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Industrial cyber-physical systems (ICPS) are widely employed in supervising and controlling critical infras-
tructures (CIs), with manufacturing systems that incorporate industrial robotic arms being a prominent
example. The increasing adoption of ubiquitous computing technologies in these systems has led to bene�ts
such as real-time monitoring, reduced maintenance costs, and high interconnectivity. This adoption has
also brought cybersecurity vulnerabilities exploited by adversaries disrupting manufacturing processes via
manipulating actuator behaviors. Previous incidents in the industrial cyber domain prove that adversaries
launch sophisticated attacks rendering cyber-only anomaly detection mechanisms insu�cient as the "physics"
involved in the process is overlooked. To address this issue, we propose an IoT-based cyber-physical anomaly
detection system that can detect motion-based behavioral changes in an industrial robotic arm. We apply
both statistical and state-of-the-art machine learning (ML) methods to real-time Inertial Measurement Unit
(IMU) data collected from an edge development board attached to an arm doing a pick-and-place operation.
To generate anomalies, we gradually modify the joint velocity of the arm. Our goal is to create an air-gapped
secondary protection layer to detect "physical" anomalies without depending on the integrity of network
data, thus augmenting overall anomaly detection capability. Our empirical results show that the proposed
system, which utilizes 1D-CNNs, can successfully detect motion-based anomalies on a real-world industrial
robotic arm. The signi�cance of our work lies in its contribution to developing a comprehensive solution for
ICPS security, which goes beyond conventional cyber-only anomaly detection methods. By incorporating
physical measurements into the anomaly detection process, the proposed system can detect movement-based
anomalies occurred on a real-world industrial robotic arm testbed.
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1 INTRODUCTION

Industrial cyber-physical systems (ICPS) [22], which is the backbone of Industry 4.0 [59], are the
result of adapting emerging information communication technologies (ICT) to the industrial control
systems (ICS). Implementing advanced ubiquitous computing resources enables interconnecting
the cyber and physical assets of ICPS. This provides the ability to supervise sophisticated industrial
systems where each layer (e.g., production, corporate) contains interdependent operations. Hence,
a broad range of domains that manage critical infrastructures (CIs), including manufacturing,
transportation, and healthcare employs ICPS. Academia and industry refer to these domains as
"smart" [55] as the assets of ICPS can self-supervise. In smart systems, actuators operate according to
information generated from corresponding sensors. The heterogeneity of the industrial environment
may require an adaptive actuation that is directed by multiple sensor data. An autonomous robotic
arm1 executing repetitive patterns to assemble car parts, a conveyor belt that rotates based on the
speci�c product carried, and a furnace that decreases or increases gas supply to heating elements
according to processed material and temperature are such examples of cyber-physical systems.
The International Federation of Robotics (IFR) report published in 2022 [85] shows that col-

laborative robots (cobots) will lead the robotics industry after 2025. The rapid development of
these autonomous robots that can perform repetitive tasks accelerates the utilization of highly
interconnected industrial infrastructures. However, high interconnectivity means increased attack
surface which mainly occurs due to the integration of information technologies (IT) to operational
technologies (OT). Thus, ICPS are exposed to attacks that were not an issue for legacy ICS. These
attacks become successful when inadequate cybersecurity measures are present causing disasters
[97, 123] as ICPS supervise CIs. The majority of attack detection solutions rely on intrusion detec-
tion systems (IDS) [65] which only perform network tra�c analysis (NTA). As industrial systems
have di�erent security requirements, the characteristics of industrial IDS di�er from their peers
[42]. These IDS operate in the "cyber" domain of ICPS where sophisticated attacks (e.g., stealthy
attacks, advanced persistent threats (APT)) can penetrate through to disturb the physical processes.
Physics-based attack detection mechanisms [125] observe these processes to detect any kind of
abnormal behaviors hence monitoring the "physical" side of ICPS.
We consider attack detection as a sub-group of anomaly detection [17] (also known as outlier

detection) as the anomalies in ICPS may occur due to three main reasons: attack, failure due to
degradation, and miscon�guration. These anomalies can be either cyber or physical while both
can occur either at once or at independent times. An example where both occur due to an attack
would be a successful distributed denial-of-service (DDoS) [82] attack that causes the stoppage of
the robotic arm (physical anomaly) due to missing network packets (cyber anomaly). We consider
such an attack as a cyber-physical attack [81] as the attack causes physical alterations. An example
where only a physical anomaly occurs due to degradation would be a change in the acceleration of
the robotic arm due to corrosion on the bearings. IDS fail to detect such deviation either when the
a�ected asset is not monitored or when the data are spoofed by an adversary. One other precaution
against cyber-physical attacks is to set thresholds for physical characteristics (e.g., setting the joint
speed limit for an industrial robotic arm, and setting the heat limit for an oven). As these thresholds
mostly determine upper and lower limits they fail to identify time-sensitive anomalies within these
limits. Hence, these kinds of events require contextual physics-based monitoring mechanisms.
Fault diagnosis [45] an early discipline that examines unwanted physical deviations of system

characteristics, has similarities with anomaly detection. However, the primary di�erence is that
fault diagnosis aims to identify the reason for the anomaly. There are two main types of fault
diagnosis: model-based [46], and signal-based [32]. Model-based approaches attempt to generate an

