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Abstract—Every day more and more objects are connected to
the Internet to sense or actuate in some environment, composing
the Internet of Things. IoT platforms will play a key role, as
they will be responsible for managing low-level devices and data
acquisition processes, and also support the development of new
applications. One of the main challenges in IoT platforms will
be the search and discovery of resources in large-scale and
heterogeneous environments for reuse by other applications to
support their specific requirements. In this paper, we propose
an elimination-selection algorithm for search and discovery of
resources in IoT environments. Our case study considers a real
agricultural problem to be solved by the ViSIoT tool. The results
show that our approach improves the quality of the proposed
solution adding a small time overhead when compared to the
TOPSIS algorithm used by ViSIoT.

Keywords-Internet of Things, Multiple Criteria Decision Anal-
ysis, Resource Discovery, Resource Search

I. INTRODUCTION

The advances in embedded and sensing technology are
contributing to the rapid growth in the number of smart
objects connected to the Internet generating the Internet of
Things (IoT) paradigm. According to Vermesan et al. [1],
“The Internet of Things could allow people and things to
be connected Anytime, Anyplace, with Anything and Anyone,
ideally using Any path/network and Any service”.

Nowadays, the IoT applications span numerous domains
such as smart home, smart cities, smart health, smart factories
and smart transport. For example, in smart transport, real-
time monitoring of parking spaces and traffic congestion are
some applications that have being used to optimize driving
routes and reduce traffic jams using available mobile and static
resources [2]. According to a Gartner Report, in the next few
years, the IoT will be part of our lives as more than half of
new business processes and systems should incorporate IoT
elements [3].

IoT platforms such as GSN [4], OpenloT [5] and Xively [6]
will play a key role as they will be responsible for managing
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low-level devices, the data acquisition process, and also sup-
port the development of new applications [7]. In this sense, one
of the main challenges of the IoT platforms will be the search
and discovery of resources in large-scale and heterogeneous
environments to be reused by other applications regarding their
specific requirements and constraints [8].

Several frameworks and middlewares such as ViSIoT [9],
CASSARAM [10], Ambient Ocean [11] and CASSF [12]
have been proposed for search and discovery of resources
in IoT environments in a timely manner considering multiple
criteria and their relative priorities. Basically, the search and
discovery process of can be divided into two phases: (i) use of
a static query to find the resources regarding a set of specific
requirements and (ii) apply some multiple criteria decision
analysis (MCDA) algorithm according to the relative priorities
of each requirement to rank the available resources. These
works are just concerned with the time to search and discovery
resources and do not properly evaluate the quality of the
proposed solution, which can affect the Quality of Experience
(QoE) of a user.

In this paper we propose a novel Elimination-Selection (E-
S) algorithm to be performed in the second phase of the search
and discovery process which increases the quality of the pro-
posed solution. We present a agricultural case study conducted
by the Visual Search for Internet of Things (ViSIoT) [9] to
compare the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) algorithm used for search and
discovery of resources with the novel E-S algorithm in terms
of quality and response time.

The paper is organized as follows: Section II presents a
literature review of resource discovery in IoT. Section III de-
scribes the background requirements. Section IV presents the
E-S algorithm. Section V describes the considered case study.
Section VI describes the methodology and configurations used
to perform the experiments. Section VII discuss the gathered
results. Finally, the conclusions and directions for future work
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are presented in Section VIII.

II. RELATED WORKS

Several approaches consider resource discovery for the
different types of IoT context. Romer et al. [13] present a
survey describing methods related to the state prediction of a
certain resource [14] or aiming to optimize a particular goal
like energy or communication [15], [16]. In this section, we
present the related works that are concerned to provide IoT
resources for third parties.

Carlson and Schrader [11] shows a search engine named
Ambient Ocean to discovery and select sensors based on
context data. It has a metadata repository which includes infor-
mation such as resources URI, data-type, title, description, and
an optional Web Application Description Language (WADL)
document. After an initial query to eliminate the resources
that disrespect the user constraints the Weighted Slope One
algorithm is used to rank the available solutions. In scenarios
where it is hard to model the devices features, Ambient
Ocean applies collaborative filters techniques to compute the
similarity among users and sensors using historical data.

