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ABSTRACT

Stress has emerged and continues to be a regular obstacle in

people’s lives. When left ignored and untreated, it can lead

to many health complications, including an increased risk of

death. In this study, we propose a foundationmodel approach

for stress detection without the need to train the model from

scratch. Speci�cally, we utilise the foundation model "Neuro-

GPT", which was trained on a large open dataset (TUH EEG)

with 20,000 EEG recordings. We �ne-tune the model for

stress detection and evaluate it on a 40-subject open stress

dataset. The evaluation results with a �ne-tuned Neuro-GPT

are promising with an average accuracy of 74.4% in quanti-

fying "low-stress" and "high-stress". We also conducted ex-

periments to compare the foundation model approach with

traditional machine learning methods and highlight several

observations for future research in this direction.
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1 INTRODUCTION

In recent years, stress has emerged as a major public health

issue. The fast-paced nature of contemporary life, coupled

with increasing demands in both personal and professional

spheres, has led to heightened stress levels globally. A 2023

survey of adults in England found that the proportion report-

ing severe levels of distress increased by 46% between 2020

and 2022 [1]. The WHO [2] briefed a 25% increase in global

mental health prevalence in the �rst year of the COVID-19

pandemic due to multiple stress factors. Prolonged exposure

to stress is known to have detrimental and far-reaching ef-

fects on our health. These can be both physical, for example

a�ecting the cardiovascular, immune and gastrointestinal

systems [3], or mental altering cognitive function and lead-

ing to the development of anxiety disorders and depression

[4]. Moreover, data from AXA UK and the Centre of Eco-

nomic and Business Research indicates that work-induced

stress alone costs the UK economy £28 billion per year [5].

There is a pressing need for e�ective monitoring, early de-

tection, and intervention strategies to mitigate its adverse

e�ects on individuals and society.

Key to improving our approaches to stress management is

understanding the neural patterns that underpin the stress

response. Real-time Electroencephalography (EEG) monitor-

ing is a non-invasive and widely used way of exploring the

brain activity associated with stress. EEG time-series data

can be converted to reveal the proportion of frequencies that

make up the signal. This can provide insight into the mental

state of the subject undergoing the stress stimuli and allows

the identi�cation of neural patterns. However, due to the

inherent variability and complexity of EEG datasets, classi-

fying and interpreting the data has remained a major chal-

lenge. Traditional analytical methods such as time-frequency
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distributions and wavelet transform [6] have been used his-

torically with some success but often struggle to handle the

variable and dynamic characteristics of the data e�ectively.

Until recently, machine learning in physiological sensing

systems has been specialised tools, i.e. trained to perform

a certain task, such as epileptic seizure detection [7], pain

quanti�cation [8], or drowsiness monitoring [9], etc. This

approach, however, faces a fundamental challenge. Large

amounts of data are required to be collected for each tar-

geted application, which is both labour-intensive and time-

consuming. Furthermore, reusing previously collected datasets

is not possible if the targeted applications or experiment se-

tups are di�erent.

This paper explores the foundation model approach in

stress detection using EEG signals. The developed method

aims to provide an objective and accurate model to quantify

stress levels by leveraging a pre-trained foundation model on

a large and publicly available EEG dataset, thus, eliminating

the need for training the model from scratch. We make the

following contributions.

(1) We explored the application of Neuro-GPT [10], a foun-

dation model trained on a large open dataset (TUH EEG)

[11] with 20,000 EEG recordings and �ne-tuned it for

stress detection.

(2) We conducted the evaluation on a publicly available

dataset of 40 subject EEG recordings [12] exposed to

stress stimuli. The results are promising with an aver-

age accuracy of 74.4%. We also conducted experiments

to compare the foundation model approach with tradi-

tional machine learning methods and highlight several

observations for future research in this direction.

2 METHODOLOGY

In this study, we employ the SAM40 public stress EEG dataset

[8] to �ne-tune the Neuro-GPT foundation model.

