
Citation: Padmasiri, H.;

Shashirangana, J.; Meedeniya, D.;

Rana, O.; Perera, C.; Title. Sensors

2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Sensors for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Automated License Plate Recognition for Resource Constrained
Environments

Heshan Padmasiri 1 , Jithmi Shashirangana 1, Dulani Meedeniya 1, Omer Rana 2, and Charith Perera 2.∗

1 Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka
2 School of Computer Science and Informatics, Cardiff University, United Kingdom
* Correspondence: pererac@cardiff.ac.uk

Abstract: The incorporation of deep-learning techniques in embedded systems has enhanced the 1

capabilities of edge computing to a greater extent. But, most of these solutions rely on high-end 2

hardware and often require a high processing capacity, which cannot be achieved with resource- 3

constrained edge computing. This study presents a novel approach and a proof-of-concept for a 4

hardware-efficient automated license plate recognition system for a constrained environment with 5

limited resources. The proposed solution is purely implemented for low-resource edge devices and 6

performed well for extreme illumination changes such as day and nighttime. The generalisability 7

of the proposed models has been achieved by using a novel set of neural networks for different 8

hardware configurations based on the computational capabilities and low cost. The accuracy, energy 9

efficiency, communication, and computational latency of the proposed models are validated using 10

different license plate datasets in the daytime and nighttime and also in real-time. Meanwhile, the 11

results obtained from the proposed study have shown competitive performance to the state-of-the-art 12

server-grade hardware solutions as well. 13

Keywords: Edge Computing, Resource Constrained Devices, Energy Efficiency, Low-cost, Night 14

Vision 15

1. Introduction 16

The emergence of edge computing has unveiled an exceptional proliferation of computer- 17

intensive applications for smart cities [1,2] and smart homes [3] for different domains such 18

as security [4], city parking [5] and traffic management [6]. Most of these modern systems 19

involve capabilities beyond traditional computing by embedding edge intelligence to en- 20

able self-learning solutions including machine learning and deep learning [7–9]. Generally, 21

edge-based solutions tend to be reliable and efficient due to the associated on-device deci- 22

sion making and data computing inclinations. However, edge computing inherits a new set 23

of challenges in terms of resource management, data accumulation, and energy consump- 24

tion [10,11]. As opposed to traditional internet of things (IoT) networks, edge computing 25

minimizes the network load, thus reducing the system latency. For instance, real-time ap- 26

plications like vehicle license plate identification in smart cities usually have higher latency 27

values [9]. However, with edge computing technology, these can be processed at the edge 28

without sending the data to a central cloud [10,11]. Hence, it is increasingly important to 29

put basic timely computations approximate to the physical system, as it reduces the latency 30

of the overall system in multiple times. 31

This paper proposes an Automated License Plate Recognition (ALPR) solution for 32

edge computing with resource constrained environments, which can lead to support smart 33

city development and management processes. Although ALPR is a well-established area in 34

the domain of image processing, research on ALPR is still challenging with the associated 35

constraints in the environment such as varying weather conditions, plate variations across 36

regions, vehicle motion, distorted characters, dirty plates, shadow and reflection [9]. More- 37

over, most of the existing ALPR solutions limited to execution in server-grade hardware 38

with nearly unlimited resources and limited to daytime performance. Thus, currently, 39

Version February 3, 2022 submitted to Sensors https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0000-0000-000X
https://www.mdpi.com/journal/sensors


Version February 3, 2022 submitted to Sensors 2 of 28

there has been less attention paid to build systems that work efficiently in constrained 40

environments targeting low cost, energy efficiency, less computational power requirements, 41

remote location deployments and work in night vision. The technological developments of 42

deep learning techniques can be improved to use in edge devices to provide an efficient 43

solution for ALPR in resource constrained environments. 44

We present an approach and a proof-of-concept prototype for hardware-efficient 45

ALPR at nighttime, while adhering to several constraints in terms of energy efficiency, 46

resource utilization, low cost, low-latency communication and computation as the novel 47

contributions. The proposed ALPR system can operate at nighttime without any visible 48

additional illumination and require no internet connection for operation. Consequently, 49

the system is fully implementable on low power edge devices like Raspberry Pi 3b+ and 50

operated completely with a battery that lasts long due to the energy-saving strategies 51

implemented in the solution. Therefore, the system recognizes license plates in real-time 52

both day and night-time, and can be deployed in rural or forest areas, where there is no 53

stable internet connectivity or a direct power grid, which is one of the main contributions 54

of this study. 55

Our methodology uses deep learning based Neural Architecture Search (NAS) strate- 56

gies to discover a novel set of hardware-efficient neural networks for autonomous manage- 57

ment of license plate detection and recognition process for edge devices with low resources. 58

The proposed differentiable architecture search is based on FBNet (Facebook-Berkeley-Nets) 59

[12] and PC-DARTS (Partially-Connected Differentiable architecture search) [13]. These 60

algorithms seek effective architectures without comprising the performance, by sampling a 61

small part of a super-network to reduce the redundancy in exploring the network space. 62

Thus, compared to the general approaches such as reinforcement learning, and evolution- 63

ary algorithms, the differentiable architecture search proposed in this study provides a 64

significant reduction in computational power required to search neural networks. 65

Although neural networks for license plate recognition is a well-explored area for 66

the daytime images with the server-grade hardware specification, we provide a solution 67

for ALPR with limited resources in constraint environments. Moreover, compared to the 68

existing studies as stated in Table 1, to the best of our knowledge, we provide a novel 69

contribution to design and develop models to detect and recognize license plates using 70

low resource edge devices with different configurations. Thus, the implementation of the 71

NAS based data engineering techniques in IoT applications for hardware-efficient ALPR 72

solutions, is one of the scientific contributions of this study. Therefore, the main focus of 73

this study was to design and develop neural network based models that are competitive 74

with state-of-the-art models such as RPNet (Roadside Parking Net) [14], that are designed 75

for server-grade hardware, consumes more memory, and are computationally expensive to 76

execute on edge devices. 77

However, it is challenging to train the discovered deep neural networks to recognize li- 78

cense plates due to the lack of a large, annotated and diverse dataset. In order to circumvent 79

this issue, we use a synthetic data generation process based on image-to-image translation 80

techniques to convert daytime RGB (Red-Green-Blue) images into thermal infrared (TIR) 81

images. The presented data synthesising process is inspired by the related work that has 82

shown promising results in license plate recognition, as given in Table 2. Thus, we provide 83

synthetic data generation approaches to mitigate the issue with the scarcity of a large and 84

diverse nighttime license plate data set for the learning process of deep learning models. 85

Accordingly, this study uses 200,000 daytime license plate images from the CCPD data 86

set Chinese City Parking Data set (CCPD) [14], and the corresponding nighttime images 87

generated synthetically. Also, we use 100 nighttime images captured in a real environment 88

showing the possibility of using the proposed approach for different other licence plate 89

data sets. 90

The prototype of our solution simulates a case study of an animal poacher vehicle 91

detection problem. At present, Wildlife has faced a capacious and prejudicial issue that 92

has caused a countable number of wild animals to lose their lives. Most of the existing 93



Version February 3, 2022 submitted to Sensors 3 of 28

approaches to minimize illegal hunting of wild animals, rely on manual surveillance from 94

the camera feeds. Poacher vehicle detection system uses modern image processing and 95

deep learning techniques to detect poacher vehicles while tracking their license plate 96

numbers and sending the detected vehicle details to authorized parties through SMS. It has 97

been noticed that poachers arrive mostly at nighttime since the poacher vehicle detection 98

system is designed to function at nighttime as well. The case study environment contains 99

several constraints. This system relies on battery power only, thus the power consumption 100

should be minimized. Since there is no internet connectivity in the wild, SMS is the only 101

possible communication method, where images can be stored for later prosecution material. 102

Also, the system should be deployed in an unnoticeable way to the poachers. Thus, the 103

proposed ALPR solution considers the following requirements. 104

• The system executes autonomously in real-time on an edge platform with constrained 105

memory and computational capabilities. 106

• The system is feasible, low cost and energy-efficient to be deployed in the wild or 107

remote areas, where there is no reliable internet connection or a power grid. 108

• The system operates at nighttime without additional lighting that is visible to the 109

naked eye. 110

Further, the solution we present can be used to develop smart city based applica- 111

tions such as identifying fraudulent vehicles and overcome security challenges with low 112

resources in a cost effective way. Thus, supports energy-efficient and low-latency commu- 113

nication and computation. Therefore, the novel approach we proposed directs towards the 114

future perspective in edge computing. 115

The rest of the article is organized as follows. Section 2 reviews the literature in the 116

field of automatic license plate recognition systems in embedded platforms and high-end 117

serve-grade hardware. The design overview of the proposed solution is presented in 118

Section 3. Section 4 analyses the results, and Section 5 discusses the findings. Section 6 119

concludes the study. 120

2. Background and Related Studies 121

2.1. Overview of LP Recognition Approaches 122

Over the time, many research studies have addressed Automated License Plate Recog- 123

nition (ALPR). Yet, most of these solutions are designed to be executed on server-grade 124

hardware with sufficient resources. In early stages of ALPR domain, most of the studies 125

applied well-defined traditional computer vision techniques such as edge detection [15–18], 126

genetic algorithms [19], and fuzzy logic [20] for both license plate detection and recogni- 127

tion. Although these solutions were faster, simple, and lightweight, they still lacked better 128

performance when complex scenarios are involved. These techniques were often sensitive 129

to noise, illumination variations and were mostly unable to place the license plates when 130

they are inclined or deformed. 131

However, with the development of data engineering techniques, researchers have 132

considered machine learning and deep learning based solutions for ALPR [21–24] with 133

the aim of achieving high performance than the prevailing traditional solutions. However, 134

these solutions consume more resources and processing power when compared to classical 135

methods. In deep learning, the problem of automatic license plate recognition was consid- 136

ered as a general object detection and a character recognition problem. Therefore, some 137

researchers [25,26] used generic object detection models like YOLO [27] to detect the license 138

plate. However, these methods were more robust to noise, illuminations and inclinations of 139

the plates thus eliminating most of the limitations in the classical methods. 140

2.2. LP Recognition in Constrained Environment 141

Computer vision applications are often developed to replace human in harsh, danger- 142

ous or tedious situations to handle numerous applications. Such harsh environments often 143

raise many challenging conditions which are hard to tackle in naive ways. Among them, 144

night vision is a pivotal area in most of the safety-critical applications like surveillance, 145



Version February 3, 2022 submitted to Sensors 4 of 28

automotive safety [28], military defence systems [29]. Traditionally, there are common 146

ways to capture nighttime images such as low-light-level (image-intensified) cameras, and 147

thermal infrared (TIR) cameras. Nevertheless, the widely used approach in most modern 148

applications is thermal imaging. These thermal images are sensitive to the infrared region 149

of the electromagnetic spectrum and they use variations in the temperature levels of the 150

objects and the background to distinguish the objects in a TIR image. The main advantage 151

of using TIR images is that they are robust against any illumination variations and can also 152

be used to capture images at night-time in complete darkness. They also produce quality 153

images with no or few distortions during difficult weather conditions. However, thermal 154

cameras are quite costly, and the scarcity of TIR datasets limits most of its applications. 155

Therefore, a practical solution to mitigate this issue is to convert the available RGB (Red 156

Green Blue) image datasets to TIR images. 157

A systematic study of converting RGB images to TIR was reported by Zhang et al. 158

[30]. A large set of synthetic data generated by this work has provided accurate results 159

than a small dataset with real TIR images in the field of object tracking. They have shown 160

that a combination of real TIR images and the generated synthetic data gives the best 161

results while tracking objects. They have used mainly two image-to-image translation 162

methods called pix2pix [31] and cycleGAN [32]. Besides, some applications use filters like 163

grey-scaling to transform daytime images to night vision images. In another related study, 164

