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ABSTRACT
Cameras are becoming pervasive and used for image classification
and object detection in various applications, including anomaly
detection. However, cameras pose a privacy threat and require sig-
nificant power resources. To address these issues, researchers have
explored non-vision sensors, but pre-training them for anomaly de-
tection is challenging because anomalies are difficult to define and
vary significantly across indoor environments. Thus, we propose
a new approach to training non-vision sensors using a tiny cam-
era and a pre-trained MobileNetV2 model. Data from non-vision
sensors are labelled based on the image classification from the tiny
camera, and an anomaly detection model is trained using these
labelled data. The Random Forest model is used as the final model,
achieving an accuracy of 95.58%.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing.
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1 INTRODUCTION
Cameras are increasingly prevalent across various settings, includ-
ing public spaces, businesses, and moving into households. Cameras
are more advanced sensors having the potential to provide highly
detailed and contextually rich sensory information. In addition,
they offer various computer vision functions, such as image classi-
fication, that can run on resource-constrained devices. Computer
vision has been utilised for multiple applications, including anomaly
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detection. However, despite their advantages, cameras are energy-
hungry sensors. More importantly, they are considered an invasion
of privacy, and individuals are hesitant to have visual monitoring,
especially in indoor settings. In addition, computer vision systems
require significant training data to function effectively.

Researchers have utilised non-vision sensors (e.g., temperature,
humidity) for anomaly detection within built environments to ad-
dress the camera’s challenges. However, these sensors face chal-
lenges, such as difficulty in pre-training them due to the elusive
nature of anomalies and the diversity of environments. They re-
quire on-premises training which can be impractical for multiple
scenarios. Additionally, the need for a labelled dataset for accurate
detection can be time-consuming, expensive, and prone to human
error [4].

To overcome the issues above, we propose an approach that lever-
ages the strengths of cameras and non-vision sensors. A tiny camera
sensor is used to train commonly installed non-vision sensors to
detect anomalies in indoor environments. The primary objective
for the camera is to produce labels, which can then be utilised to
train other sensors through supervised learning. During the deploy-
ment, the camera can be removed to preserve privacy, and only
non-vision sensors contribute to making the final predictions.

In a similar study [1], the authors introduced a self-training
sensor system for recognising human activities. For example, they
employed a camera sensor to train an accelerometer.

2 METHODOLOGY
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Figure 1: The proposed approach consists of (1) Training:
using a camera to label non-vision data, and (2) Predicting:
using a classification model trained on non-vision data and
labels from the camera.

We propose a sensor-based anomaly detection approach that
utilises a tiny camera to train non-vision sensors. Our approach
consists of two phases: training and predicting (see Figure 1). Dur-
ing the training phase, the camera produces labels that annotate
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non-vision data. In the predicting phase, a model trained on non-
vision data and camera labels detects anomalies. The camera can be
removed during deployment, and predictions are based solely on
non-vision data. We evaluate our approach by implementing a case
study that detects open doors as anomalies due to their potential
security risks, impact on Heating, Ventilation and Air Conditioning
(HVAC) systems, and energy usage [2]. The system implementation
requires a typical CPU with a minimum clock-speed of 2 GHz and
at least 8.0 GB RAM. The implementation stages are as follows:

2.1 Data Acquisition
We recorded environmental properties and found that opening and
closing doors caused fluctuations in temperature, humidity, and
pressure. Humidity was stable when the door was closed and varied
when it was opened, while temperature suddenly dropped or rose
when the door was opened. The observations indicate that door
status has a significant impact on environmental properties, and
temperature and humidity sensors are often used in buildings to
manage energy usage and maintain thermal comfort. Similarly, in
[5], temperature sensors were used to detect abnormal behavior
resulting from an open window. We used an environmental module
(for temperature, humidity, and pressure), door sensor, and RTC
module to collect data, as well as a tiny camera module to capture
images and train non-vision sensors. Additionally, the DeepDoors2
dataset was used [3], and data were collected from a home and an
office for two weeks. We found that a 1-second sampling rate was
sufficient for detecting short-term fluctuations in environmental
conditions.

2.2 Phase 1: Training
In this phase, the tiny camera acted as a trainer and produced
labels to annotate the non-vision data. Using a tiny camera, we
employed a pre-trained MobileNetV2 model with transfer learning
to classify the door state and generate labels for non-vision data.
We trained with 4300 images of 96x96 image size and achieved
97.5% accuracy. After training the model, we ran inferences on door
images. Then, we cross-referenced the timestamp of the non-vision
data with the classified image to assign predicted classes as labels
to the non-vision data.

2.3 Phase 2: Predicting
Once all non-vision data from home and office were labelled, we
trained the final anomaly detection model. The inputs of the model
are labelled non-vision data only. To select the best classifier, we
experimented with three supervised algorithms: Deep Neural Net-
works (DNN), Support Vector Machine (SVM), and Random Forest
(RF). The RF scored the highest results, followed by the DNN and
SVM. As a result, we used the RF model as our final model. Us-
ing binary classification; the model classifies input data into two
categories - Normal (i.e., closed door) or Anomaly (i.e., opened door).

3 RESULTS
To assess the effectiveness of our approach, we evaluated the la-
belled data in two different ways. Firstly, we compared the camera-
generated labels with the actual labels from the door sensor and
found only fourmisclassified instances. Secondly, we implemented

Table 1: Performance of the Baseline model (trained on
ground-truth data) and the Camera-trained model (trained
on data labelled by the camera).

Model Accuracy Precision Recall F1-score

Baseline model 95.67% 96% 96% 96%
Camera-trained model 95.58% 96% 96% 96%

two Random Forest models: (1) the baseline model trained on the
ground-truth dataset and (2) the camera-trained model trained on
the dataset labelled by the camera - and compared their perfor-
mance. Table 1 demonstrates the performance of the two models
on a test dataset using 10-fold cross-validation, and we can see that
the camera-trained model succeeded in achieving almost identical
results to the baseline model.

Creating annotated datasets is crucial for training supervised
models, but manual data annotation can be complex and may re-
quire expertise. Automatic data labelling can overcome many chal-
lenges associated with human labelling techniques for sensor data
and can label large amounts of data quickly and cost-effectively.
Using a camera (trained with 4300 images) to label non-vision data
automatically, we addressed the challenges of manual labelling. In
less than forty minutes, we labelled our non-vision dataset, which
had more than ten thousand data points.

Our approach can be scaled to detect indoor anomalies, including
open windows, crowded places that lead to high CO2 concentration,
and falls. However, the approach is limited to cases that have visual
change and can be detected through cameras.

There are multiple factors that affect our approach performance.
Firstly, although cameras possess a high anomaly detection capabil-
ity, their performance can be restricted by factors such as lighting
conditions, camera placement, and occlusions. Secondly, cameras
and non-vision sensors capture data that differ greatly in nature,
necessitating diverse processing techniques. Finlay, certain anom-
aly detection tasks may require advanced modeling techniques and
more labeled data for effective training due to varying levels of
complexity.
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