2.1 Data Pre-processing

Dataset Overview. The SAM 40 EEG dataset is a collec-

tion of electroencephalogram data obtained from 40 subjects,

who have undergone cognitive tasks known to induce stress

using a 32-electrode Emotiv Epoc Flex gel kit. The tasks were

the identi�cation of symmetry in mirror images, arithmetic

equations, Stroop colour-word test and a period of relax-

ation. Each task lasted 25 seconds and was repeated thrice,

producing a total of 480 samples. The subjects were also

asked to self-report their stress level for each stress-inducing

task on a 1 to 10 scale. The pre-processed data, provided by

Ghosh et al. 2022 [8], was utilised in this study. This data

was pre-processed with band-pass �ltering from 0.5-45 Hz,

along with artefact removal via a Savitzky-Golay �lter and

wavelet thresholding.

Signal analysis. Short-time Fourier transforms were gen-

erated for each channel across the 4 conditions, for each sub-

ject and trial. This was accomplished through spectrograms

on Matlab with the parameters set to a sampling frequency

of 128 Hz, a window length of 512, an overlap length of 500,

and an nFFT of 512.

To allow for further analysis, topographic maps were gen-

erated from 0-60 Hz in 10 Hz intervals for each subject, to

visualise the spatial distribution of each frequency band. This

was completed with EEGLAB GUI. An example set of heat

maps is shown in Fig. 1 for a subject undergoing an arith-

metic test and relaxation. There is a clear drop in intensity

at around 45 Hz across the stress and relaxed conditions.

The stress signal appears to show "bursts" of gamma activity

as opposed to the continuous gamma activity shown in the

relaxed data above 45 Hz.

Across the 40 subjects and the 4 test conditions, the most

active area of brain activity is in the frontal area of the brain.

This is observed at 10 Hz intervals from 0 to 60 Hz, re�ecting

this area’s importance in the activity of frequency bands

corresponding to mental states (alpha, beta and gamma).

Therefore in future analysis, it is noted that electrodes in

this area (Fz, Fp1, F7, F3, F4, F8 and Fp2) are of heightened

relevance. Moreover, a similar pattern is observed in all test

conditions when power spectral density is plotted against

frequency. This re�ects the initial spectrogram observations

of a shift at around 45 Hz in intensity.

Lastly, for further analysis, we extracted statistical fea-

tures from selected subjects to determine where there are

perceivable di�erences between stress samples. These fea-

tures include mean, variance, skewness, and kurtosis.

Samples Selection. As the data was recorded with 32 elec-

trodes, it was important to identify the relevant electrodes for

stress detection. We analysed the channels to determine this

and to ensure the most appropriate channels were selected if

necessary. Furthermore, the dataset’s subject rating system

raises a possible con�ict between manual and automated

classi�cation. An arithmetic sample can be rated 1 with an-

other arithmetic sample rated 10 while still corresponding

to the same class. With the ratings on the opposite ends of

the rating spectrum, this implies that a class may have con-

�icting representations. For our purpose of stress detection,

this would confuse the classi�er, as samples that may not be

quanti�able as stress would be included in a stress class.

2.2 Fine-tuning Stress

Algorithm Architecture. Neuro-GPT leverages both an

EEG encoder and a GPT model. The learning algorithm can

be used without either feature, allowing for multiple types

of �ne-tuning strategies. We will leverage two strategies

outlined in Neuro-GPT: "Encoder+GPT" and "Encoder-Only".

2
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Figure 1: Power spectral density over frequency plots, accompanied by topographic brain maps at intervals of

frequency every 10 Hz. This data is from Subject 1 trial 1, arithmetic (A) and relaxed (B).

The former uses the complete Neuro-GPT model with the

latter using the model after the GPT architecture is removed.

Brie�y, �xed-length chunks of EEG data are passed through

an EEG encoder, which extracts "spatiotemporal features"

and creates learning embeddings. These learning embed-

dings make use of a "casual masking" technique, masking

tokens in a sequence. These sequences are fed into the GPT

model, where the model "learns to predict" the masked to-

kens. The reconstruction loss is then computed using the

original and the predicted token.

