
Journal of Parallel and Distributed Computing 131 (2019) 161–172

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

IoT-CANE: A unified knowledgemanagement system for data-centric
Internet of Things application systems

Yinhao Li a,∗, Awatif Alqahtani a, Ellis Solaiman a, Charith Perera a, Prem
Prakash Jayaraman b, Rajkumar Buyya c, Graham Morgan a, Rajiv Ranjan d,a

a Newcastle University, Newcastle upon Tyne, UK
b Swinburne University of Technology, Victoria, Australia
c The University of Melbourne, Victoria, Australia
d China University of Geosciences (Wuhan), Hubei, China

h i g h l i g h t s

• A unified conceptual model captures the resource configurations in IoT environments.
• A support recommender system for the recommendation of resource configuration in IoT.
• An incremental method to facilitate the knowledge acquisition.
• An interface converts context information to optimal IoT resource configurations.

a r t i c l e i n f o

Article history:

Received 31 December 2018

Received in revised form 7 April 2019

Accepted 17 April 2019

Available online 7 May 2019

Keywords:

Internet of Things

Knowledge representation

Recommender system

Ripple Down Rules

Configuration management

a b s t r a c t

Identifying a suitable configuration of devices, software and infrastructures in the context of user
requirements is fundamental to the success of delivering IoT applications. As possible configurations
could be large in number and not all configurations are valid, a configuration knowledge representation
model can provide ready-made configurations based on IoT requirements. Combining such a model
within the context of a given user-oriented scenario, it is possible to automate the recommendation
of solutions for deployment and long-time evolution of IoT applications. However, in the context of
Cloud/Edge technologies, that may themselves exhibit significant configuration possibilities that are
also dynamic in nature, a more unified approach is required. We present IoT-CANE (Context Aware
recommendatioN systEm) as such a unified approach. IoT-CANE embodies a unified conceptual model
capturing configuration, constraint and infrastructure features of Cloud/Edge together with IoT devices.
The success of IoT-CANE is evaluated through an end-user case study.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The Internet of Things (IoT) is the idea of things (devices)
that are locatable, readable and recognizable and controllable
through using the Internet [16,22,24]. In IoT a number of things
and resources (Edge and/or Cloud) combine to provide services
that form the basis for many different types of applications that
are commonly referred to as smart (e.g., smart healthcare, smart
homes, smart buildings, smart manufacturing, smart agriculture,
smart traffic). ‘‘Smart’’ is a way of categorizing those applications
where users can discover, query and employ different IoT entities
on demand in real-time without such entities requiring further
human intervention in their development to achieve the desired
outcomes. Numerous entities are developed by manufacturers

∗ Corresponding author.

E-mail address: y.li119@ncl.ac.uk (Y. Li).

for use within IoT infrastructures. These entities are not only
physical, such as sensors and actuators, but also virtual, like so-
cial media (e.g., Facebook, Twitter, MySpace). The heterogeneous
large-scale data from such physical and virtual entities (e.g.,
[9,10,19,28]) raises a challenge of unified resource configuration
knowledge representation and high performance data process-
ing [14]. Therefore, we need to incorporate the digital world
and physical worlds in IoT ecosystems. In order to allow this
level of interoperability, it is important to define the services
supplied by these physical and virtual entities in a homogeneous
way [23]. More specifically, the requirement of developing a
novel and unified conceptual model to represent the knowledge
and
configuration information of each entity in the IoT field is neces-
sary. However, given the propriety nature of manufacturer plat-
forms coupled with the variety of propriety Cloud/Edge standards
this is a challenging problem.

https://doi.org/10.1016/j.jpdc.2019.04.016

0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.04.016
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.04.016&domain=pdf
mailto:y.li119@ncl.ac.uk
https://doi.org/10.1016/j.jpdc.2019.04.016


162 Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172

In order to sketch the problem domain from a user’s view-

point, consider a scenario of a manager creating a smart building

application at minimal financial cost. The manager purchases

low priced IoT devices from different manufacturers (e.g., tem-

perature sensors, motion sensors, humidity sensors, Raspberry

Pi, enabling gateways). We may assume the manager does not

have knowledge of Cloud and Edge resource configuration man-

agement and deployment. Therefore, the manager needs to find

some IoT application solution provider to offer IoT resource con-

figuration management and deployment solutions given the IoT

purchases and existing IT infrastructures. However, the major-

ity of IoT application providers offer expensive solutions that

predominantly favor existing services within their own service

lists which include only IoT devices supported by their software.

The ability to combine any IoT device produced by different

manufacturers would be difficult as there may well exist pro-

priety Application Programming Interfaces (APIs). This increases

the difficulty of service deployment from a single IoT application

solution provider as additional development may be required

to provide API wrappers for devices outside a provider’s stan-

dard IoT solution list. This is a significant problem as there are

more than 325 available APIs for IoT programming listed in the

ProgrammableWeb website [3]. Programming requirements from

such a diverse range of APIs and associated IoT devices brings new

challenges in configuration management and deployment of IoT

applications resulting in increasing financial cost to the IoT user.

In another scenario, a householder purchases a new smart

camera to enhance their smart home application with an in-

trusion detection service. They would like to connect a camera

to their smart home environment by establishing a connection

between the camera and a gateway to collect graphical data.

Another IoT entity in the smart home application can capture the

graphic data and may detect any intrusion via real-time image

analysis. The householder may have already implemented the

smart home with the help of a professional IoT solution provider

firm. Unfortunately, it may not be affordable or practical to seek

such help when enhancing the current smart home system with

additional new IoT devices to further enhance functionality. Dis-

covering and adding a new device or a new service into an

existing IoT application becomes a challenge for the end user,

who would probably have little or no knowledge of IoT infras-

tructures beyond the commercial instructions on the devices

themselves. For example, the new data format for the images

originating from the newly purchased smart camera may be new

for this smart home application and require additional integra-

tion technologies and updates to the existing IoT infrastructure.

As Smart technology expands we expect many IoT application

users will meet diverse problems in IoT resource configuration

management and deployment. Furthermore, due to evolving IoT

development diversity, the challenge of meeting this problem

needs to be managed in a structured way.

To address the challenges of increased diversity and hetero-

geneity within IoT solution provision we present a unified config-

uration management and recommendation system that spans IoT

device infrastructures and Cloud/Edge resources (IoT-CANE). The

core idea in IoT-CANE is to capture the IoT resource configuration

knowledge and then to implement a system that can be updated

as and when IoT solutions evolve to facilitate increased acqui-

sition of knowledge. IoT-CANE uses transaction procedures and

applies SQL-based approaches to enable different IoT resource

configuration operation recommendations.

The key contributions of this paper are as follows:

• A unified conceptual model capturing resource configura-
tions in IoT environments including those spanning Edge
and Cloud.

• A system utilizing our unified conceptual knowledge config-
uration resource model to recommend valid and appropriate
deployment configurations to users.

• An incremental method to facilitate the knowledge acqui-
sition in an IoT resource configuration knowledge base to
ensure relevance of IoT-CANE is maintained to reflect IoT
and Cloud/Edge innovations.

