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Abstract: The incorporation of deep-learning techniques in embedded systems has enhanced the
capabilities of edge computing to a greater extent. But, most of these solutions rely on high-end
hardware and often require a high processing capacity, which cannot be achieved with resource-
constrained edge computing. This study presents a novel approach and a proof-of-concept for a
hardware-efficient automated license plate recognition system for a constrained environment with
limited resources. The proposed solution is purely implemented for low-resource edge devices and
performed well for extreme illumination changes such as day and nighttime. The generalisability
of the proposed models has been achieved by using a novel set of neural networks for different
hardware configurations based on the computational capabilities and low cost. The accuracy, energy
efficiency, communication, and computational latency of the proposed models are validated using
different license plate datasets in the daytime and nighttime and also in real-time. Meanwhile, the
results obtained from the proposed study have shown competitive performance to the state-of-the-art
server-grade hardware solutions as well.

Keywords: Edge Computing, Resource Constrained Devices, Energy Efficiency, Low-cost, Night
Vision

1. Introduction

The emergence of edge computing has unveiled an exceptional proliferation of computer-
intensive applications for smart cities [1,2] and smart homes [3] for different domains such
as security [4], city parking [5] and traffic management [6]. Most of these modern systems
involve capabilities beyond traditional computing by embedding edge intelligence to en-
able self-learning solutions including machine learning and deep learning [7-9]. Generally,
edge-based solutions tend to be reliable and efficient due to the associated on-device deci-
sion making and data computing inclinations. However, edge computing inherits a new set
of challenges in terms of resource management, data accumulation, and energy consump-
tion [10,11]. As opposed to traditional internet of things (IoT) networks, edge computing
minimizes the network load, thus reducing the system latency. For instance, real-time ap-
plications like vehicle license plate identification in smart cities usually have higher latency
values [9]. However, with edge computing technology, these can be processed at the edge
without sending the data to a central cloud [10,11]. Hence, it is increasingly important to
put basic timely computations approximate to the physical system, as it reduces the latency
of the overall system in multiple times.

This paper proposes an Automated License Plate Recognition (ALPR) solution for
edge computing with resource constrained environments, which can lead to support smart
city development and management processes. Although ALPR is a well-established area in
the domain of image processing, research on ALPR is still challenging with the associated
constraints in the environment such as varying weather conditions, plate variations across
regions, vehicle motion, distorted characters, dirty plates, shadow and reflection [9]. More-
over, most of the existing ALPR solutions limited to execution in server-grade hardware
with nearly unlimited resources and limited to daytime performance. Thus, currently,
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there has been less attention paid to build systems that work efficiently in constrained
environments targeting low cost, energy efficiency, less computational power requirements,
remote location deployments and work in night vision. The technological developments of
deep learning techniques can be improved to use in edge devices to provide an efficient
solution for ALPR in resource constrained environments.

We present an approach and a proof-of-concept prototype for hardware-efficient
ALPR at nighttime, while adhering to several constraints in terms of energy efficiency,
resource utilization, low cost, low-latency communication and computation as the novel
contributions. The proposed ALPR system can operate at nighttime without any visible
additional illumination and require no internet connection for operation. Consequently,
the system is fully implementable on low power edge devices like Raspberry Pi 3b+ and
operated completely with a battery that lasts long due to the energy-saving strategies
implemented in the solution. Therefore, the system recognizes license plates in real-time
both day and night-time, and can be deployed in rural or forest areas, where there is no
stable internet connectivity or a direct power grid, which is one of the main contributions
of this study.

Our methodology uses deep learning based Neural Architecture Search (NAS) strate-
gies to discover a novel set of hardware-efficient neural networks for autonomous manage-
ment of license plate detection and recognition process for edge devices with low resources.
The proposed differentiable architecture search is based on FBNet (Facebook-Berkeley-Nets)
[12] and PC-DARTS (Partially-Connected Differentiable architecture search) [13]. These
algorithms seek effective architectures without comprising the performance, by sampling a
small part of a super-network to reduce the redundancy in exploring the network space.
Thus, compared to the general approaches such as reinforcement learning, and evolution-
ary algorithms, the differentiable architecture search proposed in this study provides a
significant reduction in computational power required to search neural networks.

Although neural networks for license plate recognition is a well-explored area for
the daytime images with the server-grade hardware specification, we provide a solution
for ALPR with limited resources in constraint environments. Moreover, compared to the
existing studies as stated in Table 1, to the best of our knowledge, we provide a novel
contribution to design and develop models to detect and recognize license plates using
low resource edge devices with different configurations. Thus, the implementation of the
NAS based data engineering techniques in IoT applications for hardware-efficient ALPR
solutions, is one of the scientific contributions of this study. Therefore, the main focus of
this study was to design and develop neural network based models that are competitive
with state-of-the-art models such as RPNet (Roadside Parking Net) [14], that are designed
for server-grade hardware, consumes more memory, and are computationally expensive to
execute on edge devices.

However, it is challenging to train the discovered deep neural networks to recognize li-
cense plates due to the lack of a large, annotated and diverse dataset. In order to circumvent
this issue, we use a synthetic data generation process based on image-to-image translation
techniques to convert daytime RGB (Red-Green-Blue) images into thermal infrared (TIR)
images. The presented data synthesising process is inspired by the related work that has
shown promising results in license plate recognition, as given in Table 2. Thus, we provide
synthetic data generation approaches to mitigate the issue with the scarcity of a large and
diverse nighttime license plate data set for the learning process of deep learning models.
Accordingly, this study uses 200,000 daytime license plate images from the CCPD data
set Chinese City Parking Data set (CCPD) [14], and the corresponding nighttime images
generated synthetically. Also, we use 100 nighttime images captured in a real environment
showing the possibility of using the proposed approach for different other licence plate
data sets.

The prototype of our solution simulates a case study of an animal poacher vehicle
detection problem. At present, Wildlife has faced a capacious and prejudicial issue that
has caused a countable number of wild animals to lose their lives. Most of the existing
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approaches to minimize illegal hunting of wild animals, rely on manual surveillance from
the camera feeds. Poacher vehicle detection system uses modern image processing and
deep learning techniques to detect poacher vehicles while tracking their license plate
numbers and sending the detected vehicle details to authorized parties through SMS. It has
been noticed that poachers arrive mostly at nighttime since the poacher vehicle detection
system is designed to function at nighttime as well. The case study environment contains
several constraints. This system relies on battery power only, thus the power consumption
should be minimized. Since there is no internet connectivity in the wild, SMS is the only
possible communication method, where images can be stored for later prosecution material.
Also, the system should be deployed in an unnoticeable way to the poachers. Thus, the
proposed ALPR solution considers the following requirements.

*  The system executes autonomously in real-time on an edge platform with constrained
memory and computational capabilities.

¢  The system is feasible, low cost and energy-efficient to be deployed in the wild or
remote areas, where there is no reliable internet connection or a power grid.

*  The system operates at nighttime without additional lighting that is visible to the
naked eye.

Further, the solution we present can be used to develop smart city based applica-
tions such as identifying fraudulent vehicles and overcome security challenges with low
resources in a cost effective way. Thus, supports energy-efficient and low-latency commu-
nication and computation. Therefore, the novel approach we proposed directs towards the
future perspective in edge computing.

The rest of the article is organized as follows. Section 2 reviews the literature in the
field of automatic license plate recognition systems in embedded platforms and high-end
serve-grade hardware. The design overview of the proposed solution is presented in
Section 3. Section 4 analyses the results, and Section 5 discusses the findings. Section 6
concludes the study.

2. Background and Related Studies
2.1. Overview of LP Recognition Approaches

Over the time, many research studies have addressed Automated License Plate Recog-
nition (ALPR). Yet, most of these solutions are designed to be executed on server-grade
hardware with sufficient resources. In early stages of ALPR domain, most of the studies
applied well-defined traditional computer vision techniques such as edge detection [15-18],
genetic algorithms [19], and fuzzy logic [20] for both license plate detection and recogni-
tion. Although these solutions were faster, simple, and lightweight, they still lacked better
performance when complex scenarios are involved. These techniques were often sensitive
to noise, illumination variations and were mostly unable to place the license plates when
they are inclined or deformed.

However, with the development of data engineering techniques, researchers have
considered machine learning and deep learning based solutions for ALPR [21-24] with
the aim of achieving high performance than the prevailing traditional solutions. However,
these solutions consume more resources and processing power when compared to classical
methods. In deep learning, the problem of automatic license plate recognition was consid-
ered as a general object detection and a character recognition problem. Therefore, some
researchers [25,26] used generic object detection models like YOLO [27] to detect the license
plate. However, these methods were more robust to noise, illuminations and inclinations of
the plates thus eliminating most of the limitations in the classical methods.

