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ABSTRACT

Linked Data (LD) is a paradigm that utilises the Resource Description Framework (RDF) triplestore
to describe numerous pieces of knowledge linked together. When an entity is retrieved in LD, the
associated data becomes immediately accessible. SPARQL, the query language facilitating access to
LD, contains a complex syntax that requires prior knowledge due to the complexity of the underlying
concepts. End-users may experience a sense of intimidation when faced with using LD and adopting
the technology into their respective domains. Therefore, to promote LD adoption among end-users, it
is crucial to address these challenges by developing more accessible, efficient, and intuitive tools and
techniques that cater to users with varying levels of expertise. Users can employ query formulation
tools and interfaces to search and extract relevant information rather than manually constructing
SPARQL queries. This paper investigates and reviews existing methods for searching and accessing
LD using query-building tools, identifies alternatives to these tools, and highlights their applications.
Based on the reviewed works, we establish 22 criteria for comparing query builders to identify the
weaknesses and strengths of each tool. Subsequently, we identify common usage themes for current
solutions employed in accessing and searching LD. Moreover, we explore current techniques utilised
for validating these approaches, emphasising potential limitations. Finally, we identify gaps within
the literature and highlight future research directions to further advance LD accessibility and usability
for end-users.

Keywords Linked-Data, Linked open data, Visual querying, SPARQL, Query builders, Visualization



A PREPRINT - AUGUST 17, 2023

1 Introduction

The emergence of Linked Data (LD) has sparked competition among various organisations seeking to disseminate
their data in a widely adoptable, machine-readable format, typically through the utilisation of Resource Description
Framework (RDF) triples as the primary means of distribution [33, 23]. The interconnected nature of these entities
promotes accessibility and machine-readability, consequently leading to an accelerated growth of published data, which
now encompasses billions of triples. However, this vast expansion has simultaneously heightened the complexity for
humans attempting to navigate and extract useful information from such data sources [33, 23, 62].

Linked-Data is also referred to as Linked Open Data (LOD) when open data sources are employed. The availability
of LOD through SPARQL endpoints has led to the receipt of millions of daily queries from both human and machine
requesters [19, 106, 88]. Despite data machine-readability enabled by LD, humans still constitute a substantial portion
of its consumers [88, 20]. For accessing LD, SPARQL is the W3C recommended Query Language [58]. It is a precise
and powerful query language that enables users to specify exact relationships that match explicit patterns and constraints,
even though LD contains billions of triples and relationships. However, learning SPARQL can be challenging initially,
as it is complex and creates a high cognitive load [115, 62, 7]. Thus, mainstream users require direct assistance to access
LD using SPARQL, although experts find it less daunting. Nonetheless, writing accurate SPARQL queries necessitates
an understanding of the underlying ontology that defines the scheme of relationships and terms between distinct entities.
This includes the namespaces, vocabularies, and data names. Unfortunately, numerous SPARQL endpoints lack the
“unique name assumption” and have inadequate or nonexistent documentation [119, 27, 17]. Consequently, developers
may have to guess the appropriate ontology and rely on chance to stumble upon the correct names. Therefore, even
SPARQL experts may face difficulties in creating SPARQL queries to extract data from an unfamiliar SPARQL endpoint
[62].

Given the complexity of SPARQL, what is the rationale behind its usage? The complexity of SPARQL can
primarily be attributed to the intricate structure of the underlying data and the complexity of the queries intended.
The language is highly expressive, but it is not the only option for querying knowledge graphs, with languages like
Cypher or Gremlin being employed for the same purpose. However, these languages are also not suitable for Lay-users
[5, 98, 58]. SPARQL is the leading standard for querying RDF triple stores and is endorsed by the World Wide Web
Consortium (W3C). Additionally, it excels in querying semantically linked, heterogeneous, and distributed datasets
[5, 58].

The development of a user-friendly interface to assist users in creating SPARQL queries and effectively exploring data is
urgently needed. There have been numerous efforts to develop a SPARQL Query Builder (QB) Interface. Several efforts
have been made to create a SPARQL Query Builder (QB) Interface, which is an End-User Development (EUD) tool that
enables users to construct SPARQL queries using graphical interface components [9, 14]. EUD tools are crafted to fulfil
the end-user requirements and skills and to provide an alternative that overcomes the difficulty of using SPARQL [101].
However, many of these interfaces still have steep learning curves and require a profound understanding of the concepts
behind LD and the ways in which data is connected [113, 78]. While some tools aim to enhance experiences within
the Semantic Web community, others are tailored to support experts in domain-dependent settings. In contrast, many
mainstream or lay users have expressed a preference for tools to query LD that do not necessitate previous experience
with SPARQL or Semantic Web.

This paper thus explores techniques to allow access to LD for users with no SPARQL experience as a means of
improving user experience. The main focus is on using the user interface to generate SPARQL queries or to navigate
LD more efficiently. Thus, the ability to form a SELECT SPARQL query was essential for a tool to be chosen. While
some of the tools examined may not be able to generate other types of queries, such as CONSTRUCT and ASK, this is
not seen as a limitation for this study. The paper offers four main contributions:

• Investigating different research approaches utilised for searching Linked Data.

• Examining the current solutions being employed for accessing and searching Linked Data, with identification
of common usage themes.

• Exploring current techniques used for validating these approaches, with emphasis on highlighting potential
limitations.

• Analysing gaps in the existing literature and identifying potential future research directions.

The rest of this paper is organised as follows: Section 2 provides a motivating example that illustrates how wildlife
researchers would benefit from having a query builder to extract information from LD. Section 3 explains the search
methodology used. Section 4 discusses the categorisation scheme used with our evaluation framework, while Sections 5
and 6 explore tools and approaches available that offer access to LD, as well as introduce SPARQL Query Builders.
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Section 7 will then discuss current semantic web solutions and their usage themes. Section 8 explores the used evaluation
approaches with some research validation limitations. Section 9 then analyses and discusses some of the findings,
allowing Section 10 to focus on the emergent research challenges and limitations. Section 11 then concludes the work
by offering some final thoughts.

2 Motivating Example

As a motivation for our work, let us assume the scenario of a team of wildlife and bioscience researchers engaged in
data collection within forest environments. Conventionally, the collected data is recorded in a CSV format. Subsequent
to its collection, the data is typically archived in its raw format, compressed as a zip file, and then uploaded to a shared
repository for potential future usage or to be disseminated among interested researchers.

However, the characteristics of the data are inherently heterogeneous, primarily owing to the variability in the research
focus. Consequently, there is a significant lack of systematic means to render this archived data readily accessible and
searchable for other researchers when it is maintained in its conventional format. This presents a considerable challenge
to the effective and efficient use of such data in further research.

Suppose these researchers decide to utilise LD by disseminating their data in a more accessible format, which can
accommodate the heterogeneous structure of their data, similar to the methodologies adopted in Forest Observatory1

initiative. As illustrated in Figure 1, the conceptualisation of the Forest Observatory proposes that LD can be composed
of a wide variety of data types. These data may originate from various projects and data sources. These diverse data
types are semantically integrated, thereby forming a large knowledge graph that fulfils the requirements of bioscience
research. However, would it necessitate a preliminary understanding of LD to access this data effectively? Furthermore,
what would be the most efficient approach for information extraction?

Figure 1: An illustration of the conceptual design for Forest Observatory.

The inherent inconsistency of their data introduces an additional layer of complexity. Even if given the correct SPARQL
query as a template suited to a specific dataset, the utility of this template cannot be guaranteed for a different dataset.
The following two paragraphs will demonstrate how SPARQL query builders can significantly aid in LD information
retrieval without necessitating any prior knowledge about SPARQL or other semantic web technologies.

1https://www.forest-observatory.org/
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Consider a scenario where researchers attempt to identify specific animals and samples drawn from a particular area
among tons of datasets. Crafting such a query would present a significant challenge, even for experts. However, by
employing a user-friendly interface, individuals can simply mark a region on a map and initiate a search without any
understanding of the underlying technologies.

Similarly, connecting various attributes, perhaps located in entirely distinct archived datasets or even related to a
different project – such as correlating water levels with the presence or behaviour of certain species – could prove
exceedingly difficult without the aid of a specialised interface. This complex task can be made significantly more
manageable by enabling the user to select these datasets and coordinate the results based on time and location. Even if
the time format varies across datasets, an intelligent interface can effortlessly identify this inconsistency and explain
it to the user. Upon successful retrieval, the data should be ready for further processing and analysis, fulfilling the
researchers’ intentions for its use.

The above methodology can find application across various fields, thereby promoting the adoption of semantic web
technologies across multiple domains. Users lacking technical expertise stand to gain significantly from such technology,
negating the need for them to comprehend complicated query languages and concepts such as SPARQL, IRIs and LD.

3 Methodology

As the scope of this review paper can be relatively enormous, we have determined several stages and strategies to
identify the relevant work to shape the purpose of this paper. The initial step involves using Google Scholar to locate all
potentially relevant work and determine the primary keywords and data sources. Then, we conducted a manual search
on these sources. In addition, we have performed citation mining on all of the papers by doing backwards and forward
citation searches (snowballing). Figure 2 summarises the search stages as well as the selection technique.

Figure 2: Demonstration of the search stages with the selection strategy.

3.1 Search Strategy

Influenced by [75] proposed strategy, the search strategy was divided into three stages. The first step was dedicated to
locating all potentially relevant papers. Initially, we were concerned only with the title to filter out irrelevant papers.
Then, we used the paper’s abstract to create the initial list of potentially relevant papers. We started by identifying
primary keywords that include “SPARQL”, “Semantic Web”, and “Linked-Data” to be combined with words like
“Query Formulation”, “Visual”, “Query Builder”, and “Natural Language”. We have used Google Scholar to perform an
automatic search on these keywords without focusing on any specific publisher.

Typically, the results of using single keywords were overwhelmingly large, mainly out of the research scope. Combining
the keywords using AND operator has helped lower the results into more relevant papers. In addition to identifying
potential papers, we have identified relevant sources to be used for manual search. Google Scholar was also used to
“forward snowballing” to find more candidate papers and identify more sources.

Then, we have manually searched the identified sources using the keywords combination. The identified sources were
specialised journals or conference proceedings such as “Semantic Web journal (by IOS Press)”, “International Working
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Conference on Advanced Visual Interfaces”, and “International Conference on Semantic Systems”. For section 7, we
have reviewed 33 out of 145 paper that was published as in-use or resource during 2022 - 2015 in the International
Semantic Web Conference.

3.2 Selection Approach

We have identified relevant papers using only the title and abstract in the initial stage. Therefore, we had to read the
entire paper in the second stage to filter out the irrelevant papers. Thus, we have defined inclusion and exclusion criteria
that each paper must satisfy to stay on the list. First, we must check against the exclusion criteria to filter out all
matching cases. Then, if it passes, we will check if it satisfies at least one of the inclusion criteria to stay on the list.

3.2.1 Inclusion and Exclusion Criteria

The selection criteria were defined to ensure that the final list will fall within this paper domain. The exclusion criteria
were: (i) Papers not written in English. (ii) Requiring to type SPARQL manually. (iii) Not fully published paper (Only
abstract or a poster). (iv) Does not discuss LD. These criteria must be avoided to be qualified to the inclusion criteria.
The inclusion criteria were designed to ensure that the papers were of quality and relevant to this review. The inclusion
criteria were: (i) Introduce UI for querying LD (ii) discuss approaches for LD visualisation. (iii) Introduces a tool or a
solution to access LD. (iv) Facilitating the process of exploring LD. Satisfying one of the inclusion criteria means that
the paper is qualified as a selected paper.

3.3 Validation and Data Extraction

The third stage mainly compares the selected paper using the manual and automatic search with the known papers.
Also, this will include checking the references and performing backwards snowballing. Thus, we repeated the selection
approach for any new papers and updated the list of selected papers. Then, to extract the data efficiently, we have created
a list containing the paper ID, title, year, publication source, tool name (if available), categorisation, visualisation
approach, type of validation (if applicable) and validation sample size.