• A service pipeline for converting context information cap-
tured from user requirements into optimal IoT resource
configurations solutions.

The rest of this paper is organized as follows. Related work is
presented in Section 2. A detailed description of the conceptual
model and system architecture embodied within IoT-CANE is
presented in Section 3. Our rule based approach to recommen-
dation techniques employed within IoT-CANE are presented in
Section 4 with detailed descriptions of design and implementa-
tion presented in Section 5. Evaluation of a use case study is
provided in Section 6 with conclusions and future work described
in Section 7.

2. Related work

In this section we consider configuration management, con-
ceptual models, and configuration recommendation systems suit-
able for IoT application deployment across IoT and Cloud/Edge
computing. We highlight how research challenges have generated
significant work in the different areas of IoT and Cloud/Edge
computing, but gaps in requirements still suggest a strong case
for our work on IoT-CANE.

2.1. Multi-layer resources configuration management issues in IoT

The recent trend in composing Cloud applications is driven
by connecting heterogeneous services deployed across multiple
datacenters [6,25]. Such a distributed deployment aids in improv-
ing IoT application reliability and performance within Cloud/Edge
computing environments. Ensuring high levels of dependability
for IoT data transformation tasks composed by a multitude of
systems is a considerable issue to tackle from a deployment per-
spective. In an IoT environment a significant technical challenge is
presented when several small services adopted by smart devices
and Edge/Cloud infrastructures need to be aggregated in order to
produce a new service [12]. However, this service composition
problem is only a subset of a number of IoT resource config-
uration management challenges because configuration manage-
ment issues for example are also considered in the reusability
and optimization perspective within Cloud/Edge infrastructures.
Different frameworks for describing and deploying Cloud/Edge
resources are proposed in academia and industry. Multiple Cloud
providers such as CA AppLogic [2] and AWS OpsWorks [4] al-
low description and deployment of a complete Cloud application
stack. They offer resource representations that are specific to
a particular provider. In Edge computing, Docker [5] provides
deployment and configuration management solutions for Edge
devices based on container techniques [17]. However, when it
comes to IoT, in addition to the Cloud and Edge layers, IoT re-
source configuration management should also consider the phys-
ical devices which are deployed widely in most IoT applications.
In IoT, all resources from multiple layers need to be considered
in a single application which leads to greater complication in
ensuring that configurations of IoT device infrastructures coupled
with those of propriety Cloud/Edge deployments are correct.



Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172 163

2.2. Conceptual models in IoT

The Semantic Sensor Networks ontology presents a high-level
conceptual model to describe physical devices, their capabilities
and the associated properties in the semantic sensor networks
within IoT [1]. Authors in [13] provide a description of IoT ap-
plications and a data model capturing the relationships across
various data providers. They also illustrate how models can be
associated with each other and to different application domains.
The IoT-A project describes services, entities and resources as
basic concepts in IoT [8]. IoT services reveal functionality of a
resource hosted on a device offering physical access to an entity,
which in turn represents the direct interaction of users with
software agents. The approach in [29] presents a design of a com-
plete and lightweight semantic description model for knowledge
representation in the IoT field. Widely applied rules in knowledge
engineering and ontology modeling are considered in their de-
sign. However, their model only considers the physical world of
the IoT domain and does not consider Cloud/Edge components,
which are important in unifying knowledge representation of IoT
applications to ease deployment. This is especially true when
considering a complete view of configuration possibilities across
an application.

2.3. Context-aware recommender systems

The notion of context awareness for the support of service
selection and deployment has matured from its initial proposal
in [27]. Today, there are different types of contextual information,
which are mainly categorized into three classes: physical context,
user context, and appliance context. Such classification is based
on an adopted perspective (user or application). In addition, the
meaning of context is highly dependent on the area domain
and structure of the considered application. This has prompted
a search for meaningful definitions of the term concept in a
variety of application domains. Possible interpretations for appli-
cations similar to e-commerce are provided in [11]. Location is
a common contextual piece of information, however, it does not
necessarily represent the users’ geographic location. For example,
geographic location awareness is a key issue in ensuring origin
of streamed data for on-demand viewing adheres to appropriate
copyright laws in a given country (recommending only valid
content). In another example, social tag-based joint filtering given
in the context of smart TV applications [21] is a context-aware
approach where the information of both user and device contexts
are considered. In this case, the recommendations are calculated
only using users’ preferences and the recommendations are re-
ranked appropriately. In [30], the authors present a framework to
provide declarative context driven knowledge recommendations
for federated Cloud resource configuration. In this framework,
a recommendation of configuration knowledge of entities based
on a given context is provided. In [31], the authors propose an
ontology-based infrastructure selection system based on real-
time QoS requirements and utilize analytic hierarchy process
methods to facilitate multi-criteria decision making for recom-
mendations. Although these frameworks have reached significant
reach in terms of real-world deployment and usage, they are
limited to Cloud computing and do not address the additional
requirements of IoT applications in terms of devices themselves
nor their supporting infrastructures.

2.4. Discussion

There is no doubt that significant maturity is demonstrated in
the literature for developing solutions to ontology and associated
classification concepts, configuration models, and configuration

recommendation to ensure suitable evolutionary updating of soft-
ware/harder. However, the lack of such approaches that span the
Cloud/Edge and IoT spectrum of solutions is clear. This has driven
our research that has resulted in IoT-CANE. Our contribution
in consideration of the work of others is summarized in the
comparison Table 1.

3. Conceptual model and system architecture

In this section we present our approach to Cloud/Edge unified
with IoT infrastructure configuration determination and recom-
mendation; the IoT-CANE system architecture.

3.1. Conceptual model

An IoT framework can take advantage of various models which
provide different concepts and abstractions for the components
and their respective attributes. The main concepts and abstrac-
tions underlying a generalized IoT infrastructure and associ-
ated relationships are presented in this section. A primary focus
of our research is the representation of unified knowledge for
IoT resource configuration. A unified hierarchical representation
data-model is presented using entity-relationship modeling (ER
model), shown in Fig. 1. The physical resources part of our model
is based on the Semantic Sensor Network (SSN) Ontology [1].
The SSN ontology is an ontology which depicts various sensors
and their observations, related procedures, features of interest,
observed attributes, and actuators. The design follows a two-
dimensional modularization by implementing a lightweight, but
self-contained, core ontology called SOSA (Sensor, Observation,
Sample, and Actuator) for its primary classes and attributes. In
the SSN ontology, sensors and related concepts are described
without domain concepts (e.g., time, locations). In our concep-
tual model, we are required to consider these domain concepts
because our model must consider suitability of the application
context to achieve a unified approach for configuration recom-
mendation. Moreover, Cloud/Edge resources are considered in
addition to complete the conceptual infrastructure model for IoT
as these resources are also configurable and describable and pro-
vide a holistic solution satisfying all IoT application configuration
requirements.