2.2. LP Recognition in Constrained Environment

Computer vision applications are often developed to replace human in harsh, danger-
ous or tedious situations to handle numerous applications. Such harsh environments often
raise many challenging conditions which are hard to tackle in naive ways. Among them,
night vision is a pivotal area in most of the safety-critical applications like surveillance,
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automotive safety [28], military defence systems [29]. Traditionally, there are common
ways to capture nighttime images such as low-light-level (image-intensified) cameras, and
thermal infrared (TIR) cameras. Nevertheless, the widely used approach in most modern
applications is thermal imaging. These thermal images are sensitive to the infrared region
of the electromagnetic spectrum and they use variations in the temperature levels of the
objects and the background to distinguish the objects in a TIR image. The main advantage
of using TIR images is that they are robust against any illumination variations and can also
be used to capture images at night-time in complete darkness. They also produce quality
images with no or few distortions during difficult weather conditions. However, thermal
cameras are quite costly, and the scarcity of TIR datasets limits most of its applications.
Therefore, a practical solution to mitigate this issue is to convert the available RGB (Red
Green Blue) image datasets to TIR images.

A systematic study of converting RGB images to TIR was reported by Zhang et al.
[30]. A large set of synthetic data generated by this work has provided accurate results
than a small dataset with real TIR images in the field of object tracking. They have shown
that a combination of real TIR images and the generated synthetic data gives the best
results while tracking objects. They have used mainly two image-to-image translation
methods called pix2pix [31] and cycleGAN [32]. Besides, some applications use filters like
grey-scaling to transform daytime images to night vision images. In another related study,
Ismail et al. [33] have used an effective object detection method called Cascade classifier to
function at night-time and rainy weather conditions. They have enhanced the images using
the top-hat transform operation. Another novel feature-based algorithm has presented
in [34] to localize license plates even in complex situations like different illumination and
weather conditions. They have used an edge-based approach based on vertical edges and
morphological operations. This study has shown an accuracy of 96.5% and has created a
database with 269 images in challenging environments. Multiple intensity IR-illuminator
based license plate detection in the night-time has presented in [35]. Although Infrared
light allows detecting license plates under different illuminations, it does not perform well,
when the distance from the target is changing. The authors have addressed this issue
using a multiple intensity IR-illuminator that detects license plates at different levels of
illuminations and distances and showed an accuracy of 98%.

Further, except for changing illuminations, some hazardous weather conditions such as
rain, fog, snow have always made the license plate recognition problem complex. However,
not many ALPR models are robust to these challenging situations in outside uncontrolled
environments. Azam and Islam [36] have proposed such an ALPR algorithm to process
license plates in rainy and foggy weather by removing rain streams and fog from the
images captured. Accordingly, the complexity of the license plate detection task is greatly
influenced by different environmental conditions. Although many studies have addressed
license plate detection and recognition, only a few can be applied to an uncontrolled
complex situation like nighttime illumination, and extreme weather conditions [9]. In
another point of view, even though, the retro-reflective nature of license plates makes
them readable even at night, still, it is challenging to accurately locate a license plate at
nighttime, for reasons such as the insufficient amount of light to acquire the details. The use
of an illuminator can be used to solve this issue to some extent. In addition, the emission
of too much light from headlights also causes difficulty in reading license plates, as the
plate reflects more light and the resulted brightness makes it hard to extract the data on
the licence plate. Thus, the related applications with computer vision techniques face
challenges in situations such as changing weather conditions, issues with camera and
equipment, moving object detection, demand for excessive resources and power.

2.3. ALPR using Edge Devices

Edge computing enables offloading computational tasks to perform at the edge devices
in contrast to the traditional social sensing approaches [37]. With the growth of data being
produced at edge devices, it is becoming increasingly difficult to carry out all the necessary
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Table 1. Summary of the related LP recognition studies on edge platforms

Related  Description Techniques Type Performance
study (D/N/S)
[44] Use a NVIDIA Jetson TX1 embedded board with GPU.  AlexNet (CNN) D AC=95.25%

Provides LP recognition without a detection line. Not
robust to broken or reflective plates.

[45] Real-time LP recognition on an embedded DSP plat- SVM D F=86%
form, Operation under daytime condition with suf-
ficient daylight or artificial light from street lamps,
High performance with low image resolution.

[46] Real-time LP recognition on GPU powered mobile =~ CNN D,N,S AC=94%
platform by simplifying a trained neural network de-
veloped for desktop/ server environment.

[47] Implemented in a Raspberry Pi3 with a Pi NoIR v2 ~ CNN D,S AC=97%
camera module. Robust to angle, lighting and noise
variations, Free from character segmentation to re-
duce errors in character mis-segmentation.

[48] A portable ALPR model trained on a desktop com- CNN D AC=772%
puter and exported to an Android mobile device.

computations in the cloud with an acceptable latency. Edge computing supports solves this
issue by merely increasing the computational capabilities of the edge devices, thus reducing
the communication cost and the application latency. Moreover, it has become possible to
due to the increase in computational performance in edge devices without significantly
compromising energy efficiency [38].

Another reason to increase the computational capabilities in edge devices is the devel-
opment of hardware accelerators for edge devices. These are dedicated hardware compo-
nents such as Graphical Processing Units (GPUs) that enhance the graphical performance
of the computer and Tensor Processing Units (TPUs) that accelerates application-specific
integrated circuit (ASIC), that are used to improve performance in certain parts of programs,
thus lessen the execution time for deep neural networks. Such accelerators had been used
in large servers in the cloud environment for a relatively long time. However, large energy
efficiency can be achieved on edge devices by applying these accelerators, as it produces a
large increase in the rate of computation for every watt of power consumed.

Data processing within edge devices, without moving computational loads for cloud
services, has clear advantages. For instance, Hochstetler et al. [39] have shown that a neural
network can be speedup by a factor of 1137% by adding an Intel® Movidius™ Neural
Compute Stick (NCS), which is an accelerator that draws a maximum of 2.5W of power
to a Raspberry Pi 3B that has a maximum power draw of 6.7W execution of MobileNet
[40]. That is a large performance increase compared to a power increase of less than 40%.
Such accelerators allow the execution of computations that would otherwise require cloud
servers on edge devices. Moreover, Yi et al. [41] and Ha et al. [42] have demonstrated the
improvements in response time by shifting computations to the edge devices. Additionally
by minimizing the amount of data that needs to be transmitted Chun et al. [43] have
shown up to 40% improvement in energy consumption can be achieved by shifting to edge
computing.

In a related study of license plate recognition on embedded systems, Lee et al. [44]
have proposed an ALPR system to detect Korean license plates on am NVIDIA Jetson
TX1 embedded board. They have used a simple convolutional neural network (CNN)
architecture called "AlexNet" and claimed a high recognition accuracy of 95.24%, but on
a small dataset with 63 input images. Another study by Luo et al. [49] have designed a
low-cost, high-speed, real-time embedded ALPR system based on a Digital Signal Processor
(DSP). In this solution, they have ensembled a variety of peripheral modules to fulfil several
requirements such as memory, input image acquisition, and networking etc. Nevertheless,
the proposed solution is claimed to consume less power, high speed and precise enough
to perform real-time license plate recognition in practical applications. Rezvi et al. [46]
have proposed another solution to detect Italian license plates on a mobile platform by
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simplifying the architectures of two different pre-trained CNNs for license plate detection
and recognition. However, this simplification flow introduces a trade-off between the
accuracy and the execution time. Thus, a decrease in accuracy is expected regarding the
network simplification process. Moreover, they have examined the system on two different
GPU environments, such that a desktop workstation equipped with a Quadro K2200 GPU
card and a powerful Jetson TX1 embedded board. In both environments, the simplified
networks show lesser execution time than the original networks. Also, by converting the
trainable parameters from double to float, they have reduced the memory consumption of
both plate and character classifiers by half. However, this indeed has reduced the accuracy
of the simplified architectures when compared to the original networks.

Accordingly, many solutions for license plate detection and recognition have been
discussed extensively in the literature [9]. Most of the prevailing solutions in the domain
of ALPR have addressed unrestricted environments such as a desktop computer with
powerful processors. These solutions are designed to achieve maximum accuracy while
assuming the availability of sufficient computational resources. However, this assumption
does not valid for edge devices such as Raspberry Pi. Such environments often demand a
small model with low complexity and low-resolution input images. One likely explanation
for the low popularity of license plate detection and recognition solutions on the edge is the
difficultly of handling the complexity of the computations in the limited resources in the
edge devices. Furthermore, these ALPR solutions are expected to be effective and efficient
to satisfy the real-time constraints of an embedded platform.

