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Abstract Detecting anomalies at the time of happen-
ing is vital in environments like buildings and homes to
identify potential cyber-attacks. This paper discussed
the various mechanisms to detect anomalies as soon
as they occur. We shed light on crucial considerations
when building machine learning models. We constructed
and gathered data from multiple self-build (DIY) IoT
devices with different in-situ sensors and found effective
ways to find the point, contextual and combine anoma-
lies. We also discussed several challenges and potential
solutions when dealing with sensing devices that pro-
duce data at different sampling rates and how we need
to pre-process them in machine learning models. This
paper also looks at the pros and cons of extracting sub-
datasets based on environmental conditions.

Keywords Anomaly Detection - Machine Learning -
Internet of Things - Smart Buildings

1 Introduction

An anomaly is something unexpected, abnormal or dis-
tanced from the ordinary. From a technology perspec-
tive, an anomaly results from equipment malfunction,
cyber or physical intrusion, financial fraud (e.g. credit
card usage by hackers), terrorist activity, and an abrupt
change detected by sensors in the physical environment
due to an accident. Following are the types of anoma-
lies:

1. Point Anomalies: A single sample, different from
normal samples. For example, a credit card (CC)
transaction with an amount much larger than the
CC holder’s routine transactions.
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2. Collective Anomalies: A sample is a collection of
several data points considered anomalous if it differs
from other samples. For example, an electrocardio-
gram (ECG) is a collection of readings of the heart’s
activity over a specific period as one data sample.

3. Contextual Anomalies: If a sample is contextually
different from normal samples. Time is the context
in time-series data considering a situation where
data is streaming from sensors. An anomalous sam-
ple depends on a set of time-series values, e.g. a
temperature trend of the last 30 minutes showing
20°C increases 50% abruptly. In some other time
(context) 30°C is considered normal temperature.

Our work looked into all the above types of anoma-
lies in our dataset. We proposed multiple solutions to
look for abnormalities in various contexts, e.g. time-
series, multivariate, and inter-device sensor combina-
tions. The high-level idea behind anomaly detection is
to i) save resources by finding faults in systems in ad-
vance, ii) respond to events as early as possible iii) deal
with security breaches. Equipment with the least la-
tency from sensors is microcontrollers, and these de-
vices are resource-constrained. With the rapidly grow-
ing IoT domain, there are a few off-the-shelf micro-
controllers available now Sudharsan et al.[ (2021)) which
support machine learning (ML) on edge using libraries,
e.g. TensorFlow. Detecting anomalies as soon as they
occur can help save a building from various challenges.
Gas leakage by equipment malfunction or pipeline cracks,
discomfort due to a sudden change in environment (tem-
perature, humidity, noise, air quality, and others), in-
frastructure damage, physical access at a non-working
time, or unauthorised personnel cyber-physical attacks
related. Detecting anomalies at the edge ensures early
response and reduces the risk of it getting ignored by
the central system in case of unavailability of network
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connectivity due to technical problems or cyber-attacks,
e.g. Daniel of Service (DoS). We collected data from
self-built physical devices with 32 data streams from
14 unique sensors. We have combined intra-device data
streams and inter-devices unique sensors’ streams. Other
than the original "unconditional” dataset, we applied
two (02) environmental conditions to the data set, then
applied data preprocessing (scaling and reduction) tech-
niques to each resulting data set and then used different
ML algorithms. We tested all models using both nor-
mal and anomaly data sets and presented the results in
HTML format at |GitLab/CyPhyRadar. We evaluated
the models based on computational time vs the number
of detected anomalies.

1.1 Contributions

— Impact of environmental conditions’ based data set
in anomaly detection

— Pros and cons of conventional (scaling/reduction)
and unconventional (atan) data preprocessing meth-
ods

— Comparison of different ML techniques

— Relations between various sensors in the context of
discovering anomalies in building

— Best practices to transform univariate data into time-
series format

— Handling missing data and synchronizing data streams
from different devices

2 Anomaly Detection within Smart Buildings

It is not energy-saving anymore; it is about the over-
all resilience of smart buildings, which is the next big
challenge. Smart buildings require mechanisms to mit-
igate or prevent fire, gas leakages, attacks, disasters,
accidents, safety and security-related issues, and other
unforeseen challenges. Secondary sensor networks can
help mitigate such events by observing physical chan-
nels such as external eyes and ears. Any compromise-
able device in a cyber network can allow attackers to
gain control over the complete building management
systems |Alex Schiffer| (2017]).

2.1 Data Collection Setup

We have implemented a sensing network consisting of
various 14 different environmental sensors, Arduino based
microcontrollers and RaspberryPi (RPi) microproces-
sors, as shown in Table|l| The sensor reads the environ-
mental changes and transfers readings to the attached

RPi, directly or through a microcontroller, which then
transforms and/or transfers these values to the ingestor
using unique Message Queuing Telemetry Transport
(MQTT) channels. The data set consists of 32 differ-
ent data streams from eight (8) device sets, i.e. sensor-
Arduino-RPi (DSet). Temperature, humidity sensors and
some other associated data streams were duplicated in
two device-sets; although both device-sets were at the
same place, one of the DSet’s sensors was influenced by
a nearby heat source. Thus, the readings are different
in these data streams. Timestamp and other properties
were added to every new entry by the ingestor before
inserting it into the data set. The probability of BLE
and WiFi devices in the area was also calculator by the
ingestor after receiving collective BLE and WiFi de-
vices’ information from all other physical devices; these
data streams in channels ble_devices and wifi_devices
were considered as virtual devices. Figure 1] shows the
overall architecture of data collection setup, processing
points, devices’ and channels’ names. We divided the
data sets from July 24, 2020, to January 7, 2021, and
from March 26, 2021, to July 16, 2021, into two subsets,
normal and abnormal, respectively. Both data sets were
captured during normal routine operations, and some
naturally occurring unusual activities were recorded in
the time-frames of both data sets. We used the normal
subset for training and testing machine learning mod-
els, whereas the anomaly subset was for testing pur-
poses only.

— Physical Devices = 8

— Virtual Devices = 2

— Environmental Conditions = 3

— Pre-processing Techniques = 8

— Data Streams (Total) = 32

— Intra-Device Combinations = 626

— Data Streams (Unique Sensors) = 14

— Inter-Device Combinations of unique sensors = 16383
— Machine Learning Techniques = 4

2.2 Data Collection Challenges

Some of the main challenges in data collection are:

— Time synchronisation, microcontrollers do not come
with an internal time clock, making it tricky to keep
data synchronised from different host devices, as-
suming the reporting time between each device is
different.

— Handling heterogeneous data types, contexts and
formats

— Low-resolution sensors, e.g., some generate integer
values for reading instead of floating-point values,
e.g., temperature value 22 instead of 22.0-22.9.
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Fig. 1 H1: Passive InfraRed, H2: All-in-1 Multi-sensor, H3: Sound4, H4: Carbon Dioxide, H5: Infra-sound, H6: Light, H7:

Sense-Hat Multi-sensor, H8: Sound3

— Some sensors generate arbitrary data, which is very
difficult to detect and troubleshoot on edge.