Ismail et al. [33] have used an effective object detection method called Cascade classifier to 165

function at night-time and rainy weather conditions. They have enhanced the images using 166

the top-hat transform operation. Another novel feature-based algorithm has presented 167

in [34] to localize license plates even in complex situations like different illumination and 168

weather conditions. They have used an edge-based approach based on vertical edges and 169

morphological operations. This study has shown an accuracy of 96.5% and has created a 170

database with 269 images in challenging environments. Multiple intensity IR-illuminator 171

based license plate detection in the night-time has presented in [35]. Although Infrared 172

light allows detecting license plates under different illuminations, it does not perform well, 173

when the distance from the target is changing. The authors have addressed this issue 174

using a multiple intensity IR-illuminator that detects license plates at different levels of 175

illuminations and distances and showed an accuracy of 98%. 176

Further, except for changing illuminations, some hazardous weather conditions such as 177

rain, fog, snow have always made the license plate recognition problem complex. However, 178

not many ALPR models are robust to these challenging situations in outside uncontrolled 179

environments. Azam and Islam [36] have proposed such an ALPR algorithm to process 180

license plates in rainy and foggy weather by removing rain streams and fog from the 181

images captured. Accordingly, the complexity of the license plate detection task is greatly 182

influenced by different environmental conditions. Although many studies have addressed 183

license plate detection and recognition, only a few can be applied to an uncontrolled 184

complex situation like nighttime illumination, and extreme weather conditions [9]. In 185

another point of view, even though, the retro-reflective nature of license plates makes 186

them readable even at night, still, it is challenging to accurately locate a license plate at 187

nighttime, for reasons such as the insufficient amount of light to acquire the details. The use 188

of an illuminator can be used to solve this issue to some extent. In addition, the emission 189

of too much light from headlights also causes difficulty in reading license plates, as the 190

plate reflects more light and the resulted brightness makes it hard to extract the data on 191

the licence plate. Thus, the related applications with computer vision techniques face 192

challenges in situations such as changing weather conditions, issues with camera and 193

equipment, moving object detection, demand for excessive resources and power. 194

2.3. ALPR using Edge Devices 195

Edge computing enables offloading computational tasks to perform at the edge devices 196

in contrast to the traditional social sensing approaches [37]. With the growth of data being 197

produced at edge devices, it is becoming increasingly difficult to carry out all the necessary 198



Version February 3, 2022 submitted to Sensors 5 of 28

Table 1. Summary of the related LP recognition studies on edge platforms

Related
study

Description Techniques Type
(D/N/S)

Performance

[44] Use a NVIDIA Jetson TX1 embedded board with GPU.
Provides LP recognition without a detection line. Not
robust to broken or reflective plates.

AlexNet (CNN) D AC=95.25%

[45] Real-time LP recognition on an embedded DSP plat-
form, Operation under daytime condition with suf-
ficient daylight or artificial light from street lamps,
High performance with low image resolution.

SVM D F = 86%

[46] Real-time LP recognition on GPU powered mobile
platform by simplifying a trained neural network de-
veloped for desktop/ server environment.

CNN D,N,S AC=94%

[47] Implemented in a Raspberry Pi3 with a Pi NoIR v2
camera module. Robust to angle, lighting and noise
variations, Free from character segmentation to re-
duce errors in character mis-segmentation.

CNN D,S AC=97%

[48] A portable ALPR model trained on a desktop com-
puter and exported to an Android mobile device.

CNN D AC=77.2%

computations in the cloud with an acceptable latency. Edge computing supports solves this 199

issue by merely increasing the computational capabilities of the edge devices, thus reducing 200

the communication cost and the application latency. Moreover, it has become possible to 201

due to the increase in computational performance in edge devices without significantly 202

compromising energy efficiency [38]. 203

Another reason to increase the computational capabilities in edge devices is the devel- 204

opment of hardware accelerators for edge devices. These are dedicated hardware compo- 205

nents such as Graphical Processing Units (GPUs) that enhance the graphical performance 206

of the computer and Tensor Processing Units (TPUs) that accelerates application-specific 207

integrated circuit (ASIC), that are used to improve performance in certain parts of programs, 208

thus lessen the execution time for deep neural networks. Such accelerators had been used 209

in large servers in the cloud environment for a relatively long time. However, large energy 210

efficiency can be achieved on edge devices by applying these accelerators, as it produces a 211

large increase in the rate of computation for every watt of power consumed. 212

Data processing within edge devices, without moving computational loads for cloud 213

services, has clear advantages. For instance, Hochstetler et al. [39] have shown that a neural 214

network can be speedup by a factor of 1137% by adding an Intel® Movidius™ Neural 215

Compute Stick (NCS), which is an accelerator that draws a maximum of 2.5W of power 216

to a Raspberry Pi 3B that has a maximum power draw of 6.7W execution of MobileNet 217

[40]. That is a large performance increase compared to a power increase of less than 40%. 218

Such accelerators allow the execution of computations that would otherwise require cloud 219

servers on edge devices. Moreover, Yi et al. [41] and Ha et al. [42] have demonstrated the 220

improvements in response time by shifting computations to the edge devices. Additionally 221

by minimizing the amount of data that needs to be transmitted Chun et al. [43] have 222

shown up to 40% improvement in energy consumption can be achieved by shifting to edge 223

computing. 224

In a related study of license plate recognition on embedded systems, Lee et al. [44] 225

have proposed an ALPR system to detect Korean license plates on am NVIDIA Jetson 226

TX1 embedded board. They have used a simple convolutional neural network (CNN) 227

architecture called "AlexNet" and claimed a high recognition accuracy of 95.24%, but on 228

a small dataset with 63 input images. Another study by Luo et al. [49] have designed a 229

low-cost, high-speed, real-time embedded ALPR system based on a Digital Signal Processor 230

(DSP). In this solution, they have ensembled a variety of peripheral modules to fulfil several 231

requirements such as memory, input image acquisition, and networking etc. Nevertheless, 232

the proposed solution is claimed to consume less power, high speed and precise enough 233

to perform real-time license plate recognition in practical applications. Rezvi et al. [46] 234

have proposed another solution to detect Italian license plates on a mobile platform by 235



Version February 3, 2022 submitted to Sensors 6 of 28

simplifying the architectures of two different pre-trained CNNs for license plate detection 236

and recognition. However, this simplification flow introduces a trade-off between the 237

accuracy and the execution time. Thus, a decrease in accuracy is expected regarding the 238

network simplification process. Moreover, they have examined the system on two different 239

GPU environments, such that a desktop workstation equipped with a Quadro K2200 GPU 240

card and a powerful Jetson TX1 embedded board. In both environments, the simplified 241

networks show lesser execution time than the original networks. Also, by converting the 242

trainable parameters from double to float, they have reduced the memory consumption of 243

both plate and character classifiers by half. However, this indeed has reduced the accuracy 244

of the simplified architectures when compared to the original networks. 245

Accordingly, many solutions for license plate detection and recognition have been 246

discussed extensively in the literature [9]. Most of the prevailing solutions in the domain 247

of ALPR have addressed unrestricted environments such as a desktop computer with 248

powerful processors. These solutions are designed to achieve maximum accuracy while 249

assuming the availability of sufficient computational resources. However, this assumption 250

does not valid for edge devices such as Raspberry Pi. Such environments often demand a 251

small model with low complexity and low-resolution input images. One likely explanation 252

for the low popularity of license plate detection and recognition solutions on the edge is the 253

difficultly of handling the complexity of the computations in the limited resources in the 254

edge devices. Furthermore, these ALPR solutions are expected to be effective and efficient 255

to satisfy the real-time constraints of an embedded platform. 256

Table 1 states a summary of the selected existing edge-based solutions for license 257

plate recognition with day time (D), night time(N) and synthesised (S) data. Most of 258

the related studies have been implemented on modern hardware settings, and may not 259

execute on edge devices with limited resources. They were tested on powerful machines 260

with powerful GPUs [44,46,50,51]. In addition, a few studies have provided solutions for 261

embedded platforms with low resources [47]. Although, the accuracies of the proposed 262

models do not outperform the existing server-grade models like RPNet [14] and TE2E [52] 263

that require powerful GPUs, our aim of this study is to show the competing results of the 264

proposed models that can be run on edge devices with limited resources. At the same 265

time, the presented mid-tier and high-tier models show superior performance to licence 266

plate detection using Yolo-V3 [53,54]. This shows that our models are competitive with the 267

existing state-of-the-art solutions in terms of accuracy. 268

Moreover, most of the studies have considered only daytime images [44,45] and 269

only a few studies have considered nighttime and synthesised data [46]. Considering 270

the challenges and limitations in the existing studies, we present a family of models 271

based on NAS are designed for different hardware-tiers of edge devices, in a way that 272

the complexities of the proposed models are relatively low compared to server-grade 273

models. Our solution can execute entirely on edge devices such as Raspberry pi with 274

limited memory and power constraints, showing competing results as stated in Section 275

4.3. Also, our solution has been tested for both daytime, synthetic, real nighttime data, and 276

shown the best accuracies of 99.87%, 94.%, 98.82%, respectively, as given in Table 6. 277

In our previous study [38], we have discussed the architecture of the Lite-LPNet 278

models in detail. As the next phase, this paper mainly describes the hardware circuit 279

configurations from the deployment point of view, synthetic data generation process, 280

stochastic super network implementation and the Bi-level optimization in Section 3, as the 281

scientific contribution. 282

2.4. ALPR with Synthetic and Night time Images 283

Several studies have used the synthesised image for both daytime and nighttime 284

license plate recognition with promising results. Table 2 shows the existing studies that 285

have used nighttime (NT) and synthetic (Syn.) images. The performance metrics include 286

accuracy (AC), false negative (FN), recall (R), average precision (AP) and F-score (F). Most 287

of these studies were implemented on server-grade hardware settings. The study by Wu 288

MDPI
Highlight

MDPI
Highlight



Version February 3, 2022 submitted to Sensors 7 of 28

Table 2. Comparison of studies with synthetic and night time images

Study NT Syn. Synthesised method Performance

[55] X GAN based AC=84.57%
[57] X GAN based AC=91.5%
[58] X Augmentation (rotation, size and noise) AC=62.47%
[56] X Augmentation, superimposition, GAN

based
AP=99.32%

[59] X Illumination and pose conditions R=93%
[50] X Random modifications (colour, blur,

noise)
AC=99.98%

[51] X X Random modifications (colour, depth) AC=85.3%
[60] X X Intensity changes FN=1.5%
[46] X X Illumination and pose conditions AC=94%
[61] X AC=96%
[62] X AC=96.9%
[63] X AC=93%
[14] X AP=95.5%
[24] X F = 98.32%
[64] X AC=95.7%
[65] X AC=93.99%
[20] X AC=92.6%
[66] X AC=86%
[67] X AC=96.2%

et al. [55], have achieved accuracy improvement by using synthetic data and fine-tuning 289

with a limited number of real data. However, the results depend on many factors such as 290

the type of the dataset, optimization methods and used hyperparameters in deep learning 291

based models. In [56], the best performing models have a large ratio of synthesized data 292

using techniques such as CycleGAN, which strengthens the usefulness of the approach. In 293

this study, our data synthesizing method is inspired by the Generative Adversarial Network 294

(GAN) and we used GAN based pix2pix [30,55], as describe in Section 3.2. Moreover, several 295

studies have used nighttime images in LP recognition. Considering the performance values, 296

it can be observed that synthesized nighttime images have shown better results as well. 297

However, they were not focused on implementation with low resource settings, as we have 298

considered in this study. 299

3. System Design and Methodology 300

3.1. Design Aspects of the Proposed ALPR System 301

The proposed system design consists of three main modules: input module, main 302

processing module, and communication module as shown in Figure 1. The input module 303

captures the vehicle images and feed them to the main processing module. Meanwhile, the 304

main processing module performs the core functions of the system, which are license plate 305

detection and recognition. Upon the retrieval of results from the license plate recognition 306

stage, the communication module handles the data communication between the ALPR 307

system and its operators. Figure 2 shows the hardware stack of the our solution. The 308

corresponding hardware specifications are given in Section 3.1.1. 309

3.1.1. Cost Effective Mobile-sensing Data Communication Specifications 310

Raspberry Pi 3 Model B+ 311

We used Raspberry Pi 3 Model B+, which is a well balanced single-board computer 312

as the default low-cost edge platform since it represents the middle ground of most of 313

the product solutions. It can execute deep learning models while being both relatively 314

inexpensive and power-efficient, with 4 Cortex-A53 64-bit cores clocked at 1.4 GHz and 315



