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ABSTRACT

Over the last few years, the number of smart objects con-
nected to the Internet has grown exponentially in compar-
ison to the number of services and applications. The inte-
gration between Cloud Computing and Internet of Things,
named as Cloud of Things, plays a key role in managing the
connected things, their data and services. One of the main
challenges in Cloud of Things is the resource discovery of the
smart objects and their reuse in different contexts. Most of
the existent work uses some kind of multi-criteria decision
analysis algorithm to perform the resource discovery, but do
not evaluate the impact that the user constraints has in the
final solution. In this paper, we analyse the behaviour of the
SAW, TOPSIS and VIKOR multi-objective decision analy-
ses algorithms and the impact of user constraints on them.
We evaluated the quality of the proposed solutions using the
Pareto-optimality concept.

Keywords

Internet of Things, Resource Discovery, Multi-Objective, Op-
timization, Sensor Search, Multiple-Criteria decision analy-
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1. INTRODUCTION
Nowadays, the number of smart objects connected to the

Internet is growing exponentially proportionally to the num-
ber of services and applications for them. According to
the Gartner Report, there is about 6.4 billion of connected
things moving a market around $235 billion just with end-
users services in 2016 [13]. The integration between Cloud
Computing and Internet of Things (IoT) named as Cloud
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of Things (CoT) plays a key role to manage the connected
things, their data and the provided services [22].
Jayaraman et al. [16] defines the Cloud of Things paradigm

“where smart objects are fully connected to the network and
integrated with the cloud(s) for data storage, processing, an-
alytics and visualization”. The number of services and ap-
plications using the CoT concepts has been increasing in
several areas such as environmental monitoring, healthcare
aid and assisted car driving. On the other hand, the rapidly
spread in the number and type of devices makes it difficult
for IoT stakeholders to use the gathered data, as generally
they are used for specific purposes [28].
Solutions such as GSN, OpenIoT and Xively aims to sup-

port the CoT vision enabling access, process and analyses of
smart objects and their data by using a set of keywords or
semantic inference. However, due to their dynamic nature
and original goal, the data of a smart object could not be
suitable to accomplish the requirements of a user different
of its owner.
The resource discovery process is a key challenge in the

Cloud of Things context, which must to perform the smart
objects search and selection regarding the constraints im-
posed by different users. In this sense, several research pro-
pose to use context-aware computing and multiple-criteria
decision analysis (MCDA) to support the resource discovery
process.
Context-aware computing refers to use stored context in-

formation to characterize a smart object and link them to
their data [25]. While multiple-criteria decision analysis al-
gorithms aims to propose the best set of smart objects ac-
cording to the user objectives, constraints and their relative
importance. The user constraints refer to the criteria im-
posed for the sensor discovery and the relative importance
relate to the given weight of each criteria during the process.
Although several papers such as [22, 12, 24, 18] use some

kind of MCDA to perform the resource discovery process,
they are not concerned about the quality of the proposed
solution set. Moreover, they do not evaluate the impact of
the relative importance of user constraints in the final set of
smart objects.
Thus, in this paper we present an evaluation of the im-

pact of the user constraints and their relative importance
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to select a set of smart object. In particular, we investigate
the behavior of the Simple Additive Weight method (SAW),
the Technique for the Order of Prioritisation by Similar-
ity to Ideal Solution (TOPSIS) and VIseKriterijumska Op-
timizacija I Kompromisno Resenje (VIKOR). To perform
the experiments, the methodology presented in [23] is used
to evaluate the algorithms and the impact of the user con-
straints in the final set.
The paper is organized as follows: Section 2 presents a

literature review of resource discovery for CoT. Section 3
describes the analysed Multiple-criteria decision-making al-
gorithms. Section 4 describes the methodology and config-
urations used to perform the experiments. The results are
then discussed in Section 5. Finally, the conclusions and
directions for future work are presented in Section 6.