Khodadadi et al. [17] propose the Simurgh framework
aiming to simplify management of IoT services, things and
humans in IoT environments. They develop a metamodel
named Thing Description Document (TDD) to describe the
IoT entity properties and the services offered by each entity.
The discovery process consists of a syntax based search
method which matches the data against the desired search
keywords and is split into two phases: (i) a search in the
TDD repository is performed to find entities matching the user
search criteria, which can be the exact match or partial match
when submitting a query; (ii) the second phase consider the
first phase result set to perform another search to choose the
suitable devices according to a particular task.

Abdelwahab et al. [18] propose a Cloud of Things architec-
ture for sensing resource discovery and devices virtualization
in a centralized manner. The resource discovery is based on
gossip algorithms to select the smart objects according to
the desired capabilities. To perform the objects selection the
authors propose the randomized and asynchronous distributed
virtualization (RADV) algorithm which is performed in three
phases: (i) the virtual domain pruning to remove undesired
objects; (ii) each device constructs the benefit matrices locally
to maximize the total analysed devices and (iii) solve the
assignment problems to find an optimal feasible solution. After
each device runs the RADV algorithm, a cloud agent is used
to select the solution with maximum benefit.

Perera et al. [10], [19] present the CASSARAM frame-
work to perform the sensor search and selection according
to user constraints. The CASSARAM performs the sensor
search in two phases:(i) the framework retrieves the data
regarding the point-based, proximity-based and user priorities
requirements. Then, (ii) the extracted data is normalized, and
the Comparative-Priority Based Heuristic Filtering is used to
remove the sensors that are far from the ideal point prioritizing
the TOP-K selection.

Gao et al. [20] proposes the Automated Complex Event
Implementation System which acts as a middleware between
application and sensor data streams. It uses the Semantic
Sensor Network to annotate the available resources allowing
to design a semantic information model to represent com-
plex event services and perform the resource discovery and
integration of sensor data. The sensor stream discovery aims
to find the candidate sensor services based on sensor service
descriptions and user request specifications. As the candidate
services are retrieved, the Simple Additive Weighting (SAW)
algorithm is used to rank the available solutions.

Nunes et al. [9] present the ViSIoT to acts as a middleware
between the application and the smart object’s resources.
Their main contribution is a visual interface to remove the
complexity of the sensor discovery in the existent middleware.
To select the smart objects the TOPSIS algorithm is used to
rank the sensors respecting the user constraints.

Gong et al. [12] propose the Context-aware Sensor Search
Framework (CASSF) to select the appropriate sensors in
large datasets efficiently. To choose the available objects,
they propose the Threshold Algorithm for Sensor Information
(TASI) aiming to reduce the computational cost and improve
the efficiency of the selection. Also, the comparative-priority
based weighted index (CPWI) is used to combine the users
priorities and real sensor context property values.

Huang et al. [21] present a service mining framework to
discover relationships in IoT context. An ontology represents
the available services and describes their spatial-temporal
aspects, environment, people, and operations. In the object
discovery phase, firstly they retrieve the available objects
regarding the user constraints and identify the possible rela-
tionships between them. Next, a two-step selection technique
is presented to remove the uninteresting services. In the first
step, the Correlation Degree filtering is used to measure
the relationship strength between two services. After, the
interestingness value is computed considering the availability,
the domain correlation, and diversity of the available objects.

Nunes et al. [22] present a methodology to evaluate the
quality of resource discovery techniques in IoT context. They
used the method and synthetic data to evaluate the SAW,
TOPSIS and VlIsekriterijumska optimizacija i KOmpromisno
Resenje (VIKOR) algorithms without considering different
user priorities. The result shows that the SAW algorithm
has a slightly better quality than the other algorithms. This
methodology was slightly changed in Nunes et al. [7] where
the user priorities can be modified, and the results showed
no statistical difference between the quality of the analyzed
algorithms.