Data Preparation. We con�gured the Neuro-GPT release

with their pre-trained model for it to be �ne-tuned on the

SAM dataset. Originally, Neuro-GPT used the BCI Competi-

tion IV Motor Imagery dataset [13] for �ne-tuning, which

required its own adjustments to be compatible with the pre-

trained model. The data preparation in our �ne-tuning had

to match their con�guration as closely as possible to produce

more reliable results.

The raw SAM 40 EEG data arrays were extracted and

processed. This included up-sampling the data to 250 Hz, ap-

plying a bandpass �lter at 0.5 Hz and 100 Hz, and applying a

notch �lter at 50 Hz to eliminate the mains hum. SAM 40 was

recorded with 32 electrodes, compared to the 22 electrodes

used for both TUH and BCI. Out of these 32 electrodes, only

16 were a match with the Neuro-GPT electrodes. This re-

sulted in 6 missing electrodes. Our samples were reduced to

the 16 matching channels with an added selection of 6 chan-

nels. Finally, as NeuroGPT is con�gured to accept zipped

numpy arrays as input, we exported the samples in the same

format.

The SAM 40 dataset consisted of three "stress" activity

classes: "Arithmetic", "Mirror", and "Stroop" with each stress

event trial given a stress rating from 1-10. We leveraged this

system to produce a more consistent two-class stress system:

"Low-stress" and "High-stress". A threshold of 6 is applied

to the stress ratings, with all samples below a rating of 6,

alongside all relax samples, being classed as low-stress. All

samples with a rating of 6 and above are classed as high-

stress. From our analysis of this dataset, it was observed

that there was confusion between classes and stress at di�er-

ent ratings. Therefore, we deemed the binary classi�cation

system appropriate for our use case.

Sample Handling. Originally, Neuro-GPT attempts to

handle samples that consist of multiple trials that are hard-

coded in their trial extraction system. As our samples consist

of only one 25-second sample, the trial handling processes

were adjusted to handle each sample as its own individual

trial. Due to misalignment between the Neuro-GPT datasets,

a 22x22 matrix multiplication is required to line up their

electrodes. This aspect of the �ne-tuning was adjusted to be

compatible with our 16 matching electrodes. The remaining

electrode spots were �lled up by the next set of electrodes

in the SAM-40 dataset.

Fine-Tuning. Prior to �ne-tuning the model with our new

data, the Neuro-GPT �ndings were replicated to ensure con-

sistency and reliability. We then proceeded to �ne-tune the

pre-trained model with our new data. The number of classes

was reduced from the original 4 to 2, with 0 representing

"Low stress" and 1 representing "High stress". We �ne-tuned

Neuro-GPT with both "Encoder+GPT" and "Encoder-only"

strategies. Other training parameters, such as batch size,

were kept to the original defaults provided by Neuro-GPT.

For "Encoder+GPT", the number of chunks was increased to

12 for one set of results and 1 for another. The chunk length

of 2 remained for "Encoder-only" due to model compatibility.

The chunk size was kept at 500. Neuro-GPT uses cross-fold

validation. Our new data was split into 9 folds. Each �ne-

tuning method was conducted nine times, once for each fold.

This produced three sets of nine results and models.

Comparison with traditional models.We implemented

the state-of-the-arm algorithmswith our low-stress and high-

stress classes to provide more established comparisons to our

LLM �ne-tuning. With three comparison methods (2D-CNN,

SVM, and XGBoost), we produce three further binary classi-

�ers. Unlike the �ne-tuned model that uses raw EEG signals

as the input, we have to conduct additional pre-processing

steps, i.e., extracting Mel spectrograms, for our comparison

classi�ers to work.

3
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Figure 2: Neuro-GPT EEG encoder and GPT mask pre-

diction pipeline.

3 STRESS QUANTIFICATION RESULTS
WITH NEURO-GPT

3.1 Evaluation Metrics.

In this study, we use the last evaluation accuracy as the

accuracy for a given fold. We collect the accuracy from all

nine folds in each method and compute the average accuracy

for a given method. The highest fold accuracy and lowest

fold accuracy are also taken to provide a best and worst

scenario from our �ne-tuning.