In Fig. 1, the widget labeled resources consists of the three
main entities described as physical resources, Edge resources,
and Cloud resources. These three entities represent the abstrac-
tion of physical devices (e.g., sensors, actuators), Edge devices
(e.g., gateways, routers) and Cloud infrastructures (e.g., Datacen-
ters, servers). In general, service and resource represent the main
concepts in IoT applications. Any IoT service must access IoT
resources in order to satisfy user requirements. Physical resources
are used to capture physical data from sensors and process com-
mands on actuators; Edge resources and Cloud resources conduct
all related processing in IoT applications. We now discuss these
entities in detail.

• service: the service entity represents the domain informa-
tion of IoT applications, each providing an organized and
standardized interface that offers all the necessary func-
tionality provisioning interaction. As such, a service exposes
functionality via the way resources may be accessed. The
service entity consists of a service profile, service grounding,
and service model subclasses. The type of service can be
categorized via Web Ontology Language for Service (OWL-S),
Unified Service Description Language (USDL), Web Service
Modeling Language (WSML), Web Application Description
Language (WADL), Simple Object Access Protocol (SOAP).
A service profile describes the semantic description and



164 Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172

Table 1

Comparison of related work.

Parameter Related work IoT-CANE

[1] [13] [8] [29] [21] [30] [31]

IoT device conceptual model ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

EDC, CDC conceptual model ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

IoT ontology modeling ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓

knowledge recommendation ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

incremental knowledge base ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Fig. 1. The conceptual model of IoT resources widgets.

textual information of a service. Attributes for service inter-
action and access such as endpoint addresses, input and out-
puts are provided by the service grounding with the service
model depicting the operations and outcomes belonging to
a service.

• resource: describes available resources across physical de-
vice and Cloud/Edge resources, containing identification in-
formation regarding each resource (e.g., name, type, access
interface, description).

• physical resource: describes the attributes of sensors and
actuators including their type, location name, latitude, longi-
tude, and availability. The type of sensors and actuators are
abstracted into the three categories of physical (e.g., temper-
ature sensor), virtual (e.g., Facebook), and smart (e.g., smart
camera). The smart here indicates the physical resource
which has the computational capacity to be programmed,
enabling actions exhibiting a degree of awareness and au-
tonomy.

• operating range: indicates the conditions a sensor/actuator
is expected to operate within and contains such information
as resolution, response time, measurement range, precision,
latency and accuracy.

• deployment: describes the deployment of sensor/actuator for
a defined purpose. For instance, a motion sensor can be
deployed in the corner of a room to detect entry.

• observed: indicates a sensor/actuator that is observed in a
particular method allowing the linking of sensor/actuator
to feature of interest and consists of accuracy, observation,
observed result, result time and sampling expectation.

• feature of interest: describes an object associated with a
sensor/actuator and associated observation. For example,
when you measure the depth of a river then 50 m may be
the observation result and the river is the feature of interest.

• Edge resource: indicates the resources deploying in the Edge
to leverage computational capacity to improve such items as
latency, privacy and security. May describe many attributes
including performance, location name, availability, resource
type, and attached IoT device to enable sending captured
data to actuator.

• Cloud resource: describes the Cloud infrastructure deployed
in a Cloud service provider. This may include performance,
location name, geo-location, availability and associated edge
devices of a variety of cloud resources such as virtual ma-
chine, container, storage. Both Edge resource and Cloud
resource have sub-classes compute, network and storage to
enable categorization of descriptions.

• compute: depicts the computational capacity of each Cloud/
Edge resources. Hypervisor, CPU number, CPU cores, RAM,
and operating system are the main attributes of the com-
pute class. In an IoT application, resource availability may
influence the decision of resource configuration selection.
For example, if deploying a Hadoop cluster to process large
volume data in a high performance virtual machine may be a
better choice than choosing a limited computational device
such as a raspberry pi.

• network: describes the network connections between en-
tities, such as those between Cloud/Edge components as
well as the data transformation from sensor to Edge. May
include attributes such as response time, network band-
width, up-link bandwidth, down-link bandwidth, and la-
tency. Manages all entity communications and data
transformation tasks which relate to the functionality of
stability and fault-tolerance.

• storage: provides the storage capacity of Cloud/Edge re-
sources and consists of storage capability, storage type, stor-
age bandwidth and associated performance metrics.

These attributes maintain the functional configuration properties
of resources proposed within an IoT application. Based on these
properties the deployment and configuration of an IoT application
can be eased.

To understand our approach more clearly, we present a par-
tial description for a smart building scenario using Table 2 to
identify the component descriptions. Smart buildings that provide
managed energy efficiency, ease of accessibility, and automated
security is a popular demonstrator for IoT and therefore should
be readily understandable in the context of IoT-CANE. A particu-
larly important aspect of such a demonstrator is video surveil-
lance and human behavior analysis in a scene [7,20,32]. Such



Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172 165

Table 2

Partial infrastructure components description and instance of smart building in IoT data model.

Class Attribute Type Description Instance in smart building

Resource

hasName String Name of the resource Smart temperature sensor

resourceType Resource type Resource type, such as physical resource, edge

resource and cloud resource

Physical resource

accessInterface Interface type Interface type, such as REST, SOAP and XML-RPC RESTful API

hasDescription String Description of the resource Intelligently measure the

temperature of the specific area

hasTag String Any tags of the resource Smart temperature

Actuator

actuatorType Actuator type Actuator type, can be physical (locker), virtual (social

media) and smart

Physical

locationName String Geographical area in which the resource is located Newcastle

Latitude Float Latitude of the actuator 54.9783 N

Longitude Float Longitude of the actuator 1.6178 W

Availability Boolean Actuator availability Available

Sensor

sensorType Sensor type Sensor type, such as physical (temperature), virtual

(social media) and smart

Physical

locationName String Geographical area in which the resource is located Newcastle

Latitude Float Latitude of the sensor 54.9783 N

Longitude Float Longitude of the sensor 1.6178 W

Availability Boolean Sensor availability Available

Operating range

Resolution String The smallest difference in the value of an observable

property being observed that would result in

perceptible different values of observation results

The smallest difference in the value

of an observable property being

observed that would result in

perceptible different values of

observation results

responseTime String The time between a change in the value of an

observed and a sensor

1.8–60 s

MeasurementRange String A set of values that the sensor can return as the

result of an observation

−55 to 150, C

Precision String
As a sensor: the closeness of agreement between

replicated observations on an unchanged or similar

quality value;

0.36 C (max)

As an actuator: the closeness of agreement between

replicated actuations of an unchanged or similar

command

Latency String The time between a command for an observation

and the sensor providing a result

500 ms (max)

Accuracy String The closeness of agreement between the result of an

observation (command of an actuation) and the true

value of the observed

0.1 C

research describes motion detection techniques and its usage in
a number of smart building scenarios indicating the utilization of
Cloud/Edge for analysis (e.g., longitudinal and streamed) together
with sensors (e.g., cameras, motion).