Table 1 states a summary of the selected existing edge-based solutions for license
plate recognition with day time (D), night time(N) and synthesised (S) data. Most of
the related studies have been implemented on modern hardware settings, and may not
execute on edge devices with limited resources. They were tested on powerful machines
with powerful GPUs [44,46,50,51]. In addition, a few studies have provided solutions for
embedded platforms with low resources [47]. Although, the accuracies of the proposed
models do not outperform the existing server-grade models like RPNet [14] and TE2E [52]
that require powerful GPUs, our aim of this study is to show the competing results of the
proposed models that can be run on edge devices with limited resources. At the same
time, the presented mid-tier and high-tier models show superior performance to licence
plate detection using Yolo-V3 [53,54]. This shows that our models are competitive with the
existing state-of-the-art solutions in terms of accuracy.

Moreover, most of the studies have considered only daytime images [44,45] and
only a few studies have considered nighttime and synthesised data [46]. Considering
the challenges and limitations in the existing studies, we present a family of models
based on NAS are designed for different hardware-tiers of edge devices, in a way that
the complexities of the proposed models are relatively low compared to server-grade
models. Our solution can execute entirely on edge devices such as Raspberry pi with
limited memory and power constraints, showing competing results as stated in Section
4.3. Also, our solution has been tested for both daytime, synthetic, real nighttime data, and
shown the best accuracies of 99.87%, 94.%, 98.82%, respectively, as given in Table 6.

In our previous study [38], we have discussed the architecture of the Lite-LPNet
models in detail. As the next phase, this paper mainly describes the hardware circuit
configurations from the deployment point of view, synthetic data generation process,
stochastic super network implementation and the Bi-level optimization in Section 3, as the
scientific contribution.

2.4. ALPR with Synthetic and Night time Images

Several studies have used the synthesised image for both daytime and nighttime
license plate recognition with promising results. Table 2 shows the existing studies that
have used nighttime (NT) and synthetic (Syn.) images. The performance metrics include
accuracy (AC), false negative (FN), recall (R), average precision (AP) and F-score (F). Most
of these studies were implemented on server-grade hardware settings. The study by Wu
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Table 2. Comparison of studies with synthetic and night time images

Study NT Syn. Synthesised method Performance
[55] v GAN based AC=84.57%
[57] v GAN based AC=91.5%
[58] v Augmentation (rotation, size and noise) AC=62.47%
[56] v Augmentation, superimposition, GAN  AP=99.32%
based
[59] v INlumination and pose conditions R=93%
[50] v Random modifications (colour, blur, AC=99.98%
noise)
[51] v v Random modifications (colour, depth) AC=85.3%
[60] v v Intensity changes FN=1.5%
[46] v v INlumination and pose conditions AC=94%
[61] v AC=96%
[62] v AC=96.9%
[63] v AC=93%
[14] v AP=95.5%
[24] v F =98.32%
[64] v AC=95.7%
[65] v AC=93.99%
[20] v AC=92.6%
[66] v AC=86%
[67] v AC=96.2%

et al. [55], have achieved accuracy improvement by using synthetic data and fine-tuning
with a limited number of real data. However, the results depend on many factors such as
the type of the dataset, optimization methods and used hyperparameters in deep learning
based models. In [56], the best performing models have a large ratio of synthesized data
using techniques such as CycleGAN, which strengthens the usefulness of the approach. In
this study, our data synthesizing method is inspired by the Generative Adversarial Network
(GAN) and we used GAN based pix2pix [30,55], as describe in Section 3.2. Moreover, several
studies have used nighttime images in LP recognition. Considering the performance values,
it can be observed that synthesized nighttime images have shown better results as well.
However, they were not focused on implementation with low resource settings, as we have
considered in this study.

3. System Design and Methodology
3.1. Design Aspects of the Proposed ALPR System

The proposed system design consists of three main modules: input module, main
processing module, and communication module as shown in Figure 1. The input module
captures the vehicle images and feed them to the main processing module. Meanwhile, the
main processing module performs the core functions of the system, which are license plate
detection and recognition. Upon the retrieval of results from the license plate recognition
stage, the communication module handles the data communication between the ALPR
system and its operators. Figure 2 shows the hardware stack of the our solution. The
corresponding hardware specifications are given in Section 3.1.1.

3.1.1. Cost Effective Mobile-sensing Data Communication Specifications
Raspberry Pi 3 Model B+

We used Raspberry Pi 3 Model B+, which is a well balanced single-board computer
as the default low-cost edge platform since it represents the middle ground of most of
the product solutions. It can execute deep learning models while being both relatively
inexpensive and power-efficient, with 4 Cortex-A53 64-bit cores clocked at 1.4 GHz and
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Figure 1. Overview of the proposed model
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1 GB of LPDDR2 RAM [68]. While the original Model B supports Bluetooth 4.1, B+ also 316
advances its support for Bluetooth 4.2. The Model B+ also has a dual-band wireless antenna, i~
supporting 2.4GHz and 5GHz 802.11 b/g/n/ac Wi-Fi. 318

intel Neural Compute Stick2

Figure 2. Hardware stack of the proposed solution

Raspberry Pi Zero 319

We also used Raspberry Pi Zero, which consists of 1 GHz single-core processor and sz
512 MB of RAM [68]. Although the Raspberry Pi Zero model is not as powerful as the sz
Raspberry Pi 3 Model, it is cheaper, power-efficient and smaller in model size than the 2
Raspberry Pi 3. Thus, Raspberry Pi Zero is used as an edge platform for situations, where s2s
the Raspberry Pi 3 is expensive or consumes more power. However, with comparatively sz
limited computing capabilities this unit cannot run complex models, like those on the sz
Pi 3. Thus, the Raspberry Pi Zero module represents the low-end edge devices in our sz
experiments. 327

Intel Neural Compute Stick 2 328

The Intel® Neural Compute Stick 2 (Intel® NCS2) unit executes server-grade deep 20
learning models at the edge level power consumption. It consists of an Intel Movidius 330
Myriad X Vision Processing Unit and 4 GB of RAM. With this accelerator, a Raspberry s:
Pi can run complex models as a GPU or a TPU used in a server environment. Therefore, a2
Raspberry Pi 3 equipped with an Intel® NCS2 represents the high-end edge devices in our  sss
experiments [69]. 334

Raspberry Pi Camera Module 335

Raspberry Pi Camera module is intended to capture both still images and high- 336
definition videos. The original Raspberry Pi Camera Module has an effective resolution of a7
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5 Mega-pixels and supports video recording at 1080@30fps, 720p@60fps and Vga@90fps.
Later, in the year 2016, 8 Mega-pixel Camera Module v2 was released and currently, the
latest version has a high-quality resolution of 12 Mega-pixels. Both early versions supported
visible light and infrared versions and however, there is no infrared version for the latest
12-Megapixel model. But yet, this High-quality camera uses a Hoya CM500 infrared filter
and can be removed if needed. The camera module can be connected to Raspberry Pi via
Camera Serial Interface (CSI) port and can be accessed via Multi-Media Abstraction Layer
(MMAL) and Video4Linux (V4L) APIs and other third-party software such as Picamera
Python Library [70].

GSM module sim 900a

Global System for Mobile Communications (GSM) module sim 900a is a GSM modem
that supports Quad-bands GSM850, EGSM900, DCS1800 and PCS1900. The shield sends
and receives General Packet Radio Service (GPRS) data through protocols such as TCP/IP
and HTTP. It also allows sending SMS, MMS, GPRS and Audio via UART using ATtention
(AT) commands [71].

3.1.2. Input Module

The input module consists of two main components, a motion trigger and a camera. Motion
trigger detects motions such as movement of a vehicle and activating the rest of the system.
The camera captures the images at nighttime without additional visible illumination. The
motion trigger uses a passive infrared (PIR) sensor to detect movements. PIR sensor detects
the changes in the amount of infrared radiation falling on it and detects the motion. For
instance, when a vehicle passes near the sensor, the heat radiation from the vehicle engine
fall on the sensor as it enters the sensor’s field of view. When the vehicle leaves the sensors
field of view, then it will stop the heat radiation. This causes a change in the amount of
infrared radiation falling on the sensor causing the sensor to be activated. A typical PIR
sensor can detect a motion, but it can not recognize the motion. Despite this limitation in
many state-of-the-art solutions, PIR sensors are widely used for detection applications like
surveillance systems, automatic lighting, and alarm systems as simple but reliable motion
triggers [72,73]. Our design solution uses PIR sensor purely to detect a motion happening
near the motion trigger. Whether that motion was caused by a vehicle passing will be
recognized by subsequent modules. The sensitivity range of a PIR sensor is normally up to
20 feet (6 meters) and therefore, we use a cluster of PIR sensors to widen the sensor range.