3.2 Classi�cation Results.

The initial replication with "Encoder+GPT" and "Encoder-

only" using the pre-trained model met the provided results

from Neuro-GPT, falling within their accuracy ranges. Our

binary classi�cation method produced an average accuracy

of 71.3% when �ne-tuned with both the encoder and GPT.

The best fold saw an accuracy of 86.8% and 62.3% on the

worst fold. An accuracy of 74.4% was produced when �ne-

tuned with only the encoder, featuring an accuracy of 96.2%

on the best and 67.9% on the worst fold.

Both methods show reliable classi�cation of the low-stress

and high-stress separated samples. However, evaluation losses

increase after some time. The learning curves produced

demonstrate that the model may bene�t from more samples

in the dataset, speci�cally more distinctly class-separated

samples.

As seen in table 1, the "Encoder-only" method produces

better results than its GPT-included counterpart, with better

average, best, and worst folds. "Encoder+GPT"’s best fold of

86.8% accuracy was outperformed by its counterpart with

an accuracy of 96.2%. This may be due to a lower number

of chunks, as when one chunk of used, "Encoder+GPT" pro-

duced an accuracy of 92.5% on the same fold. While this

may be true, our results follow the same trend as Neuro-

GPT’s �ne-tuning where the "Encoder-Only" strategy out-

performed the rest.

Table 1: Fine-tuned Neuro-GPT’s performance

Method Avg Min [fold] Max [fold]

Encoder-only 0.744 0.679 [8] 0.962 [7]

Encoder+GPT (12 chunks) 0.713 0.623 [6] 0.868 [7]

Encoder+GPT (1 chunk) 0.738 0.623 [8] 0.925 [7]

3.3 Comparison with Traditional Machine
Learning Methods.

We conducted the experiments to compare the classi�cation

performance of our �ne-tuned Neuro-GPT with three tra-

ditional machine learning algorithms, 2D-CNN, SVM, and

XGBoost. For the traditional models to work, we extracted

theMel spectrograms from the raw EEG signals and use them

as the inputs. The 2D-CNN model achieved an overall accu-

racy of 85% while SVM and XGBoost showed similar overall

accuracy at 86% and 93%, respectively. The best fold accu-

racies of our �ne-tuned model resemble reliable classi�ers

and are able to outperform the SVM and 2D-CNN classi�ers.

However, the three algorithms yield better accuracy more

consistently than the �ne-tuned GPT model. It is important

to note that the traditional methods were trained speci�cally

on the target dataset and require Mel spectrograms to work

while the Neuro-GPT only �ne-tunes from a generic founda-

tion model and only requires raw EEG data. Thus, it gives

us some insights that the foundation model approach can

present a more scalable solution with relatively comparable

performance to traditional methods. The further inclusion of

domain knowledge through hand-engineered features could

potentially enhance the robustness of the �ne-tuned founda-

tion model.

4 DISCUSSION

SAM-40 Dataset Observations. It was observed that the

SAM 40 dataset lacked distinction between the task samples

and the relax samples when analysed via Mel spectrograms.

This was seen across the key electrodes. This determines

that Mel spectrograms may not be suitable for stress detec-

tion with this dataset due to its setup and methodology. A

self-reported stress rating system can be too subjective, as

di�erent people experience stress di�erently resulting in

what can be considered inconsistent ratings, as shown in

Fig. 3. For example, a person may provide a stress level of 7,

while another person better prepared for stress may provide

a lower rating while experiencing the same amount of stress.

We observed that the largest range (of low stress to high

stress) ratings in a given patient were 7. Through the statis-

tical feature extraction, perceivable di�erences are noticed

in the subject’s variance. However, as this is in the maxi-

mum range, other subjects may produce less variation in this

feature as their self-reported level ranges are lower.

4
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Figure 3: A comparison between a self-rated stress level

7 (high-stress) sample and a stress level 1 (low-stress)

sample in the SAM-40 dataset.

Furthermore, the tasks and relax samples were not pro-

duced in isolation, and this may produce con�icts and con-

fusion between the samples. It is stated in SAM 40 that a

subject’s next trial would start after their stress rating for

the prior trial was given. The last task of a trial would be an

arithmetic task, with the start of a trial being a relaxed event.