4 Categorisation and Comparison

To enable a meaningful comparison of tools and to identify similarities and patterns of use, it was necessary to categorise
the tools based on specific criteria and establish a framework for evaluating their usability. This framework was
developed to enable clear differentiation between the tools and facilitate a comprehensive analysis.

4.1 Categorisation

Upon conducting an in-depth review of diverse techniques for accessing and searching linked data, we have identified
various tools that can be categorised as Query builders, designed for constructing SPARQL queries, while others
enable the access and consumption of data in distinct approaches. The categorisation of query builders was motivated
by previous studies conducted by [49, 32, 78, 113, 76], with the aim of arranging them according to their querying
approach. On the other hand, the categorisation of other user interfaces was suggested by multiple papers, which are
mentioned individually in each relevant section.

Initially, we classified the query builders into three major groups: Form-based, Graph-based, and Natural Language-
Based. Subsequently, we organised alternative user interfaces into the following groups: SPARQL Assistants, Linked-
Data Browsers, Semantic Keyword-Based Search, Question Answering, and SPARQL to Natural Languages. Figure 3
illustrates the categorisations of the main identified approaches.

4.2 Query Builders Comparison Criteria

Our analysis of query formulation approaches and usage patterns, combined with insights from previous research
by [76, 32, 33? ], led us to identify 22 criteria that could serve as the basis for a query builder usability framework,
enabling comparison among different approaches. Each criterion was selected to fulfil a specific purpose. Below is a
list of all the criteria, along with a brief explanation for each.
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Figure 3: A diagram that illustrates the reviewed tools’ classification for obtaining data from SPARQL endpoints in
addition to the usage themes for the semantic web solutions.

Criterion 1 Target Users: Through a comprehensive review of the existing literature and approaches in the field,
our analysis has identified three distinct user categories that could potentially derive benefits from the utilisation of
linked data searching tools and data extraction approaches. The identification of these user categories provides valuable
insights into the target audience for such tools, emphasising the importance of customising the tools to meet the specific
requirements and preferences of each user group. The three user categories are as follows:

• Lay-users: These users lack any prior knowledge or understanding of SPARQL or Semantic Web.

• Tech-users: These users possess an understanding of the Web Semantic domain and LD operations. They
might even be capable of reading SPARQL and comprehending its significance. However, they have not
engaged directly in writing SPARQL queries.

• Expert-users: These users are well-versed in SPARQL and can create complex SPARQL queries. They have
previously worked with RDF and other Semantic Web technologies.

Criterion 2 Environment: The term "environment" refers to the means by which the software can be accessed, which
can take one of two forms: a web application that can be accessed via any browser, offering a high degree of portability,
or a desktop application that typically provides greater robustness and stability but requires an installation and may
have specific access requirements, such as a particular operating system or packages.

Criterion 3 Visual metaphor: The visual representation of the interface is a reflection of a particular underlying
concept. Despite the classification of similar interfaces based on their approach to querying, they present various
visualisation ideas. For instance, some Form-Based query builders resemble a conventional form, such as Konduit
VQB, while others adopt alternative visualisations like SparqlFilterFlow’s use of the FilterFlow Model. It is crucial to
distinguish between these visualisations to assess their influence on the user.

Criterion 4 Text Search: This criterion pertains to the capacity of a query builder to utilise text-based input for
searching entities or resources or constructing queries. While not all query-building tools prioritise natural language, a
significant number of them offer the option of keyword-based searching for identifying resources from an endpoint.
Some tools, such as natural language QBs, leverage sentence-based searching to formulate queries. Consequently, this
criterion can be either a keyword search or a sentence search.

Criterion 5 Dataset: In evaluating a tool, one aspect taken into account is its ability to access an arbitrary endpoint
or if it necessitates a specific dataset. The majority of query builders are generic and have been constructed to access
any triplestore through the SPARQL endpoint. However, certain query builders have been tailored to access particular
datasets, such as Wikidata or DBpedia.

Criterion 6 Reflect Result Size: In assessing the effectiveness of the filters used during query construction, it
is crucial to consider how users perceive the resulting size. For example, one approach to addressing this issue is
demonstrated in work by [55], which alters the line width between entities to indicate the decrease in result size after
a filter is applied. Thus, this feature holds importance to the user and would prove advantageous if it were to be
implemented in some way by the other tools we have identified.
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Criterion 7 Is evaluated? In assessing a tool, it is crucial to consider whether it has been subjected to user evaluation
to gauge its usability and effectiveness. In some cases, tools have undergone manual validation of results without actual
user involvement, which we deem as not fulfilling the evaluation criteria.

Criterion 8 Programming Language: To ascertain the underlying technology of a tool, it is vital to determine the
programming language utilised in its development. Such knowledge is critical for potential reusability or integration
with other tools that employ similar technologies.

Criterion 9 Automated suggestions: This evaluation criterion focuses on the tool’s capability to provide suggestions
to the user as they type or select entities from a list in order to decrease complexity, enhance productivity, and, crucially,
aid in exploring the dataset without requiring knowledge of the underlying ontology.

Criterion 10 Filtering: The majority of tools permit users to incorporate filters into their queries, with certain
variations in terms of expressivity. Nonetheless, some tools lack this functionality and solely enable the selection or
exposure of RDF triple relations without the ability to specify filters directly. This criterion only considers whether the
tool allows for the addition of filters or not without taking into account the expressivity of these filters.

Criterion 11 Examples: The provision of an example or playground query to users is a crucial feature that promotes
learning by example, facilitating a smoother learning curve and faster adoption of the tool. The criterion for this feature
is met only if the tool offers users example queries for their use.

Criterion 12 History: Enabling users to track their query-building history and roll back any errors is a critical feature,
especially when constructing complex queries, as the interface can become convoluted. This function empowers users
to experiment and engage more deeply with the query without fear of making mistakes and having to reconstruct the
query from scratch. As such, it is a valuable tool that promotes user confidence and encourages greater exploration of
the tool’s capabilities. This criterion is only met if the user has the ability to undo an action or review their history list
and return to a specific point in their timeline of activity.

Criterion 13 Multiple perspectives: This criterion is focused on evaluating the tool’s ability to offer users multiple
perspectives of their queries. The interface should provide various views that allow the user to visualise the query in
different formats. An instance of this feature in action could be a tool that allows the user to visualise their query using
an RDF Graph format but also offers an alternative tabular format for representing the same query. Additionally, the
tool should offer the option to show or hide additional views that represent the query or enable users to switch the
interface to a different view as needed. This feature can help users gain a better understanding of their queries from
different angles, which can lead to more effective query construction and data analysis.

Criterion 14 & 15 View and Edit SPARQL: The ability to expose the generated SPARQL query is a crucial aspect
of any query formulation tool, particularly for those with advanced technical knowledge and expertise. Furthermore,
the option to manually edit the query represents an additional level of functionality that can significantly enhance the
usability of the tool for expert users, enabling them to expedite the query formulation process and manually make
modifications as required. It should be noted that while this functionality is not present in some query formulation tools,
it constitutes a fundamental point of differentiation between query formulation and conventional data exploration.

Criterion 16 Save Query: This criterion is only satisfied if the tool provides a means for saving the query, such as
the ability to save it as a file or within the tool account or browser cookies. Moreover, the saved query must be easily
accessible for the user to retrieve as needed. This is a valuable feature that allows users to create and test multiple
queries and provides the option to reuse them in the future.

Criterion 17 Share Query: Enabling users to share their queries with others, whether through a file, account, URL,
or any other means, is a valuable feature that enhances the user’s ability to collaborate and explore results with others.
This capability promotes greater engagement among users and provides a quality feature that can facilitate learning and
more effective use of the tool. If a tool permits query saving but lacks the ability to share it with other users, then this
criterion is not satisfied.

Criterion 18 Non-Empty Results: Preventing users from obtaining empty results enables them to concentrate on
relevant data, thereby enabling a more satisfying and efficient experience. Implementing such a feature enhances the
user’s confidence in the tool and saves time and resources. For instance, when applied in conjunction with auto-complete
functionality, this feature could hide a URI if its selection yields an empty result. This strategic approach reduces user
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frustration and facilitates the data exploration process. This criterion is only satisfied when the tool is designed to
prevent the occurrence of empty results.

Criterion 19 Export Results: Exporting results in conventional formats, such as CSV, is not commonly incorporated
in many SPARQL query builders. This feature holds significant importance for users seeking to extract data from a
sizeable dataset and utilise it for their own purposes at a later time. This criterion is satisfied if the user has the ability to
export the results in any format other than the RDF JSON serialisation.

Criterion 20 Access Resource IRI: This evaluation criterion refers to the user’s capacity to access additional
information about a specific resource by clicking on its IRI (Internationalised Resource Identifier). This functionality is
vital as it enables users to gain a better understanding of the data and perform more sophisticated queries.

Criterion 21 Supporting Inference: This assessment refers to the tool’s ability to retrieve data that is connected to a
specific resource through inferencing correlations based on entity relationships. For instance, if a resource describes
’New York City’ and another resource describes ‘The Big Apple’, they can be linked using OWL:sameAs, as both refer
to the same city. If the tool supports this feature and is used to extract data about ‘New York City’, it should detect
the URI of ‘The Big Apple’ and present it to the user as well. This functionality is often associated more with natural
language processing (NLP) tools than other types of tools.

Criterion 22 Results Visualisation: This evaluation criterion is concerned with the format in which results retrieved
from SPARQL endpoints are presented to the user. Typically, these results are provided in the form of an RDF JSON
serialisation, which is not easily readable by humans due to its large size and complexity. To facilitate user understanding
and interpretation, the results should be presented in a human-readable format, such as a tabular format. This involves
converting a resource URI into a more easily readable version. This criterion is considered fulfilled if the results can be
displayed in any format other than the original JSON format.

5 Visual Query Builders

This section, explores the tools available to obtain data from SPARQL endpoints. As mentioned in section 4.1, the tools
categorisation was based on the visual approach of the data retrieval process (see Figure 3). The Visual Query Builders
classification was inspired by [49, 78, 113] to represent the visual interface based on its querying approach.

Query builders serve as sophisticated instruments designed for searching linked data, presented through visual interfaces
that empower users to construct personalised queries. The primary objective of these tools is to enhance the efficiency
of information retrieval by providing an effortless means of extracting the desired information, outperforming the
performance of conventional methods. By providing a more user-friendly environment, query builders cater to diverse
users, including those with limited technical expertise. Therefore, these tools not only improve the user experience but
also promote the broader adoption of linked data and semantic web technologies, contributing to a more interconnected
and accessible data ecosystem. Subsequently, we present an extensive array of tools, which are grouped into three main
categories, each encompassing a diverse spectrum of functionalities and use cases.

5.1 Form-based

Utilising conventional form-based interfaces in the design of query-building tools is an effective approach, capitalising
on user familiarity to reduce the learning curve. Most of the tools reviewed in this section employ common user
interface elements, such as drop-down lists, text fields, and buttons, to create an intuitive and user-friendly search
interface. This familiarity allows users, especially those who may not be well-versed in the process of querying LD, to
more easily navigate the interface and construct queries that serve their intended purpose.

5.1.1 Konduit VQB

The Konduit VQB [4] interface presents an approach for formulating “CONSTRUCT” or “SELECT” queries rooted in
either “schema” or “instance” concepts. This query builder was developed as a Java desktop application, accounting for
its traditional form-based interface appearance. The design caters to expert and tech users, streamlining the process of
creating SPARQL queries. The "Schema-based" interface capitalises on the hierarchical nature of SPARQL, simplifying
the underlying components by employing a top-down organisation and field indentation to represent parent-child
relationships. In contrast, the "Instance-based" interface utilises the RDF triple structure (Subject, Predicate, and
Object), facilitating more precise queries with less abstraction, though potentially too cryptic for lay users. Despite
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lacking user evaluation, the tool incorporates several user-friendly features, such as keyword searches and automated
suggestions within drop-down menus.