Version February 3, 2022 submitted to Sensors 8 of 28

Figure 1. Overview of the proposed model

Figure 2. Hardware stack of the proposed solution

1 GB of LPDDR2 RAM [68]. While the original Model B supports Bluetooth 4.1, B+ also 316

advances its support for Bluetooth 4.2. The Model B+ also has a dual-band wireless antenna, 317

supporting 2.4GHz and 5GHz 802.11 b/g/n/ac Wi-Fi. 318

Raspberry Pi Zero 319

We also used Raspberry Pi Zero, which consists of 1 GHz single-core processor and 320

512 MB of RAM [68]. Although the Raspberry Pi Zero model is not as powerful as the 321

Raspberry Pi 3 Model, it is cheaper, power-efficient and smaller in model size than the 322

Raspberry Pi 3. Thus, Raspberry Pi Zero is used as an edge platform for situations, where 323

the Raspberry Pi 3 is expensive or consumes more power. However, with comparatively 324

limited computing capabilities this unit cannot run complex models, like those on the 325

Pi 3. Thus, the Raspberry Pi Zero module represents the low-end edge devices in our 326

experiments. 327

Intel Neural Compute Stick 2 328

The Intel® Neural Compute Stick 2 (Intel® NCS2) unit executes server-grade deep 329

learning models at the edge level power consumption. It consists of an Intel Movidius 330

Myriad X Vision Processing Unit and 4 GB of RAM. With this accelerator, a Raspberry 331

Pi can run complex models as a GPU or a TPU used in a server environment. Therefore, 332

Raspberry Pi 3 equipped with an Intel® NCS2 represents the high-end edge devices in our 333

experiments [69]. 334

Raspberry Pi Camera Module 335

Raspberry Pi Camera module is intended to capture both still images and high- 336

definition videos. The original Raspberry Pi Camera Module has an effective resolution of 337



Version February 3, 2022 submitted to Sensors 9 of 28

5 Mega-pixels and supports video recording at 1080@30fps, 720p@60fps and Vga@90fps. 338

Later, in the year 2016, 8 Mega-pixel Camera Module v2 was released and currently, the 339

latest version has a high-quality resolution of 12 Mega-pixels. Both early versions supported 340

visible light and infrared versions and however, there is no infrared version for the latest 341

12-Megapixel model. But yet, this High-quality camera uses a Hoya CM500 infrared filter 342

and can be removed if needed. The camera module can be connected to Raspberry Pi via 343

Camera Serial Interface (CSI) port and can be accessed via Multi-Media Abstraction Layer 344

(MMAL) and Video4Linux (V4L) APIs and other third-party software such as Picamera 345

Python Library [70]. 346

GSM module sim 900a 347

Global System for Mobile Communications (GSM) module sim 900a is a GSM modem 348

that supports Quad-bands GSM850, EGSM900, DCS1800 and PCS1900. The shield sends 349

and receives General Packet Radio Service (GPRS) data through protocols such as TCP/IP 350

and HTTP. It also allows sending SMS, MMS, GPRS and Audio via UART using ATtention 351

(AT) commands [71]. 352

3.1.2. Input Module 353

354

The input module consists of two main components, a motion trigger and a camera. Motion 355

trigger detects motions such as movement of a vehicle and activating the rest of the system. 356

The camera captures the images at nighttime without additional visible illumination. The 357

motion trigger uses a passive infrared (PIR) sensor to detect movements. PIR sensor detects 358

the changes in the amount of infrared radiation falling on it and detects the motion. For 359

instance, when a vehicle passes near the sensor, the heat radiation from the vehicle engine 360

fall on the sensor as it enters the sensor’s field of view. When the vehicle leaves the sensors 361

field of view, then it will stop the heat radiation. This causes a change in the amount of 362

infrared radiation falling on the sensor causing the sensor to be activated. A typical PIR 363

sensor can detect a motion, but it can not recognize the motion. Despite this limitation in 364

many state-of-the-art solutions, PIR sensors are widely used for detection applications like 365

surveillance systems, automatic lighting, and alarm systems as simple but reliable motion 366

triggers [72,73]. Our design solution uses PIR sensor purely to detect a motion happening 367

near the motion trigger. Whether that motion was caused by a vehicle passing will be 368

recognized by subsequent modules. The sensitivity range of a PIR sensor is normally up to 369

20 feet (6 meters) and therefore, we use a cluster of PIR sensors to widen the sensor range. 370

In order to operate the motion trigger, we used an ESP32 micro-controller with in- 371

tegrated WiFi and Bluetooth connectivity, while performing as a complete standalone 372

system with low-cost and low-power consumption. When a change of the infrared level is 373

detected by the PIR motion sensor, a digital value is passed to the ESP32 module. After 374

recording this value, it sends a signal to the main processing module via Bluetooth as it 375

boosts considerably low power compared to a WiFi connection. However, as Bluetooth is 376

more reliable with short-range devices, the distance between the sensor module and the 377

main module should be kept less than 10 meters, while ensuring no obstructions between 378

the two devices. 379

Until it receives a signal from the motion trigger, the main processing module will 380

be in a standby mode, which helps to reduce the power consumption. After receiving the 381

signal, it goes to the normal operation state. In this state, it uses the camera from the input 382

module to capture images and passes them through the processing module to recognize the 383

license plate. For the camera, we used a Raspberry Pi NoIR camera V2. It is equipped with 384

a Sony IMX219 8-megapixel sensor without an infrared filter. This coupled with an infrared 385

illuminator that captures images at night time without using any visible illuminators. Here, 386

the camera sensor is sensitive to not only the visible spectrum but also to the infrared 387

spectrum, without an infrared filter. Thus, it can capture images using the infrared rays 388

reflected by the license plate. However, this camera setup is not as sensitive as purpose 389



Version February 3, 2022 submitted to Sensors 10 of 28

build thermal or night-vision cameras thus requiring an infrared illuminator. The main 390

advantage of using this camera setup over such a purpose build camera setup is to produce 391

a low-cost solution. 392

3.1.3. Main Processing Module 393

394

The main processing module takes the image from the input module and outputs the 395

license plate content to the communication module. From a software point of view, the 396

main processing module consists of two convolutional neural networks, one that detect 397

and localize the license plate in an image and the second which recognize the content of 398

the license plate. Thus this is a two-stage license plate recognition process. Figure 3 shows 399

the process flow of the two-stage process of detecting and recognizing a license plate. 400

Figure 3. Two-stage license plate recognition pipeline

The input image is passed through a set of transformations such as resizing and 401

normalizing, before feeding it to the detection model. This model produces two outputs. 402

First, a bounding box description for the license plate and the second, a confidence level 403

value indicating how confident the model is for the bounding box. The confidence value 404

will be high, if there is a license plate in the image, otherwise the value will be closer to 0. If 405

this value is greater than a predetermined threshold value, then the systems moves to the 406

next stage. If not, the image is discarded and the system moves on to the next image from 407

the camera. If the system discarded all the images within a time period indicating that no 408

vehicle is passed through the system, then the main processing module becomes standby 409

mode waiting to be activated by the motion trigger. 410

Once an image is passed to the next stage, it is cropped to the license plate bounding 411

box and passed to the recognition model. It will recognize the license plate as a text 412

sequence and passed to the communication module, thus, it can inform the recognized 413

license plate number to the operator, as a text SMS since there is no internet connectivity in 414

this environment. From a hardware point of view, there are three possible variations for 415

the main processing module, as a single hardware solution may not cover all the possible 416

deployment scenarios. Instead, we propose low, mid and high tier hardware configurations. 417

Low-tier hardware configuration is intended to be sufficiently inexpensive making large 418

scale mass deployment economical. Higher-tier configuration is more suitable for situations 419

where the unit cost is not that significant and mid-tier is meant to be a middle ground. 420

Computational capabilities increase from low to high tier allowing the use of advanced 421

license plate detection and recognition models giving higher accuracy. 422

One of the main objectives of this study is to develop an ALPR system for edge 423

devices with minimum cost. Table 3 states the hardware specification for energy-efficient 424

computation and low-latency communication. Each of the configurations uses a common 425

set of hardware including Raspberry Pi camera module V2-8 Megapixel,1080p (USD 23.00), 426

Raspberry Pi power supply (USD 15.00) and GSM module sim 900a (USD 7.00), where the 427

total add up to USD 45.00. 428



Version February 3, 2022 submitted to Sensors 11 of 28

Table 3. Hardware tier details

Hardware tier Specification Cost (as of January-2022)

Low-tier Raspberry Pi Zero USD 10.60
Mid-tier Raspberry pi 3 B+ USD 38.63
High-tier Raspberry Pi 3b+, Intel Neural Compute Stick 2 USD 38.63 + USD 89.00

We developed different models for license plate detection and recognition based on 429

neural architecture search strategies as described in Section 3.3, per each tier to exploit the 430

capabilities of different hardware tiers. The appearance and the circuit of the configuration 431

are shown in Figure 4 and Figure 5, respectively. 432

In the license plate detection process, we developed two models for each hardware 433

tier. One model is optimized for the specific hardware platform using a hardware aware 434

architecture search strategy and another model optimized using a hardware-agnostic 435

architecture search. Both models are small in size and the required computational power is 436

sufficient to execute on the target hardware, while the hardware-optimized model gives 437

better latency compared to the hardware-agnostic model. However, the hardware-agnostic 438

model can generalize better with other similar hardware setups. In the license plate 439

recognition process, we developed three models based on hardware-agnostic architecture 440

search, representing each hardware tier. 441

Consequently, the lower-tier configuration uses a Raspberry Pi Zero as its hardware 442

platform. As stated in Section 3.1.1, it is a relatively inexpensive single board computer with 443

limited processing capabilities. As a result, it is coupled with the simplest detection and 444

recognition models. Mid-tier configuration uses a Raspberry Pi 3 B+ instead of the Rasp- 445

berry Pi Zero; thus, allows the execution of more complex models and has high computing 446

capabilities giving better accuracy. The higher-tier configuration consists of a Raspberry Pi 447

3 B+ with an Intel® NCS2. This offloads the execution of convolutions neural networks to 448

the more computationally capable Intel® NCS2 allowing to use computationally expensive 449

but more accurate models. 450

Figure 4 (left) shows the internal module design of the main processing module 451

along with the camera in the higher-tier configuration and Figure 4 (right) shows the main 452

processing units exterior view, which is designed for a wild environment as explained in 453

the experiment setup with the case study. The exterior view of the main processing module 454

are based on several consideration based on the proposed application domain. The package 455

needs to be compact, thus it can be easily camouflaged and hidden from direct view. At 456

the same time, it must larger enough to store all the components of the system except the 457

motion trigger along with the battery to power them in it. Figure 5 shows the design circuit 458

of the proposed solution. 459

Figure 4. High-tier model (left): Internal view, (right): Exterior deployment view.



