
ForestQB: An Adaptive Query Builder to Support

Wildlife Research

Omar Mussa1,3,∗, Omer Rana1, Benoît Goossens2, Pablo Orozco-terWengel2 and
Charith Perera1

1School of Computer Science and Informatics, Cardi� University, United Kingdom
2School of Biosciences, Cardi� University, United Kingdom
3College of Computing and Informatics, Saudi Electronic University, Saudi Arabia

Abstract
This paper presents ForestQB, a SPARQL query builder, to assist Bioscience and Wildlife Researchers in

accessing Linked-Data. As they are unfamiliar with the Semantic Web and the data ontologies, ForestQB

aims to empower them to bene�t from using Linked-Data to extract valuable information without having

to grasp the nature of the data and its underlying technologies. ForestQB is integrating Form-Based

Query builders with Natural Language to simplify query construction to match the user requirements.

(Demo is available at https://iotgarage.net/demo/forestQB)

Keywords
Linked-Data, Visual Querying, SPARQL, Query Builders

1. Introduction

Publishing the data as a Linked-Data using Semantic Web technologies is bene�cial for machine

learning as well as information retrieval [1]. While the data will be easily accessible by machines,

Humans can also bene�t from accessing the data by using a query language such as SPARQL,

which is the recommended query language for querying RDF triplestore.

In the �eld of Bioscience and Wildlife conservation, researchers tend to collect data using

various sensors such as temperature, location and speed. Therefore, hundreds of gigabytes

were collected over the years that would be extremely valuable if stored as a knowledge graph

in an RDF triplestore. However, users usually feel intimidated to use Linked-Data as they are

obliged to understand SPARQL and the underlying data structure [2]. In order to encourage

these Bioscience researchers to adopt semantic web technologies in their �eld, it is essential to

present a toolkit that ful�ls their requirements to freely access the data store without the need

to worry about its underlying technology.

In this demo, we introduce ForestQB, a tool that aims to facilitate the knowledge extraction

out of the RDF triplestores by allowing the researchers to construct their query visually. The

The 21st International Semantic Web Conference, October 23–27, 2022, Hangzhou, China
∗Corresponding author.

$ mussao@cardi�.ac.uk (O. Mussa); ranaof@cardi�.ac.uk (O. Rana); goossensbr@cardi�.ac.uk (B. Goossens);

orozco-terwengelpa@cardi�.ac.uk (P. Orozco-terWengel); pererac@cardi�.ac.uk (C. Perera)

� 0000-0001-8614-6550 (O. Mussa); 0000-0003-3597-2646 (O. Rana); 0000-0003-2360-4643 (B. Goossens);

0000-0002-7951-4148 (P. Orozco-terWengel); 0000-0002-0190-3346 (C. Perera)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

https://iotgarage.net/demo/forestQB
mailto:mussao@cardiff.ac.uk
mailto:ranaof@cardiff.ac.uk
mailto:goossensbr@cardiff.ac.uk
mailto:orozco-terwengelpa@cardiff.ac.uk
mailto:pererac@cardiff.ac.uk
https://orcid.org/0000-0001-8614-6550
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-2360-4643
https://orcid.org/0000-0002-7951-4148
https://orcid.org/0000-0002-0190-3346
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


tool provides a high level of abstraction for users by supporting a Form-based interface with an

integrated conversational AI to support natural query construction.

2. ForestQB Features

ForestQB is a web application that works on the browser to query and explore RDF triplestores

that were exposed as a SPARQL endpoint. ForestQBwas implemented based on the requirements

collected by reviewing the current progress in the �eld and interviewing experts in the Bioscience

�eld (the stakeholder). The recent features of the tool can be outlined as follows:

• General overview: the initial interface provides a basic search functionality by allowing

the user to select sensors (observable properties) as a starting point to explore the data. The

interface contains a list of sensors loaded from the endpoint when the toolkit was initially

loaded. The sensors’ data are fetched by sending a SPARQL query that can be adjusted

from the settings to customise the tool if querying di�erent endpoints. Hence, The user can

click the search button to start loading the results related to that sensor without requiring

additional steps. In addition, the interface includes a map with geospatial �ltering capabilities

by drawing circles directly on the map. It also contains an upper date picker that will strict

the results to a general date range. The upper left side includes a list of prede�ned examples

that will populate all required �elds to promote learning by example. The primary goal is to

have a user-friendly interface that will support the user to explore the data quickly.

• Detailed querying: once the users decide to have more advanced querying, they can click

on the search customisation to display all the detailed querying features. The interface will

display all the linked properties for the chosen sensor with an additional sublist allowing

them to manually add �lters to each property. The �lters that the user can add will vary

based on the property XSD data type. For example, a string will include Contain, Match and

Regex �lters. Also, the same �lters will act di�erently based on the property data type. For

example, the number and date both have a Range �lter, but while the number will show a

numeric text �eld, the date will show a date picker. Furthermore, the user can choose to hide

the entity from the results or mark an entity as optional to be ignored if it does not exist.

• Conversational AI: the ForestQB includes a component that will display a chatbox where

the user can express their query in natural language to populate the corresponding �elds

automatically. In addition to constructing queries, it can help the user to inquire about the

underlying data structure. For example, the chatbot can answer simple questions such as

"What are the sensors?", "What is Aqeela?" and "Where is Aqeela?" as shown in Figure 2. The

user can completely hide the form-based interface to use the chatbot as a stand-alone query

builder tool to query and retrieve the results.

3. Our SPARQL endpoint

The used dataset contains sensitive historical data collected by bioscientists that were modelled

as Linked-data. Thus, our SPARQL endpoint is privately available. The dataset populates



Figure 1: Overview of a simple query to retrieve data of a particular animal within a specific date and
location. The Longitude and Latitude of the animals were hidden due to the sensitivity of the data.