5.1.2 BioGateway Query Builder App

The BioGateway App [67] is a desktop application purposed for querying the BioGateway SPARQL endpoint. This
application shares similarities with the Konduit VQB Schema-based interface, such as employing multiple drop-down
lists within a form-based interface. Nevertheless, the BioGateway App does not adopt the parent-child structure
observed in Konduit VQB; rather, each line embodies an RDF triple, which can be connected to subsequent lines
using predefined variables (e.g., Set A, Set B). A notable distinction between the BioGateway App and Konduit VQB
lies in the former’s provision of predefined examples, fostering learning through example. Despite this advantage,
the application is more domain-specific and necessitates a degree of familiarity with the BioGateway ontology and
SPARQL, potentially posing challenges for even technical users.

5.1.3 Wikidata Query Service (WQS)

The WQS 2 serves as Wikidata’s official query instrument for executing SPARQL queries. It incorporates a query
builder, the “Query Helper,” which supports users in creating or refining SPARQL queries when their proficiency in
SPARQL is limited [88] (see Figure 4). The Query Helper utilises a form-based interface, predominantly featuring
drop-down lists, and derives its conceptual framework from “Filters” and “Show” design. This interface assists users in
pinpointing items that align with specified filters, whilst permitting the addition of optional matches through the “Show”
section to be displayed upon data retrieval. The auto-generated SPARQL query is presented on the right-hand side of
the interface, affording tech and expert users the opportunity to manually modify the query and witness the consequent
alterations within the Query Helper. In contrast, lay users may perceive this feature as unwarranted and potentially
overwhelming [78].

Figure 4: An example of using the Query Helper interface in Wikidata Query Service to generate SPARQL to extract all
of the “Italian Volcanoes with its coordinates if exist”. (1) Clicking on the button to show Query Helper. (2) Clicking on
Filter. (3) Writing “Volcano” as the wanted entity and select “instance of” as the subject. (4) Then, adding Italy which
by default will select country as its subject. (5) Finally, clicking on “Show” to add “coordinate location” as an optional
property. The numerical value associated with the callout corresponds to the usability criteria that the highlighted
element satisfies.

5.1.4 VizQuery

VizQuery 3, a straightforward query builder, operates by matching rules corresponding to RDF triple patterns. Its
interface aids users in identifying items that adhere to the chosen rules. For instance, to locate all “Cats” within a
dataset, a user must select the property “instance of” and the item “house cat” (see Figure 5). In contrast to WQS, this
tool does not accommodate the addition of optional patterns or the construction of more complex structures. However,
as with WQS, VizQuery incorporates auto-complete functionality and offers a predefined example, thereby augmenting
the user experience.

2https://query.wikidata.org/
3https://hay.toolforge.org/vizquery/
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Figure 5: An example of using the VizQuery interface to find all indoor Cats in Wikidata dataset by selecting the
property “instance of” and the item “house cat”. The numerical value associated with the callout corresponds to the
usability criteria that the highlighted element satisfies.

5.1.5 SparqlFilterFlow

One of the highly interactive query builders is SparqlFilterFlow [55], which is based on the concept of FILTER/FLOW
MODEL that was introduced in 1993 as an SQL query builder. The interface combines a form-based design with a
graphical representation, fostering a more intuitive understanding of relationships between entities. Users initiate by
defining an entity and subsequently applying filters to refine the results [53]. Coloured links interconnect all interface
components, facilitating a top-down data flow, while the varying thickness of links between graph entities represents the
quantity of data present. A user study conducted by the author revealed that participants successfully completed all
tasks and were capable of comprehending and rectifying their errors to achieve accurate output. The path thickness
feature played a crucial role in helping participants adjust their input, as it conveyed the volume of data being retrieved
and informed their responses. Although the original prototype presented by [54] was a desktop application, the authors
have developed a web-based demo 4 implementing the same approach, albeit with limited features (see Figure 6).

5.1.6 Simplod

Simplod, as proposed by Jares and Klimek [70], is a web application designed to facilitate the extraction of data in
bulk from LOD in a CSV format. This tool necessitates the incorporation of the LOD schema in RDF Turtle format
to formulate the query. The Dataset schema view, which is depicted on the left portion of the user interface, presents
the entities within a UML Class diagram to illustrate the relationships. Conversely, the schema list view, situated on
the right segment of the interface, showcases the schema in a list form, with checkboxes indicating the inclusion of
elements in the search.

It is important to note that Simplod is limited to generating SELECT SPARQL queries and lacks customisation or
filtering features. Consequently, the primary utility of Simplod lies in the exploration of LOD and the bulk retrieval of
results. In their evaluation, they reported a System Usability Scale (SUS) score of 63.125 for users lacking prior RDF
experience, which falls below the average score of 68. However, users with RDF expertise demonstrated a higher score
of 72.5, implying that Simplod necessitates training and is thus most suitable for tech users.

5.1.7 Tabular Query Builders

Capitalising on users’ familiarity with spreadsheet applications, Tabular Query Builders often display linked data in a
tabular format, enabling users to apply filters and constraints to refine the results similarly to conventional spreadsheet

4http://sparql.visualdataweb.org/sparqlfilterflow.php
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Figure 6: An example of using SparqlFilterFlow’s online demo to get all of the entities that is Food and also Halal.
The thickness of the lines reflect the results size. The numerical value associated with the callout corresponds to the
usability criteria that the highlighted element satisfies.

Table 1: The usability criteria for the reviewed Form-based SPARQL Query Builders. “E”: Expert-users, “T”: Tech-
users, “L”: Lay-users, “All”: All users, “Dt”: Desktop-App, “Web”: Web-based App.
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02. Environment Web Web Dt/Web Web Dt Web Dt Dt Web Web Web

03. Visual metaphor
Facet
Tabular Forms FilterFlow Tabular Wizard Forms Forms

Schema
Instance

Facet
Tabular Forms Schemas

04. Keyword search ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

05. Dataset Any Wikidata DBpedia Any Any Any BioGateway Any Any Wikidata Any
06. Reflect Size ✓

07. Is evaluated? ✓ ✓ ✓ ✓ ✓

08. Prog. Language JS JS C#/JS JS Java JS Java Java JS JS JS
09. Auto. suggestions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10. Filtering ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11. Examples ✓ ✓ ✓

12. History ✓

13. Multiple persp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

14. View SPARQL ✓ ✓ ✓ ✓ ✓ ✓ ✓

15. Edit SPARQL ✓ ✓ ✓ ✓

16. Save query ✓ ✓ ✓ ✓

17. Share query ✓ ✓ ✓

18. Non-Empty R. ✓

19. Export Results ✓ ✓ ✓ ✓ ✓

20. Resource IRI ✓ ✓ ✓ ✓ ✓ ✓

21. Inference

22. Visualisation Table Table
Grid List

Table
Mind Map
Chart

Table
IsaViz Table Table

Graph Net. Table Table
Table
Chart
Graph

Yasgui

software. These builders are categorised under form-based query builders due to their incorporation of traditional form
elements, such as drop-down menus and text fields, albeit in a more tabular structure. Notable examples of Tabular
Query Builders encompass Linked Data Query Wizard (LDQW) [62], ExConQuer [7] and Falcons Explorer [29].

5.1.7.1 Linked Data Query Wizard (LDQW)

LDQW [62] is a SPARQL query builder that leverages user familiarity with search engines and spreadsheet applications
to reduce the learning curve and enhance user abstraction from the LD concept. The LDQW prompts users to initiate
with a keyword, similar to a conventional search engine, and subsequently directs them to another page displaying
preliminary results in a tabular layout. Users can drill down into the data by applying filters based on the available
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properties and incorporating new columns into the table to represent some of the concealed data. Furthermore, users
can visualise the data in a mind map format or using predefined charts. LDQW also provides users with the opportunity
to examine the generated SPARQL queries accompanied by runtime statistics, which is a remarkable feature for expert
and tech users. Overall, the usability study outcomes were promising, albeit revealing several design shortcomings that
warrant improvement.

5.1.7.2 ExConQuer

Employing a tabular layout, ExConQuer [7] emerges as another SPARQL query builder that skillfully enhances user
familiarity with its interface. Contrasting with LDQW’s approach of presenting a table containing initial results,
ExConQuer exhibits the chosen subject’s properties, enabling users to select from these properties to apply data filters
and refine the results. Consequently, ExConQuer adopts the Faceted-Browsing concept to prevent overwhelming users,
dividing the interface into three primary stages. The first stage entails selecting the data source, followed by the user
selecting a single subject, referred to as a concept. Ultimately, users obtain all data pertaining to that subject, with the
option to choose additional properties for matching during the data query.

Prior to executing the query, a text box containing the auto-generated SPARQL is displayed, allowing users to modify
the SPARQL before manually executing it. According to the authors, this feature aims to assist users in learning about
and acclimating to SPARQL and RDF while enhancing the experts’ use experience. The tool was assessed by expert
and tech users in comparison to manually creating SPARQL queries. These users were tasked with performing identical
tasks with and without the tool, subsequently rating their experiences in both instances. The findings revealed that the
tools proved advantageous for all users, particularly those with limited SPARQL experience.

5.1.7.3 Falcons Explorer

Falcons Explorer [29], an LD Browser created on top of “Falcons Object Search,” a search engine that is designed to
search for entities on LD. Assigning this tool to this section might seem odd, given that it resembles a conventional
LD browser with support for faceted browsing. However, it integrates a built-in query builder, which shares some
commonalities with LDQW. Users initiate their search by entering an entity name into the search box. The resulting
data can be displayed in a tabular layout, enabling users to select a specific entity, which subsequently directs them to
the corresponding entity page containing all related properties and information.

The results table parallels a spreadsheet in its functionality, offering multiple filtering techniques and column manage-
ment options. Besides the tabular representation, the tool also supports data presentation in a relational format, similar
to relational database design. This relational arrangement permits users to employ typical relational operations such as
Projection and Joins. As the interface offers various underlying options and customisable filters, it may require some
familiarity with LD and, therefore, may appear confusing to lay users.

5.1.8 Summary

By leveraging the user’s familiarity with conventional forms, form-based QBs are generally designed to be accessible
and suitable for a broader range of users. Konduit VQB, BioGateway App, WQS, VizQuery, and SparqlFilterFlow all
share a common attribute in that they depend on the visualisation of the RDF triple structure through the employment of
pre-populated drop-down lists. Consequently, users are required to select an item and specify filters for the final output.
Although both Konduit VQB and BioGateway App demand a certain level of experience in SPARQL, WQS, VizQuery,
and SparqlFilterFlow offer more simplified and intuitive designs. VizQuery can be further characterised as a simplified
implementation of the WQS design, as VizQuery rules adhere to a similar filter schema (refer to Table 1).

Besides the familiarity with conventional forms, LDQW, ExConQuer, and Falcons Explorer have further enhanced the
user experience in querying and exploring linked data by relying on facet search and users’ familiarity with spreadsheets.
After retrieving the preliminary results, users are given the ability to apply a variety of filters, thereby facilitating the
adjustment and customisation of the query to align with their specific preferences and requirements.

5.2 Graph-based

From the initiation of LD, data have been visualised in some graphical formats. Students have also been taught to think
of an RDF triple as a node with an arrow pointing to another node. The first node represents the “Subject”, the second
node will present the “Object”, while the arrow itself is the “Predicate” (see Figure 7). Therefore, many of the published
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SPARQL Query Builders attempted to follow this principle as a way to simplify the idea of the LD it describes. For the
purposes of this paper, these types of query builders are described as Graph-Based Query Builders.

Figure 7: An example of RDF basic triple pattern.