— Dual channel sensors like temperature-humidity have
sensing errors in either of the channels creating dif-
ficulty to troubleshoot on edge.

— Different communication mediums have different la-
tency, which is also a challenge in time synchronisa-
tion.

— Communication modules provide limited access to
the chip via AT Commands.

— Skipped or missed part of data at random times
due to equipment malfunction, network connectiv-
ity, electric power or other issues.

2.3 Data Cleaning and Normalisation

We pre-processed the data sets before performing ML-
associated operations to save time and computational
resources. There were various possible combinations of
errors in data sets like null, non-numeric, or irrelevant
values when capturing data due to sensor malfunctions
or ingestion processing. We removed all rows with null
values, converted the date and time into a DataFrame
supported format, changed the type data type of all
other values to integer or float, and normalised data
sets.

2.4 Data Streams Overview and Analysis

Analysing all data streams, individually and jointly,
is very important before applying operations. Analysis
helps in getting a better understanding of data streams
and helps in estimating which pre-processing technique
with which type of model should be used to do further
processing. The best way to visualise data streams is
by graphs; we used interact-able graphs using Plotly-
library to better understand the data streams from all
sensors. We joined data streams from all devices to bet-
ter understand the relations between each combination.
Moreover, the Table[I|hosts details of all individual data
streams with description, host device, MQTT topic,
edge-processing technique (Process), minimum value,
maximum value, average, standard deviation (SD), and
median absolute deviation (MAD).

2.4.1 Single Data Streams

Figures [2hold visualization of some of the unique data
streams. We structured Sub-figures as a 1x2 matrix
where the left side (x1) graph shows all data and the
right side (x2) graph shows one-day activity. The left
side graph of figures A1) and [ B1) that there is a
sudden dip in temperature and increased humidity near
the end of October 2020 till the end of December 2020.
We also observe that Air Quality is dropping abruptly
at the same time. Though these events resulted from
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(14)

data streams, see bold items in Table[T}

We choose a couple of inter-device combination graphs

inter-device data stream
for demonstration which can be seen in Figures Cl)

) has a different situation plot-

can be enormous, so we chose only
ted in which a fire alarm went off at night time and vis-

rections around the end of October 2020 till the end of

December 2020. We can also notice the relation between
natural and artificial light in Figures [3(B1) and (B2).

There are two possible types of multi-data streams in
atively easy as there are a limited number of combi-

ited by a staff member to evaluate the situation, which

triggered the light in the room as seen in the red circle.
This activity is perfect to be considered a contextual

a few activities of artificial light can be found in the
nighttime. The light sensor in the all-in-1 device, fig-
able that natural light trends are gradual compared to
artificial light. We also noticed that activities related to
Sound, Light, CO,, infra, BLE devices and particulate
concentration are stable and low-valued at night time.
Thus we decided to filter data sets based on daylight
conditions as well. We also observe a regular (not ev-
eryday) activity before the start of daylight time; this
issue has consequences which will be discussed later in
Analysing relations between different data streams is
difficult, ineffective and time-consuming when done sep-
arately. So we visualised multiple data streams to anal-
yse the relations demonstrated in figure[3} For example,
in figure[3[(A1), it can straightforwardly be noticed that
the values of temperature and humidity go opposite di-
the given setup, intra-device and inter-device. Visualis-
ing multiple data streams from one device is compar-
anomaly. From the left side graph, we can see a regular
activity of sound and light in the daytime. Later in this
paper, we will evaluate ML models by considering two
things i) the regular activity detected as an anomaly,
and ii) the sound and light activity around 2100 hours

trend of artificial light, and natural is identical except
ures 2fH1) and (H2), share similar trends. It is notice-

disconnection and/or power failure on the device, both
were considered anomalous and kept in the data sets;
we will discuss other aspects later in the paper. In Fig-
ures 2fE2) and 2[F2), we observed that the 24 hours
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Fig. 2 Single Data Streams

2.5 Data Scaling and Reduction Techniques

The machine learns from the provided data instead of
legacy statistical or mathematical algorithms in the ML
context. It makes pre-processing of data sets an essen-
tial part of the process. Data standardisation is be-
ing largely practised for pre-processing data sets be-
fore performing ML. It drastically decreases the size of
the input sample (in some cases) and time for a model
generation compared to non-scaled data. We adopted
two techniques for standardisation, StandardScaler and
MinMaxScaler. Standardisation techniques can only con-
vert data into a certain range and can be reversed but
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Fig. 3 Multi Data Streams

can not reduce the dimensions of the input sample in
the case of multivariate data. So, we used reduction
techniques to convert multivariate data into uni-variate.
Reduction techniques help in reducing ML model gen-
eration time to a minimum. The resulting data sample
from reduction techniques is computationally expensive
to reverse. Which makes it hide properties of individual
data streams or sensor values, e.g. value of temperature
and humidity can only be known by the edge device
but will be kept unknown by the fog or cloud device.
Scaling techniques are feasible on cloud/fog where a
complete data set is available to evaluate a given ML
model. We did not consider data scaling for ML models
destined to run on edge devices (microcontrollers). We
added another dimension to data sets after applying
pre-processing techniques to convert the data into time
series, and the resulting sample was three-dimensional.
We used two scaling techniques and five reduction tech-
niques on the available data to evaluate the time dif-
ference for model generation. We experienced that scal-
ing techniques take less time (a few microseconds) ver-
sus reduction techniques which takes 1500 to 2127 mi-
croseconds to execute the process.

2.5.1 Scaling Techniques

We used the following data scaling techniques for this
work. Standard Scaler calculate the mean and stan-
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dard deviation of the input sample before applying equa-
tion [I} In equation [I] SSd is the standard scaler output
sample of input sample d, u is equal to the mean of
sample d and s is equal to the standard deviation of
input sample d.

(d—u)

SSd =

(1)

The resulting output sample has a mean=0 and stan-
dard deviation=1. We used the StandardScaler function
from the sklearn library to perform this scaling opera-
tion.

MinMax Scaler is simpler than StandardScaler, there
is no pre-calculation required as compared to Standard-
Scaler, and most frequently used for input sample stan-
dardisation. The output sample is in the range of 0
to 1. The corresponding output value of the minimum
value in the sample will be 0, and the corresponding
output value of the maximum value in the sample will
be 1. These values are calculated using the equation
We used the MinMaxScaler function from the sklearn
library to perform this scaling operation.

(d B dmin) (2)
(dmaa: - dmin>
In equation 2] MMd is the MinMax scaler output sample
of input d, d(min) is the minimum value in input sample
d and d(maz) is the maximum value in input sample d.

MMd =

2.5.2 Reduction Techniques

We used the following data reduction techniques for this
paper.

Average is the sum of all values divided by the number
of values resulting in a single value for each sample. Av-
erage can reflect the central tendency of multiple data
streams while converting the input sample into univari-
ate. Average requires the least processing resources as
compared to other pre-processing techniques. We used
the average function from the NumPy library to exe-
cute this operation on the multi-variate input samples.

m=()> Q)

Standard Deviation (SD) results in a univariate data
stream that can reflect the spread of a multivariate in-
put sample. It takes slightly more processing resources
than average as the average input sample is a prereq-
uisite for the SD equation to be executed. We used the
std function from the NumPy library to execute this
operation on multi-variate input samples.
D (@i — T)?