Differently, for the works presented in this Section, we are
not proposing a new architecture for search and discovery re-
sources or a methodology to compare the quality of solutions.
In this paper, we propose an E-S algorithm that can be applied
to any system to get the best trade-off between the search
and discovery resource process and the QoE offered to a user
regarding the quality and time of the proposed solution.
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III. BACKGROUND

The Multiple-criteria decision analysis is used to support the
evaluation of multiple conflicting criteria in a decision-making
process. There are several algorithms such as the TOPSIS that
are used for MCDA and Fast-Non-Dominated Selection for
Pareto Optimality. The former provides best options given a set
of priorities and constraints, whereas the latter formally choose
the best trade-off among the available options. However, there
is a limitation in both cases, either you want the algorithm
that is faster (TOPSIS) and has no guarantees of getting
the best option or get the best solution with the burden of
a high complexity algorithm requiring more processing and
storage resource consumption. In this section, we describe the
concepts used by the E-S algorithm, which combines the best
of those algorithms fast selection using TOPSIS and prominent
best option by using Fast-Non-Dominated sort.

A. MCDA and TOPSIS algorithm

Multiple-criteria decision analysis is concerned to architect
computational and mathematical tools to aid the subjective
evaluation of multiple options according to their goals [23].
Usually, an MCDA problem is described by an M x N
matrix named analysis matrix. The element ¢;; correspond
to the performance value of ¢ option regarding the decision
criteria ¢;, such as represented by Equation 1 [24]. An MCDA
problem can be solved in three steps: (i) the normalization of
the available options; (ii) the weighting of each criterion and
(iii) the decision algorithm execution [25].

C1 Co C3 Cn
q1 q11 qi12 q13 qin
q2 g21 q22 q23 ... Q2
Q= ST (1)
dm dm1 dm2 dm3 dmn

The TOPSIS algorithm aims to find the best solutions, where
the best option is nearest to the optimal solution and farthest to
the inferior solution [24]. The TOPSIS complexity is O(n?),
where n corresponds to a number of available options. The
TOPSIS algorithm can be summarized as:

1) Normalize the analysis matrix Q to Q’, according to
Equation 2:
qij
Gij = ————" )
>iz1(ais)?

where N corresponds to the number of available options.
2) Using the normalized matrix Q’, compute the positive
ideal point (p1;) and the negative ideal point (p_;)
for each criterion. Equation 3 represent the formulas to
compute p; and p_; for a maximization problem.

P+; = max(g;;) p—j =min(g;)  (3)

3) Compute the distance of each option to pi; and p_;
represented by siy and si_ according to Equation 4:

“4)

4) Compute the relative closeness (c;4) of each solution to
the ideal solution regarding Equation 5:
Si—

&)

Ciy = ————

Si+ — Si—

5) Sort the options in ascending order according to the c;4
value.

B. Pareto Optimality and Fast-Non-Dominated sort

In multiple-objective optimization problems, it is rare the
cases where a single and unique option can optimize all
objectives functions. It is necessary to identify a set of options
with a different trade-off between their goals to solve this kind
of problem.

One of the main concept used to compare a different set of
options is the Pareto optimality, which uses dominance rela-
tionships to identify the optimal solutions [26]. For example,
given two solutions z and y, x dominates y (x > y) if two
conditions are respected [22]:

1) The x solution is better than y in at least one objective

function;

2) The z solution is at least equal to y in all objective
functions;

The set of nondominated solutions is also know as Pareto
front. The Fast Nondominated Sorting Approach [27] is used
to sort the options in fronts regarding their nondomination
levels. The algorithm complexity time is O(mn?) and the
storage requirement is O(n?), where n corresponds to some
available options, and m corresponds to the number of criteria.
Given a set of options (.5), the algorithm can be summarized
as:

1) For each option p in S, compute the number of options
(np) which dominates the option p and the set of
solutions (S,) dominated by solution p. In this step, all
options in the first nondominated front (F}) will have
np = 0.