In order to operate the motion trigger, we used an ESP32 micro-controller with in-
tegrated WiFi and Bluetooth connectivity, while performing as a complete standalone
system with low-cost and low-power consumption. When a change of the infrared level is
detected by the PIR motion sensor, a digital value is passed to the ESP32 module. After
recording this value, it sends a signal to the main processing module via Bluetooth as it
boosts considerably low power compared to a WiFi connection. However, as Bluetooth is
more reliable with short-range devices, the distance between the sensor module and the
main module should be kept less than 10 meters, while ensuring no obstructions between
the two devices.

Until it receives a signal from the motion trigger, the main processing module will
be in a standby mode, which helps to reduce the power consumption. After receiving the
signal, it goes to the normal operation state. In this state, it uses the camera from the input
module to capture images and passes them through the processing module to recognize the
license plate. For the camera, we used a Raspberry Pi NolIR camera V2. It is equipped with
a Sony IMX219 8-megapixel sensor without an infrared filter. This coupled with an infrared
illuminator that captures images at night time without using any visible illuminators. Here,
the camera sensor is sensitive to not only the visible spectrum but also to the infrared
spectrum, without an infrared filter. Thus, it can capture images using the infrared rays
reflected by the license plate. However, this camera setup is not as sensitive as purpose
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build thermal or night-vision cameras thus requiring an infrared illuminator. The main se0
advantage of using this camera setup over such a purpose build camera setup is to produce 30
a low-cost solution. 302

3.1.3. Main Processing Module 393

The main processing module takes the image from the input module and outputs the o
license plate content to the communication module. From a software point of view, the 306
main processing module consists of two convolutional neural networks, one that detect o7
and localize the license plate in an image and the second which recognize the content of  ses
the license plate. Thus this is a two-stage license plate recognition process. Figure 3 shows e
the process flow of the two-stage process of detecting and recognizing a license plate. 400

P
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Figure 3. Two-stage license plate recognition pipeline

The input image is passed through a set of transformations such as resizing and 402
normalizing, before feeding it to the detection model. This model produces two outputs. 4o
First, a bounding box description for the license plate and the second, a confidence level 03
value indicating how confident the model is for the bounding box. The confidence value  4oa
will be high, if there is a license plate in the image, otherwise the value will be closer to 0. If  40s
this value is greater than a predetermined threshold value, then the systems moves to the 406
next stage. If not, the image is discarded and the system moves on to the next image from 407
the camera. If the system discarded all the images within a time period indicating that no  4ce
vehicle is passed through the system, then the main processing module becomes standby 400
mode waiting to be activated by the motion trigger. a10

Once an image is passed to the next stage, it is cropped to the license plate bounding 411
box and passed to the recognition model. It will recognize the license plate as a text a1
sequence and passed to the communication module, thus, it can inform the recognized
license plate number to the operator, as a text SMS since there is no internet connectivity in a1
this environment. From a hardware point of view, there are three possible variations for s
the main processing module, as a single hardware solution may not cover all the possible 416
deployment scenarios. Instead, we propose low, mid and high tier hardware configurations. a7
Low-tier hardware configuration is intended to be sufficiently inexpensive making large 41
scale mass deployment economical. Higher-tier configuration is more suitable for situations s1o
where the unit cost is not that significant and mid-tier is meant to be a middle ground. sz
Computational capabilities increase from low to high tier allowing the use of advanced 422
license plate detection and recognition models giving higher accuracy. az2

One of the main objectives of this study is to develop an ALPR system for edge 42
devices with minimum cost. Table 3 states the hardware specification for energy-efficient a2s
computation and low-latency communication. Each of the configurations uses a common 425
set of hardware including Raspberry Pi camera module V2-8 Megapixel, 1080p (USD 23.00), 426
Raspberry Pi power supply (USD 15.00) and GSM module sim 900a (USD 7.00), where the 427
total add up to USD 45.00. a28
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Table 3. Hardware tier details

Hardware tier | Specification Cost (as of January-2022)
Low-tier Raspberry Pi Zero USD 10.60

Mid-tier Raspberry pi 3 B+ USD 38.63

High-tier Raspberry Pi 3b+, Intel Neural Compute Stick 2 | USD 38.63 + USD 89.00

We developed different models for license plate detection and recognition based on
neural architecture search strategies as described in Section 3.3, per each tier to exploit the
capabilities of different hardware tiers. The appearance and the circuit of the configuration
are shown in Figure 4 and Figure 5, respectively.

In the license plate detection process, we developed two models for each hardware
tier. One model is optimized for the specific hardware platform using a hardware aware
architecture search strategy and another model optimized using a hardware-agnostic
architecture search. Both models are small in size and the required computational power is
sufficient to execute on the target hardware, while the hardware-optimized model gives
better latency compared to the hardware-agnostic model. However, the hardware-agnostic
model can generalize better with other similar hardware setups. In the license plate
recognition process, we developed three models based on hardware-agnostic architecture
search, representing each hardware tier.

Consequently, the lower-tier configuration uses a Raspberry Pi Zero as its hardware
platform. As stated in Section 3.1.1, it is a relatively inexpensive single board computer with
limited processing capabilities. As a result, it is coupled with the simplest detection and
recognition models. Mid-tier configuration uses a Raspberry Pi 3 B+ instead of the Rasp-
berry Pi Zero; thus, allows the execution of more complex models and has high computing
capabilities giving better accuracy. The higher-tier configuration consists of a Raspberry Pi
3 B+ with an Intel® NCS2. This offloads the execution of convolutions neural networks to
the more computationally capable Intel® NCS2 allowing to use computationally expensive
but more accurate models.

Figure 4 (left) shows the internal module design of the main processing module
along with the camera in the higher-tier configuration and Figure 4 (right) shows the main
processing units exterior view, which is designed for a wild environment as explained in
the experiment setup with the case study. The exterior view of the main processing module
are based on several consideration based on the proposed application domain. The package
needs to be compact, thus it can be easily camouflaged and hidden from direct view. At
the same time, it must larger enough to store all the components of the system except the
motion trigger along with the battery to power them in it. Figure 5 shows the design circuit
of the proposed solution.

Rasplery pl Nall
cimena v2 Dattery

Raspherry pi 3 bt Intel Mewral Campute
Slick 2

Figure 4. High-tier model (left): Internal view, (right): Exterior deployment view.
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Raspberry Pi 3B+

Figure 5. Circuit diagram of the design
3.1.4. Communication Module

The communication module consists of two main components. The SMS notification system
notifies the characters in the recognized license plates to the authorities and the on-demand
evidence offloading module offloads images stored within the system. Data flow of these
components and the main system is shown in Figure 6. Once a license plate has been
successfully recognized by the license plate recognition model, it is passed to the SMS
notification system. The SMS notification system uses a sim 900a mini v3.8.2 GSM module
connected to the main processing module to send SMS messages. It is connected to the
Raspberry Pi’s serial TTL port using the universal asynchronous receiver/transmitter
(UART) protocol. Since sim900a is a 5V device and Raspberry Pi is a 3.3V device, we used a
5V to 3.3V TTL logic shifter to protect the Raspberry Pi.

ALPR System Communication system

()

Notify authorities

using SMS
> 5. AR
1= I @ @ R
Capture image ! = —
of poacher 1 On demand offloading
vehicle ! of evidences
|

Figure 6. Data flow of the proposed system

The on-demand evidence offloading module is designed as a quality of life improve-
ment, thus the operators do not require physical connection with the system to offload data.
In order to use this system, the operator sends an SMS message to the system, which enables
the WiFi module of the Raspberry Pi. It then searches for a WiFi hot-spot with a predefined
Service Set Identifier (SSID) and WiFi Protected Access 2 (WPA2) password. The operator
will carry a mobile device that uses the mobile hot-spot functionality to create this hot-spot.
After the Raspberry Pi has been successfully connected to the hot-spot operator can access
the images stored within the Raspberry Pi in wireless mode and download necessary files.
With this system, operators can easily access images stored within the system without a
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physical connection to the system, which may be difficult due to camouflaged placement of
the system.