2. RELATED WORK
Nowadays there are several approaches that enable the

smart objects management. Perera et al. [24] and Römer
et al. [27] present surveys that describes several architec-
tures, techniques, methods, models, features, systems, ap-
plications, and middleware solutions related to the CoT con-
text. In this section, firstly we present some architectures
that enable the resource discovery of smart objects and next
some works related to sensor discovery techniques.
Bovet and Hennebert [4] proposes a P2P architecture for

sensor discovery aiming robustness, reliability and efficiency
in energetic terms. The authors present an ontology to de-
scribe the properties, functionalities and how to access to
the subscribed devices. The SPARQL language is used to
look for specific devices into the ontologies, which are stored
in a distributed manner over the nodes of the architecture.
Kamilaris et al. [17] use domain name server as a scalable

metadata repository to support the entity discovery using
their location. The authors proposes the creation of a new
domain, such as .env, which represent the entities of the
real world. Thus, when a smart object becomes available it
must register their characteristics and services into the DNS
repository.
Kiljander et al. [19] proposes an architecture aiming to

provide smart objects interoperability. Ontologies are used
to describe these devices which are accessible using SPARQL
language and semantic agents. It uses unique identifiers
named ucodes to access and identify the devices of an specific
network. The ucodes are stored inside distributed brokers,
which are organized according to their location, owners or
data.
Diaz-Montes et al. [9] present the CometCloud tool to

provide infrastructure and programming support to develop
workflows to integrate with federated resources. Comet-
Cloud is a three-layer architecture composed by: infras-
tructure layer, autonomous management layer and interface
layer. The infrastructure layer allows the information ex-
change with the distributed resources. The interface layer
enables the information exchange between the user and the
CometCloud core. Finally, the autonomous management
layer compose the workflow according to available applica-
tions and their policies regarding the established SLA.
Carlson and Schrader [6] presents a search engine named

Ambient Ocean to discovery and select sensors using context
information. This search engine uses a local stored metadata
to define the device context and perform the search in a more
efficiently way. The search engine uses similarity multi-task

models based on the Weighted Slope One algorithm. In sce-
narios that is hard to model the devices features, the Ambi-
ent Ocean applies collaborative filters techniques to compute
the similarity between users or sensors using previous infor-
mation.
Kothari et al. [20] shows an architecture named DQS-

Cloud to optimize the sensor search, autonomous fault tol-
erance mechanism and avoid SLA violations. The search is
based on keywords and in the QoS attributes desired by the
users. The DQS-Cloud aims to minimize the communication
overhead reusing data flows with similar QoS levels. The re-
sults shows that the DQS-Cloud was capable to minimize
the bandwidth and processing rate in the providers.
Gao et al. [12] proposes the Automated Complex Event

Implementation System to integrate dataflows at runtime.
The sensors and their flows are described according to the
SSN ontology and are stored in a repository with their QoS
and QoI attributes. It is able to search and select the reg-
istered sensors with regards to the specified QoS and QoI
levels using the Simple-Additive-Weighting algorithm.
Perera et al. [24] present the CASSARAM framework

to perform the sensor search and selection regarding user
context properties. It uses the Semantic Sensor Network
Ontology (SSN) to retrieve and model user context proper-
ties. CASSARAM users use semi-negotiable context prop-
erties, which allow to define context properties values in a
range. Thus, the proposed Relational-Expression based Fil-
tering can be applied to ignore irrelevant sensors during the
semantic querying. Also, the Comparative-Priority Based
Heuristic Filtering is used to remove the sensors that are far
from the ideal point prioritizing the TOP-K selection.
Doukas and Antonelli [11] presents the COMPOSE to pro-

vide an end-to-end solution to develop applications and ser-
vices for CoT. This solution operates in all layers of IoT
architecture interacting with the users of the mobile appli-
cation, performing the sensor search and selection and also
deploy the application into the cloud. The sensor search and
selection uses the iServe, which is a service warehouse that
unify several features such as the service publisher, service
analyse and service discovery using semantics. The iServe is
able to deploy service and additional features to explore the
service description, notation and analysed gathered data.
Khodadadi et al. [18] proposes a framework named Simurgh