2) For each option p in Fj, visit the options in .S, and
update n,, value as n, = n, — 1. The options in S, that
present n, = 0 belongs to the second nondominated
front (F5).

3) While there are fronts to be computed, repeat step 2
replacing Fy and F5 for F,,_; and F), respectively.

IV. ELIMINATION-SELECTION

Although the Fast Nondominated Sorting Approach can pro-
pose the solutions with the best trade-off, their high complexity
of time and storage make it difficult to execute it when a
large number of options are available. On the other hand, the
MCDA algorithm proposes a set of solutions demanding less
computational resources but with low quality.
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Thus, we propose the E-S algorithm based on TOPSIS and
Fast Nondominated Sorting Approach. In Table I are present
the variables used to describe our algorithm.

TABLE I
LIST OF VARIABLE USED IN THE ALGORITHM

Variable  Description

Q Available options

N Number of options to be selected
SR Search rate value

S Selected options

Algorithm 1 shows the E-S algorithm. It needs three inputs
parameters, Q, N and SR which corresponds to the set of
available resource options, the number of resource options to
select and the search rate to be used in the preliminary steps.
The search rate parameter is included based on the studies
conducted by Nunes et al. [22], [7], observing that as MCDA
algorithms select more sensors the better is the quality of the
provided solution.

Algorithm 1 Elimination-Selection algorithm
1: function E-S(Q, N, SR)
2: list «+ TOPSIS(Q)
to TOPSIS algorithm

3 S « fast_nondominated_sort(list[1..N x SR])

4: return S[1..N] > Return the N first options regarding
their front index

5: end function

> Rank all options according

Firstly, the TOPSIS algorithm is used to rank and sort the
Q set. Next, the fast nondominated sort algorithm is executed
considering the N x SR first options. The SR parameter plays
a key role in this step, as it is used to increase the odds of
getting an optimal solution proposed by TOPSIS algorithm
and minimize the time and storage complexity to perform the
fast non-dominated sort algorithm. Finally, the N options that
belong to the first fronts are returned.

V. CASE STUDY

Weather events such as high temperature, rainfalls, and
relative humidity play a vital role in crop yields as it increases
the crop vulnerability to diseases, pest infestations and choking
weeds [28]. Nowadays, the information retrieved through IoT
paradigm provide to farmers insights of their crop situation,
which can be used to perform strategic decisions to prevent
crop damages [29].

Precipitation, temperature, humidity, wind and sky coverage
are some of the climatological factors which directly impact
the productivity of crops. Precipitation probably is most im-
portant factor for crop development due to their influence on
other weather variables. Also, high indices of precipitation
may cause waterlogging and increase pest infestations [28].
Crop species also are affected by air temperature and humidity
which usually are expressed as a range of minimum and
maximum expected values and influences the growth and
production rates. The sky coverage defines the proportion of
clouds in the sky impacting in the global solar radiation in
the crop field and changes the plant’s metabolic process [30].

Finally, the wind velocity affects the distribution of seeds,
polymerization, and pesticide appliance in the crop.

Based on Doblas-Reyes et al. [30] and Rosenzweig et
al. [28] Table II reflects these factors and their estimated range
values to start a corn crop.

TABLE I
WEATHER CONDITIONS REQUIRED TO SEED A CORN CROP

Factor Value
Temperature (t) S9F <t <914 F
Humidity (h) h >50 %

Sky coverage (sc)  sc >50 %

Wind (w) w <20 km/h

Precipitation (p) 0 mm <p <50 mm

VI. EVALUATION METHODOLOGY

This Section presents the research methodology used in
the experiments. We adapted the evaluation method proposed
by Nunes et al. [22] to compare the TOPSIS and the E-S
algorithm from a quality of search and time perspective.

Figure 1 shows the workflow used in our experiments.
(1) The resource repository and the user context properties
are used as input for the static query phase, in which the
resources that not meet the user conditions will be discarded.
(i1) The resulted resource list is used as input to perform the
chosen MCDA algorithm, and a ranked list is returned. (iii)
The Pareto Optimal Solutions Check compute the number of
optimal solutions in each Pareto front.