1From now on, an arm refers to an industrial robotic arm.
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explicit model of system behavior to predict the output while signal-based approaches process raw
sensor measurements to predict the healthy state of the system. Anomaly detection also has two
similar approaches: model-based [116], and data-driven [117]. The two signi�cant drawbacks of
model-based approaches are: (I) They require expert knowledge, which is hard to obtain due to the
high complexity of industrial cyber-physical systems, making this task laborious and error-prone for
humans. (II) They depend on the integrity of components, which must be trusted. This dependence
on components’ integrity raises concerns about the cybersecurity of these parameters, as they
can be spoofed through integrity attacks [119]. The Stuxnet malware [57] attack on Iran’s nuclear
centrifuges is a real-world example of such an integrity attack, where attackers modi�ed the gas
centrifuge parameters. To address these drawbacks, data-driven approaches [86, 92] have become
increasingly popular due to the rapid development of data technologies. These approaches utilize
machine learning models, which can be grouped into three based on supervision [17]: supervised,
semi-supervised, and unsupervised. The supervised models use labeled data for training, while
the unsupervised models either do not require any training data [66] or use non-labeled data for
training [54]. Semi-supervised models combine these two.
Neural networks [39] are a type of machine learning method that mimics the structure of the

human brain, utilizing connected neurons and activation functions to learn from data. Neural
networks are typically categorized based on network structure [58]: shallow neural networks
(SNN), and deep neural networks (DNN). Bianchini and Scarselli [13] propose a detailed comparison
regarding the complexity of these two neural network types. The �exibility and scalability of neural
networks make them desirable for industrial applications. In recent years, academia presented
many DNN-based research papers [35, 44, 54, 75], which o�er promising results, within the context
of detecting physical anomalies in ICPS.
Computing infrastructures can be grouped into three based on computing location [135]: edge,

fog, and central/cloud. In short, we de�ne "edge" as the location where real-world data are present,
"cloud" as the servers that are accessed via the internet, and "fog" as anything between the edge
and cloud. If we imagine an assembly line, we consider the distributed embedded devices on arms
that interfere with the sensor data as edge devices, and a local device that manages several edge
devices while forwarding data (either raw or preprocessed) to the cloud as a fog device. Central
(local) servers might be preferred if cloud systems are undesired or unreachable. As Internet of
Things (IoT) devices enable access to the cloud, they are heavily utilized in both edge and fog.

Training neural networks is a resource-intensive task, requiring substantial computational
resources. Cloud computing platforms such as Amazon Web Services (AWS) [21], Google Cloud
[14], and Microsoft Azure [80] are attractive options as they o�er machine learning as a service
(MLaaS) [100]. These platforms can be integrated into local builds to establish an automated ML
pipeline as such a pipeline requires edge devices to generate raw data, and an internet connection to
access cloud services, IoT-based solutions become desirable choices. Local data science workstations
are alternatives to these services. If the domain is industrial, the industrial internet of things (IIoT)
[114] is utilized. We consider IIoT as one of the requirements for advanced/smart manufacturing.
While the initial IIoT solutions [56, 127] focus on increasing production e�ciency, the use of IIoT
to detect anomalies [90, 111] is gaining popularity thanks to rapid developments in ubiquitous
computing technologies.
In this work, we propose an anomaly detection system that detects movement-based physical

anomalies which occur in an industrial robotic arm. We utilize statistical and ML based methods
including neural network model utilizing 1D convolutional neural networks (1D-CNN) layers. To
the best of our knowledge, we are the �rst to propose a context-aware anomaly detection system
(CASPER) that detects movement-based anomalies by applying the 1D-CNN model on IMU data.
CASPER is also segregated hence ensuring the integrity of data generated via a cyber-physical

, Vol. 1, No. 1, Article . Publication date: September 2023.



4 Kayan et al.

edge resource as data are transmitted over Bluetooth Low Energy (BLE). We summarize our key
contributions as:

• We propose an anomaly detection model that utilizes 1D-CNN to detect anomalies occurring
due to deviation of joint velocities of an industrial robotic armwhile o�ering an IoT-based edge
monitoring system. We demonstrate the performance of the proposed model on a real-world
testbed. We present the work to the public on a well-documented GitHub repository2.
• We publish a real-world dataset that contains four �les in total: (I) A �le that consists of
accelerometer, gyroscope, and magnetometer data of an arm that accomplishes a repetitive
task, (II) two �les (one per industrial arm) that consist of built-in arm parameters such as
joint current, and velocity values, (III) one pcap �le which contains all the network tra�c
between the local PC and the industrial robotic arms.
• We analyze the recent real-world industrial cyber-physical incidents.
• We present a thorough correlation analysis between the raw IMU data and the quaternion
representation of orientation to show how proposed model perform when data are correlated.