to define “things”, people and their functional properties to
make easier define services and compose workflows for IoT.
The search and selection process uses syntax based algo-
rithms in two phases. The first phase, look for entities that
respect a specific set of criteria. On the other hand, the sec-
ond phase uses the first phase result set to perform another
search to choose the suitable devices for a specific problem.
The framework was validate using a study case that illus-
trated the framework behaviour for a temperature sensor.
Nunes et al. [22] presents the ViSIoT middleware to per-

form the smart objects resource discovery. This work use
the TOPSIS to select the sensors according to the user con-
straints. The ViSIoT performance analyses shows the ca-
pacity for setting up the environment in a timely manner.
The discussion presented in this section show some archi-

tectures and alternatives to perform the resource discovery
and selection according to the constraints imposed by the
final user. However, these works do not evaluate the quality
of the proposed solutions and the effects of the user con-
straints in the quality of the proposed smart objects set. In
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this sense, we have take the SAW and TOPSIS algorithms
presented in this section as a base algorithm for a case study
about the efficiency of MCDA algorithms applied in the CoT
context and analyse the influence of user constraints in the
final solution.

3. MULTI-OBJECTIVE OPTIMIZATION
Several problems in industry, computing, engineering and

other areas uses multiple objectives optimization. In many
cases, these objectives are defined in not comparable units
and have some level of conflict between them. In other
words, an objective can not be improved without deterio-
rate another objective [15]. In the sensor discovery process
this scenario can be exemplified by an user which desires to
choose a subset of smart objects but also wants to minimize
the price and maximize the accuracy of the sensors in this
subset.
In an optimization problem with one objective, the search

space is always well defined. As more conflicting goals must
be simultaneously optimized, it is extremely hard to estab-
lish a single optimal solution but rather a set of possibilities
with equivalent quality. The optimal solution is a set of
optimal trade-offs between conflicting goals [2]. An multi-
objective optimization problem can be describe as

minimize{f1(x), f2(x), · · · , fk(x)}, where x ∈ S, (1)

wherein the number of objective functions k is greater
than or equal to two in decision space, represented by Rn.
The vector of objective functions is defined by:

f(x) = (f1(x), f2(x), · · · , fk(x))
T (2)

Vector decision x = (x1, x2, · · · , xn)
T belong to feasible re-

gion nonzero S, which is a subset of Rn [21].

3.1 Pareto Optimality
The Pareto dominance relationships are used to compare

different sets of solutions. The set of optimal solutions of
problem is given the name of set of optimal solutions or
Pareto non-dominated solutions [15].
In a minimization problem, a solution xT is not domi-

nated if there is no x ∈ S such that fi(x) ≤ fi(x
T ) for each

objectivei=1,··· ,k e fi(x) < fi(x
T ) for at least one of the

analyzed objectives[2]. The image of the set of optimal so-
lutions is called Pareto frontier or Pareto curve. The shape
of the Pareto front indicates the nature of trade-off between
different objective functions [5].
Each objective can be minimized or minimized. The solid

curve represents the set of non-dominated solutions. It this
figure, the optimal set of Pareto is always composed of the
solutions that are concentrated in an specific vertex of a fea-
sible region. Furthermore, in a continuous space of solutions,
the optimal set of Pareto may be formed by two disjoint sets
of solutions as represented by Figure(b). However, despite
the existence of multiple Pareto optimal solutions in practice
only one of these solutions must be used [8].

3.2 Multiple-criteria decision analysis
Multiple-criteria decision analysis algorithms are used for

decision making in the presence of multiple and often con-
flicting goals. The MCDA algorithm are intended to assist
the judgment of decision making through a set of goals and

criteria, estimating their importance and establishing the
contribution of each option regarding a set of criteria [10].
An MCDA problem can be described using an analysis

matrix M × N , where the element qij represents the per-
formance of each option according to the decision criteria
cj in non comparable units and scales, such as represented
by Equation 3. An evaluation matrix is used to represent
the relative performance of each q′ij using a normalization
function to compare the different criteria [30].

Q =

c1 c2 c3 cn
















q1 q11 q12 q13 . . . q1n
q2 q21 q22 q23 . . . q2n

...
...