T )

Median Absolute Deviation (MAD) calculates vari-
ability in the input sample, it is more computationally
complex than SD because it is dependent on the me-
dian value of the input sample. MAD is more resilient in
terms of outlier detection as compared to SD. We used
the median_abs_deviation function from scipy.stats li-
brary for this operation.

MAD = median(x; — Z) (5)

Kurtosis (Ku) calculates the relative peakedness of
an input sample, it requires both average and SD of the
input sample thus the computational power requires is
more than the previous techniques. We noticed that Ku
is effective on larger data points in terms of influenc-
ing anomaly detection. We used stats.kurtosis function
from scipy library for this operation.

1 - (l‘z —.f)4
K=o = ©)
Skewness (Skew) calculates the trends of the input
sample, it can be a normal, negative or positive skew-
ness value. Skew is the most computationally complex
in our discussed techniques, it requires precomputed
average and SD of the input sample. It is also effec-
tive on larger data points where a curve can be formed.
We used stats.skew function from scipy library for this

operation.

Sk:li@ (7)

2.6 Data Conversion to Time Series

We tried and compared different algorithms to convert
series data in a time-series format, i.e. each row con-
tains the number of future rows. In streaming data sce-
narios, anomalies are categorised based on data trends
instead of points, e.g. the temperature in daytime hits
30°C. In contrast, at night time, it remains below 18°C.
Considering a microcontroller without an internal clock
can only be aware of the context be current values
rather than time. The ML model shall be trained using
a time-series-based input sample to achieve this func-
tionally. Let us say the dimensions of the input sample
are [Rows, data points], e.g. [36484, 14], dimensions of
the resulting sample become [Rows, Time Steps, data
points], e.g. [36484, 74, 14]. Let us say R represents
data rows in the data set, T represents the number of
required time-steps for each sample, X represents the
use-able rows, and Y is the resulting time-series sam-
ple.

X € {RO,R1,R2,...,R—T}

8
Ye{X+1,X+2,X+3...,X+T} ®)
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2.7 Anomaly Detection Techniques Selection

We used the following anomaly detection techniques in
this paper.

2.7.1 OneClassSVM (OSSVM)

Support Vector Machine (SVM) is one of the most com-
mon ML methods [Djenouri et al| (2019). SVM is pri-
marily used for classification (supervised ML) but can
also be adopted for clustering (unsupervised ML). SVM
is memory efficient, flexible, and suitable in high di-
mensional spaces and even works with a smaller num-
ber of samples compared to dimensions. It has a sub-
method, OneClass for outlier-detection, that tries to
discover decision boundaries to achieve maximum dis-
tance between data points and source by using a clus-
tering mechanism. The main idea behind OneClass was
stalled because of its incompetence in finding outliers
and determining non-linear decision boundaries. How-
ever, with the introduction of soft margins and kernels,
these issues were resolved |Amer et al.| (2013]). OneClass
SVM splits all given data points from the source and
amplifies the distance from this subspace to the source
in the training phase. The function returns a binary
output for each input row where +1 means smaller dis-
tance and -1 means larger distance where larger dis-
tance considers an anomaly [Scholkopt et al.| (2000]).
It is widely used in various applications for both su-
pervised and unsupervised learning methods. It is also
heavily adopted in academia. An anomaly classifier us-
ing SVM was proposed |Araya et al.| (2017) for detect-
ing abnormal consumption behaviour. A method pro-
posed by [Ferdoash et al.| (2015]) to calculate excessive
airflow in Heating Ventilation and Air Conditioning
(HVAC) units in a large-scale Building Management
System (BMS). They also calculated the pre-cooling
start time for reaching the required temperature us-
ing temperature sensors. |Jakkula and Cook| (2011) the
proposes OneClass SVM for anomaly detection in smart
home environments using publicly available smart en-
vironment data sets. Himeur et al| (2021a) proposed
a method to detect anomalous power consumption in
buildings. OCSVM is highly effective on point anoma-
lies and can be inferred on fog devices to be used in
real-time environments.

2.7.2 Isolation Forest (IF)

IF is one of the top-most used algorithms in the outlier
detection domain because of its speed and simplicity.
IF is based on ensemble learning. The idea behind IF
is that randomly developed decision trees can quickly

isolate an outlier in the data set instead of detecting
outliers using density or distance from other samples.
Outliers are isolated because of the shorter path in the
tree as they have fewer relations with other data points
Liu et al.| (2008]). In terms of functional performance
in outlier detection, IF is the most popular algorithm
Buschjager et al.| (2020). We use the IsolationForest
function from the SKLearn library to perform model
generation. The function requires all samples as input
and return a list of anomaly score for each sample. IF
is also effective for point anomalies only. It is not suit-
able for fog devices in real-time scenarios as it requires
a complete dataset.

2.7.3 CNN

In Deep Neural Networks (DNN), Convolutional Neu-
ral Network (CNN) is on the most wanted neural net-
works list. The name ”Convolutional” comes from the
matrixes-based linear operation. CNN models consist of
multiple layers, e.g. max-pooling, fully-connected, and
others [Albawi et al| (2018). It brings significant im-
provement in computer vision (CV), Time series predic-
tion and Natural Language Processing (NLP). It covers
a wide range of application scenarios by providing sin-
gle and multidimensional layers, i.e. 1-D CNN, support-
ing Time Series Prediction and Signal Identification.
2-D CNN enables Image Classification, Object Detec-
tion, Image Segmentation and Face Recognition and 3-
D CNN, which helps in Human Action Recognition and
Object Recognition/Detection |Li et al.| (2021Db). In con-
trast with other classification approaches, e.g. feature-
based, CNN can find and learn relations and generate
in-depth features from time-series data streams auto-
matically, e.g. speech recognition, ECG, price stocks,
pattern recognition, rule discovery, and many more|Zhao
et al.|(2017). All platforms support CNN; i.e. Edge (mi-
crocontrollers), Fog (RaspberryPi, Mobile Platforms)
and Cloud (High-performance Linux, Windows or Other
OSes). We implemented CNN by using TensorFlow API.

2.7.4 RNN

A recurrent Neural Network (RNN) is also a type of
DNN, and it is designed with built-in memory, making
it more suitable for time-series-based data streams. An-
other feature of RNN is that it can process information
in bi-directional instead of forwarding direction only.
Typical RNN has a known issue of vanishing or explod-
ing gradient, which affects its accuracy and overall per-
formance. With the help of Long Short-Term Memory
(LSTM) Hochreiter and Schmidhuber| (1997)), which is
designed with a memory cell to hold information over a
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period of time, this problem can be resolved. LSTM is
complex but sophisticated, and has three gates input,
output and forget. RNN models can predict the future
value from time-based input compared with the data
sample to calculate the loss. If the loss is greater than
the threshold (pre-computed using the training sam-
ple), the data sample can be categorised as an anomaly.
LSTM is widely used in various applications commonly
based on time-series data. LSTM is available only on
Fog and Cloud devices using the TensorFlow library.
Anomaly detection in a time-series context is a signifi-
cant application of LSTM.