3.2. System architecture

Our approach automates a configuration knowledge artifact
(CKA) suggestion based on user requirements within IoT resource
configuration management during such activities as deployment
and parameter modification. As shown in Fig. 2, recommended
suggestions are generated based on a users’ context information.
This context information represents an individualized IoT data
transformation task or an IoT service requirement. Four context
information categories (service category, data source, program-
ming model and deployment node) are chosen to model user
context information of a particular IoT application in various
deployment environments. ‘‘Service category’’ provides the clas-
sification of IoT services which can be reused in multiple IoT
applications. For example, sensing can be a common IoT service
category adopted in different scenarios, such as smart homes
(temperature sensing) and smart traffic (motion sensing). ‘‘Data
source’’ indicates the origins of the data which can be physi-
cal (e.g., sensors) and virtual (e.g., social media). ‘‘Programming
model’’ refers to the logical execution processes and data man-
agement approaches of a user’s IoT application, such as stream
processing and batch processing. ‘‘Deployment node’’ represents
the deployment place (such as mobile phone or cloud datacenter)
of the specific service or data transformation task.

All the necessary instructions and information required to sat-
isfy the context description for resource configuration of Cloud/
Edge are included in a recommended configuration knowledge
representation (CKR). Recommendations can be derived via CKAs
(e.g., bundled virtual appliances and runnable deployment texts)
using information from similar past contexts. Recommended
CKAs can be accepted unchanged or modified according to user
requirements. Users may generate a new CKA if they refuse
a recommendation (under administrative guidance). After any
new CKA defined by the user, the system converts these new
modifications into recommendation rules and saves them to
ensure availability for future recommendations. Meanwhile, rec-
ommended CKAs are input into a Docker deployment engine
to provide detailed configurations. The detailed description of
IoT-CANE will be presented in Section 5.

4. Recommendation system technique

IoT-CANE adopts a rule-based method to generate context-
aware configuration recommendations. Ripple Down Rules are
employed to facilitate knowledge acquisition. Detailed techniques
are discussed in the section given below.

4.1. Recommendation rule

In IoT-CANE an IoT resource configuration knowledge base
(CKB) is maintained to store contextual information regarding
CKRs and CKAs. An association is maintained between the items



166 Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172

Fig. 2. The system architecture of IoT-CANE.

in the CKB by the recommendation rules as shown in Fig. 3.
Recommendations include two components, named contexts and
conclusions.

Contexts. The left-hand side of the ER diagram contains the con-
text information maintaining ‘‘contexts’’ data of the intended
service category (e.g., temperature sensing, motion sensing), data
source (e.g., physical sensors, social media APIs), programming
model (e.g. streaming process, batch process, SQL, NoSQL) and de-
ployment node (e.g. Edge node, Cloud node). The CKB is intended
to capture metadata and common information about classes hav-
ing comparable application and resource requirements. Shared
context knowledge is allowed to be customized and reused by
IoT users. Coordinating contexts with the CKRs can split these
representations on the basis of satisfying services effectively.

Conclusions. The components that form the conclusion of the
generated recommendation rule are represented on the right-
hand side of the ER diagram. CKR is suggested by the generated
recommendation rules. The CKR can be deployed by the user
via a defined configuration deployment engine such as Docker.
Sometimes, users may be required to submit knowledge rep-
resentations to particular deployment engines and create some
CKAs. For example, generating an appropriate image using knowl-
edge representation allowing the user to upload the image to
Docker for deploying onto Cloud/Edge services. The deployed
resources configuration can be managed by users at any time.

4.2. Single conclusion ripple down rules

To model heterogeneous IoT resource configurations and to
facilitate adequate reuse of existing CKRs, we employ the com-
monly used knowledge acquisition and maintenance approach of
Ripple Down Rules (RDR) [15]. RDR are a form of knowledge ac-
quisition technique that extract knowledge from human experts
by grounding that knowledge in terms of the context in which the
expert applies or uses that knowledge. In the RDR framework, the
knowledge of experts is acquired in order to increase the domain
knowledge base. The decision to choose RDR enables the re-
usability of the existing CKRs and CKAs. This also enriches the CKB
by creating and attaching new rules for later use. Many domains
(e.g., database cleansing, UI artifact reuse, NLP) have successfully
implemented the RDR technique. For example, in [30], the au-
thors adopted RDR as knowledge acquisition approach to increase

configuration knowledge in Cloud domain. However, this work
cannot cover the resource heterogeneity in IoT field. Based on
our knowledge, RDR has not been yet adopted in the IoT resource
configuration representation field.

Single conclusion RDR, multiple classification RDR and collab-
orative RDR are the common variations of RDR available [18].
IoT-CANE utilizes a single conclusion RDR technique that con-
siders only one conclusion for given contextual information (to
ensure no ambiguity).

5. Design and implementation

In this section, we present the overall system design includ-
ing the system workflow and the recommendation rule tree of
IoT-CANE.

5.1. System design

Fig. 4 depicts a state transition diagram of IoT-CANE which
includes various states from start to finish. A design condition
must be accomplished before moving the system from one state
to another state in the direction of the arrow.

In order to get the appropriate recommendations of resource
configuration we employ knowledge from our conceptual model
to specify each property in diverse IoT resources (physical re-
sources, Edge resources and Cloud resources). Each property will
be set in the config editor module of IoT-CANE based on expert
experience (derived from experts in the domain of interest) to
make sure these configurations are appropriate. These configura-
tions are stored in the config database (DB). To ensure relevance
in dynamic IoT environments, these configurations can be opti-
mized and matured based on user feedback when using IoT-CANE.
However, only an administrator can operate the config DB and
associated rules governing configuration possibilities to ensure
correctness, stability and consistency. Such operations can be
adding rule combinations; deleting rule combinations; modifying
rule combinations; changing association between rules.

Because each resource configuration combines a large set of
attributes, IoT-CANE assumes responsibility for the choices asso-
ciated to attributes to compensate for lack of user knowledge. The
aim is to avoid user confusion via the use of context information
categories (service; data source; programming model; deploy-
ment node). These categories abstract the resource configurations
in the IoT applications to ease the burden on the user:



Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172 167

Fig. 3. ER diagram of recommendation rules.

Fig. 4. State transition diagram of IoT-CANE.

• Service Category: for each IoT application, we abstract a list
of services to indicate the currently available services in the
specific IoT application. This list may be updated based on
both experts’ experience and users’ feedback. The demand
of Cloud/Edge resources in diverse IoT applications is signif-
icantly different, that is why the choice of service category
has the most significant influence over the CKR, and the
reason why this is the first, primary, context information
category.

• Data Source: identifies where original raw data comes from.
These can be geographically distributed and the raw data
can be type non-sensitive. For example, a smart build-
ing application could have the same temperature sensors
deployed on different floors. A temperature sensor which
captures temperature measurements, and a camera which
captures image data can be considered different types of
raw data. Different CKRs will be recommended for each
situation concerning varying different types of data sources
and distributed geographical data sources.

• Programming Model: widely used execution approaches in-
clude: stream (e.g., Kafka Streams), batch (e.g., Hadoop), SQL
(e.g., MySQL), NoSQL (e.g., MongoDB). For each program-
ming model, the recommended CKRs should be different
to ensure alignment of available properties exhibited by
each model in the context of user requirements. For ex-
ample, the streaming process may require a higher rate of
service availability and greater bandwidth of network than
batch processing as streaming may require rolling window
approaches for uninterrupted flows.