Version February 3, 2022 submitted to Sensors 12 of 28

Figure 5. Circuit diagram of the design

3.1.4. Communication Module 460

461

The communication module consists of two main components. The SMS notification system 462

notifies the characters in the recognized license plates to the authorities and the on-demand 463

evidence offloading module offloads images stored within the system. Data flow of these 464

components and the main system is shown in Figure 6. Once a license plate has been 465

successfully recognized by the license plate recognition model, it is passed to the SMS 466

notification system. The SMS notification system uses a sim 900a mini v3.8.2 GSM module 467

connected to the main processing module to send SMS messages. It is connected to the 468

Raspberry Pi’s serial TTL port using the universal asynchronous receiver/transmitter 469

(UART) protocol. Since sim900a is a 5V device and Raspberry Pi is a 3.3V device, we used a 470

5V to 3.3V TTL logic shifter to protect the Raspberry Pi. 471

Figure 6. Data flow of the proposed system

The on-demand evidence offloading module is designed as a quality of life improve- 472

ment, thus the operators do not require physical connection with the system to offload data. 473

In order to use this system, the operator sends an SMS message to the system, which enables 474

the WiFi module of the Raspberry Pi. It then searches for a WiFi hot-spot with a predefined 475

Service Set Identifier (SSID) and WiFi Protected Access 2 (WPA2) password. The operator 476

will carry a mobile device that uses the mobile hot-spot functionality to create this hot-spot. 477

After the Raspberry Pi has been successfully connected to the hot-spot operator can access 478

the images stored within the Raspberry Pi in wireless mode and download necessary files. 479

With this system, operators can easily access images stored within the system without a 480



Version February 3, 2022 submitted to Sensors 13 of 28

physical connection to the system, which may be difficult due to camouflaged placement of 481

the system. 482

3.2. Environment Simulation Techniques 483

Generally, a large and diverse dataset supports to train a learning model robustly. 484

This helps to classify data against varying environmental conditions including adverse 485

weather and camera conditions such as location and vibration without the need for fragile 486

explicit image processing steps. There exists such LP datasets like Chinese City Parking 487

Data set (CCPD) [14] that is used by state-of-the-art models such as Roadside Parking 488

Net (RPNet) [14] and Towards End-to-End Car License Plate Detection and Recognition 489

(TE2E) [52] to achieve different variations. However, these data sets have mainly focused 490

on daytime images. Also, curating such a data set for nighttime images is both expensive 491

and time consuming. Therefore, to simulate the night vision, we used a synthetic image 492

generation technique to convert the RGB images of the CCPD dataset to nighttime TIR 493

images. However, we also deployed the working prototype in the actual field to acquire a 494

real nighttime dataset to evaluate the performance of our proposed models. 495

Figure 7. Pix2Pix for nighttime image generation

The process of generating the synthetic TIR images used by this work follows a 496

method proposed by Zhang et al. [30]. As shown in Figure 7, we used a GAN based pix2pix 497

model for image translation and provided the model with a paired set of training data that 498

includes matching frames in both RGB and TIR images. To train the model for TIR image 499

transaltion, we selected the largest available multi-spectral dataset named KAIST [74] that 500

has a significant amount of matching RGB and TIR images. Finally, we trained the pix2pix 501

model and initialized the weights from a Gaussian distribution with a mean 0 and standard 502

deviation of 0.02. The input images were enlarged to 480 x 480 pixels and the network 503

is trained for 100 epochs with a decaying learning rate of 0.0002, lambda_l1 of 120.0 and 504

keeping other parameters the same as the original pix2pix study. Then we used this trained 505

pix2pix model to translate the daytime RGB images of the CCPD dataset [14] to TIR and 506

used that synthetically generated nighttime images of CCPD to train the detection models 507

of our pipeline. In order to train the recognition models, we required comparatively high 508

quality nighttime images of the license plates. Therefore we converted the RGB images to 509

gray-scale using matplotlib Python library and set the colour map to grey. Herewith, we 510

preserved the image quality and avoided generating incomplete license plate characters 511

that are impossible to read. 512

3.3. License Plate Detection and Recognition Algorithms 513

In this paper, we use two differential neural architecture search (DNAS) strategies to 514

automate the architecture modelling for detection and recognition neural networks. We 515



Version February 3, 2022 submitted to Sensors 14 of 28

define the Neural Architecture Search problem as a bi-level optimization problem as in 516

Equation 1, 517

min
a∈A

min
wa

L(a, wa) (1)

where, A is the set of possible neural network architectures referred to as the architec- 518

ture space and wa is the set of weights for the selected architecture a. Loss function L takes 519

in to account both the resource utilization and model accuracy. In this work, we consider 520

three main factors related to neural architecture search namely, search space, search strategy, 521

and performance estimation strategy. 522

3.3.1. Search Space 523

524

The proposed neural architecture search (NAS) process uses a coarser search space with 525

"neural blocks" selected on the existing understanding of the domains like license plate 526

recognition and object detection. Therefore, we selected 4 types of neural blocks: (1) RPNet 527

blocks [14], (2) MobileNet blocks [75], (3) Inception blocks, and (4) Identity connections. 528

The RPNet blocks were considered as they currently serve the state-of-the-art results in 529

the automatic license plate recognition domain. The selection of MobileNet blocks was 530

based on two major factors. First, it is one of the backbone architectures used in most 531

of the object detection problems and secondly, it is lightweight and runs efficiently in 532

resource-constrained environments like mobile devices or other devices with low com- 533

putational power and memory space. The Inception models are uniform, simplified and 534

heavily engineered architectures that introduce the concepts for "wider" networks instead 535

of "deeper". One can consider the search space as the set of possible permutations of these 536

blocks that can run on the edge device. While selecting a more "finer" search space may 537

have resulted in better performance, we decided against it because that will lead to a much 538

larger search space requiring more computational time to perform the architecture search. 539

3.3.2. Search Strategy 540

541

In this study, two neural architecture search strategies namely PC-DARTS (Partially con- 542

nected - Differentiable architecture search) [13] and FBNet (Facebook-Berkeley-Nets) [12] 543

are explored to discover the neural network architectures for the licence plate detection and 544

recognition modules optimized for memory-constrained embedded devices. Our previous 545

work has presented the detailed implementation aspects of the LP-net architecture used for 546

this study [38]. 547

We used PC-DARTS as a hardware-agnostic neural architecture search strategy. Thus, 548

it optimizes the architecture considering only the input and the target output, independent 549

of the hardware platform. We introduced a hard upper limit to the memory utilization 550

in A based on the target device. This ensure all possible values of a can be run on then 551

given target. Rational for performing architecture search in a hardware agnostic manner 552

is to develop models that will perform well on targets similar to the intended target by 553

preventing overspecialization to the intended target. PC-DARTS defines its stochastic 554

super network as a directed graph where vertices represents tensors and edges represent 555

operation in the search space. 556

Figure 8 (left) shows a simple case with only 2 intermediate tensors namely x1and 557

x2. There tensor x0 is the input to the super network and tensor x3 is the output of the 558

super network. We call the number of intermediate tensors as the depth of the network in 559

our implementation. As shown in the figure each tensor is connected to every one of its 560

predecessors using all the operations in the search space. For brevity we have shown only 561

op 1 and op n in the figure. For our architecture search process these operations are the 562

neural blocks described in the previous section. 563



Version February 3, 2022 submitted to Sensors 15 of 28

Figure 8. Stochastic super network (left): PC-DARTS, (right): FBNet.

xj = ∑
i<j

∑
o∈O

α(i,j,o)o(xi) (2)

Value of each tensor xi can be defined using its predecessors as shown in Equation 2. 564

Here we are using value of subscripts to represent the order of tensors and O represents the 565

set of operations in the search space. We call the value of α(i, j, o) as the architecture weight 566

of operation o for edge (i, j) . These weights represent the probability of connected each 567

tensor with its predecessor j using operation o. Therefore, we used a softmax distribution to 568

represent these weights. We call the set of all such architecture weights as the architecture 569

weights of the super network (wα). Each individual operation such a convolution can have 570

their own weights and the set of all such weights in the super network is known as the 571

operation weights of the super network (wθ). We can then find the optimal values for 572

wα and wθ using the fallowing bi-level optimization algorithm. Once this optimization 573

has converged we can find the optimal architecture by performing argmax on architecture 574

weights. 575

Algorithm 1: Bi-level optimization

Data: stochastic super network
Result: w∗α that minimize L(wθ , wα)
while L(wθ , wα) not converged do

for iθ iterations do
wθ ←− wθ − γθ∇θ L(wθ , wα)

end

wα ←− wα − γα∇αL(wθ , wα)
end

w∗α ←− wα

576

wθ : operation weights 577

wα : architecture weights 578

γθ : learning rate for operation weight update 579

γα : learning rate for architecture weight update 580

L(wθ , wα) : loss 581

iθ : number of iterations for inner optimization 582

583

The FBNet was used as the hardware sensitive search strategy that produces optimized 584

models for a specific hardware platform. Hence, FBNet based models use special hardware 585

characteristics of the target platforms to reduce their latency. However, the performance 586



Version February 3, 2022 submitted to Sensors 16 of 28

can be reduced, if these models are used on a different hardware platform other than the 587

platform considered for the optimization due to overspecialization for the intended target. 588

As a result models developed using FBNet gives us better hardware utilization at the cost 589

of generalizability across different hardware platforms. 590

Similar to PC-DARTS FBNet also represent the search space as a stochastic super 591

network. However it is more similar to a typical feed forward network as shown in Figure 592

8 (right). Each layer takes the output of the previous layer xi−1 and apply operation as 593

shown in Equation 3 to obtain its output xi. O is the set of all operations in the search space. 594

xi = ∑
o∈O

α(i,o)o(xi−1) (3)

We call the value α(i,o) architecture weight of layer i with respect to operation o. Set 595

of all such weights is given by pi as shown in Equation 4. We define the set of all such 596

pi values as the architecture weights of the stochastic super network(wα). We then used 597

the previously given bi-level optimization to obtain the optimal architecture similar to 598

PC-DARTS. 599

pi = α(i,1)∀o ∈ O (4)

3.3.3. Lite LPNet Architectures 600

We have designed and developed a set of optimal learning models that can be deployed 601

in edge devices with low processing power and worked without internet connectivity. The 602

proposed Lite-LPNet family of models consists of (1) hardware optimized LP detection 603

model, (2) hardware-agnostic LP detection and (3) LP recognition subnetworks as shown 604

in Figure 9. The naming convention of the models is detailed in Table 4 and Table 5. We 605

used the tensorflow.keras.layers API and the default parameters as in TensorFlow version 606

2.3.0. Moreover, as stated in Section 3.1.2, the hardware optimized LP detection model is 607

implemented following using FBNet (Facebook-Berkeley-Nets) [12] algorithm and the other 608

two models were based on PC-DARTS [13]. These were implemented for three hardware 609

configurations namely low, mid, and high tier, as described in Section 3.1.1. 610

Figure 9. Model Architectures (left): hardware optimized detection, (middle): hardware agnostic
detection, (right): recognition subnetworks.

In addition, we have used a novel differentiable neural architecture search (NAS) 611

process based on PC-DARTS and FB-Net to develop the models. The advantage of using 612

differentiable architecture search over commonly used methods such as reinforcement 613

learning, and evolutionary algorithms is a significant reduction in GPU hours required to 614

search of neural networks. To the best of our knowledge, this is the first time such tech- 615

niques has been used for the development of models for license plate recognition in edge 616



Version February 3, 2022 submitted to Sensors 17 of 28

devices such as Raspberry Pi and neural compute stick, that has different computational 617

capabilities and requires different model designs and optimizations. 618

The LP detection models are designed to predict the bounding boxes of the license 619

plate image. As shown in Figure 9 (left) and (middle), the detection model uses 6 different 620

models. The hardware-optimized and hardware-agnostic models are designed to reduce 621

the latency and increase the accuracy, respectively. Considering the application domain 622

considered for this study, we recommend the model that supports low latency. These 623

hardware optimized models are implemented by applying NAS with the FB-Net algorithm 624

as described in Section 3.3. The hardware optimized model for each tier is selected based on 625

the latency values calculated for each hardware configuration and applying NAS. Although 626

hardware-optimized models provide low latency in the processing, these models can give a 627

subpar performance in similar but not identical processing units. Thus, hardware-agnostic 628

models were designed to handle this variability. The implementation of these models is 629

based on the PC-DARTS algorithm and optimized to increase detection accuracy without 630

regard to processing latency. 631

The LP recognition models provide a sequence representing the content, given a 632

cropped image of the license plate. As shown in Figure 9 (right), this study presents 633

three 3 hardware-agnostic models for LP recognition, by following the same process as 634

used for the hardware-agnostic detection models. We applied two design paradigms. 635

(1) The model based on the Tuple-based End-to-end (TE2E) [76], uses a single model to 636

predict all the characters in the image. Since it shares parameters when recognizing each 637

character, the memory consumption is low. (2) The model based on Roadside Parking Net 638