3 Experimentation Results

This section will discuss the results of different com-
binations of data pre-processing and ML models. We
tested selective TF models on all platforms (Cloud-Fog-
Edge) and SKLearn models on Cloud and Fog only.
SKLearn models predictions are binary (Anomaly=-1,
Normal=1) whereas TF models were based on future
prediction, so the output was non-binary. Results for
TF models were calculated using a two steps process.
First, we calculated the Mean Absolute Error (MAE)
for the predicted loss method using equation [9| and
threshold by using equation

1 n
MAE ==y (9)
t=1

The equatrefeq:mae calculates the mean absolute error
(average loss) of all input samples by calculating abso-
lute loss for each sample, where n represents a number
of samples, y represents predicted and x represents ex-
pected values of each sample.

Threshold = (8- c(MAE)) + MAFE

L (10)
o— > StandardDeviation

Equation dynamically calculates the threshold by
calculating the standard deviation of MAE, multiplying
it eight times and adding it with MAE. If the resulting
loss of an input sample is greater than the threshold,
the sample is considered anomalous.

3.1 Architectural Configurations

As discussed previously, we are using four types of ML
Models to train and test available data sets. These mod-
els are from two different APIs, Sci-kit Learn (SKLearn)
and TensorFlow (TF). SKLearn and RNN based mod-
els are available on Cloud and Fog platforms, whereas

CNN is also deployable on edge devices. In this section,
we will discuss the configurations of each algorithm.
We configure the OCSVM model with 0.5 nu, ”auto”
gamma and "RBF” kernel parameters. We configure
IF model for ”auto” contamination parameter. Early-
Stopping to monitor loss with min_delta=1e-2 and pa-
tience=3 was configured for both CNN and RNN mod-
els. We converted the dataset for both NN models into
74-time steps. We also fixed 100 epochs (max), adam
optimizer, and batch size to be 10 for both NN models.
Our CNN model requires TensorFlow version 2.1.1 and
RNN on the 2.4.1 version. We configured CNN models
with Conv1D layer, kernel size of 32, 5 filters and mean-
squared error for loss calculation. We used LSTM layers
for RNN models with 32 neurons and mean-absolute-
error for loss calculation.

3.2 Data Streams’ Configurations

We divided our data sets into two sub-datasets depend-
ing on daylight conditions, e.g., day time sub-dataset
(DT) and night time sub-dataset (NT). We used uncon-
ditional data set (UC) for ML models as well. We imple-
mented these scenarios on these two types of streams.
Converting datasets into sub-datasets reduces the ML
model generation time as well as inference time. It also
supports (in some cases) the implementation of point-
based anomaly detection, e.g. illumination. Events at
nighttime can be detected with high accuracy and low
computational resources if the ML model is trained
using the NT sub-dataset. On the other hand, sub-
datasets are limited to specific circumstances only, e.g.
if the buildings are designed to be illuminated 24x7.

i. Univariate (Single Data Streams): each data stream
from all devices was used to train, test, and analyse
models. Because these Data Streams were already uni-
variate, reduction techniques were not applicable. ii.
Multivariate (Multiple Data Stream): There can be enor-
mous possible combinations between intra-device and
inter-device data streams. Research has already been
conducted about relations between physical channels
like temperature-humidity with COg [Liu et al.| (2017)).
Showing all possible combinations of multi-data streams
is overwhelming; thus, we have presented results of a
few of these combinations and preserved all models and
results stored for detailed analysis.



Detecting Anomalies within Smart Buildings using Do-It-Yourself Internet of Things 9

Training Time Scaled vs Non-Scaled

miliseconds

2 3 4 5 B 7

Variates

o CHM SCElR s CHM NS RMN Scaled RNM NS

Fig. 4 Scaled vs Non-Scaled and RNN vs CNN Model Train-
ing Times

3.3 Results
3.3.1 Univariate vs Multivariate

Reduction techniques returns univariate data so the
model training time is identical for all number of data
stream combinations. Total training time also depends
on the number of epochs executed before early stopping
condition becomes true. Figure [4 shows model training
times of scaled vs non-scaled dataset, it can be observed
that scaled dataset took more time for training in both
CNN and RNN methods. It is also obvious to see that
RNN CNN is efficient when compared to RNN. Due to
limited knowledge of known anomalies in the dataset, it
is difficult to determine overall efficiency of ML models.

8.8.2 Detecting Anomalies using Individual Sensor
Data Streams (Univariate)

A comparison of temperature with edge-processed T
data streams, which is atan (temperature), from the
sense-hat device. We had 32 data streams, out of which
14 were from unique sensors, and 18 were associated
streams. While comparing different sensor and associ-
ated data streams, we found that atan converted data
streams required a lesser threshold value to find anoma-
lies in novel data. The transformed data streams were
ineffective at certain stages where change suddenly fluc-
tuated. As seen in circled in blue colour where anoma-
lies are shown in orange dots in figure[5} a few anomalies
found in T, all at a lower temperature, was not detected
in the temperature model can be seen in green circles.
When it comes to humidity, the edge-processed scaled
data stream H was less sensitive as compared to the
unprocessed data stream, as demonstrated in figure [0}
the blue circles highlight the difference. Since we gen-
erated models for three environmental conditions, we

Jun 2021 Jul 2021

Aprio21 May 2021 Jun 2021 Jul 2021

Temperature

Apr 2021

T: Atan(Temperature)

May 2021

Fig. 5 Temperature vs Atan (Temperature) Comparison

Apr 2021 Jul 2021

H: Scaled(Humidity, 0-1)

Apr2021  May 2021 Jul 2021 May 2021 Jun 2021

Humidity

Jun 2021

Fig. 6 Humidity vs Percentage (Humidity) Comparison

found that the sum of anomalies found in two daylight
condition-based data sets (dark=0, light=1) was equal
to the number of anomalies found in the unconditional
data set.

We also noticed that there is no difference in non-
scaled streams vs scaled streams in temperature and its
associated data streams, e.g. T. Whereas other sensors
and associated data streams show different results, e.g.
a number of anomalies found original data stream of hu-
midity sensor were noticeably different from Standard-
Scaler but comparatively similar with MinMax. We ob-
served that StandardScaler decreases sensitivity result-
ing in lesser anomalies as compared to the non-scaled
data stream. It was also observed that MinMaxScaler
increased sensitivity resulting in more anomalies. We
found an obvious difference when comparing a number
of anomalies in pressure (P) and particulate concentra-
tion (M) data streams where StandardScaler results in
drastically increased sensitivity, the number of anoma-
lies are greater using a smaller threshold level. On the
other hand, anomalies found in Carbon dioxide (COz)
in scaled versions of data streams were fewer as com-
pared to non-scaled data stream based models, which
point toward a decrease in sensitivity. Another notice-
able trend in the number of anomalies is that the sum of
both conditional anomalies was marginally greater than
the unconditional data set except for standard scaler
based models. We found a unique trend in artificial sen-
sor condition-based models. No anomalies were found
in non-scaled and MinMax scaler models in conditional
data sets, but standard scaled models found anomalies.
Anomalies found in unconditional data set based mod-
els were similar to non-scaled and scaled models. Sound
sensor-based models show an opposite reaction when it
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comes to anomalies; we found zero anomalies in UC
and DT. Whereas NT based models found anomalies,
non-scaled and MinMaxScaler models were pretty much
similar. However, the StandardScaler model found more
anomalies that represent increased sensitivity similar to
previously discussed pressure and particulate concen-
tration models.