5.2.1 Graphical Query Language (GQL)

One of the earliest attempts to create SPARQL Query Builder is the GQL Tool [17]. The authors have followed
“Ontology Definition Metamodel” 5 to present the query in the form of UML class diagrams. The tool is a desktop
application that allows the user to manually select a class from a list of the available classes generated from the LD
ontology; these classes are then linked together. The user can filter the results by adding predefined properties, such as
setting a class property to be less than a certain numeric value or to match a specific string. The authors thus claim that
the tool can be used to create very complex queries.

5.2.2 SPARQLinG

Rather than representing RDF in UML class diagrams as seen in the GQL Tool, [66] have introduced a unique graphical
representation called RDF-GL. The authors have explained the symbolic notation used in terms of how it simplifies the
SPARQL query visualisation. They also introduced a tool called SPARQLinG, a Java-based desktop application that
creates SPARQL queries using RDF-GL. The tool provides a wide area to users that they can use to drag and drop any
RDF-GL components they wish to construct the required graph that will restore the required data. The current tool only
converts RDF-GL to SPARQL, and does not operate the other way around. SPARQLinG may thus be easier for Experts,
and Tech-users than GQL Tool, as the graphical representation in RDF-GL is more intuitive than that in UML.

5.2.3 SPARQLING

SPARQLING [16] is another tool that aims to produce SPARQL queries intuitively, and it should be noted that while
the name is similar to SPARQLinG, they are different tools. SPARQLING is a platform to construct SPARQL queries
by drawing them over the interface. What distinguishes SPARQLING from similar tools is that it uses GRAPHOL
ontologies [31]. GRAPHOL is a visual representation of the OWL 2 ontologies that represent the data as an ER-Diagram
[80]. The tool is a web-based application with three main sections. The left-hand side, which is the most significant
part, is dedicated to the GRAPHOL view, while the right-hand side is divided into the SPARQL view and SPARQL
visualisation view. SPARQLING was not evaluated in this work and was customised to query the ’Ontology-based Data
Management’[81] systems.

5.2.4 iSPARQL

One of the most well-known query builders is the OpenLink interactive SPARQL Query Builder (iSPARQL) 6. iSPARQL
is a powerful tool that can autogenerate SPARQL from graphical representations, though it also supports the manual
creation of SPARQL. iSPARQL relies on the RDF triple graph, which it uses to generate SPARQL. The tool can also
be used to browse results within the interactive interface in tabular format. In addition, users can use it to query any
standard SPARQL endpoint. Lay-users must understand the LD fundamentals, such as variables must start with ‘?’, and
a specific entity must begin with its prefix like ‘sioct:Weblog’. Furthermore, Experts and Tech-users must familiarise
themselves with the required SPARQL endpoint [109].

5.2.5 NITELIGHT

NITELIGHT[109, 102, 103] is a stand-alone client-side Web application built entirely using JavaScript. As with
iSPARQL, NITELIGHT is a SPARQL query builder that relies on the RDF basic triple pattern, making each graph
entity either a Subject or an Object connected using a Predicate. INITELIGHT and iSPARQL have many similarities,
including allowing the user to perform complex SPARQL queries. However, in comparison to iSPARQL, NITELIGHT
has additional novel features, such as allowing the user to browse the ontology in a tree-like structure, as well as

5https://www.omg.org/odm/
6https://virtuoso-catalogue.d4science.org/isparql/
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offering a more realistic and attractive graphical representation [109]. The text-based SPARQL query produced is
tightly coupled to the graphical view, which means that any change in the graph will immediately be reflected in the
textual format. However, NITELIGHT still expects the user to be familiar with SPARQL and the endpoint’s ontology.

5.2.6 ViziQuer

ViziQuer [119? ] is a Graph Query Builder that was created to facilitate exploring unfamiliar SPARQL endpoints. The
user can drag entity boxes around and draw paths between them. Then, the user can define each entity by choosing
the class it represents from a drop-down list. The user can also click on a link between the classes and use “Connect
Classes” to get the suggested predicate. For example, if the first node is ’Patient’ and the second node is ’Physician’,
one of the suggested predicates will be ’familyDoctor’, which forms a link between these two entities. Compared to the
previously discussed Graph Query Builders, this is a straightforward interface that requires little prior knowledge about
SPARQL. Each entity encapsulates all of its own data, and thus by right-clicking on each entity, users can select the
appropriate options, such as displaying attributes and applying filters. Finally, users can choose to execute SPARQL
from the graph directly or to generate the SPARQL and then manually review it. Figure 8 demonstrate using the tool to
extract the names of all male patients with a family doctor. This figure also exposes a potential issue with the generated
SPARQL with regard to a duplicate for the gender triple existing (one was declared as OPTIONAL). This may disclose
some bugs when generating the queries from the diagrams. The tool is web-based and publicly available 7.

Figure 8: An example of using ViziQuer to generate SPARQL query that will extract the names of all male patients
who have a family doctor. The numerical value associated with the callout corresponds to the usability criteria that the
highlighted element satisfies.

5.2.7 QueryVOWL

QueryVOWL [56] is one of the simplest graph query builders with a visual representation that is based on an intuitive
graphical notation known as Visual Notation for OWL Ontologies (VOWL)[56]. WebVOWL [84, 85] was an early
attempt to visualise ontologies using VOWL, and QueryVOWL uses a similar interface to visualise the ontology while
adding additional features to construct the query. The user can construct a query by typing and by selecting properties
from the text box. Each of the selected properties is rendered as a single circle labelled with the property name. The user
can draw a line between these circles to represent the matching relationship (the predicate). The potential predicates are
then given as a list of options, and the user must select the most appropriate. On selecting each node, multiple options
on the side menu appear, including options to add filters or change the node.

Each node has a numerical value that shows the possible objects (results) that match the current query. Typically, when
adding more and more relationships and filters, the results will narrow, which means this number will decrease. The
user can then click on “Show Query” to view the generated SPARQL query, which will exactly match the graphical
representation. The tool thus provides a high level of abstraction for users, who can use it without any previous
knowledge about SPARQL or the endpoint ontology. However, they must become familiar with VOWL and the tool
itself. In addition, constructing SPARQL in QueryVOWL appears to be more time-consuming than manually creating a
query or using other tools such as WQS [78].

7https://viziquer.lumii.lv
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5.2.8 OptiqueVQS

OptiqueVQS [110] is a visual SPARQL query builder built for users with minimal IT skills. The interface is based on
widgets, and it consists of three primary widgets: the list widget on the left-hand side, the diagram widget on the top
and the form widget on the right-hand side. Users must begin by using the list widget to choose a concept as the starting
node. A node will then be displayed in the diagram widget, and the form widget will be activated to manipulate the
node details, such as adding filters and displaying the node variables. The authors divided the interface into three simple
sections to be used in conjunction to simplify the query construction process. At the same time, they have focused on
the industrial domain by generating two use cases for industrial users [110]. The usability study showed promising
outcomes when this builder was used in the industrial field; however, constructing SPARQL is limited to a tree-like
query pattern, omitting any other query patterns [110, 78].

5.2.9 RDF Explorer

RDF Explorer [113] is a query builder created for Lay-users with no expertise with SPARQL or LD. Its visualisations
focus on the graphical representation of the query rather than the RDF triple pattern. The authors used WQS as the
baseline system for comparison, and the demo thus generates a SPARQL query that must be used with Wikidata to be
tested. RDF Explorer is a drag-and-drop interface where the user must begin by typing the resource name and drag
the one that matches its query. Then, the user has to create a variable and link it with another node to perform a query
pattern. There is no control over variable appearance in the query. The generated SPARQL is then placed within an
editable text area, though any SPARQL manual alteration will not affect the tool, which may confuse the user.

The user study showed that RDF Explorer generally obtains better results eventually. While at first, users seem to
struggle, the more complex the query, the better they perform in comparison to when using WQS[113], suggesting
that any difficulty using the tool initially tends to decrease over time. All of the participants were undergraduate
Computer Science students with no experience with SPARQL, though they were more likely to have advanced computer
knowledge. They were generally slower in three of the five tasks. Furthermore, the RDF Explorer does not support
exploring the results directly from the interface, which is unfortunate, as displaying results has been previously proven
to be a suitable approach to assist users in constructing the correct queries [54].

5.2.10 Summary

Generally, most of the efforts in creating SPARQL Query Builders are focused on Graph-based visualisation, as this
reflects the most natural behaviour when thinking about LD. The majority of these visualisations are based on the
RDF triple pattern, due to the actual structure of the data, as in iSPARQL, NITELIGHT, ViziQuer, RDF Explorer, and
OptiqueVQS. Other tools have proposed alternative visualisations in order to increase the abstraction and simplify
the design. For example, the GQL tool uses UML, while SPARQLinG has created a custom visualisation called
RDF-GL. While the use of the RDF triple may seem natural for Expert-users, greater abstraction seems to encourage
Lay-users engagement. Table 2 summarises the reviewed graph-based query builders. Table 2 summarises the reviewed
graph-based query builders.

5.3 Natural Language-Based

When it comes to Lay-users, the utilisation of natural language is considered to be the most convenient method of
communication. Therefore, multiple tools have been developed to facilitate the generation of SPARQL queries through
natural language input. The majority of these attempts have concentrated on developing question-answering systems
that yield either YES/NO or single-statement responses. Nevertheless, this section exclusively discusses those tools that
are capable of generating SPARQL queries and enabling users to retrieve multiple results through a graphical interface.

5.3.1 Querix

Querix [72] is an NL-Based SPARQL Query Builder that resolves ambiguities by asking users for intent clarification.
Querix requires users to start their questions with an interrogative word or a verb to help construct the query skeleton,
which is then used to classify RDF triple pattern in the sentence. To improve the query results, users should also specify
the domain county and ontology. If there are too many possible queries with high scores emerge, a list with all potential
user intents is displayed, and the user is asked to choose one. Thus, Querix achieves a high accuracy rate in comparison
to other NL tools [71].
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Table 2: The usability criteria for the reviewed Graph-based SPARQL Query Builders. “E”: Expert-users, “T”: Tech-
users, “L”: Lay-users, “All”: All users, “Desktop”: Desktop-App, “Web”: Web-based App, “N/A”: signifies the absence
of support for connecting to any SPARQL endpoint or dataset.
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03. Visual metaphor RDF-Triple UML RDF-Triple RDF-GL GRAPHOL RDF-Triple VOWL RDF-Triple UML RDF-Triple
04. Keyword Search ✓ ✓ ✓

05. Dataset Any
OpenLink
Virtuoso Any N/A N/A Any Any Wikidata Any Any

06. Reflect Result Size ✓

07. Is evaluated? ✓ ✓ ✓ ✓ ✓

08. Programming Language JS C# Java Java JS JS JS JS JS Java
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11. Examples ✓ ✓ ✓

12. History ✓ ✓

13. Multiple perspectives ✓ ✓ ✓ ✓ ✓ ✓
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15. Edit SPARQL ✓ ✓ ✓ ✓

16. Save query ✓ ✓ ✓ ✓

17. Share query ✓ ✓ ✓ ✓

18. Non-Empty Results ✓

19. Export Results ✓ ✓ ✓

20. Access Resource IRI ✓ ✓ ✓ ✓

21. Supporting Inference

22. Results Visualisation Table Table Table Table Table
Table
Pivot
Timeline

5.3.2 NLP-Reduce

NLP-Reduce [73] is an NL-Based tool for users with no experience with SPARQL. The tool allows users to type in full
questions to be converted to SPARQL. The question will be cleaned and reduced into tokens that are then used over
three distinct rounds to identify matching triples. Ultimately, the highest-scoring triple will be selected and will be
joined with the other identified triples to generate the SPARQL query. Thus, users can also use non-complete sentences
or even keywords [73]. NLP-Reduce has been proven to act as a rapid query-building tool, particularly in comparison to
certain similar tools [71]. However, there are some limitations to the type of questions NLP-Reduce can answer. Users
can not ask questions that require comparisons or ask questions with groupings such as “Who is the best football player
in each team?” [2]. Therefore, the tool may not allow users to generate queries that fully express their needs.