3.2. Environment Simulation Techniques

Generally, a large and diverse dataset supports to train a learning model robustly.
This helps to classify data against varying environmental conditions including adverse
weather and camera conditions such as location and vibration without the need for fragile
explicit image processing steps. There exists such LP datasets like Chinese City Parking
Data set (CCPD) [14] that is used by state-of-the-art models such as Roadside Parking
Net (RPNet) [14] and Towards End-to-End Car License Plate Detection and Recognition
(TE2E) [52] to achieve different variations. However, these data sets have mainly focused
on daytime images. Also, curating such a data set for nighttime images is both expensive
and time consuming. Therefore, to simulate the night vision, we used a synthetic image
generation technique to convert the RGB images of the CCPD dataset to nighttime TIR
images. However, we also deployed the working prototype in the actual field to acquire a
real nighttime dataset to evaluate the performance of our proposed models.
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Figure 7. Pix2Pix for nighttime image generation

The process of generating the synthetic TIR images used by this work follows a
method proposed by Zhang et al. [30]. As shown in Figure 7, we used a GAN based pix2pix
model for image translation and provided the model with a paired set of training data that
includes matching frames in both RGB and TIR images. To train the model for TIR image
transaltion, we selected the largest available multi-spectral dataset named KAIST [74] that
has a significant amount of matching RGB and TIR images. Finally, we trained the pix2pix
model and initialized the weights from a Gaussian distribution with a mean 0 and standard
deviation of 0.02. The input images were enlarged to 480 x 480 pixels and the network
is trained for 100 epochs with a decaying learning rate of 0.0002, lambda_11 of 120.0 and
keeping other parameters the same as the original pix2pix study. Then we used this trained
pix2pix model to translate the daytime RGB images of the CCPD dataset [14] to TIR and
used that synthetically generated nighttime images of CCPD to train the detection models
of our pipeline. In order to train the recognition models, we required comparatively high
quality nighttime images of the license plates. Therefore we converted the RGB images to
gray-scale using matplotlib Python library and set the colour map to grey. Herewith, we
preserved the image quality and avoided generating incomplete license plate characters
that are impossible to read.

3.3. License Plate Detection and Recognition Algorithms

In this paper, we use two differential neural architecture search (DNAS) strategies to
automate the architecture modelling for detection and recognition neural networks. We
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define the Neural Architecture Search problem as a bi-level optimization problem as in
Equation 1,

min min L(a,w,) 1)

where, A is the set of possible neural network architectures referred to as the architec-

ture space and w, is the set of weights for the selected architecture a. Loss function L takes

in to account both the resource utilization and model accuracy. In this work, we consider

three main factors related to neural architecture search namely, search space, search strategy,
and performance estimation strategy.

3.3.1. Search Space

The proposed neural architecture search (NAS) process uses a coarser search space with
"neural blocks" selected on the existing understanding of the domains like license plate
recognition and object detection. Therefore, we selected 4 types of neural blocks: (1) RPNet
blocks [14], (2) MobileNet blocks [75], (3) Inception blocks, and (4) Identity connections.
The RPNet blocks were considered as they currently serve the state-of-the-art results in
the automatic license plate recognition domain. The selection of MobileNet blocks was
based on two major factors. First, it is one of the backbone architectures used in most
of the object detection problems and secondly, it is lightweight and runs efficiently in
resource-constrained environments like mobile devices or other devices with low com-
putational power and memory space. The Inception models are uniform, simplified and
heavily engineered architectures that introduce the concepts for "wider" networks instead
of "deeper". One can consider the search space as the set of possible permutations of these
blocks that can run on the edge device. While selecting a more "finer" search space may
have resulted in better performance, we decided against it because that will lead to a much
larger search space requiring more computational time to perform the architecture search.

3.3.2. Search Strategy

In this study, two neural architecture search strategies namely PC-DARTS (Partially con-
nected - Differentiable architecture search) [13] and FBNet (Facebook-Berkeley-Nets) [12]
are explored to discover the neural network architectures for the licence plate detection and
recognition modules optimized for memory-constrained embedded devices. Our previous
work has presented the detailed implementation aspects of the LP-net architecture used for
this study [38].

We used PC-DARTS as a hardware-agnostic neural architecture search strategy. Thus,
it optimizes the architecture considering only the input and the target output, independent
of the hardware platform. We introduced a hard upper limit to the memory utilization
in A based on the target device. This ensure all possible values of a can be run on then
given target. Rational for performing architecture search in a hardware agnostic manner
is to develop models that will perform well on targets similar to the intended target by
preventing overspecialization to the intended target. PC-DARTS defines its stochastic
super network as a directed graph where vertices represents tensors and edges represent
operation in the search space.

Figure 8 (left) shows a simple case with only 2 intermediate tensors namely xjand
x2. There tensor x is the input to the super network and tensor x3 is the output of the
super network. We call the number of intermediate tensors as the depth of the network in
our implementation. As shown in the figure each tensor is connected to every one of its
predecessors using all the operations in the search space. For brevity we have shown only
op 1 and op n in the figure. For our architecture search process these operations are the
neural blocks described in the previous section.
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Figure 8. Stochastic super network (left): PC-DARTS, (right): FBNet.
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Value of each tensor x; can be defined using its predecessors as shown in Equation 2.
Here we are using value of subscripts to represent the order of tensors and O represents the
set of operations in the search space. We call the value of & (i, j, 0) as the architecture weight
of operation o for edge (i, j) . These weights represent the probability of connected each
tensor with its predecessor j using operation 0. Therefore, we used a softmax distribution to
represent these weights. We call the set of all such architecture weights as the architecture
weights of the super network (w,). Each individual operation such a convolution can have
their own weights and the set of all such weights in the super network is known as the
operation weights of the super network (wy). We can then find the optimal values for
w, and wy using the fallowing bi-level optimization algorithm. Once this optimization
has converged we can find the optimal architecture by performing argmax on architecture

weights.

Algorithm 1: Bi-level optimization

Data: stochastic super network
Result: w} that minimize L(wy, wy)
while L(wgy, wy ) not converged do
for iy iterations do
| wy <— wp — 19 VoL (wp, wa)
end
Wy — Wy — Ya VaL(wg, wy)
end
Wy — Wy

wp : operation weights

Wy : architecture weights

Yo : learning rate for operation weight update
Y« : learning rate for architecture weight update
L(wg, wy) : loss

ig : number of iterations for inner optimization

The FBNet was used as the hardware sensitive search strategy that produces optimized
models for a specific hardware platform. Hence, FBNet based models use special hardware
characteristics of the target platforms to reduce their latency. However, the performance

576



Version February 3, 2022 submitted to Sensors 16 of 28

can be reduced, if these models are used on a different hardware platform other than the
platform considered for the optimization due to overspecialization for the intended target.
As a result models developed using FBNet gives us better hardware utilization at the cost
of generalizability across different hardware platforms.

Similar to PC-DARTS FBNet also represent the search space as a stochastic super
network. However it is more similar to a typical feed forward network as shown in Figure
8 (right). Each layer takes the output of the previous layer x;_1 and apply operation as
shown in Equation 3 to obtain its output x;. O is the set of all operations in the search space.

Z “ (i,0) xl 1 (3)
0€0
We call the value «(; ;) architecture weight of layer i with respect to operation o. Set
of all such weights is given by p; as shown in Equation 4. We define the set of all such
pi values as the architecture weights of the stochastic super network(w,). We then used
the previously given bi-level optimization to obtain the optimal architecture similar to
PC-DARTS.

pi = a(irl)Vo eO 4)

3.3.3. Lite LPNet Architectures

We have designed and developed a set of optimal learning models that can be deployed
in edge devices with low processing power and worked without internet connectivity. The
proposed Lite-LPNet family of models consists of (1) hardware optimized LP detection
model, (2) hardware-agnostic LP detection and (3) LP recognition subnetworks as shown
in Figure 9. The naming convention of the models is detailed in Table 4 and Table 5. We
used the tensorflow.keras.layers API and the default parameters as in TensorFlow version
2.3.0. Moreover, as stated in Section 3.1.2, the hardware optimized LP detection model is
implemented following using FBNet (Facebook-Berkeley-Nets) [12] algorithm and the other
two models were based on PC-DARTS [13]. These were implemented for three hardware
configurations namely low, mid, and high tier, as described in Section 3.1.1.
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Figure 9. Model Architectures (left): hardware optimized detection, (middle): hardware agnostic

detection, (right): recognition subnetworks.

In addition, we have used a novel differentiable neural architecture search (NAS)
process based on PC-DARTS and FB-Net to develop the models. The advantage of using
differentiable architecture search over commonly used methods such as reinforcement
learning, and evolutionary algorithms is a significant reduction in GPU hours required to
search of neural networks. To the best of our knowledge, this is the first time such tech-
niques has been used for the development of models for license plate recognition in edge
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devices such as Raspberry Pi and neural compute stick, that has different computational
capabilities and requires different model designs and optimizations.

The LP detection models are designed to predict the bounding boxes of the license
plate image. As shown in Figure 9 (left) and (middle), the detection model uses 6 different
models. The hardware-optimized and hardware-agnostic models are designed to reduce
the latency and increase the accuracy, respectively. Considering the application domain
considered for this study, we recommend the model that supports low latency. These
hardware optimized models are implemented by applying NAS with the FB-Net algorithm
as described in Section 3.3. The hardware optimized model for each tier is selected based on
the latency values calculated for each hardware configuration and applying NAS. Although
hardware-optimized models provide low latency in the processing, these models can give a
subpar performance in similar but not identical processing units. Thus, hardware-agnostic
models were designed to handle this variability. The implementation of these models is
based on the PC-DARTS algorithm and optimized to increase detection accuracy without
regard to processing latency.