3.8.8 Detecting Anomalies using Intra-Device
(Multivariate)

The total number of unique intra-device combinations
of data streams was 626. We choose a few of them for
analysis in this paper. We noticed that most of the
data preprocessing techniques could find almost similar
anomalies in the sense-hat device (all data streams),
except MinMaxScaler, which was extremely sensitive,
and MAD was too insensitive. Kurtosis and Skewness
were not effective. Zero anomalies were found when im-
plemented on the temperature and humidity (Temp-
Humidity) set. The behaviour of MinMaxScaler was the
same in Temp-Humidity but turns regular when used on
all other associated streams, i.e., T, P, H and HI (T-P-
H-HI) MAD were also able to find the same contextual
anomalies on this set. When looking at the results of
all data streams in All-in-1, we found that MAD was
most sensitive on UC and most insensitive on DT (zero
anomalies). The average was not effective (a few anoma-
lies detected) on NT and UC, whereas it could find the
same contextual anomalies as other techniques. We no-
ticed that temperature sensor readings were regularly
dipping randomly and abruptly, which was one of the
reasons for its influence over other data streams and
thus on statistical outcomes. Looking at other models
in all-in-1 devices, excluding temperature-related val-
ues, we found few anomalous activities.

8.8.4 Detecting Anomalies using Inter-Device Multiple
Data Streams (Multivariate)

As discussed in an earlier section about the one known
anomalous activity based on sound and light sensors’
data, we analyzed the particular activity to learn the
effectiveness of different algorithms and pre-processing
techniques. We found that the CNN model with scaled,
non-scaled and average sound and artificial values can
spot the anomalous activity without spotting false posi-
tives (usual everyday activity). In contrast, RNN mod-
els were not successful in detecting the particular ac-
tivity, as shown in figure [7] We also noticed that false
positives were found in all models, along with detecting
anomalous activity in the NT dataset. We also found
that SKLearn based models overwhelmed false positives
in all datasets.
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Fig. 7 Sound & Light Known ” Anomalous Activity” Anal-
ysis

3.3.5 Point, Contextual, Combined Anomalies

Looking closely at figure [8] the two highlighted por-
tions of the timeline of the temperature data stream
from the sense-hat device. We observed at the end of
April 2021 temperature sensor malfunctioned, resulting
in an extreme increase to 30°C. Another event marked
anomalous in highlighted point 2 shows a sudden dip
in temperature from 22.6°C to 22.9°C detected. While
looking at historical data, both points are in the normal
range, but this activity is considered anomalous in con-
text. Figure [0 shows the combined activity of artificial
light and sound for the week commencing on June 14,
2021. In the context, office activity started early, i.e.
at 0530 hours on Monday, Tuesday, and Thursday and
was detected as anomalous True Positive (TP). The of-
fice starts at 0700 hours on Friday and Wednesday, as
shown in the black circle. The Friday morning activ-
ity was detected as False Positive (FP). On the other
hand, the Wednesday activity was accurately detected
as True Negative (TN). In addition to day start activ-
ities, a TP anomaly was detected around 2100 hours
due to a response initiated as a result of a (separately
operated) fire alarm.

4 Related Work

There are some suggestions for supervised anomaly de-
tection methoddLiu et al.| (2015)) [Laptev et al.| (2015]).
The results are promising, but labelled data is rare
in the real world. Perhaps unsupervised ML methods
have become the focus of attention because of the ex-
cellent performance and the flexibility provided |Li et al.
(2021a). The scope of anomaly detection is not limited
to specific areas. However, everywhere e.g., industry
Oh and Yun| (2018)), financial systems |Gran and Veiga



Detecting Anomalies within Smart Buildings using Do-It-Yourself Internet of Things

11

RUE
il

HH,’,\I‘M.'\W[ “l.'r'n ,r‘r’f\mﬁ f\ M ° i
'H

Fig. 8 1-Point Anomaly vs 2-Contextual Anomaly in Tem-

perature Data Stream
! il L Q [ Qun

Fig. 9 Combined Contextual Anomalies in Sound and Arti-
ficial Light Data Streams

(2010), healthcare and maintenance of spacecraft by de-
tecting anomalies |Gupta et al.| (2014), cyber-physical
system [Luo et al/| (2021), and smart buildings

et al] (2016).

4.1 Anomaly Detection Techniques for IoT Data

Research conducted by Microsoft led
to the development of an algorithm for detecting anoma-
lies in time-series data using residual spectrum pro-
cessing and convolutional neural networks (SR-CNN).
However, they were mainly concerned about stationery
and seasonal data, resulting in ineffective results on
non-stationary data. Data from Surface-mounted audio
sensors used with semi-supervised CNN auto-encoders
[Oh and Yun| (2018)) to detect faults in industrial ma-
chinery. A deep autoencoders based model has been
proposed for detecting spectrum anomalies in wireless
communications [Feng et al| (2017). The model devel-
oped in this work is to detect anomalies that may oc-
cur due to an abrupt change in the signal-to-noise ratio
(SNR) of the monitored communications channel. In
a critical infrastructure environment, if phasor data is

) | | |
| L| ool 1] lLJjM ALY _w..lﬂhwif” b

manipulated, the control centres may take the wrong
actions, negatively impacting power transmission relia-
bility. To mitigate this threat [Yan and Yu (2015) pro-
posed a deep autoencoder technique. The
study uses data from a number of heterogeneous
IToT sensors, including temperature, pressure, vibra-
tion, and others, to develop an RNN-LSTM based re-
gression model to predict failures in pumps at a power
station. A new RNN-LSTM based method was devel-
oped [Hundman et al.| (2018) to detect anomalies in
a massive amount of telemetry data from spacecraft.
They also offered a method for evaluating that was
non-parametric, dynamic, and unsupervised. Another
solution proposed to detect anomalies
in multi-seasonality time-series data using RNN-GRU
also proposed a Local Trend Inconsistency metric on
top of their proposed anomaly detection algorithm. The
authors of Mart{ et al.| (2015) proposed a combination
of Yet Another Segmentation Algorithm (YASA) and
OneClassSVM (OCSVM) in order to detect anomalous
activities in turbomachines in the petroleum industry.
The authors of Aurino et al.| (2014) used OCSVM to de-
tect gunshots from audio signals. OCSVM grouped with
DNN used to detect road traffic activities by
(2020)). Isolation Forest (IF) was used to detect
anomalies in smart audio sensors|Antonini et al.| (2018)).
IF is also used, in combination with order-preserving
hashing techniques, to detect anomalies by
(2020). Another novel approach proposed by
land Gulliver| (2020) uses autoencoder based IF for log-
based anomaly detection.