5.3.3 QUICK

While most of the keywords NL-based query builders lack the expressivity to capture the user intention, QUICK [117]
is an NL-based tool that specifically aims to provide users with a more satisfying query construction experience. The
user types keywords in the search area; then, the tool displays all of the possible queries on the right-hand side. The
queries are represented as text but with a graphical illustration to help aid understanding. Users must then choose the
most appropriate query. If none of the options on the right matches the user intention, the tool provides a list with
“Construction Options” on the left as a means of changing the query perspective. Once the user chooses any of these
options, the possible queries on the right will change to match the user selection. QUICK thus incrementally supports
the user to construct more accurate queries. However, this can cause the query options list to become lengthy and
tedious to work through, while Lay-users may become overwhelmed by the graphical notation. QUICK also cannot
construct ’cyclic graph’ queries, being limited to ’acyclic graph’ query patterns [117].

5.3.4 SPARKLIS

SPARKLIS [45] is an NL-Based Query Builder that converts complete sentences into SPARQL queries. The user can
clearly understand the generated SPARQL query by looking into the constructed sentence. SPARKLIS initially offers
the user three boxes: Entities, Concepts and Modifiers. The user must select options from these boxes to start building
the sentence. The listed options then change to match the user selections, making forming a sentence in SPARKLIS a
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guided process based on selection and related suggestions. Therefore, the user cannot create uncompleted sentences,
which is beneficial for Lay-users. However, due to these restrictions, user freedom is decreased [2]. Accordingly, the
user will require more time to create queries than when using other tools [78, 2]. The tool also showed some loading
difficulties due to the frequent updates in the suggestions boxes [78].

5.3.5 Summary

Natural language query builders have been empirically proven to be easier to use. Nevertheless, the inherent variability
of language presents significant challenges in accurately identifying users’ intent and providing relevant answers to
their queries. NLP-Reduce addresses this issue by accepting either keywords or complete questions and attempting to
identify corresponding triples, irrespective of the sentence structure, ultimately selecting the triple with the highest
degree of similarity.

In contrast, Querix seeks to overcome this challenge by prompting users to choose from a list of questions that
closely align with their initial query. Similarly, QUICK employs an interactive approach by offering users an array
of graph-based options, seeking their assistance in formulating the correct query. SPARKLIS, however, adopts a
distinct approach by constraining the sentences users can generate through the implementation of drop-down lists. This
controlled environment effectively mitigates the issue of language variability, thereby enhancing the query builder’s
accuracy and reliability. Table 3 summarises the reviewed NL-based query builders.

Table 3: The usability criteria for the reviewed Natural Language-based SPARQL Query Builders. “E”: Expert-users,
“T”: Tech-users, “L”: Lay-users, “All”: All users, “Desktop”: Desktop-App, “Web”: Web-based App.

Usability Criterion Querix [72] NLP-Reduce [73] QUICK [117] SPARKLIS [45]

01. Target Users T, L T, L All All
02. Environment Desktop Desktop Web Web
03. Visual metaphor Forms Forms RDF Triple Forms
04. Text Search Sentence Keyword Keyword Sentence
05. Dataset Any Any Any Any
06. Reflect Result Size
07. Is evaluated? ✓ ✓ ✓ ✓

08. Programming Language Java Java Java JS
09. Automated suggestions ✓

10. Filtering ✓ ✓ ✓ ✓

11. Examples ✓

12. History ✓

13. Multiple perspectives ✓

14. View SPARQL ✓ ✓ ✓ ✓

15. Edit SPARQL ✓

16. Save query
17. Share query
18. Non-Empty Results ✓

19. Export Results ✓

20. Access Resource IRI ✓

21. Supporting Inference

22. Results Visualisation Table Table Table
Table
Map
Slideshow

6 Alternative User Interfaces

This section investigates a variety of tools designed to enhance access to LD, diverging from conventional SPARQL
query builders by shifting the focus away from direct query construction. The emphasis is placed on data browsing and
identifying precise answers. The discussion encompasses several categories of tools, including SPARQL Assistants,
LD Browsers, Keyword-Based Search Systems, and Question Answering Systems. The section concludes with an
examination of SPARQL to Natural Language tools, providing a comprehensive overview of these distinct approaches
to facilitating LD access.
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6.1 SPARQL Assistants

Assuming the user already has experience with SPARQL, query editing interfaces offer increased flexibility and enable
more precise querying. These tools aid experts in familiarising themselves with the SPARQL endpoint by providing
suggestions and autocomplete features. Notable examples of such tools include SPARQL Assist [89], YASGUI [100],
and WQS [88].

SPARQL Assist is a web-based SPARQL query editor designed for less experienced SPARQL endpoint users. This tool
supports users by presenting all potential options corresponding to the cursor position within a query. For instance,
if a user types ‘Ca’ as a ‘Subject’, the interface displays a list of subjects beginning with ‘Ca’. The list also includes
descriptions for each item, where applicable. Consequently, constructing a manual SPARQL query evolves into a guided
process, obviating the need for prior knowledge of the endpoint ontology. Moreover, the tool supports multi-language
terms by examining resource labels to identify possible matches.

Both YASGUI and WQS exhibit similarities to SPARQL Assist, albeit with fewer constraints and guiding features,
rendering them more appropriate for experienced users. YASGUI functions as a general-purpose SPARQL editor,
designed for utilisation as an endpoint editor, whereas WQS serves exclusively as an editor for Wikidata. Neither tool
supports multi-language terms, unlike SPARQL Assist. However, as previously discussed, WQS offers a form-based
SPARQL query builder that is closely integrated with the text editor, mirroring the majority of user input. In contrast,
YASGUI delivers an extensive array of methods for exploring results and can be incorporated with any query builder
for result retrieval and visualisation, as shown in Simplod [70].

6.2 Linked-Data Browsers

The massive number of relationships a single resource may have in LD makes the data visualisation and navigation
appear to be complicated. Thus, many efforts have been made to encounter this challenge through the development of
LD Browsers. These browsers enable users to navigate and explore LD in a manner akin to web browsing, offering an
accessible and intuitive experience. Notable examples of LD Browsers include Tabulator [21], Humboldt [77], Ozone
Browser [26], Parallax [68], gFacet [61], and Rhizomer [25].

While LD Browsers have made significant strides in enhancing data visualisation and navigation, they often lack the
capability to form specific queries, which can be a critical drawback when dealing with knowledge graphs containing
millions of triples. Consequently, answering complex questions or extracting precise information from such large
datasets can be both tedious and time-consuming. Some LD Browsers, however, have attempted to address this
limitation by integrating advanced querying features into their interfaces such as in Falcons Explorer (discussed in
section 5.1.7.3).

6.3 Semantic Keyword-Based Search

Searching for items or entities by matching terms and their contextual meanings is known as Semantic keyword-based
search. As a result of using traditional web search engines, many users are now accustomed to keyword searching. One
popular approach is to use Apache Lucene 8 as the core search engine. Lopz et al. [87] merged several data sources to
generate heterogeneous data and enabled the user to navigate them using their interface. The data was represented in
tabular format [86]. Then, the user was able to perform keyword searches to generate full-text searches on the dataset
using Apache Lucene. Results will not include only a dataset matching the keyword; a Lexical chain will be used to
identify more relevant results. Therefore, the user could find related datasets by identifying a topic associated with
more than one dataset. For example, the user can find a dataset with the same content, such as two entities from two
datasets linked using owl:sameAs, or finding datasets with similar entity namings.

Dub-STAR SMS Client [34] also uses Lucene to retrieve traffic data, which was crowd-sourced using social media,
based on the user’s SMS text messages. This type of search is highly effective and provides high accuracy. However, it
is only limited to finding relevant entities rather than constructing complex queries that contain matching relationships
and applying filters [51]. Thus, it is suitable for only particular search applications that require basic text searches [28].

6.4 Question Answering

Question Answering systems will interpret the user’s question in natural language and return the appropriate answer
in the same natural language [65]. The user’s primary interest is obtaining the correct answer. Thus, the user is not

8https://lucene.apache.org/
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expected to understand the underlying structure of data nor the query language [112]. For example, if the user wants to
know ’What is the capital of England?’, the system will evaluate the question and return ’London’ as the answer.

Freitas and Curry [46] introduced a natural language interface using the distributional semantic model to allow the
Lay-users to write questions (querying the data) using natural language without the need to learn or understand anything
about LD or SPARQL query language. The query processing is vocabulary-independent, which means that the user is
not limited to the exact word. Instead, the algorithm compares the query term with all of the relationships (predicates)
related to the main subject to weigh up the best match. Thus, for a ’Subject’ representing a human, the user could use a
word such as “son” in a place of “child” to answer the same question. A quantitative evaluation of the proposed question
answering system was made using the “Question Answering over Linked Data 2011” (QALD-1) dataset to evaluate the
interface over DBpedia. The results were outstanding, with the system exceeding all the previous systems. Several
alternative strategies have been employed to achieve the same objective, including Aqqu [18], which employs templates
to determine keywords’ relationships, NLQ/A [118], which takes a non-NLP approach and relies on users to resolve
linguistic ambiguities, SINA [108], which is a keyword-based natural language interface that utilises Hidden Markov
Model to identify relevant resources, CASIA@V2 [? ], which uses Markov Logic Network to model ambiguities as soft
constraints, and BELA, which proposes a multi-layer NLI approach to improve confidence[107].

onIQ [38] is a tool that translates queries in natural language into SPARQL. It uses spaCy library 9 which the author
assumes to gain a better performance over the other solutions such as using of Stanford Parser. onIQ was not evaluated,
so this assumption needs to be validated. The tool is limited to questions beginning with interrogative words that are
also formally structured. Currently, the tool is most suitable for Tech-users, as it expects users to form the queries
correctly to generate accurate results.

The RDF Data Cube Vocabulary 10 is used to represent statistical data-cubes which is multi-dimensional values in
LD [63]. Answering questions over statistical data using this type of vocabulary has not been appropriately explored
[36]. For example, what was the average monthly income for a UK football player in 2019? CubeQA [64], and QA3

[11] both tried to address this issue. The overall evaluation of both tools shows that QA3 has a 9% higher F-score. In
addition, unlike QA3, CubeQA does not support SPARQL subqueries.

6.5 SPARQL to Natural Language

Interpreting the meaning or purpose of a specific SPARQL query can pose considerable difficulties for Lay-users. As
previously mentioned, it is unreasonable to assume that all users are familiar with SPARQL. Therefore, a more practical
approach involves translating queries into the user’s native language, thereby facilitating efficient query comprehension
[95, 115]. Tools such as SPARQL2NL [94] and SPARTIQULATION [41], which convert SPARQL queries to natural
language, can effectively reduce the cognitive load associated with interpreting SPARQL queries, even for experienced
users.

SPARQL2NL translates SPARQL queries into natural language based on the chosen SPARQL endpoint, enabling
users to execute queries and retrieve results. Subsequently, the tool explains the results in natural language, obviating
the need for users to grasp RDF or the connections between resources, as the tool presents explanations in a textual
format [94]. Conversely, SPARTIQULATION employs a ‘Document Structuring’ technique to translate SPARQL
queries into natural language by transforming the entire query into a graph representation before rendering it in natural
language. However, this approach precludes the possibility of tailoring translations based on data structure variations, as
certain messages are hard-coded. Despite the necessity for further refinements, both tools have demonstrated promising
outcomes [94, 41].

7 Semantic Web Solutions

This section explores deeper into the current semantic web solutions by conducting a thorough analysis of research
papers published as an in-use resource or application. The primary objective of this investigation is to widen the search
scope to extract common usage themes and trends in the domain, ultimately contributing to a better understanding of
the current state of the field. The following subsections present the identified themes, accompanied by an analysis of
each usage theme, highlighting their significance and impact within the field.