• Deployment Node: depicts the physical or virtual node avail-
able for deployment. In IoT applications, such deployment

nodes can be categorized into Cloud and Edge. However,
these categories can be specified in a more detailed manner
including gateway, raspberry pi, mobile phone, for the Edge
and platform (e.g., Amazon EC2, Microsoft Azure) for the
Cloud. The CKRs for Edge nodes and Cloud nodes are sig-
nificantly different due to their inherent configuration pos-
sibilities. For example, the configuration in a gateway may
include DNS and ipv4 address settings, but these configura-
tions are not available in Amazon EC2. In addition, differ-
ences across instance types within the two categories may
also be different. For example, Amazon EC2 and Microsoft
Azure still present different configuration possibilities.

After capturing this context information, a relatively unique CKR
can be recommended from IoT-CANE to cover a user’s require-
ment to enable suitable IoT application deployment.

5.2. System workflow

Fig. 5 shows the system workflow of IoT-CANE. First, the
graphical user interface (GUI) initializes by retrieving the IoT
application set from the rule DB. This is followed by indication
of choice with respect to IoT application available, followed by a
get method issued to the rule DB to get the context information
for updating context options presented to the user. The user will
specify a context including service category (sc), data source (ds),
programming model (pm) and deployment node (dn). This is then
sent to the SQL query module to allow the construction of an SQL
query to run in the rule DB in order to index appropriate rules
required by the user to fulfill their IoT application requirements.
In the worst case nothing is returned. This would raise an error
message with context information responsible for the error sent



168 Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172

Fig. 5. Sequence diagram of IoT-CANE.

to the rule editor module. After intervention to ensure a new rule
set can be generated based on the context information of concern,
a transfer to the rule DB occurs to ensure a suitable updating of
the index. An SQL query is then composed based on the returned
rule set in order to search relevant IoT resource configurations.
An error message including the chosen rule may be sent to the
config editor module in the worst case scenario if, again, user
requirements may not be satisfied. Given this eventuality, a spe-
cific IoT resource configuration set associated with the sent rule
will be generated based on the administrator’s experience and
expertise together with the given context information for future
association. After generation, the config DB module will receive
the new resource configuration and an update operation will run
automatically. This result will be displayed on the GUI and the
user is prompted to evaluate the returned resource configuration.

The request for resource configuration representation recom-
mendation in IoT-CANE is expressed as SQL queries. Now we
explain the steps which are executed for resolving a resource
configuration representation recommendation request.

• System combines user’s input context information to a tem-
porary SQL query;

• The temporary SQL query will be executed in the recom-
mendation rule database to produce a possible result;

• Based on the result, a map of the result to the configura-
tion representation database together with rule number is
shown in the GUI;

• Depending on user satisfaction, a new rule and configuration
representation will be adopted in the respective database
after any required administrative updates.

We now use the smart home example to further the descrip-
tions of IoT-CANE in a real-world context.

A householder purchases a new smart camera to deploy an
intrusion detection service in their smart home application. They
may not understand the options regarding the addition of the
new smart camera within the smart home application in terms of
reconfiguration of existing IoT components: which configurations
will change and how to change them? IoT-CANE would allow
the householder to input the necessary contextual information
under a degree of guidance. In this case, they need to choose

‘IoT application’ as ‘Smart Home’, ‘Service Category’ as ‘Intrusion
Detection’, ‘Data Source’ as ‘smart camera’, ‘Programming Model’
as ‘Streaming’ and ‘Deployment Node’ as ‘Gateway’ respectively.
IoT-CANE may then combine selected contextual information to
a temporary SQL query for execution in the CKB. If there is an
existing combination of contextual information in the CKB that
matches those selected then the CKR of an intrusion detection
service deployed with the appropriate smart camera gateway will
be displayed. However, two unexpected situations can impact
these results. The householder may not be satisfied with the pro-
vided CKR, which means the feedback from user is ‘‘not satisfied’’.
This situation will be met differently depending on a number
of factors (e.g., householder has own knowledge with regards to
appropriate CKR and knows exactly what they need; home owner
is not skilled in IoT CKR and cannot deploy their application based
on the provided CKR, CKR does not satisfy their requirements).
Another situation is the temporary SQL query cannot acquire the
corresponding result (there is no associated CKR to the request
provided, as encoded into the SQL query by the householder).
Within this situation, the system will go to another layer to
process the SQL request: the administrator may add additional
information for the new rule in the CKB with provided contextual
information in the rule editor module. This will require adding a
corresponding CKR using the administrators expertise and expe-
rience in the config editor module. After updating the CKB, the
householder can review the returned resource configuration set
formulated in JSON format on the IoT-CANE GUI. The example
CKR in this scenario is shown in Fig. 6.

After the CKR is recommended by IoT-CANE, other resource
orchestration engines may be considered to enforce the desired
IoT configuration (particularly in the Cloud/Edge domain where
such work is mature) to optimize the performance or cost in
the IoT application. A set of deployment methods (e.g., Docker
deployment) can be adopted using the recommended CKR.

5.3. Recommendation rule tree

In IoT-CANE a tree architecture is used to organize connections
across recommendation rules. Fig. 7 depicts the tree representa-
tion of the recommendation rules in a CKB. A default conclusion



Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172 169

Fig. 6. Example of configuration knowledge representation.

Fig. 7. Example of recommendation rule tree structure.

labeled ‘‘unknown’’ is contained in Rule A0. This conclusion is

suggested when there is no specified input context; meaning

that the service category, data source and other information

are not provided in the input context. There are two possibili-

ties available within the structure consisting of ‘‘if not’’ (false)

branches and ‘‘except’’ (true) branches to choose from. When

IoT-CANE receives a new user context the system parses the

rule tree starting from root by checking the node is ‘‘if not’’

or ‘‘except’’, by comparing with the recommendation rules. This

step is repeated until the branch search is exhausted. The final

conclusion received from the last ‘‘except’’ node will be provided

to a user. A similar procedure is performed for each parameter

(such as service category, data source, programming model and

deployment node) to ensure a tailored result of sufficient detail

to satisfy configuration deployment requirements.

Let us consider an example of an administrator that is re-

quired to model an IoT resource configuration for a temperature

controlling application as an Edge deployment. We assume that

the CKB does not have this service definition in any available IoT

application. We assume, therefore, there is no Rule A2 in Fig. 7.
A query is generated for CKB to find a CKR that is related with
service category ‘‘temperature sensing’’ and deployment node
‘‘Edge node’’ (Rule A1). But there is no expert rule available from
Rule A1. Therefore, the administrator verifies the CKR linked with
Rule A1 and confirms if this CKR is satisfactory for deploying a
temperature controlling application. The administrator adds one
expert Rule A2 beneath Rule A1 and refers to the modified CKR
as the result of Rule A2.