4.2 Environmental Monitoring within Buildings

In today’s world, human beings spend 90% of their time
in built environments which includes residential, com-
mercial, education, as well as transport, i.e. vehicles,
. Monitoring an indoor environment is dif-
ferent from industrial or mission-critical infrastructure,
where normal activities are largely known because of
the heterogeneous nature of activities. There are sev-
eral environmental monitoring applications other than
anomaly detection, e.g. Energy Monitoring, Comfort
Level Monitoring. Environment monitoring is well re-
searched. The heterogeneous nature of environments re-
quires the selection of the suitable parameters, sensors
technologies, communication mediums, placement and
power arrangements. Major parameters in this domain
are temperature, humidity, carbon emissions, illumina-
tion, airflow, and occupancy [Hayat et al| (2019). Air
Quality (AQ) is becoming a critical matter. WHO re-
ported that there are almost 7 million premature deaths

are being caused by air pollution annually (2021]).
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Authors of [Saini et al.| (2020]) presented a survey of sys-
tem architectures used for Indoor Air Quality (TAQ)
data collection as well as methods and applications for
prediction. Indoor environment quality plays an essen-
tial role in the health and well-being of human be-
ings, [Clements et al. (2019) presented a living lab to
simulate real office spaces to support further research
on environmental monitoring in the built environment.
Occupancy monitoring is essential to determine air-
conditioning and illumination requirements in build-
ings, [Erickson et al.| (2014) proposed a wireless sensor
network based occupancy model to be integrated with
buildings conditioning systems. Based on two seasons of
monitoring TAQ and thermal comforts in school build-
ing |Asif and Zeeshan| (2020) recorded more than 50%
increase in COq levels during class times. Thermal com-
fort has critical importance for the well-being and pro-
ductivity of occupants in indoor environments, [Valine-
jadshoubi et al.| (2021) proposed an integrated sensor-
based thermal comport monitoring system for buildings
which also provides the virtual visualization of thermal
conditions in buildings. Authors of [Ngah Nasaruddinl
et al.| (2019) presented temperature and relative hu-
midity monitoring solutions in high temperature and
humid climate environments using well-calibrated ther-
mal micro-climate devices and a single-board microcon-
troller.

4.3 Anomaly Detection within Buildings

Researchers propose a wide variety of methods for anomaly

detection in buildings. The diversity of techniques re-
flects extensive work being done in this domain. Un-
supervised learning has been used for fault detection
and diagnostics in smart buildings. Authors of |Capoz-
zoli et al| (2015) proposed a simple technique based
on unsupervised learning that can automatically detect
anomalies in energy consumption based on the histor-
ically recorded data of active lighting power and total
active power. They adopt statistical pattern recognition
and ANN along-with other anomaly detection meth-
ods. A novel method, Strip, Bind, and Search (SBS),
based on unsupervised learning proposed by [Fontugne
et al.| (2013) to help identify devices with anomalous
behaviour by looking at inter-device relationships. The
authors of [Xu et al.| (2021) also proposed a data min-
ing based unsupervised learning technique to detect
anomalies in HVAC systems; the proposed work also
performs dynamic energy performance evaluation. In
the models proposed by |Araya et al| (2017)), overlap-
ping sliding windows and ensemble anomaly detection
were used to identify anomalies. The same authors also
proposed a Collective Contextual Anomaly detection

using similar techniques in their previous work |Araya
et al. (2016). A Generalized Additive Model was pro-
posed by [Ploennigs et al. (2013) for diagnosing build-
ing problems based on the hierarchy of sub-meters. A
Two-Step clustering algorithm based on unsupervised
machine learning was proposed by [Poh et al.| (2020)) to
detect anomalous behaviour from physical access data
of employees about their job profiles. In a distributed
sensor network, an anomaly detection technique was
proposed by Meyn et al| (2009) using semi-empirical
Markov Models for time-series data. In a recent survey
conducted by Himeur et al.| (2021b), the authors con-
cluded that anomaly detection techniques could help
in the reduction of energy consumption to benefit all
stakeholders.

5 Lessons Learnt and Discussion

DIY based (single-board computers, microcontrollers,
sensors) IoT devices are widely available and becoming
easy to deploy. These devices are micro-manageable and
cost-effective, but it is a laborious job which leads to
various challenges; while doing this research, we learnt
the following lessons: (i) missing data due to run-time
errors, (ii) threshold calculation, (iii) inter-device syn-
chronisation, (iv) importance of "normal” dataset, (v)
an overwhelming number of ML models, (vi) converting
time-series data for unsupervised ML processing and
(vii) handling interactive graphs.

Missing data: DIY devices are prone to configura-
tion, deployment, and handling problems when used
for capturing data on a long-term basis. There is no
built-in notification system that can alert in case of
any error; thus, the errors persist silently for an ex-
tended period, ultimately affecting the dataset. Dur-
ing our data-capturing stage, we faced various scenarios
where data collection stopped, e.g. device power outage,
sensor malfunctions, communication errors, etc. thus;
the data is missing during those time slots.

Threshold calculation: Anomaly decision in time-
series data using an unsupervised approach is based on
loss and threshold. The threshold is critical in the deci-
sion process and calculating the threshold for each con-
figuration (data stream combinations with sub-datasets).
A maximum loss value from a normal dataset (training
dataset) can be used as a threshold; to achieve that,
an utterly normal dataset (without any capture-time
errors) is required.

Inter-device synchronisation : Due to multiple de-
vice setups, there were synchronisation errors due to
missed data in devices at different time slots. Data lost
from any single device or frequency differences can re-
sult in synchronisation issues. This creates a unique
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challenge when combining data streams from inter-device.

It is recommended to use a single host device for all sen-
sors or create a master table with a single timestamp at
the ingester-end to keep data synchronised at capturing
stage.

Importance of "normal” dataset: For the above-learnt
lessons, we observe the critical importance of a com-

pletely normal dataset, e.g. without run-time errors (com-

munication, power, hardware).

An overwhelming number of ML models: Due to the
number of data streams, the number of combinations
was in the thousands. The resulting ML models and
associated results were overwhelming and difficult to
observe and manage. A systematic approach needed to
be adopted to handle the heterogeneous configuration
of datasets, models, and results.

Converting time-series data for unsupervised ML
processing: Time-series conversion of data sets using
pandas data-frames is far more computationally expen-
sive than using the NumPy library. It is wise to test
and compare all available methods for each sub-task
before starting mass processing. The result is the same
for both methods.

Handling interactive graphs: For unsupervised learn-
ing approaches for time series, analysing data using in-
teractive graphs is vital but requires extensive compu-
tational resources to load and interact graphs with mul-
tiple data streams.

6 Conclusion and Future Work

In this paper, we captured data streams from various
in-situ sensors using different devices with a variety of
configurations. We were able to detect point, contex-
tual and combined anomalies. We compared different
ML methods combined with several data pre-processing
techniques to better understand how to efficiently de-
tect anomalous activities in a smart building environ-
ment. We also evaluated the performance of the con-
ditional dataset (based on environmental conditions,
e.g. daylight). We found that it can work better for
detecting point anomalies as the activities are filtered
for certain situations. A clean, anomaly-free dataset
is required for model training for better results. Un-
conventional scaling techniques, e.g., atan, can lower
sensitivity for detection and an overhead during the
data-capturing process; atan and other conversions can
be performed in bulk at any later stage with reason-
able computational resources. We explored relations be-
tween various sensors in finding anomalies in buildings.