9https://spacy.io/
10https://www.w3.org/TR/vocab-data-cube/
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7.1 Virtual Assistants

Conversational AI and Virtual Assistants (VA) provide alternative ways for end-users to interact with the system naturally.
Users are not anticipated to grasp any query languages or even apprehend the data structure. Mihindukulasooriya
et al. [91] proposed the Dynamic Faceted Search (DFS) system that uses faceted search through Virtual Assistants
in the IT technical support domain. Users must begin by conducting a keyword search for their issues. Then, the
Virtual Assistant offers a list of options that will guide them through the process of identifying the problem. The list
is dynamically generated using a faceted search algorithm by extracting the taxonomy from Wikidata to determine
the user intent. The list knowledge induction process is an unsupervised learning approach in which the user is not
restricted to any expected input, such as a brand or category. The authors claim that the system is domain-independent
as it was also used in different domains.

The simplicity of this proposed Virtual Assistant is noteworthy, as the use of LD to dynamically create user choices
lowers the need for expert input to build the system, which speeds up system production. Therefore, the options are
unique and relevant to each user’s questions. The user experience is completely guided through the faceted search
process.

To evaluate the system, the authors used two real datasets. The first dataset was TechQA, a publicly available dataset
with 610 question-answer pairs, while the second is a private dataset with 50 question-answer pairs. Both datasets
were related to the IT technical support domain. They conducted three types of experiments that include Quantitative,
Qualitative and Subject Matter Experts (SMEs) Evaluation. In the quantitative experiment, all matrices outperformed
ElasticSearch (the baseline). For the qualitative testing, they used the human-in-the-loop technique to examine randomly
chosen queries manually. The results showed that, on average, 60% of the autogenerated options were helpful. However,
in the SMEs evaluation, the options relevancy was assessed at only 50%. Two experts have evaluated the options
with significant variance in their decisions affecting the final results. Thus, more expert users must be included in the
evaluation to lower such variation to improve the overall test quality.

Barisevičius et al. [13] introduced the Babylon Chatbot to provide patients with general health information or to triage
them based on the urgency of their health conditions if they needed medical assistance. The authors have created
significant LD by integrating data from multiple data sources. Then, they created a KB-Explorer, which is a LD browser
for exploring and debugging. The browser also provides text annotation if needed as a debugging feature. However,
only Babylon Chatbot was meant for the end-user. The chatbot conversation is guided through the options the patient
will receive, which increases the system accuracy, but the user cannot proceed faster by describing their condition in a
single message. In terms of evaluation, the given data was insufficient and not clearly explained, though the precision
was 0.967 and recall was 0.799, which is encouraging.

Farah et al. [42] created a reasoning engine for a telecom company as a way to review all of the company’s historical
data regarding device maintenance to suggest a solution to issues, such as rebooting the device or following a specific
procedure. The data model was trained using three months of data, which consisted of about 61 million error code
records and 3.6 million entries. The data were modelled as a Knowledge Graph to make them semantically available.
Then, they created a Voice-based chatbot as the end-user interface. The chatbot was intended to seek to understand
the customer’s problem and propose a solution. Therefore, the chatbot will iteratively take the customer into a
question/answer loop until it reaches a conclusion.

The authors conducted a quantitative experiment with 5,000 problems where the result was only deemed relevant if the
correct answer was one of the first five suggestions. The accuracy was 0.58, while the Precision, Recall, and F1 Score
were 0.69, 0.58, and 0.60, respectively. They also discovered that the dataset might suffer from missing information
affecting the results. Thus, they created a system to recommend alternative solutions to unresolved issues. After a
second experiment using the revised system, the Accuracy, Precision, Recall and F1 scores were 0.82, 0.84, 0.82, and
0.83, respectively, showing excellent improvement in results.

The use of Chatbots and Conversational AI offers a natural way of retrieving knowledge. On the other hand, the current
usage is solely concerned with diagnosing the issues and reaching a conclusion.

7.2 Microdata and RDFs Authoring Tools

While a knowledge graph must be created and edited by Semantic Web experts, they are not necessarily specialists in
the related knowledge domain. Similarly, domain knowledge experts are not necessarily semantic web experts. For
example, creating medical ontology requires some involvement from medical field specialists. Therefore, assistive tools
must be implemented to motivate these Lay-users to verify and modify their domain knowledge ontology appropriately.
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Manually annotating web textual content using Microdata [1] requires high levels of technical knowledge of semantic
web annotation. The Seed [40] tool aims to fill the gap between semantic web annotation and mainstream users. The
tool does not require any experience with semantic annotation as it will display the web content as a WYSIWYG editor.
Users can thus annotate any word or a phrase as a Location, Organization, Person or Other by simply highlighting
the target and linking it to the related entity. Additionally, the tool supports data facet browsing either by using the
annotated information pane or the entity summary pane. The tool is thus generally intuitive and easy to use. However, it
does not support RDF annotation, limiting it to Microdata annotation.

Controlled Crowd-sourcing is an attractive approach that involves the community in ontology curation. Gil et al. [48]
introduced Linked Earth Platform (LEP), where users can propose new terms as part of the crowd ontology that, if
approved, become part of the core ontology for the LEP. The LEP is, in turn, equipped with a dedicated annotation
interface that displays the dataset ontology, including both missing and crowd properties. The platform keeps participants
motivated by giving them credit for their contributions, as well as supports supporting community discussions and
making decisions by voting. The annotated data can be visualised in a map-based view.

As RDFs are constructed in triples, writing these manually to create a LD resource and all of its corresponding data
can be time-consuming. RDFWebEditor4Humanities [79] is an RDF annotating tool that is intended to assist the
user by offering suggestions using case-based reasoning, to develop suggestions relevant to the context that are sorted
accordingly. The tool has four versions, which share an interface with a variant in the associated suggestions. The
interface is distributed into three text fields that express the RDF triples (subject, predicate, and objects). The use of the
interface thus requires some Knowledge about RDF and LD.

The evaluation of the RDFWebEditor4Humanities involved human and automatic evaluation. The first experiment
required each user to create 10 randomly chosen resources from a list of 30 items. Participants then completed a survey
to give feedback about each version, using the Likert scale [3] to rate the suggestion relevance, where 0 was the lowest
and 7 was the highest. The overall results for the Basic, Deductive, Cased-based, and Combination editors were 3.4, 5.7,
5.3 and 7, respectively. The first experiment proved that the Cased-based editor did not improve the suggestions while
the Combination editor was influential. The second experiment offered performance analysis based on analysing the
suggestion list and comparing it to the expected value to assign a ranking. The lower the rank, the better the suggestion.
By far, the Case-based editor and Combination editor performed much better. Both versions have achieved almost the
same results.

Schema.org has become the standard schema to create ontologies for LD. Schema.org contains a generic vocabulary
covering various domains, including numerous unrelated vocabularies. Customising Schema.org to precisely fit a
specific domain is challenging as it requires the removal of unrelated properties and types. In addition, it requires
defining the local properties and constraints. The Domain Specification Editor [120] is a tool intended to help the
user to generate domain-specific custom annotation. The tool allows the user to manually create the annotations by
selecting a ’Domain Specification’ from the list or automatically generates the annotation by fetching a web page URL.
The tool is thus only meant for Experts to assist in building and validating custom ontologies that follow Schema.org
specifications.

The evaluation of the Domain Specification Editor included a usability study and usage survey. A System Usability Scale
(SUS) [12] was used with Likert scale [3] response categories across 37 participants, distributed as eight experienced
users and 29 mainstream users. In general, the usability results were ’good’, with 75% of the experienced users finding
the tool to be excellent. However, the inexperienced users found using the tool more difficult, with only 20% rating it as
excellent. The second experiment involved 14 participants with experience in creating annotation with schema.org.
They were asked to create annotations with and without the tool domain-specific patterns. Then, they had to answer
some related questions. The results showed that 78.6% of the participants found the domain-specific patterns to be
simple to use. Moreover, all participants reported that it was helpful. Half of the participants stated that it facilitated the
process, saved their time, and assisted them in discovering new properties.

Another successful annotator is Smart Topic Miner (STM) [97], an automated classification tool used to support the
Springer Nature editors. STM parses publications metadata to display the annotated topics alongside relevant papers,
classification labels, and useful analytical information about such papers within the proceedings book. The editor can
then decide whether or not to check and modify any annotations manually before submitting them. The use of STM
enhances the general findability and accessibility of the resources. The STM has shown promising results in terms of
usability, with a SUS score of 76.6. However, it is only limited to the computer science field. Also, STM can only
analyse the metadata rather than analysing full-text publications. In addition, the inferences behind STM suggestions
are hidden, leaving no clear verification approach to build user trust.

Smart Topic Minor 2 (STM2) [105] is the second version of STM. This version addresses some of the first version
issues based on the editors’ feedback. The search approach has been modified to offer the user an explanation for the
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tool suggestions. Besides, the UI has been overhauled to be more dynamic. In addition, STM2 also considers the
historical data for the earlier editions of the same conference proceedings. As STM2 is integrated with the Computer
Science Ontology Portal [104], it is still restricted to Computer Science research. STM2 SUS score was 93, which is an
excellent score. This evaluation shows a dramatic change in terms of usability compared to the old version.

CodeOntology [8] is a tool that enables the parsing of Java source code to generate RDF triples. It also links the code
comments with suitable DBpedia resources. The idea is to allow the user to query the source code through the produced
ontology using SPARQL. Thus, the software elements become semantically accessible. The authors have also deployed
a QA system called AskCO [10] to examine the source code querying for the generated ontology. AskCO thus handles
the user queries in natural language and interprets them by calling the most suitable function. However, CodeOntology
is limited to use on Java code.

7.3 Mobile Applications

Nutrition and maintaining a healthy diet is one of the LD applications. Dragoni et al. [39] introduced PerKApp, which
is a mobile application to monitor the user’s diet and activity to promote healthier lifestyles. The application tries to
send persuasive messages to the user based on their collected data. The application uses Rule-Based Reasoning that was
placed by experts such as physicians and dietitians to detect any violations of user behaviour (i.e., not consuming the
right amount of calories on breakfast). User data are inserted into the LD and validated against the rules immediately,
with daily and weekly validation to detect any missed violations.

Donadello and Dragon [37] extended the work on PerKApp by empowering LD with AI and linking it with the user’s
personal health records to monitor the diet habits and predict any nutritional diseases that might be linked with the
user’s diet. Users can use the mobile application to track their diet by taking pictures of their food. Then, the system
will classify the image to identify the food category. The application is the only means for the end-user to connect to the
LOD. The end-user food consumption habits are then visualised as a progress bar to promote healthy food consumption.
Generally, the application is intuitive and provides higher data abstraction with no direct engagement with the LD.

Dragoni et al. [39] generated a performance analysis based on real data collected from 49 users who used the application
regularly for 45 days. The results showed that the daily reasoning time on average was 1 second, as compared to the
weekly reasoning time of 14 seconds on average. Thus, the reasoner time was also correlated with the number of
violations. An SUS questionnaire was then used to examine the experts’ opinions on the usability of the setup process
and to define rules. The average score was 81.5, which is excellent as per Bangor et al. [12] proposed scale.

Additionally, Donadello and Dragon [37] conducted a quantitative experiment to examine their classifier and two
qualitative experiments to judge the usefulness of their mobile application. When tested, their initial single-based
classifier failed to classify some food content creating a domino effect that damaged the system’s suggestions and
undermined its primary purpose. Therefore, they switched to multi-label classification using a new labelled dataset. As
a result, the classification was significantly improved. In addition, the usability test result for their application was 83,
which is rated as excellent. Then, to assess the impact of the mobile application’s motivational messages, users were
split into two groups, with 92 in the first group receiving such messages and 28 in the second group (control group)
receiving no messages. The results showed that users from the first group were less likely to violate the diet guidance.