The LP recognition models provide a sequence representing the content, given a
cropped image of the license plate. As shown in Figure 9 (right), this study presents
three 3 hardware-agnostic models for LP recognition, by following the same process as

used for the hardware-agnostic detection models. We applied two design paradigms.

(1) The model based on the Tuple-based End-to-end (TE2E) [76], uses a single model to
predict all the characters in the image. Since it shares parameters when recognizing each
character, the memory consumption is low. (2) The model based on Roadside Parking Net
(RPNet) [14], uses a separate subnetwork for each character in the license plate. Since the
separate subnetworks cannot share the parameters, the memory consumption is high. The
optimal architectures were obtained by training the stochastic super networks as described
in Section 3.3.2. The entire set of characters in the license plate is the input for each
subnetwork and the consecutive output values of each subnetwork form the recognized
license plate number. The subnetwork based approach has outperformed the single model
approach, based on the experiments done for each hardware configuration.

3.3.4. Performance Estimation Strategy

The performance estimation strategy is used to identify the optimal architecture among the
selected architectures. Generally, the evaluation strategy of NAS has a bi-level optimization
problem as in Equation 1. Thus, for a given input the aim is to learn an optimal architecture

a to obtain a given output, and the associated weights w within all the mixed operations.

In our experiment, the input to the NAS is either an image directly from the camera or
an image of the cropped license plate, and the output is either the bounding box of the
license plate or the sequence representing characters in the license plate. However, unlike
in PC-DARTS that considers the accuracy of a given architecture only, the loss function
used in FBNet is more thorough and reflects both accuracy and latency of an architecture
on a target hardware. Thus, the architectures searched using FBNet algorithm become
hardware sensitive. In this study, we used the same latency aware loss function as in the
original FBNet implementation.

First, a latency table is created for the execution of each operation on the target
hardware. Then, we use the latency lookup table and calculate the latency of layer i using
value p; as shown in Equation 5.

LAT(pi) = Z lato“(i,g) 5)

0€0
In Equation 5, lat, refers to the latency of operation o read from the latency lookup
table. Then we obtain the latency of the super network, LAT (w,), by summing up the
latency values for all the layers in the network. Therefore, we include this latency term
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in the bi-level optimization algorithm to obtain a hardware sensitive architecture search ees

process. 667
4. System Evaluation 668
4.1. Data set 669

Table 4. Detailed summary of the data set

CCPD day Synthesized night time  Sri Lankan LP Sri Lankan LP
Data L. . . . . . .
set time image image from CCPD images-day time images-night time
Sample
image
No- of 500,000 200,000 100 100
images.

Two experiments have been done to test the performance of the proposed detection 7
and recognition system using two different data sets: a simulated and a real nighttime o7
data set as listed in Table 4. The first experiment was done on a Chinese City Parking e
Dataset (CCPD) that has over 200000 images collected from a roadside parking from 07.30 e7s
AM to 10:00 PM covering different illumination and environmental conditions during the o7
day. However, still a large portion of the CCPD dataset is also taken under daylight like 75
most other datasets available for LP detection. Therefore, due to the scarcity of a publicly ez
available nighttime LP dataset and also curating such a large nighttime dataset is both 77
expensive and time consuming, we created a synthetic nighttime dataset using the CCPD &7
day time images as comprehended in section 3.2. Although CCPD which is the largest o7
LP image dataset has complex background conditions when compared to an LP image eso
captured in a wild environment, training with this dataset is beneficial to obtain a well- s
trained model for LP detection, as the actual image is less complex than the trained dataset. es2
With the synthetically generated CCPD data set, we used a five-fold cross validation, where ces
each fold consists of 40,000 images. s8s

The second experiment was done using a real-world Sri Lankan data set which was s
collected specifically for this considered use case of wild environment conditions. The ese
created real-world nighttime data set contains 100 images and was collected between 8 PM  es7
to 4 AM. Then we used this collected data set to perform transfer learning on our models s
to train them for Sri Lankan license plates and then validated the performance of them eso
against local license plate numbers. However, as the main focus of this study was to build  eso
an ALPR system to work with resource-constrained environments, the created dataset does s
not include any complex weather conditions. 692

4.2. Experiment Setup 693

A simulation of a poacher vehicle detection case study is used to evaluate the effec- 04
tiveness of the proposed approach. This experiment has been performed using the CCPD o5
dataset with 200000 daytime licence plate images [14], and the corresponding synthetically ese
generated nighttime license plate images following the process described in Section 3.2. In  eo7
addition, the proposed model is practically tested in a real nighttime environment with 120  ess
vehicle images. The hardware configuration specifications have described in Section 3 and  ees
the deployment details with camera positions are shown in 11(left). The software configura- 7o0
tion consists of Raspberry Pi OS (32-bit) version August 2020, Tensor Flow lite version 2.1.0 7o
and Python 3.7.3. We used Open-VINO version 2019.3.376 to convert Tensor-Flow models 702
that were compiled using Tensor-Flow version 2.2 into intermediate representations for zos
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the Intel® NCS2. The model training and evaluation codes for Lite-LPNet is available in 704
GitHub repository [77]. 705

4.3. Model Performance 706

The performance of deep learning models used for license plate recognition was o7
measured under two broad categories. We measured the model correctness using the three 7os
datasets and efficiency while achieving the task it was designed to perform. For stage 700
one (detection) models, we used a average precision at a fixed Intersection over Union 710
(IOU) threshold, a metric typically used for object detection as the evaluation metric. ALso, 7
to measure the correctness of the stage 2 (recognition) models, we used a more relaxed 7
metric of accuracy and we considered a prediction to be accurate if and only if every single 713
character in the license plate is recognized correctly. Model efficiency is measured using 714
two parameters, model size and model latency. The model size is measured considering s
the size of the Tensorflow Flatbuffer that estimates the required RAM to execute the model. 716
Model latency is calculated by considering the average time takes to process a single image. 77
This can also be viewed as a proxy to the computational complexity of the model. 718

Table 5. Summary of detection model performance

Model Resource Performance Measure
name Requirement Latency | Model AP AP AP
(s) size (MB) | (daytime) | (synthetic) | (real)

sl_h Raspberry Pi 3b+, Intel® NCS2 | 0.012 0.7776 0.9284 0.8451 0.85
sl_h_h | Raspberry Pi3b+, Intel® NCS2 | 0.011 0.8707 0.9299 0.8401 0.9
sl_m Raspberry Pi 3b+ 0.157 0.6869 0.9005 0.7982 0.85
sl_m_h | Raspberry Pi 3b+ 0.004 0.6830 0.9029 0.7962 1.0
sl 1 Raspberry Pi Zero 4.54 0.5568 0.8422 0.7146 0.95
sl_1_h Raspberry Pi Zero 4.08 0.5625 0.8327 0.6987 0.95

Table 6. Summary of recognition model performance

Model | Resource Performance Measure

name Requirement Latency | Model Accuracy | Accuracy Accuracy
(s) size (MB) | (daytime) | (synthetic) | (real)

s2_h Raspberry Pi 3b+, Intel® NCS2 | 0.021 4.5 0.9987 0.9476 0.9873

s2_m Raspberry Pi 3b+ 0.148 11.7 0.9877 0.9382 0.9882

s2_1 Raspberry Pi Zero 6.2 4.5 0.9565 0.9054 0.9586

Results of these experiments are shown in Tables 5 and 6 for the detection and recog- e
nition stages, respectively. The model names ending with h, m and I represent high-tier, 720
mid-tire and low-tire configurations, respectively. Each hardware tier in the detection 72
process contains two types of models namely hardware-optimized using FB-Net [12] and 722
hardware-agnostic using PC-DARTS [13]. 723

First we evaluated the day and night time performance of each model using the 72«
original CCPD [14] data set and the synthetically generated nighttime data set. Figure 10 725
compares the detection and recognition models’ performance for day and night time data. 7z
According to the reported values, all the models have shown high accuracy in both day 7
and night conditions, while high-tier models have shown better accuracy than the other 72s
models. Also, we have tested our models against some state-of-the art ALPR systems like 720
RPNet [14], TE2E[52] and a general object detection models like yolo-v3 [27] for a better 730
comparison. We can also observe that the proposed detection models, especially higher 7s:
tier models show performance close to the current state of the art server-grade models 732
like RPNet, although our models are designed specifically for low resources. At the same 73
time, all models except the lower-tier ones show superior performance to Yolo-V3 [27], 73
which is a popular general-purpose object detector that has been used in several license 735
plate detection researches [25,26]. Meanwhile, the same trends can be observed for the 736
recognition models as well. Higher tier models perform better than lower-tier models and 737
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unlike with detection higher tier models actually outperform the current state-of-the-art

models such as RPNet.
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Figure 10. Model accuracy on the synthetically generated dataset (left): detection, (right) recognition.