2 BACKGROUND

Our work focuses on applying cyber-physical anomaly detection to arms that operate in manufac-
turing systems. Cyberattacks that disrupt the behavior of such actuators may cause devastating
events. In this section, we summarize recent real-world cyber incidents based on the attack scope,
domain, and result while identifying the common points that motivate the proposed work.
In 2013, the maximum-security prison Turner Guilford Knight Correctional Center in Florida,

USA had been subjected to two cyber incidents in one month [103]. The prison control system was
recently upgraded for a cost of $1.4 by a �rm named Black Creek Integrated Systems. All cell gates
in the prison were automatically opened, thus leading to chaos within the prison. Even though
the director named the incidents a glitch, a surveillance video had shown that some prisoners
were acting as if they knew the gates were about to be opened. Hence, cybersecurity researchers
suspected that the �rst event was done to test the response of the guards, and the second was
carried out for a more speci�c reason as 2 prison members tried to attack another prisoner. These
incidents have shown that even air-gapped systems can be programmed to glitch to cause a cyber
incident, hence air-gapping only is not adequate to secure the systems.
On February 8, 2021, an adversary tried to poison Oldsmar, a city in Florida, USA [97]. The

adversary accessed the computer that hosts the water treatment control software via a remote
access program, then increased the amount of sodium hydroxide above the normal level. The water
concentration change was seen by an operator and immediately reversed. Then, the remote access
was disabled. How computer credentials were captured is still unknown. In this incident, having
24/7 IT sta� (which is not the case for most industrial systems) to supervise the system prevented
the possible disaster from happening. Also, the adversary did not fake the sensor readings hence
the unexpected change was detected.
In May 2021, the US Colonial Pipeline was hit by ransomware that is developed by a group

known as DarkSide [123]. The attack was directed at a pipeline not to damage but to extort money
from the owner company. All the activities of the pipeline had to shut down due to being connected
to a central system. The pipeline was equipped with the newest digital sensors including a smart
pipeline inspection gauge. However, due to being connected to a central system, all access to
sensors was blocked. Hence the operators shut down the pipeline. How the attackers deployed the
ransomware is unknown but assumed to be done via phishing e-mails. This incident is an example
of the downside of being highly interconnected.

2https://github.com/hkayann/1D-CNN-Anomaly-Detection-via-CASPER
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Table 1. The Evaluation of Recent Cyber Incidents

Year Incident Subject Location Sector Attack Scope IT OT Result

2013 Prison USA Utility Cyber-Physical Prison gates were wrongfully opened
2019 Altran Technologies France Service Provider Cyber IT network was shut down.
2019 Healt Facilities Australia Healthcare Cyber Health operations were delayed.
2020 HUBER+SUHNER Switzerland Manufacturing Cyber All network was shut down.
2021 Bombardier Canada Manufacturing Cyber Customer data was stolen.
2021 Colonial Pipeline USA Utility Cyber-Physical Pipeline was shut down.
2021 Water Plant USA Utility Cyber-Physical Water is poisoned.
2021 Ca�taly Italy Manufacturing Cyber Production was stopped.
2021 MND Group France Manufacturing Cyber Production was stopped.
2021 Sierra Wireless Canada Manufacturing Cyber Production was stopped.

Legend: : The domain is directly a�ected, : The domain is indirectly a�ected, : The domain is not a�ected.

In March 2021, Canadian IoT as a service provider Sierra Wireless was subjected to a ransomware
attack [15]. The IT systems of the company were locked down. The company announced that there
was no damage done to any production units and the con�dential customer data was not a�ected
thanks to being stored on an independent platform. However, the company halted production for
over two weeks until the systems were cleared. This incident shows the importance of reaction
time and having independent domains.
On February 23, 2021, the Canadian plane manufacturer Bombardier announced that it was

subjected to a cyberattack [77]. The attack was done by exploiting a vulnerability belonging to
a third-party �le transfer application hosted on a separate server. The attackers in�ltrated the
con�dential data related to customers and suppliers. The internal IT and OT systems of the company
were not a�ected there was no network connection between the systems. Thus, the company did not
halt production. This incident shows the importance of keeping third-party applications up-to-date
and having independent servers/systems.
On January 24, 2019, French engineering consultancy company Altran Technologies was sub-

jected to a ransomware attack based on a crypto locker even though their systems were protected
via �rewalls and several IT defense mechanisms [37]. The company had to shut down all of its IT
network and applications across Europe. They acquired cybersecurity services from third-party
providers to bring their systems back to normal. This incident shows that having up-to-date cyber-
security defense mechanisms does not provide 100% security, hence the companies should have
ready-to-deploy mitigation/recovery plans.

On December 14, 2020, HUBER+SUHNER, a �ber optic cable manufacturing company located in
Switzerland, was subjected to a cyberattack [93]. When the internal IT monitoring system detected
an unknown activity, the company shut down all of its operations to prevent possible damage
from happening at production sites due to having a highly interconnected network. As a result, no
physical damage occurred. The company contacted third-party security providers to analyze the
attack, then gradually resumed its operations. In this incident, the physical damage was prevented
thanks to the rapid reaction, however, the con�dential data was stolen.