Forest Observatory Ontology (FOO) 1, a novel ontology that describes wildlife data generated by

sensors. It was developed by reviewing the state-of-art and reusing entities from di�erent mature

and self-contained ontologies. FOO arose from the e�orts to review Open Data Observatories

[3] in order to build the Forest Observatory. The data integrates multiple ontologies to de�ne

its underlying structure, including SOSA [4] ontology. Hence, ForestQB initially relies on SOSA

to get all connected sensors and their observable properties, which means it will potentially

work with another endpoint if it applies SOSA.

4. Demonstration

The demo will illustrate the ForestQB interface and explain its functionality. Figure 1 shows an

overview of the tool to create a simple query using map �lters, demonstrating the basic search

with a limited number of �lters to apply. The “customisation search” button is where the user

1https://naeima.github.io/Forest-Observatory-Ontology/

https://naeima.github.io/Forest-Observatory-Ontology/


Figure 2: Overview of the conversational AI (ForestBot). (a) Retrieving information about “Aqeela”
sensor. (b) Constructing a query to find “Aqeela”. (c) The result will then be reflected on the Query
Builder as if the user has selected them, and the search process will be triggered.

can apply a more advanced search. The customisation is always hidden until the user decides

to display it to allow a more neat look and hide the complexity of the interface. The results will

be presented in a tabular format to re�ect the user query.

The conversational AI can work as an assistive tool to the Form-based builder or as a

standalone query builder. The user can type their query in natural language, and it will be

re�ected on the interface. For example, a question such as “Where is aqeela?” will select the

correct sensor from the sensors list and trigger the search process (see Figure 2).

5. Technical Details

The ForestQB interface was designed after reviewing the current state-of-the-art and gathering

requirements from stakeholders. The design has numerous layers and components, each of

which serves a unique purpose with distinct technical details behind it. Thus, this section brie�y

discusses some of the technical aspects of ForestQB.

• Web Application: Plain JavaScript and Vue.js (vuejs.org) Framework have been used to

build the tool as a Single-page application. The tool will generate a JSON object that will

be identical to the tool choices. Once the user clicks search, this object will be sent to the

conversion engine (as an AJAX request) to be converted to SPARQL and sent back to the tool

to be used for querying the endpoint. The separation of the SPARQL conversion mechanism

from the tool will allow it to be shared between the ForestQB and the conversational AI. Both

ForestQB and conversational AI share a centralised store using Vuex (vuex.vuejs.org).

• Conversational AI model: The conversational AI is split into two pieces: the front-end

and the classi�cation model. The front-end is part of the main web application components.



However, the Natural Language Understanding (NLU) model has been built using RASA

(rasa.com) framework. Thus, all of the logic behind the NLU lies under a di�erent web server

that is powered by RASA. The front-end will send all user messages to the chatbot server to

understand the user’s intent. Most of the actions (responses) are implemented within the

web front-end. The conversational AI will adjust the centralised store based on the classi�ed

intent and entities to modify the JSON Query object. Then, it will trigger the search process.

The chatbot will either answer simple questions about the data schema or retrieve the results

when the user asks.

• Map Filters: ForestQB is o�ering map �lters to narrow down the results. The implemented

map uses the Lea�et (lea�etjs.com) library to visualise and allow the map’s main functionality.

Thus, drawing circles on themap allows the user to create nearby �lters. Once a circle is drawn,

its coordinates and parameters are saved on the JSON Query object and then translated into

SPARQL. In addition, the user can de�ne the relationship between the circles as intersections

or unions (as shown in Figure 1). As an adaptive feature, the map (GeoSPARQL) �lters are

not applied to data that do not include Longitude and Latitude. However, the other type of

�lters will still be valid.

6. Conclusions

This paper has brie�y introduced the ForestQB, a toolkit that aims to assist bioscientists in

querying Linked-Data. The tool supports generating the query by mixing the conversational

AI with the Form-Based query builder. The ForestQB is still a work in progress, as we plan to

improve its conversational AI to handle more complex sentences. In addition, it will support

more visualisation options based on our future user study.

References

[1] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, A. Bielefeldt, Getting the Most Out

of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph, in: 17th

International Semantic Web Conference, volume 11137 LNCS, 2018, pp. 376–394.

[2] P. Warren, P. Mulholland, A Comparison of the Cognitive Di�culties Posed by SPARQL

Query Constructs, in: Lecture Notes in Computer Science (including subseries Lecture

Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics), volume 12387 LNAI,

Springer International Publishing, 2020, pp. 3–19.

[3] N. Hamed, O. Rana, P. Orozco-terWengel, B. Goossens, C. Perera, Open Data Observatories:

A Survey, Technical Report, Cardi� University, 2021. URL: https://orca.cardi�.ac.uk/id/

eprint/140048/14/NaeimaHamed_26_MAR_2021_V5.pdf.

[4] K. Janowicz, A. Haller, S. J. D. Cox, D. Le Phuoc, M. Lefrançois, SOSA: A lightweight

ontology for sensors, observations, samples, and actuators, Journal of Web Semantics 56

(2019) 1–10. URL: https://www.sciencedirect.com/science/article/pii/S1570826818300295.

https://orca.cardiff.ac.uk/id/eprint/140048/14/NaeimaHamed_26_MAR_2021_V5.pdf
https://orca.cardiff.ac.uk/id/eprint/140048/14/NaeimaHamed_26_MAR_2021_V5.pdf
https://www.sciencedirect.com/science/article/pii/S1570826818300295

	1 Introduction
	2 ForestQB Features
	3 Our SPARQL endpoint
	4 Demonstration
	5 Technical Details
	6 Conclusions