Summarizing, IoT-CANE allows users to focus on the spe-
cific infrastructure requirements from the application require-
ments without requiring users to have knowledge of the technical
complexity of multiple IoT resource configuration solutions.

5.4. Computational complexity

In this section we discuss the computational complexity of the
proposed system logic. The model parameters are discussed in
detail in Table 3. For the worst case scenario, our proposed system



170 Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172

Table 3

IoT recommender model parameters.

Notations Meaning

Query A configuration selection query

SC = {sc1 , . . . ,scn} Set of n service categories

DS = {ds1 , . . . ,dsm} Set of m data sources

PM = {pm1 , . . . ,pmo} Set of o programming models

DN = {dn1 , . . . ,dnp} Set of p deployment nodes

N Number of rows in the database

M Number of column in the database

logic considers all the possible combinations (full CROSS JOIN).
For the querying process, the upper bound complexity is given
in Eq. (1):

Oquery(scn × dsm × pmo × dnp) (1)

As the equation shows, if we assume the number of rows of each
table is the same (scn = dsm = pmo = dnp), then the total number
of options of our approach are exponential growth (O(scn

4)) based
on the numbers of tables [26]. However, modern databases can
use different techniques to reduce the computational complexity.
For example, HASH JOIN and MERGE JOIN are widely used to
reduce the computational complexity. They are O(M + N) and
O(N ∗ Log(N) + M ∗ Log(M)) respectively. In our case, they are
O(scn + dsm + pmo + dnp) and O(scn ∗ Log(scn) + dsm ∗ Log(dsm) +
pmo ∗ Log(pmo) + dnp ∗ Log(dnp)).

6. User evaluation

In this section, we present the experimental setup and user
evaluation for IoT-CANE.

6.1. Experiment setup

We host IoT-CANE on a local machine with 64bit Mac OS X
operating system. The machine has the following hardware con-
figuration: Processor (2.4 GHz Intel Core i5); Memory (8 GB 1600
MHz DDR3); Graphics (Intel Iris 1536 MB); Storage (256 GB SSD).
We use MySQL database for our data management requirements.

6.2. User evaluation

In order to evaluate IoT-CANE we utilize a use case study to
investigate performance and acceptance. Ten participants were
involved in the experiment. All participants are Ph.D. students
working in the Cloud Computing and Internet of Things area at
Newcastle University. All of them have experience of deployment
and configuration management in Cloud infrastructure and Edge
devices. None of them had experience of using an automated IoT
resource configuration selection tool.

After using IoT-CANE the subjects were asked to complete a
questionnaire. Nine questions are used to evaluate user experi-
ence and opinion. The questions are listed below. A selection of
the results is shown in Fig. 8.

• How satisfied are you with this system’s ease of use?

• How often does our system freeze or crash?

• To what extent do you think that the recommendations are
reasonable?

• To what extent does the recommendation system cover your
requirements?

• To what extent do you think you can effectively complete
your work using this system?

• Do you agree or disagree that the interface of this system is
pleasant?

• How likely is it that you would recommend this software to
a friend or group member?

• Overall, how satisfied or dissatisfied are you with our rec-
ommendations?

• How can we improve our system?

As shown in Fig. 8, most of the participants were satisfied
with IoT-CANE in the following ways: ease of use; reasonable
recommendations; pleasant user interface. Based on feedback we
may conclude, in the most part, that the conceptual model covers
the majority of resource configuration knowledge requirements
in IoT and IoT-CANE may provide reasonable recommendations
to IoT application users. However, not all of the participants were
satisfied completely. The final question in the survey asked the
participants to give some suggestions to improve our system.
Their suggestions can be categorized as follows:

• They wanted new features, such as automatic deployment;

• They suggested that the user interface could be more de-
scriptive and user friendly;

• They suggested that the system could provide multiple
choices of the configurations to handle more scenarios.

Based on their suggestions, our IoT-CANE needs to be improved
in two ways: (1) provide a new service which converts JSON
format configuration files into Docker-readable configuration files
(e.g., YAML format); (2) provide an automatic deployment service
based on popular container techniques.

7. Conclusion and future work

In this paper we present a unified solution to the pressing
problem of delivering appropriate IoT solutions in the increas-
ingly complex world of cloud/edge/IoT environments. Today’s IoT
developers are required to provide gateway technologies across a
variety of device manufacturers spanning numerous data analysis
techniques supported on distinct Cloud/Edge providers. This is a
complex and significant task and provides a large number of ways
IoT applications may be configured, deployed and evolved. Con-
sidering that today’s IoT supporting system infrastructures are
dynamic and consistently evolving, the options for determining
optimal Cloud/Edge/IoT configurations that satisfy requirements
are not straightforward.

In this paper our IoT-CANE solution presents an end-to-end
pipeline for classifying, configuring and recommending appropri-
ate solutions in this most complex of environments. Our solution
spans IoT device ontology in addition to conceptual models in-
clusive of Cloud/Edge technologies together with recommender
services and an administrative approach to evolving IoT-CANE
to ensure continued validity in dynamically changing infras-
tructures. Furthermore, our approach is based on well-known
concepts and languages, making it easily accessible for develop-
ers and increasing its applicability in today’s environments. We
utilize a Ripple Down Rules (RDR) approach for the first time
to recommender-based issues within IoT with a single conclu-
sion/classification setting. This not only removes ambiguity, but
also affords a well known structured approach to identifying
shortcomings in configuration possibilities (allowing adminis-
trative updates) while allowing system evolution under expert
guidance.

We present a user/developer case study to validate our ap-
proach. We show that our main goals are achieved in the context
of recommending appropriate solutions and evolving such solu-
tions. In addition, we gain insights into the updates necessary to
provision a more accessible solution for end-users.

Our future work will focus on automation of deployment in
the context of recommendation systems, bridging the current



Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172 171

Fig. 8. User survey result.

gap between advice and real-world development. In addition, we
will consider a more accessible interface and online deployment
utilizing data analysis to provide a learned approach from the pat-
terns of usage given IoT requirements to ensure greater efficiency
and flexibility in our approach.

Acknowledgments

This research is supported by the following projects: LAND-
SLIP, UK: NE/P000681/1, FloodPrep, UK: NE/P017134/1 and PACE:
Privacy-Aware Cloud Ecosystems, UK: EP/R033293/1.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.04.016.

References

[1] W. S. S. N. I. Group, Semantic sensor network ontology, https://www.w3.

org/2005/Incubator/ssn/ssnx/ssn, 2011.
[2] Ca applogic, https://support.ca.com/us/product-information/ca-applogic.

html, 2014.
[3] ProgrammableWeb, https://www.programmableweb.com/category/internet

-things/api, 2018.
[4] Aws opsworks, https://aws.amazon.com/cn/opsworks/, 2018.
[5] Docker, https://www.docker.com/, 2018.
[6] A. Alqahtani, Y. Li, P. Patel, E. Solaiman, R. Ranjan, End-to-end service

level agreement specification for iot applications, in: 2018 International

Conference on High Performance Computing & Simulation (HPCS), IEEE,

2018, pp. 926–935.
[7] T.S.A. Arias, S.D.R. Castillo, C.C.E. Martínez, P.L.M. Aguirre, P.M.A. Pico,

N.H.W. Bano, F.R.N. Cobo, Human behavior ontologies: Surveillance task,

in: 2018 13th Iberian Conference on Information Systems and Technologies

(CISTI), IEEE, 2018, pp. 1–9.
[8] M. Bauer, N. Bui, J. De Loof, C. Magerkurth, A. Nettsträter, J. Stefa, J.W.