In February 2021, the Italian co�ee capsule/machine manufacturer Ca�taly Systemwas subjected
to a cyberattack [23]. The company was outsourcing the IT services to a third-party provider, which
was exploited by adversaries. The production was halted to prevent further damage as the IT and
OT systems were interconnected. The reason/motivation behind the attack is unknown as the
company did not share the details of the incident. While outsourcing IT/Cybersecurity services to
third parties is considered a compact solution by many cybersecurity providers, this incident was
caused via such a provider.
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On March 22, 2021, the French arti�cial snow manufacturer the MND Group detected malware
on its servers located in France and Austria [129]. The company shut down its all IT network to
prevent a further breach. The OT systems were not heavily a�ected by the attacks thanks to being
disconnected from IT systems, hence the company halted production for only a few days as a
precaution. The company put a business recovery plan into practice to recover from the attack
within a week. The details of the attack were not shared with the public. Having a ready-to-deploy
recovery plan was the key feature to mitigate the result of this cyber incident.

In September 2019, Eastern Health facilities in Victoria, Australia were subjected to a ransomware
attack [98]. Several servers that hosted �nancial, booking, and management data were shut down
due to being captured, hence the hospitals had to delay operations including not critical surgeries.
The authorities and cybersecurity experts were contacted to resolve the issue. In this incident, the
attacked domain was purely cyber but, there was an indirect physical impact that occurred due to
the lack of data availability.
Most private entities subjected to cyber incidents do not publish o�cial statements. The infor-

mation is made available via cybersecurity journals/bloggers which beclouds verifying the incident
details such as the cause, response, and already deployed security mechanisms. We observe the
following from the aforementioned cyber incidents: (I) The example attacks demonstrate that
integration of IT to OT systems clearly exposes OT systems to new threats. (II) We can safely
assume that the companies have at least one intrusion detection/prevention tool (e.g., default
defender, antivirus software) in place during the incident thus proving the ine�ciency of these
tools. (III) Additional security measures that observe the targeted infrastructure can detect the un-
desired changes. We see this both in the Iranian nuclear program [57] and Florida water poisoning
[97] incidents where attacks were detected via the supervisory sta�. The recent industrial cyber
incidents prove the necessity of security measures which observe the physical properties from an
air-gapped/segregated network which can ensure the integrity of industrial processes.

3 RELATED WORK

3.1 Anomaly Detection in Industrial Systems

Anomaly detection in industrial systems is a topic where an extensive number of studies are
present [17, 30, 51, 124]. Detecting anomalies based on physical behavioral changes via data-driven
approaches is one of the hot sub-branches. These changes di�er according to the monitored asset.
If this asset is an industrial robotic arm, data-driven approaches are applied where the data are
sound [9, 27], IMU [87], joint current [18, 91], electromagnetic side-channel signal [52], tension
[99], vibration [92], or visual [133] data. In addition to these, we can utilize temperature data [120]
to detect anomalies as malfunctioning industrial assets tend to generate unusual heat. As we can
remotely measure environmental sensing data such as temperature, humidity, barometric pressure,
and CO2 level, we can deploy mobile physical anomaly detection units [34], which provide �exible
real-time physical anomaly detection, in industrial sites. Unlike model-based anomaly detection
approaches, data-driven approaches can be scaled into heterogeneous environments. SWaT [78] is
a water treatment testbed that contains around 68 sensors and actuators. Hence, the SWaT dataset
contains both discrete and continuous sensor data. In addition, the sensors have di�erent sampling
rates. This kind of environment is challenging due to its high diversity. Recent research [54, 95, 130]
shows that data-driven approaches do well even in such environments.

3.2 Role of IoT within Anomaly Detection

Time series data generated by sensors in IoT applications often exhibit temporal correlations
resulting in contextual anomalies where the context is time. Detection of such anomalies can be
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challenging as compared to point anomalies, making available solutions computationally complex
[49, 92]. This proposes no issue if the detection is done o�ine (see Section 3.4). Real-world industrial
applications aremostly time-sensitive (e.g., manufacturing, fuel extraction). In this case, the common
approach is to use IoT sensors/devices to enable cloud access where high computing power is
available [76]. However, the occurrence of delay causes researchers to pursue alternative approaches
[88, 109]. This delay can also be eliminated by applying anomaly detection on edge devices. The
available methods are pretty limited but expanding [24] thanks to the rapid development of
ubiquitous technologies. IoT devices are also used for real-time monitoring [94, 96] which might be
critical (see Section 2) when the other security mechanisms in place fail. We utilize IoT for edge
data monitoring while considering edge anomaly detection implementation as future work.

3.3 Applying Machine Learning on Multimodal Sensor Data

In an ideal scenario, multiple sensor data sources are employed to monitor/supervise systems
as each sensing modality provide unique/more context combined to produce an accurate repre-
sentation of the environment. This approach is common in human activity recognition (HAR)
applications [84, 102]. For example, the Apple Watch [7] tracks a user’s sleep by combining heart
rate and accelerometer data or calculates the number of steps taken based on geolocation and
acceleration data. The features extracted from these modalities are either combined into a single
feature vector (feature concatenation) [38, 89, 137] or utilized individually (ensemble classi�ers)
[6, 40, 118, 128]. Traditional machine learning (ML) methods use a single modality for each stage
of the ML application [104]. Multimodal fusion approaches employ all modalities at each stage
[11, 25]. Cross-modality learning approaches [41, 136] utilize all modalities during feature learning
while training and testing are performed with the same single modality, which di�ers from shared
representation learning [79, 134], where di�erent modalities are used for testing and training.

