further evaluation on energy consumption based on data

packet size, distance, sampling rate is presented in [4].

IX. CONCLUSION

In this research work, we identified how the sensor data

can be captured using mobile phones. In our approach, we

evaluate the process of connecting a sensor to a data processing

engine called GSN. AndroidWrapper was developed in order

to retrieve sensor data from mobile phones. DAM4GSN allows

2ziyang.eecs.umich.edu/projects/powertutor

GSN to collect sensor data from low-level computational

devices such as mobile phones without porting GSN itself into

mobile phones. However, it was realised that each and every

low-level sensor, that does not have computational capabilities,

should have a wrapper talking to a GSN server in order to

collect data.

Developing such wrappers is a time consuming and te-

dious job. Therefore, in future, we intend to conduct our

research towards automating wrapper development. The pro-

posed DAM4GSN architecture will be built into the GSN

middleware in the future releases.

REFERENCES

[1] K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for data
processing in large-scale interconnected sensor networks. In Mobile

Data Management, 2007 International Conference on, pages 198–205.
[2] L. Cai, S. Machiraju, and H. Chen. Defending against sensor-sniffing

attacks on mobile phones. In Proceedings of the 1st ACM workshop on

Networking, systems, and applications for mobile handhelds, MobiHeld
’09, pages 31–36, New York, NY, USA, 2009. ACM.

[3] Crossbow Technology Inc. Crossbow-manuals getting started guide.
Technical report, Crossbow Technology, September 2005.

[4] F. Fitzek, M. Pedersen, G. P. Perrucci, and T. Larsen. Energy and link
measurements for mobile phones using ieee802.11b/g. In Modeling and

Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops,

2008. WiOPT 2008. 6th International Symposium on, page 36, april
2008.

[5] Google Inc. Android developer guide: Sensors, 2011.
http://developer.android.com/guide/topics/sensors/index.html [Accessed
on: 2011-12-26].

[6] GSN Team. Global sensors networks. Technical report, Ecole Polytech-
nique Federale de Lausanne (EPFL), 2009.

[7] GSN Team. Global sensor networks project, 2011.
http://sourceforge.net/apps/trac/gsn/ [Accessed on: 2011-12-16].

[8] P. Guillemin and P. Friess. Internet of things strategic research roadmap.
Technical report, The Cluster of European Research Projects, 2009.

[9] P. Klasnja, S. Consolvo, T. Choudhury, R. Beckwith, and J. Hightower.
Exploring privacy concerns about personal sensing. In Proceedings of

the 7th International Conference on Pervasive Computing, Pervasive ’09,
pages 176–183, Berlin, Heidelberg, 2009. Springer-Verlag.

[10] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy. Smart objects
as building blocks for the internet of things. Internet Computing, IEEE,
14(1):44–51, 2010.

[11] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell.
A survey of mobile phone sensing. Communications Magazine, IEEE,
48(9):140 –150, sept. 2010.

[12] M. Lennighan. Total telecom: Number of phones exceeds population
of world, May 2011. http://www.totaltele.com/view.aspx?ID=464922
[Accessed on: 2011-12-30].

[13] A. Salehi. Design and implementation of an efficient data stream pro-

cessing system. PhD thesis, Ecole Polytechnique Federale de Lausanne
(EPFL), 2010.

[14] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. Vision and
challenges for realising the internet of things. Technical report, European
Commission Information Society and Media, 2010.

[15] TinyOS Alliance. Tinyos, July 2010. http://www.tinyos.net/ [Accessed:
2011-12-18].