Walewski, Iot reference model, in: Enabling Things To Talk, Springer, 2013,

pp. 113–162.
[9] D. Chen, Y. Hu, L. Wang, A.Y. Zomaya, X. Li, H-PARAFAC: Hierarchical

parallel factor analysis of multidimensional big data, IEEE Trans. Parallel

Distrib. Syst. 28 (4) (2017) 1091–1104.
[10] D. Chen, X. Li, L. Wang, S.U. Khan, J. Wang, K. Zeng, C. Cai, Fast and scalable

multi-way analysis of massive neural data, IEEE Trans. Comput. 64 (3)

(2015) 707–719.
[11] Z.-L. Chen, S. Raghavan, P. Gray, H.J. Greenberg, State-of-the-art

decision-making tools in the information-intensive age, 2008.
[12] K. Dar, A. Taherkordi, R. Rouvoy, F. Eliassen, Adaptable service composition

for very-large-scale internet of things systems, in: Proceedings of the 8th

Middleware Doctoral Symposium, ACM, 2011, p. 2.

[13] S. De, P. Barnaghi, M. Bauer, S. Meissner, Service modelling for the internet

of things, in: Computer Science and Information Systems (FedCSIS), 2011

Federated Conference on, IEEE, 2011, pp. 949–955.
[14] J. Fan, J. Yan, Y. Ma, L. Wang, Big data integration in remote sensing across

a distributed metadata-based spatial infrastructure, Remote Sens. 10 (1)

(2017) 7.
[15] B.R. Gaines, P. Compton, Induction of ripple-down rules applied to

modeling large databases, J. Intell. Inf. Syst. 5 (3) (1995) 211–228.
[16] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): A

vision, architectural elements, and future directions, Future Gener. Comput.

Syst. 29 (7) (2013) 1645–1660.
[17] D.N. Jha, S. Garg, P.P. Jayaraman, R. Buyya, Z. Li, R. Ranjan, A holistic

evaluation of docker containers for interfering microservices, in: 2018

IEEE International Conference on Services Computing (SCC), IEEE, 2018,

pp. 33–40.
[18] B. Kang, P. Compton, P. Preston, Multiple classification ripple down

rules: evaluation and possibilities, in: Proceedings 9th Banff Knowledge

Acquisition for Knowledge Based Systems Workshop, Vol. 1, 1995, 17–1.
[19] H. Ke, D. Chen, T. Shah, X. Liu, X. Zhang, L. Zhang, X. Li, Cloud-aided online

EEG classification system for brain healthcare: A case study of depression

evaluation with a lightweight CNN, Softw. - Pract. Exp. (2018).
[20] W. Lao, J. Han, P.H. De With, Automatic video-based human motion

analyzer for consumer surveillance system, IEEE Trans. Consum. Electron.

55 (2) (2009) 591–598.
[21] W.-P. Lee, C. Kaoli, J.-Y. Huang, A smart TV system with body-gesture con-

trol, tag-based rating and context-aware recommendation, Knowl.-Based

Syst. 56 (2014) 167–178.
[22] I. Lee, K. Lee, The internet of things (iot): Applications, investments, and

challenges for enterprises, Bus. Horiz. 58 (4) (2015) 431–440.
[23] Y. Ma, L. Wang, P. Liu, R. Ranjan, Towards building a data-intensive index

for big data computing–a case study of remote sensing data processing,

Inform. Sci. 319 (2015) 171–188.
[24] S. Madakam, R. Ramaswamy, S. Tripathi, Internet of things (iot): A

literature review, J. Comput. Commun. 3 (05) (2015) 164.
[25] S. Nepal, R. Ranjan, K.-K.R. Choo, Trustworthy processing of healthcare big

data in hybrid clouds, IEEE Cloud Computing 2 (2) (2015) 78–84.
[26] C.H. Papadimitriou, Computational complexity, John Wiley and Sons Ltd.,

2003.
[27] B. Schilit, N. Adams, R. Want, Context-aware computing applications, in:

Mobile Computing Systems and Applications, 1994. WMCSA 1994. First

Workshop on, IEEE, 1994, pp. 85–90.
[28] Y. Tang, D. Chen, L. Wang, A.Y. Zomaya, J. Chen, H. Liu, Bayesian

Tensor factorization for multi-way analysis of multi-dimensional EEG,

Neurocomputing 318 (2018) 162–174.
[29] W. Wang, S. De, G. Cassar, K. Moessner, Knowledge representation in the

internet of things: semantic modelling and its applications, automatika 54

(4) (2013) 388–400.
[30] D. Weerasiri, B. Benatallah, Unified representation and reuse of federated

cloud resources configuration knowledge, in: Enterprise Distributed Object

Computing Conference (EDOC), 2015 IEEE 19th International, IEEE, 2015,

pp. 142–150.
[31] M. Zhang, R. Ranjan, M. Menzel, S. Nepal, P. Strazdins, W. Jie, L. Wang, An

infrastructure service recommendation system for cloud applications with

real-timeqosrequirement constraints, IEEE Syst. J. (2015).
[32] X. Zhang, Q. Yu, H. Yu, Physics inspired methods for crowd video

surveillance and analysis: a survey, IEEE Access 6 (2018) 66816–66830.

https://doi.org/10.1016/j.jpdc.2019.04.016
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://support.ca.com/us/product-information/ca-applogic.html
https://support.ca.com/us/product-information/ca-applogic.html
https://support.ca.com/us/product-information/ca-applogic.html
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://www.programmableweb.com/category/internet-things/api
https://aws.amazon.com/cn/opsworks/
https://www.docker.com/
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb12
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb12
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb12
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb12
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb12
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb15
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb15
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb15
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb16
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb16
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb16
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb16
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb16
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb22
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb22
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb22
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb23
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb23
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb23
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb23
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb23
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb24
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb24
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb24
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb25
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb25
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb25
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb26
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb26
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb26
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb27
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb27
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb27
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb27
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb27
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb28
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb28
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb28
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb28
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb28
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb29
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb29
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb29
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb29
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb29
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb30
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb30
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb30
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb30
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb30
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb30
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb30
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb31
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb31
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb31
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb31
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb31
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb32
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb32
http://refhub.elsevier.com/S0743-7315(18)30974-2/sb32


172 Y. Li, A. Alqahtani, E. Solaiman et al. / Journal of Parallel and Distributed Computing 131 (2019) 161–172

Yinhao Li is a Ph.D. student in the School of Computing

at Newcastle University, UK. His research interests

include Cloud Computing, Edge Computing and Internet

of Things. He previously received his M.Sc. in Com-

puter Science from the China University of Geoscience.