7.4 Entity Centric Dashboards

Leskinen et al. [82] presented the Actor Ontology from a Finland Finnish World War II dataset in an intense Spatio-
temporal model in the WarSampo portal 11. The data was shown from four main viewpoints: Persons, Military Units,
Articles and Photographs. The first perspective reflects “Person” information by allowing the user to search for a
person’s name and thus access all of the information linked to that entity. Similarly, users can use the second viewpoint
to search for the Military Units, listing all the information related to the given unit, such as photos, personnel and battles,
including a map displaying the unit location with an interactive timeline. The third viewpoint is an archive of “Kansa
Taisteli Magazine” articles that allows users to filter articles using information such as author name and issue date. The
final viewpoint is of photographs organised as an image gallery, where the user can search for an image by specifying
the period, location, military unit, and photographer. These web interfaces were not evaluated [82].

Different viewpoints may be connected by the shared entities. For example, when exploring a person, the user can
navigate to the person’s military unit and then explore related images. This facilitates smooth data browsing by allowing
users to begin with any desired viewpoint to find the required data. However, the web interface mainly focuses on

11https://www.sotasampo.fi/en/
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’Faceted Search’ and thus does not support the inclusion of two or more unrelated entities in searches. For example,
users can not find articles written by either author A or author B in a single search.

One of the useful applications of semantic web technologies is knowledge extraction as used to track illegal activities.
Kejriwal and Szekely [74] created an intelligent search engine to assist investigators of Human Trafficking. The
engine uses NLP and Information Retrieval techniques to extract knowledge from millions of web posts to build the
Domain-specific Insight Graph (DIG). A DIG GUI is then used to pass the query to the engine and display the results.
The investigator must enter the required search terms, and the results are then displayed in a ranked entity list, sorted in
descending order. Thus, the user can browse each entity on an entity-centric visualisation or narrow down the results
using the faceted search options.

The evaluation of [74] was not published due to the confidentiality of the data. However, the authors shared the
techniques alongside some of the results. They have evaluated their GUI by performing controlled usability testing on
8 SMEs. The participants came from four different states in the USA, and each participant was asked to spend two
hours daily for one week answering eight ’lead generations’ and eight ’lead investigation’ questions, in addition to a
45-minute training session. They used System Usability Scale (SUS) questionnaire to measure their GUI usability and
scored above 70, which is recognised as above average.

Fernàndez-Cañellas et al. [43] created a system to extract the current media news from various sources and languages
with the aim of identifying trends and similar articles. The user can then access these findings through a web dashboard
that presents the revealed topic alongside the related “when, where, and who” answers, as well as displaying all media
that mention the same topic, with related tags linking the topic to other related topics. The interface is simple and well
structured from a journalistic perspective.

The system has two main components, News Event Detection and Dynamic Entity Linking. The first is responsible for
discovering and classifying topics so that similar topics can be identified and grouped, while the second models the
semantic relations between the events. Keywords can then be detected and linked to the related entities allowing the
user to identify all events related to a specific tag or person. The authors also conducted a quantitative evaluation for
each component separately to compute the ’Classification Evaluation Metrics’ such as accuracy and precision in order
to identify any deficiencies within each system component; however, the dashboard was not evaluated.

7.5 Web APIs

Web developers primarily rely on Web Application Programming Interfaces (APIs) to consume Web Services and
retrieve data [116]. Each API act as a translator between two applications, allowing them to communicate. Therefore,
for a web developer to connect a web application to the LD, they can either use the relevant LD SPARQL-endpoints or
create a specific Web API [90]. The first option involves sending SPARQL queries to the endpoint and retrieving data
as RDF triples in a format such as JSON, CSV or as supported by that API. The data is then analysed and presented
in HTML format. This approach requires the developer to have experience with SPARQL, RDF, and Knowledge
Graphs. The second option is to use a Web API by requesting a distinct URL that represents a resource or a service,
possibly, with predefined parameters, with the data received as an HTTP response. The Web API should either have the
OpenAPI Specification (OAS)12 description, which offers documentation for both humans and machines or at least has
the traditional documentation so the client knows which services are offered by that API. The format of the transferred
data can be a Web-friendly format such as JSON, JSON-LD 13, or XML. With the second option, the developer must be
familiar with the technology and be able to access LD in a straightforward approach.

However, creating a Web API requires regular maintenance. Web APIs lack standardisation and act in a “Blackbox”
manner, keeping all the querying behind the scenes [116, 90]. Therefore, Meroño-Peñuela and Hoekstra [90] introduced
grlc 14, a tool that dynamically generates well-standardised RESTful APIs by transforming SPARQL queries. The user
must store the SPARQL queries in a GitHub repository, and the tool then uses these as the source for constructing the
API. This allows web developers without experience in SPARQL to efficiently access LD. Despite that, grlc does not
support customising the API results, as it returns only these formats support by the endpoint. Thus, consuming the LD
results may still be a challenge.

Lisena et al. [83] addressed this issue by introducing SPARQL Transformer, a tool that allows users to write SPARQL
queries in JSON in the form they wish to see the final result. The tool accepts SPARQL queries as plain JSON or
JSON-LD and then returns the results with a matching JSON structure. The most remarkable feature of this tool is

12https://www.openapis.org
13https://json-ld.org/
14https://grlc.io/
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that it can be integrated with grlc to allow web developers to customise their API output. SPARQL Transformer lacks
expressivity and is currently limited to SELECT queries.

Alternatively, Garijo and Osorio [47] have introduced an Ontology-Based APIs (OBA) framework that extends the work
done by tools like grlc, allowing automatic creation of an OAS from the selected ontology. Then, generate APIs to
access the LD that follows the same OAS, with the returned results in a JSON format that matches the OAS. Thus, the
involvement of the knowledge graph experts is reduced, and fewer efforts are required to process the results. In addition
to supporting SELECT expressions in SPARQL, OBA supports INSERT, UPDATE, DELETE, and CONSTRUCT
expressions. In terms of limitations, OBA is affected by ontology modification, which will produce a new API version.
Also, enormous ontologies will also create massive APIs that may be slow to access.

The evaluation of grlc included a qualitative evaluation by presenting the users’ feedback on in-use projects. A
quantitative evaluation was also conducted to test the speed and performance of the tool. As expected, the performance
of grlc was almost constant, as it introduces a steady overhead between the application and the endpoint, so its
performance is not affected by the size of the dataset. During the experiments, response time never exceeded 187.9 ms,
which was deemed adequate.

In addition, the SPARQL Transformer was quantitatively evaluated to test its performance as a stand-alone tool without
integration with grlc. The results showed that using SPARQL Transformer was slightly slower than direct SPARQL
endpoint querying, but that this delay was less than 100 ms, which was seen as acceptable. A questionnaire was also
conducted to reflect user opinions regarding the data representation and the JSON format in comparison to the direct
endpoint querying. The results suggested that users generally prefer the tool but that their decisions were not affected
by the level of data nesting, despite the authors’ assumptions.

The authors of OBA also implemented performance analysis to measure the time taken to render the results into
JSON and to assess its performance across a different range of requests. The first analysis showed that overall,
OBA had overhead that averaged below 150ms and never exceeded 200ms. In the second experiment, when using
proxy caching, the 60 queries per second were handled in less than 200ms. However, without proxy caching, the
performance dramatically diminished in cases where ten requests or more were received, exceeding 5 seconds, which
was considerably worse.

8 Evaluation and Research Validation

8.1 User Study

Evaluation is an essential part of any proposed tool or interface, as it is needed to determine the usefulness of the
introduced design or technique. Part of the reviewing process of this paper thus dedicated to exploring the evaluation
design of each paper. Table 4 summarises the evaluation techniques and tools used by each paper. The evaluation
methodologies ranged across quantitative, qualitative, and mixed methods [50]. According to the ISO 9241-11, the
quantitative usability evaluation has to achieve satisfaction, efficiency and effectiveness with measurable characteristics
[22]. Most of the reviewed work used a System Usability Scale (SUS) questionnaire to measure user satisfaction, with
this score interpreted using a Likert Scale [3]. The SUS score was occasionally normalised using the Percentile Rank 15

to give a percentage or a grade. Likert Scale was also integrated with various surveys to allow comparison of two or
more platforms based on users’ opinions.

The NASA-Task Load Index (NASA-TLX) [59] is another evaluation tool that distinguishes between multiple platforms
using the user-perceived workload. As with SUS, NASA-TLX is used to measure user satisfaction, but the latter is
distributed to evaluate workload in a manner that includes frustration, difficulty, mental effort, physical effort, temporal
effort, and performance, so that lower scores are better.

The effectiveness of the system was usually measured by means of user ability to complete the required task successfully.
In addition, Subject Matter Experts (SMEs) were used to verify output to determine system accuracy. Alternatively,
Kuric et al. [78] have employed the number of hints which was given to the user to accomplish the task as a method of
evaluating the accuracy. Efficiency was usually determined by the amount of time the user spends to complete the task,
though performance metrics, such as f-measure, recall, and precision, were also used to measure the efficiency of the
information retrieval process.

The qualitative evaluation methods combined a variety of tools to capture user observations and feedback. The most
common approach was to create a controlled experiment, followed by open questions about the system. Usually, these
open questions were given as part of the questionnaire completed by participants. However, sometimes they took the

15https://measuringu.com/interpret-sus-score/
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form of an interview. These questions are typically preceded by assessment questions targeted at user background
details such as the user years of experience. The “think-aloud protocol” was also used to collect the user observations
while using the system, followed by a debrief session to verify their input.

In terms of participant quantity, numbers ranged from 1 to 120 participants. The most frequent sample sizes were 6, 8,
10, 14, 15, 48, and 120 participants. According to Nielsen and Landauer [96], the optimal sample sizes for small and
medium-large projects are 7 and 15, respectively.

8.2 SPARQL Query Evaluation

The majority of the reviewed tools focused on the user study to demonstrate their usefulness, while the correctness and
validity of the generated queries were not explicitly stated. Most of the Question Answering tools relied on QALD
challenge to measure performance metrics, such as precision and recall rather than question matching the SPARQL
query [99]. Other reviewed work appeared to depend on users offering satisfaction feedback about the queries.

Evaluating tools by matching the autogenerated SPARQL query with the ideal SPARQL query is known as the “black-
box” approach [30]. The black-box approach examines only the system input and output to evaluate the system [93].
The idea is that, as two equivalent queries may be structured differently, these queries should be matched using the
produced results [30, 6]. If the LD is periodically updated, an exact match for the output is impossible, as even the

Table 4: Evaluation techniques used by each paper.
Quantitative Qualitative

To
ol

S
am

pl
e

S
iz

e

S
U

S

L
ik

er
tS

ca
le

N
A

S
A

-T
L

X

S
M

E
U

se
r

E
va

lu
at

io
n

Ta
sk

C
om

pl
et

io
n

P
er

fo
rm

an
ce

M
et

ri
cs

To
p-

N
M

et
ri

cs

T
im

e

T
hi

nk
-a

lo
ud

E
va

lu
at

or
s’

A
ss

es
sm

en
t

O
pe

n
Q

ue
st

io
ns

H
IT

L

Mihindukulasooriya et al. [91] 2 SME ✓ ✓ ✓

Barisevičius et al. [13] N/A ✓

Farah et al. [42] N/A ✓

Donadello and Dragon [37] 120 ✓ ✓ ✓

Dragoni et al. [39] 49 ✓ ✓

Fernàndez-Cañellas et al. [43] N/A ✓

Lisena et al. [83] 55 ✓ ✓ ✓

Meroño-Peñuela and and Hoekstra [90] 6 ✓ ✓

Garijo and Osorio [47] N/A ✓

Kejriwal and Szekely [74] 8 SME ✓ ✓ ✓ ✓

Lasolle et al. [79] 1 SME ✓ ✓ ✓

Şimşek et al. [120] 51 ✓ ✓ ✓ ✓

Eldesouky et al. [40] 120 ✓ ✓ ✓ ✓ ✓

Osborne et al. [97] 8 SME ✓ ✓ ✓ ✓

Thanapalasingam et al. [111] 14 SME ✓ ✓ ✓ ✓

Salatino et al. [105] 9 SME ✓ ✓ ✓ ✓ ✓

Sorce et al. [? ] 21 ✓ ✓ ✓ ✓ ✓

Vega-Gorgojo et al. [114] 15 ✓ ✓ ✓ ✓

Kuric et al. [78] 15 ✓ ✓ ✓ ✓ ✓

Haag et al. [54] 10 ✓ ✓ ✓

Hoefler et al. [62] 14 ✓ ✓ ✓ ✓ ✓

Haag et al. [57] 6 ✓ ✓ ✓

Vargas et al. [113] 28 ✓ ✓ ✓ ✓ ✓ ✓

Soylu et al. [110] 10 ✓ ✓ ✓ ✓ ✓

Kaufmann et al. [72, 73] 48 ✓ ✓ ✓ ✓ ✓ ✓

Zenz et al. [117] - ✓ ✓

Ferré [44] 26 ✓ ✓ ✓ ✓ ✓
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same query will produce different results. A “grey-box” approach is thus required, in which the query is semantically
evaluated by checking for the existence of specific triples with the help of domain experts [30, 6]. However, the majority
of the reviewed tools did not specify whether or not the resulting queries was examined as part of their evaluation.