Two metrics are used to evaluate the quality of the proposed
solutions. We considered the time in seconds (S) to propose
the solution, and the Overall non-dominated vector generation
ratio (ONVGR) [31]. The ONVGR shows the proportion of the
number of solutions suggested by the MCDA methods by the
number of optimal solutions in the Pareto front in each front.
As closer the ONVGR value is to one, better is the solution
proposed in that front.

The experiment environment is composed of a physical
machine responsible for executing the algorithm. Table III
describes the hardware used in the experiments.

TABLE III
PHYSICAL ENVIRONMENT
Hardware/Software Specification
Processor AMD Processor Vishera 4.2 Ghz
Memory 32 GB RAM DDR3 Corsair Vegeance
Hard Disk HD 2TB Seagate Sata III 7200RPM
Operating System Ubuntu Server 14.04 64 Bits LTS
Java JDK 1.7
Database MongoDB 3.0

The experimental methodology was based on four factors: i)
the number of sensors descriptions, ii) the MCDA algorithm,
iii) the number of selected sensors and iv) the number of
criteria. Table IV shows the used experimental factors and
levels, where the combination of the levels of each factor gives
a total of 6 experiments. Each experiment was replicated one
hundred times. It is important to highlight in the E-S algorithm
we consider the value of SR as two just as a proof of concept.
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Fig. 1.

TABLE IV
FACTORS AND LEVELS USED IN THE EXPERIMENT

Factor Level
Number of Resource Descriptions 209,555
MCDA Method  TOPSIS and E-S
Number of Selected Sensors 2095
Number of User Constraint 2,4 and 6

The sensor descriptions used as algorithm input are retrieved
from OpenWeatherMap' and their current context values used
in this experiment. Considering the constraints described in
Table II, the objectives functions of our case study are defined
in Table V. As a proof of concept, the objectives functions
of the context properties where a range of values may be
considered as optimal are modeled as a parabola. The point
that presents the maximum value of this objective function is
given for the mean value of the range. The context properties
tvs h,tvshvsscvswandtvshvVvsscvswvspvsdt
are used for two, four and six user constraints respectivelly.

TABLE V
OBJECTIVES FUNCTIONS TO SEED A CORN CROP

Context property Objective Function

Temperature max(—0.01777778t? + 10.512t — 1552.9364)
Humidity max(h)

Sky coverage max(sc)

Wind min(w)

Precipitation maz(0.0016p% + 0.08p)

Datetime (dt) max(dt)

VII. RESULTS

In this section, we present the results of the experiments
regarding time and quality of selection relating to the number
of imposed conditions. Figure 2 shows the number of available
resources that meet the conditions described in Table II after
the static query phase. We observe when two conditions
are considered, just 46,755 available resources meets the
constraints which correspond to approximately 22,3% of the
209,555 resources. As more conditions are imposed the num-
ber of available resources decreases as shown for four and six
criteria, which correspond to approximately 6,9% of available
resources for both.

Figure 3 presents the ONVGR value according to the
number of imposed conditions. The ordinate axis presents the
ONVGR value and the abscissa axis the number of fronts used
to propose the solution. The green line represents the optimal

lOpenWeatherMap -  http://bulk.openweathermap.org/sample/hourly_16.
json.gz

Evaluation Workflow. Adapted from Nunes et al. [22]
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Fig. 2.  Number of resources considering the conditions to seed a corn crop

selection considering the resources retrieved from the static
query phase. The optimal solution is computed considering
the 209,555 resources in the repository. The blue and red lines
correspond to the solutions presented by the TOPSIS and E-S
algorithm respectively.