Contact him at y.li119@ncl.ac.uk

Awatif Alqahtani has a B.S. and M.S. in Computer Science from King Saud

University, Saudi Arabia. She is currently working toward a Ph.D. in the School of

Computing Science at Newcastle University, UK. Her research interests include

the Internet of Things, Big Data and service level agreement. Contact her at

a.alqahtani@newcastle.ac.uk

Ellis Solaiman is a Lecturer at the School of Computing,

Newcastle University. He previously received his Ph.D.

in Computing Science also from Newcastle University,

where he subsequently worked as a Research Associate

and Teaching Fellow. His research interests are mainly

in the areas of Dependability and Trust in Distributed

Systems such as the Cloud and the Internet of Things.

He is also interested in the automated monitoring

of these systems using technologies such as Smart

Contracts. He is a Fellow of the UK Higher Educa-

tion Academy (FHEA) since 2016. Contact him at ellis.

solaiman@ncl.ac.uk

Charith Perera is a Lecturer (Assistant Professor)

in Computing Science at Cardiff University, United

Kingdom. Dr. Perera received the B.Sc. (Hons) de-

gree in computer science from Staffordshire University,

Stoke-on-Trent, UK. in 2009 and the Master of Busi-

ness Administration (MBA) from the University of

Wales, Cardiff, UK. in 2012. He received the Ph.D.

degree in computer science from The Australian Na-

tional University, Canberra, Australia. He completed his

post-doctoral at Newcastle University, UK and Open

University, UK. Previously, he was with the Information

Engineering Laboratory, ICT Centre, CSIRO, Australia. His research interests

include Internet of Things, Sensing as a Service, infrastructure and architectures,

privacy and security. Dr. Perera is a member of the ACM and IEEE. For more

details: charithperera.net

Prem Prakash Jayaraman is currently a Research

Fellow at Swinburne University of Technology, Mel-

bourne. His research areas of interest include, Internet

of Things, cloud computing, mobile computing, sensor

network middleware and semantic Internet of Things.

He has authored/co-authored more than 50 research

papers in international Journals and conferences such

as IEEE Trans. on Cloud Computing, IEEE Selected areas

in Communication, Journal of Computational Science,

IEEE Transactions on Emerging Topics in Computing,

Future Generation Computing Systems, Springer Com-

puting, ACM Ubiquity Magazine, IEEE Magazine. He is one of the key contributors

of the Open Source Internet of Things project Open IoT that has won the

prestigious Black Duck Rookie of the Year Award in 2013. He has been the

recipient of several awards including hackathon challenges at the 4th Interna-

tional Conference on IoT (2014) at MIT media lab, Cambridge, MA and IoT Week

2014 in London and best paper award at HICSS 2016/2017 and IEA/AIE-2010.

Previously he was a Postdoctoral Research Fellow at CSIRO Digital Productivity

Flagship, Australia from2012to2015.

Rajkumar Buyya is a Fellow of IEEE, Professor of

Computer Science and Software Engineering and Direc-

tor of the Cloud Computing and Distributed Systems

(CLOUDS) Laboratory at the University of Melbourne,

Australia. He is also serving as the founding CEO

of Manjrasoft, a spin-off company of the University,

commercializing its innovations in Cloud Computing.

He served as a Future Fellow of the Australian Research

Council during 2012–2016. He has authored over 525

publications and seven text books including ‘‘Mastering

Cloud Computing’’ published by McGraw Hill, China

Machine Press, and Morgan Kaufmann for Indian, Chinese and international

markets respectively. He also edited several books including ‘‘Cloud Computing:

Principles and Paradigms’’ (Wiley Press, USA, Feb 2011). He is one of the highly

cited authors in computer science and software engineering worldwide (h-

index=118, g-index=225, 72,200+ citations). Recently, Dr. Buyya is recognized as

‘‘2016 Web of Science Highly Cited Researcher’’ by Thomson Reuters. Software

technologies for Grid and Cloud computing developed under Dr. Buyya’s leader-

ship have gained rapid acceptance and are in use at several academic institutions

and commercial enterprises in 40 countries around the world. Manjrasoft’s

Aneka Cloud technology developed under his leadership has received ‘‘2010

Frost & Sullivan New Product Innovation Award’’. Recently, Dr. Buyya received

‘‘Bharath Nirman Award’’ and ‘‘Mahatma Gandhi Award’’ along with Gold Medals

for his outstanding and extraordinary achievements in Information Technology

field and services rendered to promote greater friendship and India–International

cooperation. He served as the founding Editor-in-Chief of the IEEE Transactions

on Cloud Computing. He is currently serving as Co-Editor-in-Chief of Journal of

Software: Practice and Experience, which was established over 45 years ago. For

further information on Dr. Buyya, please visit his cyberhome: www.buyya.com

Graham Morgan works in the field of distributed

systems and created Game Lab at Newcastle University.

Game Lab is a research and teaching laboratory that

works with the video games industry on optimized re-

source management, streamed/networked gaming and

real-time graphical simulations. Members of the lab

regularly work on many of the top selling global

video games. In addition to commercial activity, he

has led research in a wide area of distributed systems

topics, including the development of large scale real-

time gaming technologies for cloud infrastructures and

applied such work in the area of digital health for stroke rehabilitation and

cognitive therapies. His work has won best paper awards in leading IEEE and

ACM conferences and he has published in leading IEEE and ACM journals.

Rajiv Ranjan is a Chair and Professor in Computing Sci-

ence at Newcastle University, United Kingdom, as well

as at China University of Geosciences, China. Before

moving to Newcastle University, he was Julius Fel-

low (2013–2015), Senior Research Scientist and Project

Leader in the Digital Productivity and Services Flagship

of Common wealth Scientific and Industrial Research

Organization (CSIRO C Australian Governments Premier

Research Agency). Prior to that he was a Senior Re-

search Associate (Lecturer level B) in the School of

Computer Science and Engineering, University of New

South Wales (UNSW). He has a Ph.D. (2009) from the Department of Computer

Science and Software Engineering, the University of Melbourne.

mailto:y.li119@ncl.ac.uk
mailto:a.alqahtani@newcastle.ac.uk
mailto:ellis.solaiman@ncl.ac.uk
mailto:ellis.solaiman@ncl.ac.uk
mailto:ellis.solaiman@ncl.ac.uk
mailto:charithperera.net
http://www.buyya.com

	IoT-CANE: A unified knowledge management system for data-centric Internet of Things application systems
	Introduction
	Related work
	Multi-layer resources configuration management issues in IoT
	Conceptual models in IoT
	Context-aware recommender systems
	Discussion

	Conceptual model and system architecture
	Conceptual model
	System architecture

	Recommendation system technique
	Recommendation rule
	Single conclusion ripple down rules

	Design and implementation
	System design
	System workflow
	Recommendation rule tree
	Computational complexity

	User evaluation
	Experiment setup
	User evaluation

	Conclusion and future work
	Acknowledgments
	Declaration of competing interest
	References