In the detection stage, the hardware-optimized models have lesser latency than their
corresponding hardware-agnostic models (s1_h, s1_m and s1_l). Overall, the low model
sizes shown the ability to execute these models in edge devices with low resources.

Moreover, we measured the model robustness against variations of camera position to
identify the impact of the camera angle and elevation on the performance of the system.
This experiment aims to validate that the model performance does not change significantly
with the changes in the camera position. Metrics related to model efficiency are functions of
the model and the hardware solution, thus independent of the camera position. In contrast,
we check whether the model correctness metrics are affected by the camera position. In
order to validate the impact of the camera position on the model accuracy, an experiment
was carried out by driving a vehicle at a speed in the range of 20-30 km/h towards the
camera. The camera was positioned in one of the four positions as shown in Figure 11(left).
Angle measurement indication is between the centre of the licence plate and the camera
when the vehicle is 20m away from the camera. We started the test when the vehicle is 20m
away from the camera and executed the test until the vehicle left the view range of the
camera. During this time, we sampled the video stream at the rate of 10 frames per second
and identified the number of correctly recognized licence plate numbers.
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Figure 11. Camera positions (left) and sample deployed image (right).

The considered environment is a rural area with many trees and bushes, thus can be
simulated as a wildlife sanctuary. Figure 11(right) shows a sample image taken under the
same conditions from camera position 1 during daytime to better illustrate the environmen-
tal conditions under which this experiment was performed. The actual images used for
the accuracy results are taken at the same location during nighttime (8 pm - 10 pm) on a
moonless night (Jan 13, 2021).

In this experiment, we used a raspberry pi NoIR camera for capturing nighttime
images. The functions of the Pi NoIR camera are same as a regular camera, however, it
does not employ an infrared filter for IR-Blocking, thereby allowing it to use in infrared
photography in general. However, one of the main benefits of using a NoIR camera is its

738

739
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ability to be used in both daytime and in complete darkness as well. Moreover, it is also
relatively less expensive compared to a regular IR camera module, where one of the main
focus of this study is a low cost solution. Though a NoIR camera can see better in a low
light environment even without the assistance of an IR illuminator, using an infrared light
source (illuminator) that is completely invisible to the human eye, can ensure a clearer
image in the total darkness. Therefore, in this design, we have used an infrared illuminator
that is invisible to the naked eye for better performance. Thus, our solution gives the system
the most challenging conditions because there are no visible illumination sources.

Results of this experiment are shown in the Table 7. The proposed model performance
is not affected adversely depending on the camera position. Further, as shown in Figure 12,
the higher-tier models have shown better accuracy. As we can see from this experiment, the
proposed model is robust against variations of camera elevation and angles giving results
that are similar to each other irrespective of camera position. This is to be expected, because
the CCPD [14] dataset contains images taken from handheld devices giving high variation
in terms of both elevation and camera angle.

Experiment Number of Number of correct images Camera
images Low-tier ~Mid-tier High-tier position

1 27 25 26 26 1

3 33 30 31 33 2

4 29 24 25 28 2

5 25 21 23 25 3

6 28 22 25 27 3

7 30 25 26 28 4

8 26 19 23 25 4

Table 7. Model performance with respect to the camera position (Number of correctly identified
images)
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Figure 12. Model accuracies of each experiment

4.4. Hardware Performance

Since the proposed solution is supposed to be a battery-powered system that will be
deployed in a wild environment, the metrics battery life and power consumption are used
to evaluate the hardware performance of the edge devices. We measured the peak power
consumption where the processing unit executes at maximum load, using the input power
via the USB interface to Raspberry Pi devices. Since the camera and Intel® NCS2 (where
applicable) is powered via the Raspberry Pi, this gives us the power requirement for a
minimum ALPR system with both input and processing capabilities. The worst-case power
consumption over a general case is considered due to the following reasons:

1.  The probabilistic estimation of the number of vehicles passing through an operation

unit is not readily available for a given case study. Thus, we considered the maximum
possible processing load on the unit for a general case.
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2. The worst-case power consumption gives an upper bound for the unit’s power con-
sumption. Thus, using a power supply that satisfies the maximum power require-
ments can satisfy the power consumption of the unit under any other condition.

This measure includes the power consumption of all the processing units required to
execute the model including its input devices. As shown in Table 8, there is an increase in
the power consumption, when moving from the Raspberry Pi zero (low-tier) to Raspberry
Pi 3b+. While we observed an increase in peak power consumption when the Raspberry Pi
3b+ was combined with the Intel® NCS2, it was a relatively smaller increase.

Table 8. Hardware performance of each configuration

Hardware tier Power consumption | Average battery life
W) (hr)

Low-tier 0.8 132.15

Mid-tier 5.15 11.03

High-tier 6.2 13.04

In order to measure the expected battery life of a typical deployment, we used a 10400
mAh battery to power all the components of the system. We charged the battery to 100%
and executed the system continuously until it runs off the power. We measured the time
taken to drain the battery completely by using the timestamp of the last image recorded by
the system. For each hardware tier, we repeated this experiment for a week and measured
the average battery life as shown in Table 8. The lower-tier hardware has significantly
better battery life compared to mid and higher tier configurations. The most interesting
observation in this experiment was that the higher-tier system has a better battery life
compared with the mid-tier unit even though it had a higher peak power consumption. A
possible reason for this could be the better computing performance of the higher-tier model
with the Intel® NCS2. Hence, higher-tier models do not reach their peak load as often
as the mid-tier models that operate closer to maximum load with the Raspberry Pi, thus
higher-tier models consume less energy. With the knowledge of the power consumption
and battery life of the models, a suitable battery that meets the deployment requirements
such as cost, external dimensions, battery recharge and replacement frequency can be
selected in practice. Although 13 hours of battery life seems low in the high tier, the
recorded time is the sustained use time, where the system is taking pictures and processing
them in a continuous manner. But in a forest environment, where there will not be many
vehicles passing by, we have installed a motion trigger to keep the device in a stand-by
mode when no vehicle is detected for a fixed amount of time. Therefore, the actual battery
life is much longer than this use time. Also, the system design can be even modified to use
solar recharging batteries.

Further, we evaluated the communication systems of the proof-of-concept hardware
solution. We deployed the proposed models under operational conditions and test the
correctness of sending SMS messages and the data offloading module. Thus, we have
verified that the purposed hardware solution meets the requirements of the case study.

5. Discussion and Lessons Learned
5.1. Study Contributions

We presented an innovative approach to detect and recognize licence plates automat-
ically for embedded platforms with limited computational and memory capacities. The
overall aim of this study is mainly twofold: (1) develop models for license plate detection
and recognition that gives competitive results to the server-grade hardware solutions, while
still being efficient enough to run on low-resourced, low-cost embedded platforms and (2)
develop a system that is energy-efficient and viable to be deployed in wild or remote areas
without reliable internet connectivity or direct power supply. The proposed approach has
achieved the following objectives;

¢ Designed and developed a lightweight and low-cost night vision vehicle number plate
detection and recognition model with competitive accuracies.
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¢ Developed a license plate reading system capable of operating without internet con-  sao
nection and powered by batteries for an extended period. Thus, supported mobile s

communication with minimum resources. 842
*  Supported SMS sending that contains the identified license plate number to a given sss
phone number (e.g., send to the wildlife department in the considered case study). s

¢ Designed in small size in appearance and deployed discreetly in the field. Thus, in the s
considered case study, the poachers may not notice these camera traps and equipment. sas
*  Analysed the trade-offs and explored the impact of the constraints such as accuracy sar
and power consumption. sas
*  Maximized resource utilization and minimized the end-to-end delay. 840

We have shown the use of a novel family of neural networks called the Lite-LPNet eso
model for both licenses plate detection and recognition, which are light-weighted and  &s:
optimized for edge devices. As another novel contribution, we used Infrared blaster to es2
capture nighttime images in dark. It captures the license plate using its illumination, ess
without visual illumination at nighttime. We have also presented a case-study based s
approach as a proof-of-concept for the use of proposed models in real-time applications ess
in the wild. The experiment results have shown the system’s robustness to variations in  ese
the angle and its high recognition accuracy at night-time. Providing a basis for future es7
research on night-time license plate recognition, this study has also presented a synthetic ess
data generation technique to create a versatile night-time license plate dataset with publicly ese
available RGB images of license plates. The main advantage of this approach is that it helps sso
to mitigate the problem with the scarcity of large and diverse night-time LP datasets. s61