3.4 Sensor Data Analysis with ML-based Approaches

Data-driven ML methods are grouped into three [33] based on the: (I) supervision, (II) time, and
(III) working principle. Supervision. ML methods are supervised if labels (e.g., anomaly, normal) are
fed during training. Supervised methods are common in human activity recognition (HAR) [10].
However, labeled data might be hard to obtain. In this case, the semi-supervised method, which is a
mix of supervised and unsupervised, is applied. Generating labels from unlabeled data for training
is an example use case. Pipe damage detection [110] is one of the areas where semi-supervised
learning is preferred. Unsupervised learning is applied if the model is expected to learn without any
human interference. These methods are popular in anomaly detection [50] where normal data are
fed during training and then the model is expected to recognize unknown/novel data. The learning
also might depend on a policy where the model learns by its actions. Reinforcement learning is
such an example that can be seen in game-playing robots [113]. The learning might be online or
o�ine. Online algorithms learn on the �y while batch/o�ine learning makes use of pre-gathered
data to train the model. Adaptive ML models [83] require online learning algorithms due to novel
streaming data. O�ine learning is more common in classi�cation tasks such as natural language
processing (NLP) [68] where the capacity of the model depends on the size/content of the training
data. ML models can also be classi�ed into two according to working principles: instance-based, and
model-based. The instance-based ones analyze the correlation between the known points and new
points while the model-based algorithm tries to understand the behavior of data patterns. Instance-
based methods are popular in image classi�cation [20] while model-based methods are seen in
predictive analytics/forecasting [107]. Figure 1 demonstrates the aforementioned ML categories.
CNNs o�er several advantages over their counterparts: are widely used in various machine

learning applications due to their advantages over traditional models while one of them is to extract
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Machine Learning Types

Time
Working
Principle

Instance
Based

Model
Based

Online Offline/BatchSupervised Semi-supervised Unsupervised Reinforcement

Learning

Supervision

Fig. 1. We group machine learning types based on supervision, time, and working principle.

features automatically eliminating the need for manual feature extraction, a labor-intensive task.
CNNs have a lower computational complexity than fully connectedmodels, as local neurons are only
connected to a certain group of layers, and feedback loops, as seen in Recurrent Neural Networks
(RNN), are not required [108]. CNNs can be either 1D, 2D, or multi-dimensional. While 2D-CNNs
are the de facto choice for input data with a strong 2D structure that correlates spatially (e.g.,
images, and speech) [64], 1D-CNNs are useful for time series data as such data are expected to have
strong temporal correlations [60]. 1D-CNNs are also computationally less expensive as they require
exponentially fewer operations making them desirable for real-time sensing applications. The
various recent applications of 1D-CNNs include ball bearing fault detection [43], water treatment
system anomaly detection [54], HAR [19], seizure detection [48], and music genre classi�cation [4].

4 ANOMALIES

In the �eld of data science, anomalies or outliers are data that deviate from the expected patterns
of behavior. In other disciplines, such anomalies may also be referred to as "abnormalities" , though
this term is also used to de�ne a behavior. This section provides an overview of di�erent types of
anomalies, decision-making methods, and techniques for generating anomalous data.

4.1 Anomaly Types

Anomalies are classi�ed into three categories [17]: (I) point anomalies, (II) contextual anomalies, and
(III) collective anomalies. Point anomalies di�er from the rest of the data. Being the most common
ones, if the anomaly type is not mentioned, it usually refers to point anomalies [70, 105, 132].
Contextual anomalies are harder to detect as such detection requires context (e.g., time, location)
analysis where de�ning one might be challenging. The application that generates time series data
tends to contain contextual anomalies where the context is the time [16, 67]. Collective anomalies

is a group of data that di�ers from the rest being relatively rare due to their nature. Triggering
certain malicious network actions in order can cause a collective anomaly that can be identi�ed via
network anomaly detection methods [2, 3]. Figure 2 demonstrates each type of anomaly that can
occur on an industrial robotic arm that operate in manufacturing plants.

4.2 Anomaly Decision Methods for Sensor Data

Anomalies are de�ned as either binary (e.g., 0 for normals and 1 for anomalies) or via anomaly
score which mostly scales between 0 and 1. Then these scores might be converted into binary labels
by using a certain threshold. While boundary-de�ning methods such as SVMs [86] tend to utilize
binary de�nitions, decision tree-based approaches such as Isolation forest [66] utilizes anomaly
scores. On the other hand, regression methods (e.g., gradient boosting, logistic regression) estimate
a value. Then statistical methods are applied to the residuals which are the absolute di�erence
between the predicted and actual values.
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Fig. 2. Demonstrates an example acceleration data of one industrial robotic arm joint. While the point

anomaly ?1 does not appear across the data (or appears very less in numbers), the contextual ?2 does. While

?1 can be detected via simple thresholding, more sophisticated methods are required to detect ?2. Collective

anomaly is the event where point/contextual anomaly occurs simultaneously across all joints.