On average, arithmetic is the most stressful task based on

all subject’s self-reporting. This raises an open question on

whether relaxed samples in following trials are a�ected by

being conducted after the most stressful activity.

Lastly, the mismatch in electrodes between Neuro-GPT

and SAM 40 may have harmed the results. With only 16

similar electrodes, SAM 40’s setup may not be completely

compatible with Neuro-GPT. With complete channel com-

patibility, it can be argued that there may be an increase in

the model’s performance. To resolve this, Neuro-GPT can be

rebuilt to target the electrode con�guration used in SAM 40.

Nevertheless, based on the evaluation results featuring the

adapted 16+6 channel system, �ne-tuning can be considered

a step in the right direction.

5 RELATED WORK

Stress Quanti�cation with Physiological Sensors. Phys-

iological biosensors are enhancing stress monitoring in clin-

ical and personal health contexts by providing real-time

feedback [14]. Despite progress, challenges persist. Hou et al.

[15] developed an EEG-based stress recognition algorithm

with promising accuracy but calls for larger datasets. Sam-

son and Koh [16] note improvements with wearable sensors

like CortiWatch and SKINTRONICS for real-time cortisol

detection while emphasizing the need for better integration.

Kocielnik et al. [17] introduced a combined sensor wristband

and questionnaire framework, e�ectively linking stress data

to activities and behaviour. Yoon, Sim and Cho [18] presented

a �exible stress monitoring patch, with enhanced sensitivity

and a lifespan of 9 days. Jovanov et al. [19] detailed the WISE

system, which uses HRV for long-term stress monitoring.

Recent advancements in wearable biosensors have led

to signi�cant improvements, including enhanced machine

learning for EEG and sleep apnea analysis, novel systems for

joint health and cardiovascular monitoring [20], and �exible

bio-chips that address noise and accuracy issues in EMG,

ECG, PPG, and EEG [21]. Emerging stress-monitoring tech-

nologies now integrate sensors in smartwatches and contact

lenses for non-invasive tracking of indicators like heart rate

and cortisol levels [22], while multi-modal systems combine

PPG, EEG, eye-gaze, body motion capture, and GSR sen-

sors for precise real-time data synchronization [23]. While

the previous works implement traditional machine learn-

ing methods, we explore an alternative direction and utilise

the Neuro-GPT foundation model to enhance EEG-based

stress detection, exploring challenges and limitations with

�ne-tuning on a 40-subject dataset.

LLMs in Neuroscience Applications. Large Language

Models (LLMs) have demonstrated remarkable potential in

neuroscience. GPT-2 has been used [24] to generate synthetic

EEG and EMG signals, e�ectively augmenting real datasets

and improving classi�cation accuracy, with Random Forest

accuracy and real-time gesture recognition increasing by

over 20%. Neuroformer [25], a generative transformer model,

excels in predicting neuronal circuit activity and inferring

neural connectivity, signi�cantly outperforming traditional

models like GLMs, and showing e�ective multimodal inte-

gration. Additionally, GPT-3.5 and GPT-4 have improved the

automation of computational neuroscience literature cura-

tion for the ModelDB repository, achieving high accuracy

in identifying relevant papers and enhancing metadata ex-

traction [26]. Event Stream GPT (ESGPT) extends GPTs to

continuous-time sequences of complex events such as elec-

tronic health record data, demonstrating signi�cant perfor-

mance improvements over existing tools like TemporAI and

highlighting its potential to enhance research e�ciency in

non-NLP domains [27]. We follow this trend and attempt to

identify a scalable approach to stress quantisation by lever-

aging an LLM foundation model.

5
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6 CONCLUSION

In this paper, we presented solutions to stress focused EEG

collection and detection through frontal electrodes and vari-

ous machine learning methods. We focused on �ne-tuning

an LLM foundation model with an open dataset, con�gur-

ing our own modi�ed binary class system. Through this, we

made positive steps towards a reliable EEG-based stress clas-

si�er, with an average accuracy of 74.4%. Within the study,

we outline several challenges and limitations that were en-

countered. The produced results and methods can lay the

foundations for future work, which may involve larger com-

patible datasets and more optimised classes and features.
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