Moreover, as shown in Figure 11(left), the system design has considered the tech- es2
nical aspects such as angle of the camera, distance to the camera, camera location. The e
models detect and recognize the license plate in constrained environments with different ses
vehicle speeds and lighting conditions. Thus, the model can execute on edge devices ses
with low resource requirements and showed competitive accuracy values compared to  sse
server-grade related systems. However, the proposed solution can be further extended to ez
train learning models for different image variations with constraints environments such  sss
as diverse weather conditions, and complex parameters such as license plates rotations to  ese
develop robust models. Further, these energy-efficient and low-latency communication sz
and computation models can be deployed at a low cost, such that the total cost of low-tier sz
and high-tier models are USD 63 and USD 146, respectively. a72

Based on the considered case study, model size is a main limiting factor when de- e
ploying the license plate recognition models in edge devices, and higher latency may be sz
tolerable. In order to execute the inference, the model size should be smaller than the device s
memory. As shown in Table 5 and Table 6, our proposed model sizes are significantly ez
smaller, hence can execute in memory-constrained edge devices. Moreover, although, the  s77
higher-tier models have high power consumption, they execute more accurate models ez
and have smaller latency compared to the lower-tier hardware configurations. We have ez
simulated an experiment for the case study of the poacher vehicle detection system. Such  sso
a system might support the wildlife in minimizing the rate of losing their existence and se:
violent matters. It will, directly and indirectly, affect the rights of the wildlife by assuring se:
the security of the wild animal’s lives. Thus, reduces damage done to wildlife in reserves by  sss
making prosecution of poachers easier. Accordingly, this approach can be used to identify sss
vehicles number plates in remote locations without access to the internet and power grid. sss
A similar system can be used for any scenario that requires reading license plates such as  sss
parking lot management, traffic management. 287

5.2. Solution Assessment 888

The problems of Automated License Plate Recognition have many proposed solutions. sse
However, it cannot be denied that most of these prevailing solutions are limited to un- e
constrained environments with higher computational capabilities and memory capacities. ss:
Despite their accuracy and latency in server-grade hardware, most of the state-of-the-art ae2
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solutions in the ALPR domain are not implementable on the embedded platforms due to  ees
their memory and energy requirements. For instance, RPNet [14] model currently serves sos
the state-of-the-art results in the ALPR domain but still, it is tested on PCs with eight 3.40  ees
GHz Intel Core i7-6700 CPU, 24GB RAM, and one Quadro P4000 GPU. Thus, though it sss
achieves over 90% accuracy for plate recognition, it cannot be executed on a low-cost edge o7
platform like a Raspberry Pi. However, in this study, we have proposed a system that is sos
implementable on these embedded platforms but still showing competitive results to the soo
server-grade solutions. %00

Since the solutions built on the server-grade hardware requires more memory require- sox
ments and computational power, the researchers are encouraged to build lightweight ALPR  sc2
systems to execute these solutions on edge devices for practical scenarios. In order to sos
assess the significance of our approach, we have compared the proposed solution with the sos
existing embedded ALPR systems as given in Table 9. Since most studies do not report sos
energy consumption or memory requirements for their methods, a direct comparison for sos
these values was not possible. However, our solution has shown competitive performances sor
and the subsequent studies may use our values as a reference to guide future research. sos
In contrast to existing studies, the proposed solution is not limited to one specific edge oo
platform. Thus, our approach is generalized over three hardware tiers and any edge de- o0
vice within the specifications or the computational capabilities of either of these tiers can o1
effectively use the proposed models. 012

Table 9. Comparison with the related studies

Resource

Study Dataset Requirement Accuracy Latency
Lee . NVIDIA Jetson TX1 95.24%
et al. [44] Nearly 500 images embedded board (daytime) N/A
Test set 1: 260 images Single Texas Instruments
Arth Test set 2: 2600 images ~ TM C64 fixed point 96% 0.05211
et al. [45] Different weather and DSP with 1MB of cache, (daytime) ’ s
illumination types Extra 16MB SDRAM
. . . Quadro K2200, Jetson Det: 61%, Det: 0.026s,
Rezw ) Malian rear LP with TX1 embedded board, ~ Rec:92%  Rec: 0.027
’ P Nvidia Shield K1 tablet (daytime) (Quadro K2200)
.. . Det: 99.37%,
Izidio Custom dataset Raspberry Pi3 (ARM Rec: 99.53% 488
etal. [47] with 1190 images, Cortex-A53 CPU) e 008
(daytime)
CCPD (200000 images),
Synthetic night-time . Det: 90%, .
Proposed high- dataset (CCPD), Raspberry Pi 3B+, Rec: 98.73% Det: 0.011s
. . . . Intel® NCS2 . . Rec: 0.02176s
tier solution Real night-time (night-time)

100 images

Moreover, as shown in Table 5 and Table 6, the proposed higher-tier detection models  o1s
show performance close to the current state-of-the-art, RPNet[14]. At the same time, all o014
models except the lower-tier ones show superior performance to Yolo-V3[27], which is e1s
a popular general-purpose object detector that has been used in several LP detection s
solution designed to execute on server-grade hardware [53,54]. Similarly, considering the o7
recognition models, the higher-tier models perform better than the lower-tier models. In  o1s
contrast to the detection stage, these higher-tier models outperform the current state-of- o1
the-art models such as RPNet[14]. Here, both RPNet[14] and TE2E[52] are single-stage oz0
models that are designed to both detect and recognize LP with a single forward pass. This ez
shows that our models are competitive with the existing state-of-the-art solutions in terms 22
of accuracy which was the research objective. 023

Further, our solution is tested for both daytime and night-time performance, while oz4
most of the other methods are limited to daytime performance only. We have also proved 25
the real-world usability of our system in the wild by holding a case study and has shown 26
the system’s robustness to the variations in the camera angle and different illumination 27
conditions. The model performance can be analysed further using a confusion matrix, ezs
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as it shows a summary of the number of correct and incorrect predictions with count
values for each class. Also, we validated our solution with a large and diverse dataset with
over 200000 images in different conditions. Moreover, we have obtained lesser execution
time when compared to other embedded systems, thus showing that our solution is more
suitable for real-time applications. Further, we have managed to maintain the peak power
consumption of the high-tier solution to 6.2W and the average battery sustained use time
to 13.04 hours even in the worst-case. In addition, the low-tier solution with 0.8W power
consumption has shown a battery use-time of 132.15 hour. Thus, the proposed ALPR
solution is lightweight, energy-efficient, low-cost and works in real-time.

However, the study has not been tested in different weather conditions and noisy
environments as the main focus of this study was to design and develop an ALPR model
to be deployed in low-resource settings. Also, this study has provided a solution to be
deployed in the wild, where there is no stable internet connectivity or a direct power grid,
thus leaving SMS as the only possible communication method. Therefore, although the
cloud providers such as Amazon Web Services (AWS) provide edge computing services
for specific edge usecases like this, still, they do not support the resource-constrained
environments as considered in this study.

6. Conclusion

This paper presents the realization of an automatic license plate recognition system im-
plemented on embedded devices with limited resources. We exploited hardware-agnostic
and hardware-efficient neural architecture search strategies to discover a novel set of neural
networks for license plate detection and recognition that are efficient enough to execute on
edge platforms. Overall, the proposed system has shown robustness to variations in angle,
extreme illumination changes like day and nighttime, and achieved competitive results to
the state-of-the-art server-grade hardware solutions. Therefore, our results are significant
while considering the restrictions of an embedded system. Also, the proposed system
is suitable to be deployed in a wild environment, since it does not rely on the internet
connection for communication or a direct power grid for operation. Moreover, we created a
synthetic nighttime license plate data set with a widely used Chinese City Parking Data set
(CCPD) and a small-scale real nighttime dataset for Sri Lankan license plates that reflects
real-life conditions. Also, for a fair comparison with the existing server-grade hardware
solutions designed for daytime performance, we have evaluated our system against a large
daytime dataset. Further, for the generalisability of the solutions over different hardware
configurations, we proposed models for three hardware configurations as low, mid and
high considering their computational capabilities and the cost.

This study can be extended to customize the Neural Architecture Search process for
different hardware platforms. With a one-shot model architecture search strategy such as
SMASH [78], the search time for discovering models optimized for any hardware platform
can be reduced to O(1) time. Regarding the accuracy of the detection and recognition
processes, even though our results are considered reliable, it would be compelling to
evaluate the system on different LP datasets for further refinement. Further, the proposed
system can also be extended for applications like illegal license plate identification by
comparing with an external data source, which would be a promising direction to further

explore.
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