It is difficult to evaluate these tools independently in terms of the generated queries, as the systems are generally
inaccessible or configured to query only a specific SPARQL endpoint. For example, out of the reviewed Form-based
QBs, only three allow the user to query Wikidata, while one does not support exposing the SPARQL query, making the
evaluation of generated queries infeasible.

9 Findings and Discussion

This survey comprehensively examined a diverse array of tools designed for accessing LD, with an emphasis on those
that generate SPARQL queries, as the W3C endorses SPARQL as the recommended query language for LD. The
majority of these tools cater to a wide range of users; however, they often exhibit shortcomings in accommodating
specific user categories, particularly Lay-users. While experienced users, well-versed in RDF, can readily comprehend
most interface metaphors, Lay-users frequently grapple with these tools due to the requirement of prior RDF knowledge
[33, 35, 113, 2, 62, 78, 46]. Figure 9 briefly summarises the main advantages and disadvantages of the primary types of
SPARQL query builders examined in this survey.

Figure 9: The summarisation of the findings by listing the Pros (+) and Cons (-) of the main types of SPARQL query
builders.

User-Friendly The NL-Based Query Builders are most user-friendly interfaces, as these offer greater levels of
abstraction than other tools, and thus do not require the user to have any previous knowledge about the LD or SPARQL.
These tools are meant for Lay-users and thus aim to remove the barriers to accessing LD. As a result, however, some
expressiveness in terms of constructing the query is lost. QUICK thus adds an additional layer to recognise user
intention to improve accuracy, while SPARKLIS eliminates arbitrary keyword searches by limiting sentence contraction
to the available option boxes. However, constructing complex queries takes more time with these tools, making them
more suitable for exploring data content and creating simple queries.

Contrarily, Several tools convert SPARQL queries and their retrieved results into a more human-readable formats, and
these tools explain in detail what a particular SPARQL query does. In addition, they can convert seemingly meaningless
URI into something more readable. However, they do not support converting such natural language texts back into
SPARQL.

Wider Usability Form-based Query Builders are suitable for a wider variety of users, as well as allowing more
detailed querying of the data region of interest. Some of these interfaces rely on the structure of the RDF triple pattern
to reduce data abstraction, though most such tools offer an auto-filling option to speed up the learning curve, as seen in
WQS and VizQuery. To take advantage of users’ familiarity with spreadsheets, tools such as LDQW, ExConQuer, and
Falcons Explorer show their initial results in a tabular format, allowing users to shape the retrieved results using filters
to match their specific needs. Both Experts and Lay-users thus benefit from using these types of query builders.

Visualisation and Detailed Querying Graph-based Query Builders require tremendous cognitive load and prior
knowledge of SPARQL, making them unsuitable for Lay-users. These query builders excel in visualising queries
to reflect their LD structures, allowing the full expressiveness of SPARQL to be displayed, and thus even experts
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may not be sufficiently familiar with the data structure. Some tools have tried to overcome this unfamiliarity issue
by offering a toolbox with a fixed set of draggable objects such as ViziQuer, QueryVOWL, OptiqueVQS, and RDF
Explorer. However, for non-experts, constructing the query path remains difficult, based on a need for understanding of
the connections between objects.

10 Research Challenges and Future Directions

While the reviewed works and solutions cover a broad range of domains, several unaddressed gaps and areas for
improvement remain. Moreover, the usability of several researched tools has not been assessed or tested, warranting
further exploration into the practicality of the proposed solutions. With regard to broader usability, none of the examined
tools facilitates the integration of basic and advanced user interfaces to minimise barriers for Lay-users, which could
expedite their adaptation to the interface while still accommodating advanced querying for experts. Furthermore,
NL-based QBs do not support the conversion of SPARQL to NL. For instance, tools such as SPARQL2NL [94] enable
users to convert SPARQL to NL, a feature not offered by NL-based QBs. Incorporating this functionality could assist
Lay-users in evaluating the generated SPARQL. Therefore, it is essential to investigate this aspect to determine whether
the inclusion of such capabilities might improve the evaluation results of these tools.

Supporting Web of Things (WoT) and Spatial Data The advent of smart buildings and cities, in addition to the
expansion of the Web of Things (WoT) domain, has introduced novel concepts into traditional LD, including sensors,
observations, and spatial data. The majority of reviewed query formulation tools primarily focus on extracting general
knowledge from conventional LD. Although these tools are designed to operate with general LOD, they lack basic
concepts for accessing and exploring LD adhering to specifications such as the “Sensor, Observation, Sample, and
Actuator (SOSA)” ontology [69]. Reapplying some of the reviewed techniques or considering novel visualisation
approaches for this type of LD is crucial for end-users.

In contrast to traditional LD, which may involve simple RDF patterns like ‘Adam is Human’, information retrieval in the
context of Smart buildings differs significantly. For instance, a thermal sensor placed in an area with multiple sensors
could collect readings on various measurements at regular intervals. Consequently, the sensor’s readings would reflect a
many-to-one relationship, linking multiple records to a single sensor. Although these relationships are described in the
ontology, their visualisation and connections are more complex and condensed.

In terms of querying data to obtain information related to the building’s condition, the sensor itself is of greater interest
than individual readings. Users typically seek the ability to query all data associated with a single sensor, filtering out
irrelevant readings by matching a specific pattern rather than focusing on a single reading corresponding to a simple
RDF pattern.

Results Perception During Query Construction Form-based QBs appear to be the least intimidating interfaces
for novice users among other QBs; however, usability enhancements are needed. The FILTER/FLOW MODEL [55]
demonstrates that providing preliminary results indicators during query construction aids users in formulating accurate
queries. QueryVOWL [56] has also implemented a similar feature by assigning a numerical value to each node to
represent the size of the current query results. This approach provides users with a visual indication of the number
of results corresponding to each node, helping them assess the effectiveness of their queries during the construction
process. None of the other query builders supports such a feature, which involves displaying potential results during
query construction, warranting further investigation of this technique.

This is important due to the fact that, as we previously discussed, even experts may experience ambiguity regarding
expected results, which can impact the query construction process. Consequently, offering users insight into possible
outcomes during construction could enhance their overall experience. For instance, visual indicators such as increasing
the thickness of the visual model to represent the size of the results can help users assess the effectiveness of applied
filters. Alternatively, employing darker colours to indicate data density could also convey the intensity of the results. If
the results incorporate geospatial data, maps could serve as an effective visualisation method, significantly influencing
user perception. Additionally, when users visually select an entity, presenting all associated entities could improve
the query construction process compared to users having to infer these entities. Therefore, the perception of results
constitutes a critical factor that can positively impact usability.

Avoiding Non-empty Results Facet search tools, commonly employed in LD browsers, are typically designed to
prevent users from encountering empty results by exclusively displaying relevant resources. However, as shown in
Table 1, 2, and 3, the majority of query formulation tools do not incorporate such a feature. Consequently, users may
unintentionally construct queries that only retrieve empty results. While some reviewed tools attempt to mitigate this
issue by providing examples, this approach is insufficient to eliminate the problem entirely. One possible implementation
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to address this concern is to disable arbitrary inputs and remove options that would yield empty results. Therefore,
to enhance query construction and improve usability for Lay-users, eliminating empty results could increase user
confidence and satisfaction.

Effective Entity Recognition and Discovery All reviewed query builders that incorporate text search functionality
rely solely on simple keyword searches to identify entities by their URI or associated labels and comments. For example,
a basic search may fail to retrieve relevant entities if a user types ‘Car’ while the resource description contains the terms
‘Automobile’ or ‘Vehicle’. In addition, the inference is a powerful feature of LD; however, as shown in Table 1, 2, and 3,
none of the tools support inferences. An instance of inference includes the ability to determine an equivalent URI using
owl:sameAs or to identify indirect relationships, such as ‘John lives-in London’, ‘London is-in England’, which implies
‘John lives-in England’ is valid. By integrating inferences with advanced NLP techniques to augment the basic text
search, query construction could be significantly improved.

Supporting Conversational AI NL-based and Keyword-based approaches focus on extracting knowledge from
LD using sentences or keywords. However, these methods lack the ability to determine user intent and, as a result,
cannot provide feedback to improve query construction. In contrast, a Virtual Assistant (VA) represents an End-User
Development (EUD) tool not yet explored in the context of accessing LD. Barricelli et al. [15] discussed the potential of
employing VA and Conversational AI in the IoT domain to facilitate end-users’ management of their IoT environments.

VAs can more accurately capture user intent and present results in the user’s natural language. Current VA implementa-
tions are limited to deriving conclusions or utilising predefined SPARQL templates, necessitating query modifications
by replacing entity values, as demonstrated in Mishra et al. [92]. However, no support for accessing data using adaptive
or scalable approaches has been identified thus far. Exploring such approaches could offer significant advancements in
accessing and querying LD through VAs.

Improving Usability by Integrating Multiple Tools Each of the reviewed tools and visualisation approaches has its
advantages and disadvantages. Nevertheless, these tools have not explored the effectiveness of combining multiple
approaches to address known limitations and enhance tool usability. For instance, it remains unclear whether merging
form-based tools with graph-based tools would reduce the cognitive load observed in purely graph-based instances
while improving expressivity, which is constrained in the form-based approach. Similarly, combining NL-based with a
form-based approach might enhance the speed of query construction.

The integration of multiple visualisation paradigms should be cautiously examined to prevent overwhelming the user by
increasing the tool’s complexity. This implies that additional functionality should be introduced as an assistive tool or
an alternative visualisation that is closely linked to represent the same query. By carefully exploring such combinations,
researchers may develop more effective and user-friendly solutions for querying LD.

11 Conclusion

The Linked-Data (LD) paradigm has demonstrated remarkable potential for representing information and delivering
human and machine-readable formats. However, its potential is constrained by the fact that its users are expected to
have a prior understanding of the complex SPARQL query language and the associated concepts to access the data. This
paper has reviewed various tools and approaches for accessing and searching LD. The primary focus of the review is on
SPARQL Query Builders, which are LD searching tools. The study outlined 22 usability criteria to evaluate these query
builders and identify their strengths and weaknesses. The study also provides an analysis of alternative techniques for
accessing LD. We have categorised all of the reviewed tools and techniques based on their UI querying approach.

The paper also investigated the current in-use solutions and identified the current usage patterns to identify potential
areas for improvement to enhance the search process. Additionally, the study examines the common research validation
techniques used in the reviewed papers and highlights some limitations in their validation techniques. The findings
reveal that there are weaknesses in the current solutions, particularly in terms of usability, especially for Lay-users.
Furthermore, there are some techniques and domains that need to be adequately addressed. The objective is to provide
insights into the development of effective and efficient searching tools that can lead to broader adoption of LD and
semantic web technologies in a range of new domains.
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