We also explored effective techniques to pre-process datasets

to optimise ML models. We also introduced an inter-
device data synchronisation technique to fill up missing

time slots and trim time-series datasets when compar-
ing different datasets. Threshold plays a vital role in
reducing false positives and increasing true positives.
A dynamic threshold calculation is essential to deal
with the overwhelming configuration of data streams.
The day of the week can also be used as a context
for anomaly detection in time-series datasets, but a
large dataset is required for modelling. Availability of a
dataset with known anomalies will be an important step
towards determining overall efficiency of ML models.

Acknowledgement

This work is partially supported by EPSRC PETRAS
(EP/S035362/1) and GCHQ National Resilience Fel-
lowship.

References

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi.
Understanding of a convolutional neural network. Pro-
ceedings of 2017 International Conference on Engineer-
ing and Technology, ICET 2017, 2018-Janua:1-6, 2018.

Alex Schiffer. How a fish tank helped hack a casino, dec 2017.

Mennatallah Amer, Markus Goldstein, and Slim Abdennad-
her. Enhancing one-class Support Vector Machines for un-
supervised anomaly detection. Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Descrip-
tion, ODD 2013, pages 8-15, 2013.

Mattia Antonini, Massimo Vecchio, Fabio Antonelli, Pietro
Ducange, and Charith Perera. Smart audio sensors in
the internet of things edge for anomaly detection. I[EEE
Access, 6:67594-67610, 2018.

Daniel B. Araya, K. Grolinger, Hany F. Elyamany,
Miriam A.M. Capretz, and G. Bitsuamlak. Collective
contextual anomaly detection framework for smart build-
ings. Proceedings of the International Joint Conference
on Neural Networks, 2016-Octob:511-518, 2016.

Daniel B. Araya, Katarina Grolinger, Hany F. ElYamany,
Miriam A.M. Capretz, and Girma Bitsuamlak. An ensem-
ble learning framework for anomaly detection in building
energy consumption. Energy and Buildings, 144:191-206,
2017.

Ayesha Asif and Muhammad Zeeshan. Indoor temperature,
relative humidity and CO2 monitoring and air exchange
rates simulation utilizing system dynamics tools for nat-
urally ventilated classrooms. Building and Environment,
180(January):106980, 2020.

Francesco Aurino, Mariano Folla, Francesco Gargiulo, Vin-
cenzo Moscato, Antonio Picariello, and Carlo Sansone.
One-class SVM based approach for detecting anomalous
audio events. Proceedings - 2014 International Confer-
ence on Intelligent Networking and Collaborative Sys-
tems, IEEE INCoS 2014, pages 145-151, 2014.

Catriona Brady. RATING TOOLS FOR RESILIENCE-
UNDRR and the World Green Building Council. 2021.

Sebastian Buschjager, Philipp Jan Honysz, and Katharina

Morik. Generalized isolation forest: Some theory and

more applications extended abstract. Proceedings - 2020

IEEE Tth International Conference on Data Science and

Advanced Analytics, DSAA 2020, 2(4):793-794, 2020.



14

Yasar Majib et al.

Alfonso Capozzoli, Fiorella Lauro, and Imran Khan. Fault de-
tection analysis using data mining techniques for a cluster
of smart office buildings. Fxpert Systems with Applica-
tions, 42(9):4324-4338, 2015.

Nicholas Clements, Rongpeng Zhang, Anja Jamrozik, Car-
olina Campanella, and Brent Bauer. The spatial and
temporal variability of the indoor environmental quality
during three simulated office studies at a living lab. Build-
ings, 9(3), 2019.

Djamel Djenouri, Roufaida Laidi, Youcef Djenouri, and
Ilangko Balasingham. Machine learning for smart build-
ing applications: Review and taxonomy. ACM Computing
Surveys, 52(2), 2019.

Varick L. Erickson, Miguel A Carreira-Perpindn, and Al-
berto E. Cerpa. Occupancy modeling and prediction for
building energy management. ACM Transactions on Sen-
sor Networks, 10(3), 2014.

Amir Farzad and T. Aaron Gulliver. Unsupervised log mes-
sage anomaly detection. ICT Ezpress, 6(3):229-237, 2020.

Qingsong Feng, Yabin Zhang, Chao Li, Zheng Dou, and Jin
Wang. Anomaly detection of spectrum in wireless com-
munication via deep auto-encoders. Journal of Supercom-
puting, 73(7):3161-3178, 2017.

Afreen Ferdoash, Shubham Saini, Jitesh Khurana, and Amar-
jeet Singhz. Poster abstract: Analytics driven operational
efficiency in HVAC systems. BuildSys 2015 - Proceedings
of the 2nd ACM International Conference on Embedded
Systems for Energy-Efficient Built, pages 107-108, 2015.

Romain Fontugne, Jorge Ortiz, Nicolas Tremblay, Pierre
Borgnat, Patrick Flandrin, Kensuke Fukuda, David
Culler, and Hiroshi Esaki. Strip, bind, and search: A
method for identifying abnormal energy consumption in
buildings. IPSN 2018 - Proceedings of the 12th Interna-
tional Conference on Information Processing in Sensor
Networks, Part of CPSWeek 2013, pages 129-140, 2013.

Aurea Gran and Helena Veiga. Wavelet-based detection of
outliers in financial time series. Computational Statistics
and Data Analysis, 54(11):2580-2593, 2010.

Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei
Han. Outlier Detection for Temporal Data: A Survey.
IEEFE Transactions on Knowledge and Data Engineering,
26(9):2250-2267, 2014.

Hasan Hayat, Thomas Griffiths, Desmond Brennan,
Richard P. Lewis, Michael Barclay, Chris Weirman,
Bruce Philip, and Justin R. Searle. The state-of-the-art
of sensors and environmental monitoring technologies in
buildings. Sensors (Switzerland), 19(17), 2019.

Yassine Himeur, Abdullah Alsalemi, Faycal Bensaali, and
Abbes Amira. Smart power consumption abnormality
detection in buildings using micromoments and improved
K-nearest neighbors. International Journal of Intelligent
Systems, (August 2020):2865-2894, 2021a.

Yassine Himeur, Khalida Ghanem, Abdullah Alsalemi, Faycal
Bensaali, and Abbes Amira. Artificial intelligence based
anomaly detection of energy consumption in buildings:
A review, current trends and new perspectives. Applied
Energy, 287(April):1-41, 2021b.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term
Memory. Neural Computation, 9(8):1735-1780, nov 1997.

Kyle Hundman, Valentino Constantinou, Christopher La-
porte, Ian Colwell, and Tom Soderstrom. Detecting space-
craft anomalies using LSTMs and nonparametric dynamic
thresholding. Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 387-395, 2018.