...
...

...
qm qm1 qm2 qm3 . . . qmn

(3)

All MCDA algorithms explicitly define its options and
weights of each criterion, but differ in the way that they com-
bine the input data. Although MCDA problems are found in
different areas, they often share similar characteristics such
as using multiple criteria always form a hierarchy , conflict
between the criteria, hybrid nature, uncertainty and their
solutions can not be conclusive [31].

3.2.1 SAW

The Simple Additive Weight algorithm is one of the most
popular MCDA algorithms and is applied in several applica-
tion domains such as supply chain management, personnel
selection problems, project manager selection and facility lo-
cation selection [1], [26] . The SAW algorithm aims to get
a weighted sum of the normalized criterion values of each
alternative, where the greater value represents the preferred
alternative [26].

3.2.2 TOPSIS

The Technique for Order of Preference by Similarity to
Ideal Solution is another popular MCDA algorithm applied
in Supply Chain Management and Logistics, Design, En-
gineering and Manufacturing Systems, Business and Mar-
keting Management, Health, Safety and Environment Man-
agement, Human Resources Management, Energy Manage-
ment, Chemical Engineering and Water Resources Manage-
ment [3]. The TOPSIS algorithm aims to choose the options
that are closest to the optimal solution and farthest from the
negative optimal solution [30].

3.2.3 VIKOR

The VIseKriterijumska Optimizacija I Kompromisno Re-
senje uses the concept of compromise programming and has
been applied in several fields such as location selection, en-
vironmental policy and data envelopment analysis [14]. The
VIKOR algorithm aims to find the options that are closest
to the optimal solution, and also evaluate their individual
and group impact [29].

4. EVALUATION METHODOLOGY
This Section presents the research methodology used in

the experiments. We use the evaluation methodology pro-
posed by Nunes et al. [23] to compare resource discovery
algorithms from a quality of search perspective. In this Sec-
tion we assume the criteria and user constraints have the
same meaning and weights as well as relative importance.
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Figure 1: Evaluation Workflow. Adapted from
Nunes et al. [23]

Figure 1 shows the workflow used in our experiments. The
sensor data, the user constraints and their relative impor-
tance are used as input for a MCDA algorithm that will
output a ranked sensor list. Next, the ranked sensor list is
used as input for the Pareto Optimal Solutions Check, which
define the number of optimal solutions in each Pareto front.

The metric used to evaluate the MCDA algorithms is
the the Overall non-dominated vector generation ratio (ON-
VGR) [7] which shows the number of optimal solutions in
the Pareto front as a proportion of the number of solutions
proposed by the MCDA methods in each front. The closer to
one the ONVGR value is, the better is the solution proposed
in that front.

The experiment environment is composed by only one
physical machine, which hosts the application with multi-
criteria decision algorithms. Table 1 describes the hardware
used to execute the algorithms.

Table 1: Physical Environment
Hardware/Software Specification

Processador AMD Processor Vishera 4.2 Ghz
Memory 32 GB RAM DDR3 Corsair Vegeance
Hard Disk HD 2TB Seagate Sata III 7200RPM

Operating System Linux Ubuntu Server 14.04 64 Bits LTS
Java JDK 1.7

Database MongoDB 3.0

The experimental methodology was based on four factors:
i) the number of sensors descriptions, ii) the MCDA algo-
rithm, iii) the number of selected sensors and iv) the num-
ber of criteria. Table 2 shows the used experimental factors
and levels, where the combination of the levels of each fac-
tor gives a total of 12 experiments. Each experiment was
replicated one hundred times, where the criteria weights was
randomly defined at execution time.