Table 2. Anomaly Creation Methods

Reference Testbed Attack Anomaly Creation Method

Narayanan and Bobba [86] Industrial Robotic Arm - Set industrial arm to follow a di�erent trajectory.
Chen et al. [18] Industrial Robotic Arm - Manually injecting faults.
Khan et al. [52] Robotic Arm Syringe Pump ✓ Implementing control-�ow hijack and �rmware modi�cation attacks.
Riazi et al. [99] Belt-driven Robotic Arm - Loosening and tightening the belt.
Park et al. [92] Robot Manipulator - Adjusting the amount of air injected into vacuum ejector.
Angle et al. [5] High Voltage Motor Development Kit - Modifying the �rmware to allow to damage the kit.
Vuong et al. [126] Robotic Vehicle ✓ Conducting DoS attack.
Wu et al. [131] 3D Printer - Injecting faulty �les to 3D printer to print a damaged product.
Gao et al. [31] 3D Printer - Modifying the �rmware to change printer features such as printing velocity.
Li et al. [63] Rotor Kit - Adding weights to a mass load.
Bezemskij et al. [12] Robotic Vehicle ✓ Conducting replay attack, creating rogue node, manipulating compass, and breaking wheel.
Sonntag et al. [115] Industrial Robotic Arm - Hitting to an industrial arm.
Sisinni et al. [114] Robotic Vehicle ✓ Conducting DoS, command injection, and malware attack.
CASPER Industrial Robotic Arm - Manually manipulating the joint velocity of the arm.

4.3 Generating Anomalies on Cyber-Physical Systems

While the use of public datasets [26, 35, 61, 62, 78] enables benchmarking similar works, having
no control over anomaly creation beclouds the recreation of desired challenging scenarios. This
also applies to simulation-only studies [29, 101]. Thus, real-world testbeds are required to assess
practicality. Generating anomalies on such a testbed that replicates the original industrial process
(e.g., manufacturing) is challenging due to the risk of damaging high-cost equipment. For instance,
conducting a cyber attack on a controller unit [5, 31, 69, 131] carries such a risk. In this work, we
introduce controlled anomalies as seen in [12, 63, 86, 92, 99, 115] via manually modifying the joint
velocities. Table 2 demonstrates the anomaly creation processes of related work.

5 CASPER - SYSTEM OVERVIEW

The CASPER consists of edge, fog, and central components that o�er an open-source low-cost IoT-
based monitoring system. In this section, we present each component of CASPER while justifying
our design choices.

5.1 Edge Components

In this work, we use edge development boards that contain 32-bit microcontroller units (MCUs) for
the following reasons: (I) These boards are easy to deploy (attachable), low-cost, and power-e�cient
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Table 3. Edge Development Boards Tech Specifications

Name Arduino Nano 33 BLE Sense Adafruit Feather nRF52840 Sense Nicla Sense ME

SoC (Microprocessor) nRF52840 (ARM Cortex M4) nRF52840 (ARM Cortex M4) nRF52832 (ARM Cortex M4)

Memory 256 KB SRAM, 1MB �ash 256 KB SRAM, 1MB �ash 64 KB SRAM, 512 KB �ash

Connectivity BLE 5.0 BLE 5.0 BLE 4.2

Sensor (Module Name)

IMU (LSM9DS)

Microphone (MP34DT05)

Gesture, Light, Proximity (APDS9960)

Barometric Pressure (LPS22HB)

Temperature, Humidity (HTS221)

IMU (LSM6DS33 & LIS3MDL)

Microphone (PDM MEMS)

Gesture, Light, Proximity (APDS9960)

Barometric Pressure (BMP280)

Temperature, Humidity (SHT-30)

IMU (BHI260AP & BMM150)

Gas, Pressure, Temperature, Humidity (BME688)

Pressure (BMP390)

Table 4. Cloud/Central/Fog Tech Specifications

Google Colab Pro Data Science Workstation Raspberry Pi 4B

GPU Tesla P100-PCIE-16GB NVIDIA RTX A6000-48GB None
CPU Intel Xeon @2.20GHz Intel Xeon W-2245 @3.90GHz Broadcom BCM2711, Quad core Cortex-A72 64-bit SoC @ 1.5GHz
RAM 24 GB 128 GB 4 GB

devices. The IoT environments are dynamic, heterogeneous, and resource-constrained. Thus, we
need the aforementioned characteristics to have a sustainable model. (II) They can support BLE,
which is a wireless personal area network (WPAN) technology, that enables low-power encrypted
wireless communication. (III) They either allow the integration of third-party sensors or come
with built-in ones. The boards with built-in sensors remove the need for additional attachments
thus o�ering accessible deployment. We compare three edge development boards based on the
aforementioned requirements: (I) Arduino Nano 33 BLE Sense [121], (II) Adafruit Feather nRF52840
Sense [1], (III) Nicla Sense ME [122]3. Table 3 compares tech speci�cations of the utilized edge
devices. As we focus on detecting motion-related anomalies of an arm where corresponding data
generated on the edge, we consider the following:

• The edge development board should have built-in inertial measurement unit (IMU) sensors.
These sensors measure linear acceleration, magnetic direction, and angular velocity to de�ne
an orientation.
• The edge development board must provide BLE [112] connectivity. We observed in our
previous work [50] that BLE o�ers low power usage and �exibility thus favored in resource-
constrained environments. In addition, most system-on-chips (SoC) provide BLE, hence we
do not need any additional modules/devices as seen in Zigbee [28] networks.