(RPNet) [14], uses a separate subnetwork for each character in the license plate. Since the 639

separate subnetworks cannot share the parameters, the memory consumption is high. The 640

optimal architectures were obtained by training the stochastic super networks as described 641

in Section 3.3.2. The entire set of characters in the license plate is the input for each 642

subnetwork and the consecutive output values of each subnetwork form the recognized 643

license plate number. The subnetwork based approach has outperformed the single model 644

approach, based on the experiments done for each hardware configuration. 645

3.3.4. Performance Estimation Strategy 646

647

The performance estimation strategy is used to identify the optimal architecture among the 648

selected architectures. Generally, the evaluation strategy of NAS has a bi-level optimization 649

problem as in Equation 1. Thus, for a given input the aim is to learn an optimal architecture 650

a to obtain a given output, and the associated weights w within all the mixed operations. 651

In our experiment, the input to the NAS is either an image directly from the camera or 652

an image of the cropped license plate, and the output is either the bounding box of the 653

license plate or the sequence representing characters in the license plate. However, unlike 654

in PC-DARTS that considers the accuracy of a given architecture only, the loss function 655

used in FBNet is more thorough and reflects both accuracy and latency of an architecture 656

on a target hardware. Thus, the architectures searched using FBNet algorithm become 657

hardware sensitive. In this study, we used the same latency aware loss function as in the 658

original FBNet implementation. 659

First, a latency table is created for the execution of each operation on the target 660

hardware. Then, we use the latency lookup table and calculate the latency of layer i using 661

value pi as shown in Equation 5. 662

LAT(pi) = ∑
o∈O

latoα(i,o) (5)

In Equation 5, lato refers to the latency of operation o read from the latency lookup 663

table. Then we obtain the latency of the super network, LAT(wα), by summing up the 664

latency values for all the layers in the network. Therefore, we include this latency term 665



Version February 3, 2022 submitted to Sensors 18 of 28

in the bi-level optimization algorithm to obtain a hardware sensitive architecture search 666

process. 667

4. System Evaluation 668

4.1. Data set 669

Table 4. Detailed summary of the data set

Data
set

CCPD day
time image

Synthesized night time
image from CCPD

Sri Lankan LP
images-day time

Sri Lankan LP
images-night time

Sample
image

No. of
images.

200,000 200,000 100 100

Two experiments have been done to test the performance of the proposed detection 670

and recognition system using two different data sets: a simulated and a real nighttime 671

data set as listed in Table 4. The first experiment was done on a Chinese City Parking 672

Dataset (CCPD) that has over 200000 images collected from a roadside parking from 07.30 673

AM to 10:00 PM covering different illumination and environmental conditions during the 674

day. However, still a large portion of the CCPD dataset is also taken under daylight like 675

most other datasets available for LP detection. Therefore, due to the scarcity of a publicly 676

available nighttime LP dataset and also curating such a large nighttime dataset is both 677

expensive and time consuming, we created a synthetic nighttime dataset using the CCPD 678

day time images as comprehended in section 3.2. Although CCPD which is the largest 679

LP image dataset has complex background conditions when compared to an LP image 680

captured in a wild environment, training with this dataset is beneficial to obtain a well- 681

trained model for LP detection, as the actual image is less complex than the trained dataset. 682

With the synthetically generated CCPD data set, we used a five-fold cross validation, where 683

each fold consists of 40,000 images. 684

The second experiment was done using a real-world Sri Lankan data set which was 685

collected specifically for this considered use case of wild environment conditions. The 686

created real-world nighttime data set contains 100 images and was collected between 8 PM 687

to 4 AM. Then we used this collected data set to perform transfer learning on our models 688

to train them for Sri Lankan license plates and then validated the performance of them 689

against local license plate numbers. However, as the main focus of this study was to build 690

an ALPR system to work with resource-constrained environments, the created dataset does 691

not include any complex weather conditions. 692

4.2. Experiment Setup 693

A simulation of a poacher vehicle detection case study is used to evaluate the effec- 694

tiveness of the proposed approach. This experiment has been performed using the CCPD 695

dataset with 200000 daytime licence plate images [14], and the corresponding synthetically 696

generated nighttime license plate images following the process described in Section 3.2. In 697

addition, the proposed model is practically tested in a real nighttime environment with 120 698

vehicle images. The hardware configuration specifications have described in Section 3 and 699

the deployment details with camera positions are shown in 11(left). The software configura- 700

tion consists of Raspberry Pi OS (32-bit) version August 2020, Tensor Flow lite version 2.1.0 701

and Python 3.7.3. We used Open-VINO version 2019.3.376 to convert Tensor-Flow models 702

that were compiled using Tensor-Flow version 2.2 into intermediate representations for 703



Version February 3, 2022 submitted to Sensors 19 of 28

the Intel® NCS2. The model training and evaluation codes for Lite-LPNet is available in 704

GitHub repository [77]. 705

4.3. Model Performance 706

The performance of deep learning models used for license plate recognition was 707

measured under two broad categories. We measured the model correctness using the three 708

datasets and efficiency while achieving the task it was designed to perform. For stage 709

one (detection) models, we used a average precision at a fixed Intersection over Union 710

(IOU) threshold, a metric typically used for object detection as the evaluation metric. ALso, 711

to measure the correctness of the stage 2 (recognition) models, we used a more relaxed 712

metric of accuracy and we considered a prediction to be accurate if and only if every single 713

character in the license plate is recognized correctly. Model efficiency is measured using 714

two parameters, model size and model latency. The model size is measured considering 715

the size of the Tensorflow Flatbuffer that estimates the required RAM to execute the model. 716

Model latency is calculated by considering the average time takes to process a single image. 717

This can also be viewed as a proxy to the computational complexity of the model. 718

Table 5. Summary of detection model performance

Model
name

Resource
Requirement

Performance Measure
Latency
(s)

Model
size (MB)

AP
(daytime)

AP
(synthetic)

AP
(real)

s1_h Raspberry Pi 3b+, Intel® NCS2 0.012 0.7776 0.9284 0.8451 0.85
s1_h_h Raspberry Pi 3b+, Intel® NCS2 0.011 0.8707 0.9299 0.8401 0.9
s1_m Raspberry Pi 3b+ 0.157 0.6869 0.9005 0.7982 0.85
s1_m_h Raspberry Pi 3b+ 0.004 0.6830 0.9029 0.7962 1.0
s1_l Raspberry Pi Zero 4.54 0.5568 0.8422 0.7146 0.95
s1_l_h Raspberry Pi Zero 4.08 0.5625 0.8327 0.6987 0.95

Table 6. Summary of recognition model performance

Model
name

Resource
Requirement

Performance Measure
Latency
(s)

Model
size (MB)

Accuracy
(daytime)

Accuracy
(synthetic)

Accuracy
(real)

s2_h Raspberry Pi 3b+, Intel® NCS2 0.021 4.5 0.9987 0.9476 0.9873
s2_m Raspberry Pi 3b+ 0.148 11.7 0.9877 0.9382 0.9882
s2_l Raspberry Pi Zero 6.2 4.5 0.9565 0.9054 0.9586

Results of these experiments are shown in Tables 5 and 6 for the detection and recog- 719

nition stages, respectively. The model names ending with h, m and l represent high-tier, 720

mid-tire and low-tire configurations, respectively. Each hardware tier in the detection 721

process contains two types of models namely hardware-optimized using FB-Net [12] and 722

hardware-agnostic using PC-DARTS [13]. 723

First we evaluated the day and night time performance of each model using the 724

original CCPD [14] data set and the synthetically generated nighttime data set. Figure 10 725

compares the detection and recognition models’ performance for day and night time data. 726

According to the reported values, all the models have shown high accuracy in both day 727

and night conditions, while high-tier models have shown better accuracy than the other 728

models. Also, we have tested our models against some state-of-the art ALPR systems like 729

RPNet [14], TE2E[52] and a general object detection models like yolo-v3 [27] for a better 730

comparison. We can also observe that the proposed detection models, especially higher 731

tier models show performance close to the current state of the art server-grade models 732

like RPNet, although our models are designed specifically for low resources. At the same 733

time, all models except the lower-tier ones show superior performance to Yolo-V3 [27], 734

which is a popular general-purpose object detector that has been used in several license 735

plate detection researches [25,26]. Meanwhile, the same trends can be observed for the 736

recognition models as well. Higher tier models perform better than lower-tier models and 737



Version February 3, 2022 submitted to Sensors 20 of 28

unlike with detection higher tier models actually outperform the current state-of-the-art 738

models such as RPNet. 739

Figure 10. Model accuracy on the synthetically generated dataset (left): detection, (right) recognition.

In the detection stage, the hardware-optimized models have lesser latency than their 740

corresponding hardware-agnostic models (s1_h, s1_m and s1_l). Overall, the low model 741

sizes shown the ability to execute these models in edge devices with low resources. 742

Moreover, we measured the model robustness against variations of camera position to 743

identify the impact of the camera angle and elevation on the performance of the system. 744

This experiment aims to validate that the model performance does not change significantly 745

with the changes in the camera position. Metrics related to model efficiency are functions of 746

the model and the hardware solution, thus independent of the camera position. In contrast, 747

we check whether the model correctness metrics are affected by the camera position. In 748

order to validate the impact of the camera position on the model accuracy, an experiment 749

was carried out by driving a vehicle at a speed in the range of 20-30 km/h towards the 750

camera. The camera was positioned in one of the four positions as shown in Figure 11(left). 751

Angle measurement indication is between the centre of the licence plate and the camera 752

when the vehicle is 20m away from the camera. We started the test when the vehicle is 20m 753

away from the camera and executed the test until the vehicle left the view range of the 754

camera. During this time, we sampled the video stream at the rate of 10 frames per second 755

and identified the number of correctly recognized licence plate numbers. 756

Figure 11. Camera positions (left) and sample deployed image (right).

The considered environment is a rural area with many trees and bushes, thus can be 757

simulated as a wildlife sanctuary. Figure 11(right) shows a sample image taken under the 758

same conditions from camera position 1 during daytime to better illustrate the environmen- 759

tal conditions under which this experiment was performed. The actual images used for 760

the accuracy results are taken at the same location during nighttime (8 pm - 10 pm) on a 761

moonless night (Jan 13, 2021). 762

In this experiment, we used a raspberry pi NoIR camera for capturing nighttime 763

images. The functions of the Pi NoIR camera are same as a regular camera, however, it 764

does not employ an infrared filter for IR-Blocking, thereby allowing it to use in infrared 765

photography in general. However, one of the main benefits of using a NoIR camera is its 766



Version February 3, 2022 submitted to Sensors 21 of 28

ability to be used in both daytime and in complete darkness as well. Moreover, it is also 767

relatively less expensive compared to a regular IR camera module, where one of the main 768

focus of this study is a low cost solution. Though a NoIR camera can see better in a low 769

light environment even without the assistance of an IR illuminator, using an infrared light 770

source (illuminator) that is completely invisible to the human eye, can ensure a clearer 771

image in the total darkness. Therefore, in this design, we have used an infrared illuminator 772

that is invisible to the naked eye for better performance. Thus, our solution gives the system 773

the most challenging conditions because there are no visible illumination sources. 774

Results of this experiment are shown in the Table 7. The proposed model performance 775

is not affected adversely depending on the camera position. Further, as shown in Figure 12, 776

the higher-tier models have shown better accuracy. As we can see from this experiment, the 777

proposed model is robust against variations of camera elevation and angles giving results 778

that are similar to each other irrespective of camera position. This is to be expected, because 779

the CCPD [14] dataset contains images taken from handheld devices giving high variation 780

in terms of both elevation and camera angle. 781

Experiment
Number of
images

Number of correct images Camera
positionLow-tier Mid-tier High-tier

1 27 25 26 26 1
2 35 30 31 34 1
3 33 30 31 33 2
4 29 24 25 28 2
5 25 21 23 25 3
6 28 22 25 27 3
7 30 25 26 28 4
8 26 19 23 25 4

Table 7. Model performance with respect to the camera position (Number of correctly identified
images)