Table 2: Factors and levels used in the experiment
Factor Level

Number of Sensors Descriptions 100,000
MCDA Method SAW, TOPSIS and VIKOR

Number of Selected Sensors 1,000 and 10,000
Number of User Constraint 2 and 6

The sensor descriptions used as algorithm input was syn-
thetically generated. The sensor capabilities and measure-
ments (e.g. frequency and power consumption) are based on
the 4027A Series from Bird Technologies1. The context data
related to each sensor are retrieved from OpenWeatherMap2

1Bird Technologies -http://www.birdrf.com/
2OpenWeatherMap - http://openweathermap.org/

and their current properties values used in this experiment
(e.g. battery, price, drift and response time) are assumed
to be retrieved by software systems that manage such data
and are available to be used.
The user constraints and objectives functions used to max-

imize (max(cj)) or minimize (min(cj)) follow this order:
max(battery), min(price), min(drift), max(frequency), min(
energy consumption), min(response time).

5. RESULTS
Figure 2 presents the boxplot representation of the ON-

VGR to select 1,000 (Figure 2.a) and 10,000 (Figure 2.b)
smart objects considering two user constraints. In this fig-
ure we have to suppress the outliers and limit the number of
fronts to two hundred to allow the graphic view. We observe
that are a high number of fronts due to the low number of
user constraints conflicts, which impacts in the number of
available solutions in each front.
The number of solutions available in each front increases

proportionally to front index which decrease the ONVGR
value because less objects are selected in these fronts. Also,
the ONVGR value has a low variation when 10% of the
sensors are selected rather than 1%, because more sensors
are selected which increases the chances of select an opti-
mal sensor independently of the user constraints. The mean
behaviour of the algorithms shows that they could not find
all the optimal smart objects, in which in the best scenario
an ONVGR value closer to 0.8 and 0.9 are got when 1%
and 10% of the smart objects are selected. Regarding the
MCDA algorithms, we can observe the boxplot overlap each
other, thus they present an equivalent behaviour when user
constraints are used.
Figure 3 presents the graphic representation of the ON-

VGR to select 1,000 (Figure 3.a) and 10,000 (Figure 3.b)
smart objects considering six user constraints. In this Figure
we observe that are less fronts than the solution presented in
Figure 3 because there are more conflicts between the user
constraints and consequently a high number of optimal so-
lutions in each front. Thus, the ONVGR value is lower than
the two properties scenario as the algorithms are not able
to find all the solutions in the first fronts. It is important
to highlight when 1% and 10% of the smart objects are se-
lected a mean ONVGR value lower than 0.2 and around 0.4
are gotten. In this sense, the quality of the proposed solu-
tion when six user constraints are considered is worst than
the proposed solution with two user constraints. About the
MCDA algorithms, the three algorithms present practically
the same behaviour with a slightly difference for VIKOR al-
gorithm which uses two more fronts than SAW and VIKOR
with a low number of solutions for each one.
In summary, the results show that the use of relative im-

portance in user constraints does not necessarily improve
the quality of the solution offered by a MCDA algorithm
regarding the Pareto dominance relationships. The change
of relative importance in user constraints has a higher im-
pact when less constraints are used because there are less
optimal solutions in each front. As expected, as more user
constraints are used worst is the proposed solution. Finally,
in the analysed scenarios when the relative importance of
user constraints are changed there is no statistical difference
between the solutions proposed by the MCDA algorithms.
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Figure 2: Variation of ONVGR value for two user constraints
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Figure 3: Variation of ONVGR value for six user constraints

6. CONCLUSION
Efficient resource discovery of smart objects by adhering

to dynamic requirements of an user is an open challenge in
CoT environments. The integration of context-aware com-
puting and multi-objective optimization has been widely
used to support the sensor search and selection and to find
the best trade-off between the available solution and the
imposed constraints. In this paper, we have used an exis-
tent methodology presented in Nunes et al. [23] to evaluate
MCDA algorithms and the impact of the relative importance
of user constraints in the quality of the proposed smart ob-
ject results set. The gathered results show that the use of
relative importance in user constraints does not necessarily
improve the quality of the solution offered by a MCDA al-
gorithm and has a higher impact when less user constraints
are used. Further, the higher number of user constraints de-
creases the quality of the proposed solution due to conflicts
between user constraints. For future work, we will analyze
other characteristics of their solutions such as convergence
and distribution regarding the Pareto dominance relation-
ships.
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