5.2 Fog Components

The fog device manages several edge devices while acting as a bridge between the edge and the
cloud. As the edge devices are resource-constrained, in an IoT environment, connecting internet
via the fog device is an optimal solution in most cases. However, as ICPS supervise CIs, one might
prefer not to have a cloud connection due to security challenges [106]. In this case, the fog device
is also expected to have enough capacity to perform precon�gured tasks (e.g., data monitoring,
edge device supervision, data preprocessing). Low cost is another deciding factor as they might be
required in great numbers depending on the capacity of industrial area. Based on these, we use an
embedded single board computer (SBC) as a fog device in this work. We consider the following as

3From now on, we may mention these boards with their initial names only.
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key characteristics: (I) It must be portable, small, and low-cost, (II) must be able to connect to the
internet, (III) must support BLE as we send edge data over BLE to SBC, (IV) must be able to run an
operating system (OS) that supports software tools such as Node-RED (nodered.org) and Grafana
(grafana.com). We explain details regarding these tools in the following section.

In this work, we utilize Raspberry Pi 4 (RPi4) as SBC as previous research [8, 36] o�er promising
benchmarking results [72]. RPi4 runs on DietPi OS [53], that minimizes resource usage when
running Node-RED and Grafana. A more cost-e�cient option would be using an edge development
board as fog device, however, due to a lack of on-device training and visualizing support, currently
they are not feasible.

5.3 Cloud/Central Components

As ML model training is a resource-intensive task, a cloud or central device with high computing
power is required. In an ideal scenario where ML models are deployed for real-world applications,
online learning is implemented to prevent the fade of model’s e�ciency due to undesired events
such as concept drift. However, in this work, we do o�ine learning as our primary target is
to investigate the e�ciency of statistical and ML based methods for anomaly detection while
o�ering IoT-based monitoring on a realistic environment. We use local data science workstation as
central component for resource-intensive operations (e.g., training, development of alternative ML
algorithms for comparison) while utilizing fog device to supervise edge data. Table 4 demonstrates
the key speci�cations of central, fog device, and an example of Google Colab Pro instance to give
an insight about the capability of utilized workstation.

6 EVALUATION

This section presents a detailed description of the experimental setup utilized in this study, including
the essential components of the testbed and the use case scenario.We conduct a comparative analysis
of three di�erent edge development boards in terms of the generated IMU data and introduce the
CASPER dataset. We assess the e�ectiveness of various statistical and machine learning-based
methods in detecting movement-based anomalies of an industrial robotic arm. We conduct a
comprehensive evaluation of the proposed approach on a real-world industrial robotic arm testbed.

6.1 Experimental Setup

6.1.1 Testbed Components. We utilize a real-world industrial testbed that simulates a pick-and-
place task seen in manufacturing systems. Table 5 and Table 6 present the testbed components while
explaining their key features and tasks. Figure 3 visualizes each component, demonstrates how
each component communicates, de�nes the purpose of each joint of the arm and shows rotations,
presents the use case scenario step-by-step, and proposes the real testbed image where the control
boxes are not visible due to being located under the desk. The frame and mounting plates of the
custom platform are made of aluminum while the legs are made of steel.

6.1.2 Use Case Scenario. 9-DOF multi-jointed industrial robotic arms are used in various industrial
applications. These applications include manufacturing-related tasks such as welding, soldering,
screw driving, brazing, placing, casting, and painting. The trajectory of the arm depends on the task.
For instance, pick-and-place applications mostly require a horizontal trajectory while screw-driving
ones require both. The arms repeat the same high-precision tasks which are completed within the
certain time intervals. In this work, we examine a pick-and-place scenario (see Figure 3c) while
considering the following assumptions:

• The movement is repetitive, has a certain frequency, and continuous.
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Table 5. Hardware Components

Component Name Key Features Purpose Location

UR3e 6-DoF Industrial Grade Arm 5kg payload, 500mm reach Pick and place. Edge

2FG7 OnRobot Parallel Gripper
37mm maximum width
140N maximum gripping force

Gripping, and releasing the steel ball. Edge

Controller Box
Built-in ethernet port
Input/output (IO) sockets

Main control unit of the arm.
Enables remote controlling via urp scripts.

Edge

Custom Platform
~2.5 meter width, ~1 meter height
~1.5 meter length, mostly steel

Base for the arms.
Contains two inclined parts that allows ball to roll.

Edge

Steel Ball 25.40mm diameter, 66.84g weigth It is passed from one arm to another via inclined platform. Edge

Nicla Sense ME
BLE connectivity
IMU sensors

Generates IMU data and forward to fog over BLE. Edge

Pi-HMI
Touchpad Screen
ML capable
BLE & Wi-Fi connectivity

Supervises the IMU data and resource usage. Fog

Network Switch Power over ethernet (PoE)
Provides TCP/IP communication between PC and arms.
Powers Pi-HMI.