Figure 12. Model accuracies of each experiment

4.4. Hardware Performance 782

Since the proposed solution is supposed to be a battery-powered system that will be 783

deployed in a wild environment, the metrics battery life and power consumption are used 784

to evaluate the hardware performance of the edge devices. We measured the peak power 785

consumption where the processing unit executes at maximum load, using the input power 786

via the USB interface to Raspberry Pi devices. Since the camera and Intel® NCS2 (where 787

applicable) is powered via the Raspberry Pi, this gives us the power requirement for a 788

minimum ALPR system with both input and processing capabilities. The worst-case power 789

consumption over a general case is considered due to the following reasons: 790

1. The probabilistic estimation of the number of vehicles passing through an operation 791

unit is not readily available for a given case study. Thus, we considered the maximum 792

possible processing load on the unit for a general case. 793



Version February 3, 2022 submitted to Sensors 22 of 28

2. The worst-case power consumption gives an upper bound for the unit’s power con- 794

sumption. Thus, using a power supply that satisfies the maximum power require- 795

ments can satisfy the power consumption of the unit under any other condition. 796

This measure includes the power consumption of all the processing units required to 797

execute the model including its input devices. As shown in Table 8, there is an increase in 798

the power consumption, when moving from the Raspberry Pi zero (low-tier) to Raspberry 799

Pi 3b+. While we observed an increase in peak power consumption when the Raspberry Pi 800

3b+ was combined with the Intel® NCS2, it was a relatively smaller increase. 801

Table 8. Hardware performance of each configuration

Hardware tier Power consumption
(W)

Average battery life
(hr)

Low-tier 0.8 132.15
Mid-tier 5.15 11.03
High-tier 6.2 13.04

In order to measure the expected battery life of a typical deployment, we used a 10400 802

mAh battery to power all the components of the system. We charged the battery to 100% 803

and executed the system continuously until it runs off the power. We measured the time 804

taken to drain the battery completely by using the timestamp of the last image recorded by 805

the system. For each hardware tier, we repeated this experiment for a week and measured 806

the average battery life as shown in Table 8. The lower-tier hardware has significantly 807

better battery life compared to mid and higher tier configurations. The most interesting 808

observation in this experiment was that the higher-tier system has a better battery life 809

compared with the mid-tier unit even though it had a higher peak power consumption. A 810

possible reason for this could be the better computing performance of the higher-tier model 811

with the Intel® NCS2. Hence, higher-tier models do not reach their peak load as often 812

as the mid-tier models that operate closer to maximum load with the Raspberry Pi, thus 813

higher-tier models consume less energy. With the knowledge of the power consumption 814

and battery life of the models, a suitable battery that meets the deployment requirements 815

such as cost, external dimensions, battery recharge and replacement frequency can be 816

selected in practice. Although 13 hours of battery life seems low in the high tier, the 817

recorded time is the sustained use time, where the system is taking pictures and processing 818

them in a continuous manner. But in a forest environment, where there will not be many 819

vehicles passing by, we have installed a motion trigger to keep the device in a stand-by 820

mode when no vehicle is detected for a fixed amount of time. Therefore, the actual battery 821

life is much longer than this use time. Also, the system design can be even modified to use 822

solar recharging batteries. 823

Further, we evaluated the communication systems of the proof-of-concept hardware 824

solution. We deployed the proposed models under operational conditions and test the 825

correctness of sending SMS messages and the data offloading module. Thus, we have 826

verified that the purposed hardware solution meets the requirements of the case study. 827

5. Discussion and Lessons Learned 828

5.1. Study Contributions 829

We presented an innovative approach to detect and recognize licence plates automat- 830

ically for embedded platforms with limited computational and memory capacities. The 831

overall aim of this study is mainly twofold: (1) develop models for license plate detection 832

and recognition that gives competitive results to the server-grade hardware solutions, while 833

still being efficient enough to run on low-resourced, low-cost embedded platforms and (2) 834

develop a system that is energy-efficient and viable to be deployed in wild or remote areas 835

without reliable internet connectivity or direct power supply. The proposed approach has 836

achieved the following objectives; 837

• Designed and developed a lightweight and low-cost night vision vehicle number plate 838

detection and recognition model with competitive accuracies. 839



Version February 3, 2022 submitted to Sensors 23 of 28

• Developed a license plate reading system capable of operating without internet con- 840

nection and powered by batteries for an extended period. Thus, supported mobile 841

communication with minimum resources. 842

• Supported SMS sending that contains the identified license plate number to a given 843

phone number (e.g., send to the wildlife department in the considered case study). 844

• Designed in small size in appearance and deployed discreetly in the field. Thus, in the 845

considered case study, the poachers may not notice these camera traps and equipment. 846

• Analysed the trade-offs and explored the impact of the constraints such as accuracy 847

and power consumption. 848

• Maximized resource utilization and minimized the end-to-end delay. 849

We have shown the use of a novel family of neural networks called the Lite-LPNet 850

model for both licenses plate detection and recognition, which are light-weighted and 851

optimized for edge devices. As another novel contribution, we used Infrared blaster to 852

capture nighttime images in dark. It captures the license plate using its illumination, 853

without visual illumination at nighttime. We have also presented a case-study based 854

approach as a proof-of-concept for the use of proposed models in real-time applications 855

in the wild. The experiment results have shown the system’s robustness to variations in 856

the angle and its high recognition accuracy at night-time. Providing a basis for future 857

research on night-time license plate recognition, this study has also presented a synthetic 858

data generation technique to create a versatile night-time license plate dataset with publicly 859

available RGB images of license plates. The main advantage of this approach is that it helps 860

to mitigate the problem with the scarcity of large and diverse night-time LP datasets. 861

Moreover, as shown in Figure 11(left), the system design has considered the tech- 862

nical aspects such as angle of the camera, distance to the camera, camera location. The 863

models detect and recognize the license plate in constrained environments with different 864

vehicle speeds and lighting conditions. Thus, the model can execute on edge devices 865

with low resource requirements and showed competitive accuracy values compared to 866

server-grade related systems. However, the proposed solution can be further extended to 867

train learning models for different image variations with constraints environments such 868

as diverse weather conditions, and complex parameters such as license plates rotations to 869

develop robust models. Further, these energy-efficient and low-latency communication 870

and computation models can be deployed at a low cost, such that the total cost of low-tier 871

and high-tier models are USD 63 and USD 146, respectively. 872

Based on the considered case study, model size is a main limiting factor when de- 873

ploying the license plate recognition models in edge devices, and higher latency may be 874

tolerable. In order to execute the inference, the model size should be smaller than the device 875

memory. As shown in Table 5 and Table 6, our proposed model sizes are significantly 876

smaller, hence can execute in memory-constrained edge devices. Moreover, although, the 877

higher-tier models have high power consumption, they execute more accurate models 878

and have smaller latency compared to the lower-tier hardware configurations. We have 879

simulated an experiment for the case study of the poacher vehicle detection system. Such 880

a system might support the wildlife in minimizing the rate of losing their existence and 881

violent matters. It will, directly and indirectly, affect the rights of the wildlife by assuring 882

the security of the wild animal’s lives. Thus, reduces damage done to wildlife in reserves by 883

making prosecution of poachers easier. Accordingly, this approach can be used to identify 884

vehicles number plates in remote locations without access to the internet and power grid. 885

A similar system can be used for any scenario that requires reading license plates such as 886

parking lot management, traffic management. 887

5.2. Solution Assessment 888

The problems of Automated License Plate Recognition have many proposed solutions. 889

However, it cannot be denied that most of these prevailing solutions are limited to un- 890

constrained environments with higher computational capabilities and memory capacities. 891

Despite their accuracy and latency in server-grade hardware, most of the state-of-the-art 892



Version February 3, 2022 submitted to Sensors 24 of 28

solutions in the ALPR domain are not implementable on the embedded platforms due to 893

their memory and energy requirements. For instance, RPNet [14] model currently serves 894

the state-of-the-art results in the ALPR domain but still, it is tested on PCs with eight 3.40 895

GHz Intel Core i7-6700 CPU, 24GB RAM, and one Quadro P4000 GPU. Thus, though it 896

achieves over 90% accuracy for plate recognition, it cannot be executed on a low-cost edge 897

platform like a Raspberry Pi. However, in this study, we have proposed a system that is 898

implementable on these embedded platforms but still showing competitive results to the 899

server-grade solutions. 900

Since the solutions built on the server-grade hardware requires more memory require- 901

ments and computational power, the researchers are encouraged to build lightweight ALPR 902

systems to execute these solutions on edge devices for practical scenarios. In order to 903

assess the significance of our approach, we have compared the proposed solution with the 904

existing embedded ALPR systems as given in Table 9. Since most studies do not report 905

energy consumption or memory requirements for their methods, a direct comparison for 906

these values was not possible. However, our solution has shown competitive performances 907

and the subsequent studies may use our values as a reference to guide future research. 908

In contrast to existing studies, the proposed solution is not limited to one specific edge 909

platform. Thus, our approach is generalized over three hardware tiers and any edge de- 910

vice within the specifications or the computational capabilities of either of these tiers can 911

effectively use the proposed models. 912

Table 9. Comparison with the related studies

Study Dataset
Resource
Requirement

Accuracy Latency

Lee
et al. [44]

Nearly 500 images
NVIDIA Jetson TX1
embedded board

95.24%
(daytime)

N/A

Arth
et al. [45]

Test set 1: 260 images
Test set 2: 2600 images
Different weather and
illumination types

Single Texas Instruments
TM C64 fixed point
DSP with 1MB of cache,
Extra 16MB SDRAM

96%
(daytime)

0.05211s

Rezvi
et al. [46]

Italian rear LP with
788 crops

Quadro K2200, Jetson
TX1 embedded board,
Nvidia Shield K1 tablet

Det: 61%,
Rec: 92%
(daytime)

Det: 0.026s,
Rec: 0.027s
(Quadro K2200)

Izidio
et al. [47]

Custom dataset
with 1190 images,

Raspberry Pi3 (ARM
Cortex-A53 CPU)

Det: 99.37%,
Rec: 99.53%
(daytime)

4.88s

Proposed high-
tier solution

CCPD (200000 images),
Synthetic night-time
dataset (CCPD),
Real night-time
100 images

Raspberry Pi 3B+,
Intel® NCS2

Det: 90%,
Rec: 98.73%
(night-time)

Det: 0.011s
Rec: 0.02176s

Moreover, as shown in Table 5 and Table 6, the proposed higher-tier detection models 913

show performance close to the current state-of-the-art, RPNet[14]. At the same time, all 914

models except the lower-tier ones show superior performance to Yolo-V3[27], which is 915

a popular general-purpose object detector that has been used in several LP detection 916

solution designed to execute on server-grade hardware [53,54]. Similarly, considering the 917

recognition models, the higher-tier models perform better than the lower-tier models. In 918

contrast to the detection stage, these higher-tier models outperform the current state-of- 919

the-art models such as RPNet[14]. Here, both RPNet[14] and TE2E[52] are single-stage 920

models that are designed to both detect and recognize LP with a single forward pass. This 921

shows that our models are competitive with the existing state-of-the-art solutions in terms 922

of accuracy which was the research objective. 923

Further, our solution is tested for both daytime and night-time performance, while 924

most of the other methods are limited to daytime performance only. We have also proved 925

the real-world usability of our system in the wild by holding a case study and has shown 926

the system’s robustness to the variations in the camera angle and different illumination 927

conditions. The model performance can be analysed further using a confusion matrix, 928