Figure 3.a the ONVGR value for the optimal selection
considering two conditions are 1.0 for the first fronts and floats
between 0.8 and 1.0 for the intermediary fronts, requiring a
total of twenty-seven fronts. The float in the optimal selection
value occurs due to the query phase, which eliminates the
options that do not attend the imposed conditions. On the other
hand, the ONVGR value for the TOPSIS and E-S algorithm
is closer to 1.0 for fewer fronts in the beginning, and this
value floats between 0.15 and 0.6 for the major part of the
intermediary fronts. The high ONVGR value fluctuation for
TOPSIS and E-S algorithms occurs due to the small number of
solutions in each front. The E-S algorithm presented a higher
ONVGR value than the TOPSIS algorithm. Consequently, it
uses fewer fronts providing a better set of options.

In Figure 3.b the ONVGR value for the optimal selection
considering four conditions are lower than two conditions as
several solutions are removed in the query phase and the
number of conflicts among the conditions increases. As the
number of conflicts increases, the number of the available
solution in each front also increase, and consequently, the
number of fronts used to propose a solution decrease. Thus,
for the optimal selection, the ONVGR value floats in general
between 0.2 and 0.6 using just five fronts. The E-S algorithm
presents a quality of solution closer to the optimal solution,
where the ONVGR value floats in general between 0.2 and 0.5
and uses six fronts providing a better solution than TOPSIS
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algorithm which presents an ONVGR value between 0.1 and
0.5 and uses nine fronts.

Figure 3.c the ONVGR value for the optimal selection
considering six conditions are closer to 0.2 and just uses
two fronts showing a behavior similar to Figure 3.b. The E-S
algorithm presents an ONVGR value slightly lower than the
optimal solution and uses three fronts. The TOPSIS algorithm
shows a worse solution than the E-S algorithm with an
ONVGR value around to 0.1 and using five fronts.
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Fig. 4. Time to select the resources regarding the conditions

Figure 4 presents the time in seconds to execute the algo-
rithms. We observe the time to compute the Optimal solution
is greater than the TOPSIS and E-S approach, especially
when two criteria are used as it presents the major number
of available resources between all scenarios. The time to
compute the optimal solution drastically decreases for four
and six criteria due to the small number of sensors to be
analyzed. Similar to the optimal solution, the time to perform
the TOPSIS algorithm slightly decreases from two to four
and six criteria as the number of resources to be analyzed is
smaller. As expected, the E-S algorithm presents a higher time
than TOPSIS algorithm as more steps are needed to select the
sensors. The mean time overhead of the E-S algorithm about
TOPSIS algorithm is closer to 4.0, 7.0 and 8.5 times for two,
four and six criteria respectively.

In summary, the E-S algorithm provides a better quality
of solution than the TOPSIS algorithm, independent of the
number of imposed conditions in a fair time. On the other
hand, while the time to compute the solution for the TOPSIS
algorithm decreases when more criteria are used and fewer re-
sources are considered, in the E-S algorithm this time increases
proportionally to the number of imposed conditions due to
the complexity of the fast nondominated sort algorithm. It is
important to highlight the trade-off between the quality and
time of a solution in the E-S algorithm is directly related to the
SR, which will determine the number of extra computations to
be performed compared to TOPSIS algorithm. It should also
be noted that while time is of importance, the quality is often
the overriding factor: if the “thing” is being used over a longer
period or provides essential data that decisions are based on,
then it can be worth spending a slightly longer time to select
the best possible fitting “thing”.
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VIII. CONCLUSION

The search and discovery of resources are one of the main
challenges in IoT environments. Thus, several works have
been proposed to solve this problem promptly, but in the
majority, these proposals do not consider the need to provide
the expected quality of the solution. In this paper, we proposed
an E-S algorithm that can improve the quality of the solution
based on the previous works, which adds a small overhead to
compute the solution. We take the TOPSIS algorithm used in
ViSIoT tool and the fast non-dominated sort algorithm as a
base of comparison with the E-S algorithm and apply them
in an agricultural case study using a real dataset. The results
have shown the E-S algorithm can improve the quality of the
proposed solution; although it adds a certain overhead when
compared to TOPSIS algorithm. This overhead is at least ten
times inferior to the fast non-dominated sort. In future work,
we will look at optimizing the E-S approach, especially for the
number of extra sensors that must be selected and alternatives
for TOPSIS algorithm in E-S.
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