Vikramaditya Jakkula and Diane J. Cook. Detecting anoma-
lous sensor events in smart home data for enhancing the
living experience. AAAI Workshop - Technical Report,
WS-11-07(December 2014):33-37, 2011.

Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and
scalable framework for automated time-series anomaly
detection. Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, 2015-Augus:1939-1947, 2015.

Jia Li, Shimin Di, Yanyan Shen, and Lei Chen. FluxEV:
A Fast and Effective Unsupervised Framework for Time-
Series Anomaly Detection. WSDM 2021 - Proceedings of
the 14th ACM International Conference on Web Search
and Data Mining, pages 824-832, 2021a.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun
Zhou. A Survey of Convolutional Neural Networks: Anal-
ysis, Applications, and Prospects. IEEE Transactions
on Neural Networks and Learning Systems, pages 1-21,
2021b.

Dapeng Liu, Youjian Zhao, Haowen Xu, Yonggian Sun, Dan
Pei, Jiao Luo, Xiaowei Jing, and Mei Feng. Opprentice
: Towards Practical and Automatic Anomaly Detection
Through Machine Learning Categories and Subject De-
scriptors. In ACM Internet Measurement Conference,
2015.

Fei Tony Liu, Kai Ming Ting, and Zhi Hua Zhou. Isolation
forest. Proceedings - IEEE International Conference on
Data Mining, ICDM, pages 413-422, 2008.

Xinyu Liu, Enhan Mai, Xiangxiang Xu, Hae Young Noh, Lin
Zhang, Xinlei Chen, and Pei Zhang. Poster abstract: In-
dividualized calibration of industrial-grade gas sensors in
air quality sensing system. SenSys 2017 - Proceedings of
the 15th ACM Conference on Embedded Networked Sen-
sor Systems, 2017-Janua:5-6, 2017.

Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng, and Dan-
feng Daphne Yao. Deep Learning-based Anomaly Detec-
tion in Cyber-physical Systems: Progress and Opportuni-
ties. ACM Computing Surveys, 54(5), 2021.

Luis Marti, Nayat Sanchez-Pi, José Manuel Molina, and Ana
Cristina Bicharra Garcia. Anomaly detection based on
sensor data in petroleum industry applications. Sensors
(Switzerland), 15(2):2774-2797, 2015.

Sean Meyn, Amit Surana, Yiqing Lin, and Satish Narayanan.
Anomaly detection using projective Markov models in a
distributed sensor network. Proceedings of the IEEE Con-
ference on Decision and Control, pages 4662—-4669, 2009.

Afigah Ngah Nasaruddin, Boon Tuan Tee, Mohd Tahir
Musthafah, and Md Eirfan Safwan Md Jasman. Ambient
data analytic on indoor environment monitoring for office
buildings in hot and humid climates. Data in Brief, 27,
2019.

Dong Yul Oh and Il Dong Yun. Residual error based anomaly
detection using auto-encoder in SMD machine sound.
Sensors (Switzerland), 18(5):1-14, 2018.

Joern Ploennigs, Bei Chen, Anika Schumann, and Niall
Brady. Exploiting generalized additive models for diag-
nosing abnormal energy use in buildings. BuildSys 2013
- Proceedings of the 5th ACM Workshop on Embedded
Systems For Energy-Efficient Buildings, 2013.

Ju Peng Poh, Jun Yu Charles Lee, Kah Xuan Tan, and Eric
Tan. Physical access log analysis: An unsupervised clus-
tering approach for anomaly detection. ACM Interna-
tional Conference Proceeding Series, 2020.

Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui
Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, and
Qi Zhang. Time-series anomaly detection service at Mi-



Detecting Anomalies within Smart Buildings using Do-It-Yourself Internet of Things

crosoft. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
3330680(c):3009-3017, 2019.

Stefano Rovetta, Zied Mnasri, and Francesco Masulli. Detec-
tion of Hazardous Road Events from Audio Streams: An
Ensemble Outlier Detection Approach. IEEE Conference
on Evolving and Adaptive Intelligent Systems, 2020-May,
2020.

Jagriti Saini, Maitreyee Dutta, and Gongalo Marques. Indoor
air quality prediction systems for smart environments: A
systematic review. Journal of Ambient Intelligence and
Smart Environments, 12(5):433-453, 2020.

Bernhard Schélkopf, Robert Williamson, Alex Smola, John
Shawe-Taylor, and John Piatt. Support vector method
for novelty detection. Advances in Neural Information
Processing Systems, pages 582-588, 2000.

Bharath Sudharsan, Simone Salerno, Duc Duy Nguyen,
Muhammad Yahya, Abdul Wahid, Piyush Yadav, John G.
Breslin, and Muhammad Intizar Ali. TinyML Bench-
mark: Executing Fully Connected Neural Networks on
Commodity Microcontrollers. 7th IEEE World Forum
on Internet of Things, WF-IoT 2021, 0:883-884, 2021.

Mojtaba Valinejadshoubi, Osama Moselhi, Ashutosh Bagchi,
and Ashraf Salem. Development of an IoT and BIM-based
automated alert system for thermal comfort monitoring in
buildings. Sustainable Cities and Society, 66(November
2020):102602, 2021.

WHO. Air pollution is one of the biggest environmental
threats to human health, alongside climate change., 2021.

Wentai Wu, Ligang He, Weiwei Lin, Yi Su, Yuhua Cui,
Carsten Maple, and Stephen A. Jarvis. Developing an
Unsupervised Real-time Anomaly Detection Scheme for
Time Series with Multi-seasonality. IEEE Transactions
on Knowledge and Data Engineering, 4347(c):1-1, 2020.

Haolong Xiang, Zoran Salcic, Wanchun Dou, Xiaolong Xu,
Lianyong Qi, and Xuyun Zhang. OPHiForest: Order Pre-
serving Hashing Based Isolation Forest for Robust and
Scalable Anomaly Detection. International Conference
on Information and Knowledge Management, Proceed-
ings, pages 1655-1664, 2020.

Yizhe Xu, Chengchu Yan, Jingfeng Shi, Zefeng Lu, Xiaofeng
Niu, Yanlong Jiang, and Faxing Zhu. An anomaly detec-
tion and dynamic energy performance evaluation method
for HVAC systems based on data mining. Sustainable
Energy Technologies and Assessments, 44(February):
101092, 2021.

Weizhong Yan and Lijie Yu. On accurate and reliable
anomaly detection for gas turbine combustors: A deep
learning approach. Proceedings of the Annual Confer-
ence of the Prognostics and Health Management Society,
PHM, pages 440-447, 2015.

Weishan Zhang, Wuwu Guo, Xin Liu, Yan Liu, Jiehan Zhou,
Bo Li, Qinghua Lu, and Su Yang. LSTM-Based Analy-
sis of Industrial IoT Equipment. IFEE Access, 6:23551—
23560, 2018.

Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang
Liu, and Dongya Wu. Convolutional neural networks for
time series classification. Journal of Systems Engineering
and Electronics, 28(1):162-169, 2017.



	Introduction
	Anomaly Detection within Smart Buildings
	Experimentation Results
	Related Work
	Lessons Learnt and Discussion
	Conclusion and Future Work