Version February 3, 2022 submitted to Sensors 25 of 28

as it shows a summary of the number of correct and incorrect predictions with count 929

values for each class. Also, we validated our solution with a large and diverse dataset with 930

over 200000 images in different conditions. Moreover, we have obtained lesser execution 931

time when compared to other embedded systems, thus showing that our solution is more 932

suitable for real-time applications. Further, we have managed to maintain the peak power 933

consumption of the high-tier solution to 6.2W and the average battery sustained use time 934

to 13.04 hours even in the worst-case. In addition, the low-tier solution with 0.8W power 935

consumption has shown a battery use-time of 132.15 hour. Thus, the proposed ALPR 936

solution is lightweight, energy-efficient, low-cost and works in real-time. 937

However, the study has not been tested in different weather conditions and noisy 938

environments as the main focus of this study was to design and develop an ALPR model 939

to be deployed in low-resource settings. Also, this study has provided a solution to be 940

deployed in the wild, where there is no stable internet connectivity or a direct power grid, 941

thus leaving SMS as the only possible communication method. Therefore, although the 942

cloud providers such as Amazon Web Services (AWS) provide edge computing services 943

for specific edge usecases like this, still, they do not support the resource-constrained 944

environments as considered in this study. 945

6. Conclusion 946

This paper presents the realization of an automatic license plate recognition system im- 947

plemented on embedded devices with limited resources. We exploited hardware-agnostic 948

and hardware-efficient neural architecture search strategies to discover a novel set of neural 949

networks for license plate detection and recognition that are efficient enough to execute on 950

edge platforms. Overall, the proposed system has shown robustness to variations in angle, 951

extreme illumination changes like day and nighttime, and achieved competitive results to 952

the state-of-the-art server-grade hardware solutions. Therefore, our results are significant 953

while considering the restrictions of an embedded system. Also, the proposed system 954

is suitable to be deployed in a wild environment, since it does not rely on the internet 955

connection for communication or a direct power grid for operation. Moreover, we created a 956

synthetic nighttime license plate data set with a widely used Chinese City Parking Data set 957

(CCPD) and a small-scale real nighttime dataset for Sri Lankan license plates that reflects 958

real-life conditions. Also, for a fair comparison with the existing server-grade hardware 959

solutions designed for daytime performance, we have evaluated our system against a large 960

daytime dataset. Further, for the generalisability of the solutions over different hardware 961

configurations, we proposed models for three hardware configurations as low, mid and 962

high considering their computational capabilities and the cost. 963

This study can be extended to customize the Neural Architecture Search process for 964

different hardware platforms. With a one-shot model architecture search strategy such as 965

SMASH [78], the search time for discovering models optimized for any hardware platform 966

can be reduced to O(1) time. Regarding the accuracy of the detection and recognition 967

processes, even though our results are considered reliable, it would be compelling to 968

evaluate the system on different LP datasets for further refinement. Further, the proposed 969

system can also be extended for applications like illegal license plate identification by 970

comparing with an external data source, which would be a promising direction to further 971

explore. 972

References 973

1. Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.M.A.; Dang, T.N.; Hong, C.S. Edge-Computing-Enabled Smart Cities: A Comprehen- 974

sive Survey. IEEE Internet of Things Journal 2020, 7, 10200–10232. doi:10.1109/JIOT.2020.2987070. 975

2. Hossain, S.A.; Anisur Rahman, M.; Hossain, M. Edge computing framework for enabling situation awareness in IoT based smart 976

city. Journal of Parallel and Distributed Computing 2018, 122. doi:10.1016/j.jpdc.2018.08.009. 977

3. Chakraborty, T.; Datta, S.K. Home automation using edge computing and Internet of Things. 2017, pp. 47–49. 978

doi:10.1109/ISCE.2017.8355544. 979

https://doi.org/10.1109/JIOT.2020.2987070
https://doi.org/10.1016/j.jpdc.2018.08.009
https://doi.org/10.1109/ISCE.2017.8355544


Version February 3, 2022 submitted to Sensors 26 of 28

4. Gamage, G.; Sudasingha, I.; Perera, I.; Meedeniya, D. Reinstating Dlib Correlation Human Trackers Under Occlusions in Human 980

Detection based Tracking. 18th International Conference on Advances in ICT for Emerging Regions (ICTer); IEEE explorer: 981

Colombo, Sri Lanka, 2018; pp. 92–98. doi: 10.1109/ICTER.2018.8615551. 982

5. Padmasiri, H.; Madurawe, R.; Abeysinghe, C.; Meedeniya, D. Automated Vehicle Parking Occupancy Detection in Real-Time. 983

Moratuwa Engineering Research Conference (MERCon); , 2020; pp. 644–649. doi: 10.1109/MERCon50084.2020.9185199. 984

6. Wang, X.; Huang, J. Vehicular Fog Computing: Enabling Real-Time Traffic Management for Smart Cities. IEEE Wireless 985

Communications 2018, 26. doi:10.1109/MWC.2019.1700441. 986

7. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and 987

Artificial Intelligence. IEEE Internet of Things Journal 2020, 7, 7457–7469. doi:10.1109/jiot.2020.2984887. 988

8. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge 989

Computing. Proceedings of the IEEE 2019, 107, 1738–1762. doi:10.1109/JPROC.2019.2918951. 990

9. Shashirangana, J.; Padmasiri, H.; Meedeniya, D.; Perera, C. Automated License Plate Recognition: A Survey on Methods and 991

Techniques. IEEE Access 2021, 9, 11203–11225. doi: 10.1109/ACCESS.2020.3047929. 992

10. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE 993

Access 2018, 6, 6900–6919. doi:10.1109/ACCESS.2017.2778504. 994

11. Xue, H.; Huang, B.; Qin, M.; Zhou, H.; Yang, H. Edge Computing for Internet of Things: A Survey. 2020 International Conferences 995

on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and 996

Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), 2020, pp. 997

755–760. doi:10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00130. 998

12. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. FBNet: Hardware-Aware Efficient 999

ConvNet Design via Differentiable Neural Architecture Search. IEEE Conference on Computer Vision and Pattern Recognition 1000

(CVPR); Computer Vision Foundation / IEEE: Long Beach, CA, USA, 2019; pp. 10734–10742. doi: 10.1109/CVPR.2019.01099. 1001

13. Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.; Tian, Q.; Xiong, H. PC-DARTS: Partial Channel Connections for Memory-Efficient 1002

Architecture Search, 2020. arXiv:1907.05737. 1003

14. Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H.; Ying, C.; Huang, L. Towards end-to-end license plate detection and recognition: A 1004

large dataset and baseline. Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 255–271. 1005

15. Sarfraz, M.; Ahmed, M.; Ghazi, S.A. Saudi Arabian license plate recognition system. 2003 International Conference on Geometric 1006

Modeling and Graphics, 2003. Proceedings, 2003, pp. 36–41. 1007

16. Luo, L.; Sun, H.; Zhou, W.; Luo, L. An Efficient Method of License Plate Location. 2009 First International Conference on 1008

Information Science and Engineering, 2009, pp. 770–773. 1009

17. Busch, C.; Domer, R.; Freytag, C.; Ziegler, H. Feature based recognition of traffic video streams for online route tracing. VTC 1010

’98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), 1998, Vol. 3, pp. 1011

1790–1794 vol.3. 1012

18. Sanyuan, Z.; Mingli, Z.; Xiuzi, Y. Car plate character extraction under complicated environment. 2004 IEEE International 1013

Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol. 5, pp. 4722–4726 vol.5. 1014

19. Yoshimori, S.; Mitsukura, Y.; Fukumi, M.; Akamatsu, N.; Pedrycz, W. License plate detection system by using threshold function 1015

and improved template matching method. IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS ’04., 2004, 1016

Vol. 1, pp. 357–362 Vol.1. 1017

20. Wang, F.; Man, L.; Wang, B.; Xiao, Y.; Pan, W.; Lu, X. Fuzzy-based algorithm for color recognition of license plates. Pattern 1018

Recognition Letters 2008, 29, 1007–1020. doi:10.1016/j.patrec.2008.01.026. 1019

21. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference 1020

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. 1021

22. Laroca, R.; Severo, E.; Zanlorensi, L.; Oliveira, L.; Gonçalves, G.; Schwartz, W.; Menotti, D. A Robust Real-Time Automatic 1022

License Plate Recognition Based on the YOLO Detector. 2018 International Joint Conference on Neural Networks (IJCNN), 2018, 1023

pp. 1–10. 1024

23. Hsu, G.S.; Ambikapathi, A.M.; Chung, S.L.; Su, C.P. Robust license plate detection in the wild. 2017 14th IEEE International 1025

Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017, pp. 1–6. 1026

24. Xie, L.; Ahmad, T.; Jin, L.; Liu, Y.; Zhang, S. A New CNN-Based Method for Multi-Directional Car License Plate Detection. IEEE 1027

Transactions on Intelligent Transportation Systems 2018, 19, 507–517. 1028

25. Das, S.; Mukherjee, J. Automatic License Plate Recognition Technique using Convolutional Neural Network. International Journal 1029

of Computer Applications 2017, 169, 32–36. doi:10.5120/ijca2017914723. 1030

26. Yonetsu, S.; Iwamoto, Y.; Chen, Y.W. Two-Stage YOLOv2 for Accurate License-Plate Detection in Complex Scenes. 2019 IEEE 1031

International Conference on Consumer Electronics (ICCE), 2019, pp. 1–4. doi:10.1109/ICCE.2019.8661944. 1032

27. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement 2018. arxiv:1804.02767, Tech Report. 1033

28. Berg, A.; Öfjäll, K.; Ahlberg, J.; Felsberg, M. Detecting Rails and Obstacles Using a Train-Mounted Thermal Camera. 2015, pp. 1034

492–503. doi:10.1007/978-3-319-19665-7_42. 1035

29. Siegel, R. Land mine detection. IEEE Instrumentation Measurement Magazine 2002, 5, 22–28. doi:10.1109/MIM.2002.1048979. 1036

30. Zhang, L.; Gonzalez-Garcia, A.; van de Weijer, J.; Danelljan, M.; Khan, F.S. Synthetic Data Generation for End-to-End Thermal 1037

Infrared Tracking. IEEE Trans. Image Process. 2019, 28, 1837–1850. doi: 10.1109/TIP.2018.2879249. 1038

https://doi.org/10.1109/MWC.2019.1700441
https://doi.org/10.1109/jiot.2020.2984887
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00130
https://doi.org/10.1016/j.patrec.2008.01.026
https://doi.org/10.5120/ijca2017914723
https://doi.org/10.1109/ICCE.2019.8661944
https://doi.org/10.1007/978-3-319-19665-7_42
https://doi.org/10.1109/MIM.2002.1048979


Version February 3, 2022 submitted to Sensors 27 of 28

31. Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference 1039

on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5967–5976. 1040

32. Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 1041

IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2242–2251. 1042

33. Ismail, M. License plate Recognition for moving vehicles case : At night and under rain condition. 2017 Second International 1043

Conference on Informatics and Computing (ICIC), 2017, pp. 1–4. doi:10.1109/IAC.2017.8280649. 1044

34. Mahini, H.; Kasaei, S.; Dorri, F.; Dorri, F. An Efficient Features - Based License Plate Localization Method. 18th International 1045

Conference on Pattern Recognition (ICPR’06), 2006, Vol. 2, pp. 841–844. doi:10.1109/ICPR.2006.239. 1046

35. Yi-Ting Chen.; Jen-Hui Chuang.; Wen-Chih Teng.; Horng-Horng Lin.; Hua-Tsung Chen. Robust license plate detection in 1047

nighttime scenes using multiple intensity IR-illuminator. 2012 IEEE International Symposium on Industrial Electronics, 2012, pp. 1048

893–898. doi:10.1109/ISIE.2012.6237207. 1049

36. Azam, S.; Islam, M. Automatic License Plate Detection in Hazardous Condition. Journal of Visual Communication and Image 1050

Representation 2016, 36. doi:10.1016/j.jvcir.2016.01.015. 1051

37. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet of Things Journal 2016, 3, 637–646. 1052

doi:10.1109/JIOT.2016.2579198. 1053

38. Shashirangana, J.; Padmasiri, H.; Meedeniya, D.; Perera, C.; Nayak, S.R.; Nayak, J.; Vimal, S.; Kadry, S. License Plate Recognition 1054

Using Neural Architecture Search for Edge Devices. International Journal of Intelligent Systems, Special issue Complex Industrial 1055

Intelligent Systems 2021, 36, 1–38. 1056

39. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded deep learning for vehicular edge computing. Proceedings - 2018 1057

3rd ACM/IEEE Symposium on Edge Computing, SEC 2018 2018, pp. 341–343. doi:10.1109/SEC.2018.00038. 1058

40. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient 1059

Convolutional Neural Networks for Mobile Vision Applications, 2017, [arXiv:cs.CV/1704.04861]. 1060

41. Yi, S.; Hao, Z.; Qin, Z.; Li, Q. Fog computing: Platform and applications. Proceedings - 3rd Workshop on Hot Topics in Web 1061

Systems and Technologies, HotWeb 2015, 2016, pp. 73–78. doi:10.1109/HotWeb.2015.22. 1062

42. Ha, K.; Chen, Z.; Hu, W.; Richter, W.; Pillai, P.; Satyanarayanan, M. Towards wearable cognitive assistance. MobiSys 2014 1063

- Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services. Association for 1064

Computing Machinery, 2014, pp. 68–81. doi:10.1145/2594368.2594383. 1065

43. Chun, B.G.; Ihm, S.; Maniatis, P.; Naik, M.; Patti, A. CloneCloud: Elastic execution between mobile device and cloud. EuroSys’11 1066

- Proceedings of the EuroSys 2011 Conference, 2011, pp. 301–314. doi:10.1145/1966445.1966473. 1067

44. Lee, S.; Son, K.; Kim, H.; Park, J. Car plate recognition based on CNN using embedded system with GPU. 2017 10th International 1068

Conference on Human System Interactions (HSI), 2017, pp. 239–241. doi:10.1109/HSI.2017.8005037. 1069

45. Arth, C.; Limberger, F.; Bischof, H. Real-Time License Plate Recognition on an Embedded DSP-Platform. 2007 IEEE Conference 1070

on Computer Vision and Pattern Recognition, 2007, pp. 1–8. doi:10.1109/CVPR.2007.383412. 1071

46. Rizvi, S.T.H.; Patti, D.; Björklund, T.; Cabodi, G.; Francini, G. Deep Classifiers-Based License Plate Detection, Localization and 1072

Recognition on GPU-Powered Mobile Platform. Future Internet 2017, 9. doi:10.3390/fi9040066. 1073

47. Izidio, D.; Ferreira, A.; Barros, E. An Embedded Automatic License Plate Recognition System using Deep Learning. Anais do 1074

VIII Simpósio Brasileiro de Engenharia de Sistemas Computacionais. SBC, 2018, pp. 50–57. doi:10.1109/SBESC.2018.00015. 1075

48. Liew, C.; On, C.K.; Alfred, R.; Guan, T.T.; Anthony, P. Real time mobile based license plate recognition system with neural 1076

networks. Journal of Physics: Conference Series. IOP Publishing, 2020, Vol. 1502, p. 012032. 1077

49. Luo, X.; Xie, M. Design and Realization of Embedded License Plate Recognition System Based on DSP. 2010 Second International 1078

Conference on Computer Modeling and Simulation, 2010, Vol. 2, pp. 272–276. doi:10.1109/ICCMS.2010.90. 1079

50. Zeni, L.F.; Jung, C. Weakly Supervised Character Detection for License Plate Recognition. 2020 33rd SIBGRAPI Conference on 1080

Graphics, Patterns and Images (SIBGRAPI). IEEE, 2020, pp. 218–225. 1081

51. Saluja, R.; Maheshwari, A.; Ramakrishnan, G.; Chaudhuri, P.; Carman, M. Ocr on-the-go: Robust end-to-end systems for reading 1082

license plates & street signs. 2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2019, pp. 1083

154–159. 1084

52. Li, H.; Wang, P.; Shen, C. Toward End-to-End Car License Plate Detection and Recognition with Deep Neural Networks. IEEE 1085

Transactions on Intelligent Transportation Systems 2019, 20, 1126–1136, [1709.08828]. doi:10.1109/TITS.2018.2847291. 1086

53. Jamtsho, Y.; Riyamongkol, P.; Waranusast, R. Real-time Bhutanese license plate localization using YOLO. ICT Express 2020, 1087

6, 121–124. doi: 10.1016/j.icte.2019.11.001. 1088

54. Laroca, R.; Zanlorensi, L.A.; Gonçalves, G.R.; Todt, E.; Schwartz, W.R.; Menotti, D. An efficient and layout-independent automatic 1089

license plate recognition system based on the YOLO detector 2019. arXiv:1909.01754. 1090

55. Wu, S.; Zhai, W.; Cao, Y. PixTextGAN: structure aware text image synthesis for license plate recognition. IET Image Processing 1091

2019, 13, 2744–2752. 1092

56. Harrysson, O. License plate detection utilizing synthetic data from superimposition. Master Theses in Mathematical Sciences 2019. 1093

57. Chang, I.S.; Park, G. Improved Method of License Plate Detection and Recognition using Synthetic Number Plate. Journal of 1094

Broadcast Engineering 2021, 26, 453–462. 1095

58. Barreto, S.C.; Lambert, J.A.; de Barros Vidal, F. Using Synthetic Images for Deep Learning Recognition Process on Automatic 1096

License Plate Recognition. Mexican Conference on Pattern Recognition. Springer, 2019, pp. 115–126. 1097

https://doi.org/10.1109/IAC.2017.8280649
https://doi.org/10.1109/ICPR.2006.239
https://doi.org/10.1109/ISIE.2012.6237207
https://doi.org/10.1016/j.jvcir.2016.01.015
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/SEC.2018.00038
http://xxx.lanl.gov/abs/1704.04861
https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1109/HSI.2017.8005037
https://doi.org/10.1109/CVPR.2007.383412
https://doi.org/10.3390/fi9040066
https://doi.org/10.1109/SBESC.2018.00015
https://doi.org/10.1109/ICCMS.2010.90
http://xxx.lanl.gov/abs/1709.08828
https://doi.org/10.1109/TITS.2018.2847291


Version February 3, 2022 submitted to Sensors 28 of 28

59. Björklund, T.; Fiandrotti, A.; Annarumma, M.; Francini, G.; Magli, E. Automatic license plate recognition with convolutional 1098

neural networks trained on synthetic data. 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), 1099

2017, pp. 1–6. doi:10.1109/MMSP.2017.8122260. 1100

60. Matas, J.; Zimmermann, K. Unconstrained licence plate and text localization and recognition. Proceedings. 2005 IEEE Intelligent 1101

Transportation Systems, 2005., 2005, pp. 225–230. 1102

61. Zhang, X.; Shen, P.; Xiao, Y.; Li, B.; Hu, Y.; Qi, D.; Xiao, X.; Zhang, L. License plate-location using AdaBoost Algorithm. 2010, pp. 1103

2456 – 2461. doi:10.1109/ICINFA.2010.5512276. 1104

62. Selmi, Z.; Ben Halima, M.; Alimi, A. Deep Learning System for Automatic License Plate Detection and Recognition. 2017, pp. 1105

1132–1138. doi:10.1109/ICDAR.2017.187. 1106

63. Boonsim, N.; Prakoonwit, S. Car make and model recognition under limited lighting conditions at night. Pattern Analysis and 1107

Applications 2017, 20, 1195–1207. 1108

64. Laroca, R.; Zanlorensi, L.A.; Gonçalves, G.R.; Todt, E.; Schwartz, W.R.; Menotti, D. An Efficient and Layout-Independent 1109

Automatic License Plate Recognition System Based on the YOLO detector 2019. 1110

65. Montazzolli, S.; Jung, C. Real-Time Brazilian License Plate Detection and Recognition Using Deep Convolutional Neural 1111

Networks. 2017. doi:10.1109/SIBGRAPI.2017.14. 1112

66. Anagnostopoulos, C.N.; Anagnostopoulos, I.; Loumos, V.; Kayafas, E. A License Plate-Recognition Algorithm for Intelligent 1113

Transportation System Applications. IEEE Transactions on Intelligent Transportation Systems 2006, 7, 377–392. 1114

67. Selmi, Z.; Ben Halima, M.; Alimi, A.M. Deep Learning System for Automatic License Plate Detection and Recognition. 2017 1115

14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017, Vol. 01, pp. 1132–1138. doi: 1116

10.1109/ICDAR.2017.187. 1117

68. Francis-Mezger, P.; Weaver, V.M. A Raspberry Pi Operating System for Exploring Advanced Memory System Concepts. 1118

Proceedings of the International Symposium on Memory Systems; Association for Computing Machinery: New York, NY, USA, 1119

2018; MEMSYS ’18, p. 354–364. doi:10.1145/3240302.3240311. 1120

69. Tolmacheva, A.; Ogurtsov, D.; Dorrer, M. Justification for choosing a single-board hardware computing platform for a neural 1121

network performing image processing. IOP Conference Series: Materials Science and Engineering 2020, 734, 012130. doi:10.1088/1757- 1122

899X/734/1/012130. 1123

70. Pagnutti, M.; Ryan, R.; Cazenavette, G.; Gold, M.; Harlan, R.; Leggett, E.; Pagnutti, J. Laying the foundation to use Rasp- 1124

berry Pi 3 V2 camera module imagery for scientific and engineering purposes. Journal of Electronic Imaging 2017, 26, 013014. 1125

doi:10.1117/1.JEI.26.1.013014. 1126

71. Win, H.H.; Thwe, T.T.; Swe, M.M.; M., A.M. Call and Send Messages by Using GSM Module. Journal of the Myanmar Academy of 1127

Arts and Science 2019, XVII, 99–107. 1128

72. Odat, E.; Shamma, J.S.; Claudel, C. Vehicle classification and speed estimation using combined passive infrared/ultrasonic 1129

sensors. IEEE transactions on intelligent transportation systems 2017, 19, 1593–1606. 1130

73. Zappi, P.; Farella, E.; Benini, L. Tracking motion direction and distance with pyroelectric IR sensors. IEEE Sensors Journal 2010, 1131

10, 1486–1494. 1132

74. Hwang, S.; Park, J.; Kim, N.; Choi, Y.; Kweon, I.S. Multispectral Pedestrian Detection: Benchmark Dataset and Baselines. 1133

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. 1134

75. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 1135

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. doi:10.1109/CVPR.2018.00474. 1136

76. Li, H.; Wang, P.; Shen, C. Toward End-to-End Car License Plate Detection and Recognition with Deep Neural Networks. IEEE 1137

Transactions on Intelligent Transportation Systems 2019, 20, 1126–1136. doi: 10.11TS.2018.284729109/TI. 1138

77. Padmasiri, H.; Shashirangana, J. Lite-LPNet. https://github.com/heshanpadmasiri/Lite-LPNet, 2021. 1139

78. Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. SMASH: One-Shot Model Architecture Search through HyperNetworks 2018. 1140

https://doi.org/10.1109/MMSP.2017.8122260
https://doi.org/10.1109/ICINFA.2010.5512276
https://doi.org/10.1109/ICDAR.2017.187
https://doi.org/10.1109/SIBGRAPI.2017.14
https://doi.org/10.1145/3240302.3240311
https://doi.org/10.1088/1757-899X/734/1/012130
https://doi.org/10.1088/1757-899X/734/1/012130
https://doi.org/10.1088/1757-899X/734/1/012130
https://doi.org/10.1117/1.JEI.26.1.013014
https://doi.org/10.1109/CVPR.2018.00474
https://github.com/heshanpadmasiri/Lite-LPNet

	Introduction
	Background and Related Studies
	Overview of LP Recognition Approaches
	LP Recognition in Constrained Environment
	ALPR using Edge Devices
	ALPR with Synthetic and Night time Images

	System Design and Methodology
	Design Aspects of the Proposed ALPR System
	Cost Effective Mobile-sensing Data Communication Specifications
	Input Module
	Main Processing Module
	Communication Module

	Environment Simulation Techniques
	License Plate Detection and Recognition Algorithms
	Search Space
	Search Strategy
	 Lite LPNet Architectures
	Performance Estimation Strategy


	System Evaluation
	Data set
	Experiment Setup 
	Model Performance
	Hardware Performance

	Discussion and Lessons Learned
	Study Contributions
	Solution Assessment

	Conclusion
	References