Fog

Laptop Runs Ubuntu, RTDE compatible
Runs Python script to control arms.
Generates dataset.

Central

Data Science Workstation High computing power Does the training/evaluation of proposed/compared ML models Central

Table 6. So�ware Components

Software Name Purpose Version

Grafana Provides interactive visualization of IMU data. 9.0.9
In�uxDB Stores the IMU data. 1.8
DietPi OS Manages Pi-HMI. Power e�cient OS for Pi. 8.0
Ubuntu Manages the central PC. 20.04
Python Enables programming of the simulation. 3.8
Universal Robot Scripts (urp) Communicate with python script to execute commands. 5.11
Arduino Sketch Runs on Nicla Sense ME. Generates and transmits the IMU data. 1.6.10
Node-RED Sets up the BLE connection between Pi-HMI and Nano BLE Sense. 3.0

• The arm is autonomous hence does not require any human interaction aside from the
initialization phase where no adversarial behaviors are in place.
• The adversary aims to disrupt the physical process. Thus, the behavior of the arm deviates as
a result of an attack. The deviation from the behavior might occur as a result of accidental
events (e.g., bumping into an industrial arm) as well.
• The integrity of the built-in data is compromised as the adversary has complete control over
the communication between the central laptop and the robotic arms.

6.2 Sensor Fusion & Edge Development Board Comparison

Micro-electro-mechanical systems (MEMS) sensors that generate IMU4 data are: (I) accelerometer
and (II) gyroscope, and (III) magnetometer. The accelerometer measures the linear acceleration
which de�nes the velocity change in units of either gravitational force (g) or meters per second
squared (ms−2). The gyroscope measures the angular velocity which de�nes the rotational change
in motion in units of degrees per second (3?B). The magnetometer measures local magnetic �eld

4Sometimes IMU is de�ned as magnetic and inertial measurement unit (MIMU) due to the presence of magnetometer.
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Nicla Sense ME

Teach Pendant

Control Box

PC

Network Switch
Pi-HMI

Power over Ethernet (PoE)

TCP/IP

2FG7 Gripper

Steel Ball

Stopper

(a) Demonstrates the testbed. We transfer edge

data to Raspberry Pi via BLE. The local PC con-

trols two industrial robotic arms over TCP/IP. (b) The real image of the industrial robotic arm.

III

IV

VIV III

(c) The demonstration of the pick-and-place use

case scenario. Both arms are in a home position

at the beginning. The steel balls stand near the

stopper. The scenario steps are as follows: (I) First,

the arms grab the steel ball from the inclined

platform. (II) Then, they drop the steel ball to the

other inclined platform. (III) Steel balls roll down

until the stopper. Each arm completes the process

around 20 seconds (see §6.1.2 for further details).

Tool Flange

Wrist 3 Joint

Wrist 2 Joint Wrist 1 Joint

Elbow Joint

Shoulder Joint Base Joint

Base

(d) The arm joints and their rotations. While base,

shoulder, and elbow joints provide larger move-

ments, wrist joints provider finer movements.

Tool flange is the part where we a�ach 2FG7 par-

allel gripper.

Fig. 3. Testbed and use case scenario.

strength in units of Tesla (T). These three sensors are used in attitude heading reference sys-
tems (AHRS) (also known as magnetic, angular rate, and gravity (MARG)) to de�ne an accurate
3D orientation [47]. Sensor fusion algorithms are applied to come up with accurate orientation
representation. Euler angles and quaternions are two common parameters in this context. Euler
angles su�er from gimbal lock which causes the loss of one degree of freedom. Thus, quaternion
representations are preferred. Mahony [74] and Madgwick [73] are two popular AHRS �lters that
de�ne orientation via quaternions. Madgwick �lter generates less root mean squared error (RMSE)
while being computationally expensive in a negligible matter [71] in Adafruit and Arduino boards
where we utilize open-source libraries5,6. We use proprietary libraries7 developed by Bosch for
the Nicla Sense ME where quaternions are generated via the Mahony algorithm. We compare the
quality of the IMU data while also observing the quaternion generation to visually observe the
stability of sensors (see Figure 4). We observe the following:

5github.com/adafruit/Adafruit_AHRS
6github.com/arduino-libraries/Arduino_LSM9DS1
7github.com/arduino/nicla-sense-me-fw
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Table 7. Edge Development Board Testing

Edge Development Board Arduino Nano 33 BLE Sense Adafruit Feather nRF52840 Sense Nicla Sense ME

Power Consumption (mAh) [Quaternion, *Raw Data] [24.1, 24.2] [12.9, 12.6] [14.9, 15.7]

Sensor Type (Range & Sensitivity)

Acc. ([-4, 4] g & 0.122 mg)

Gyro. ([-2000, +2000] dps & 70 mdps)

Mag. ([-400, +400] `T & 0.014 `T)

Acc. ([-4, 4] g & 0.732 mg)

Gyro. ([-2000, +2000] dps & 1 mpds)

Mag. ([-400, +400] `T & 0.014 `T)

Acc. ([-4, 4] g & 0.239 mg)

Gyro. ([-2000, +2000] & 30 mdps)

Mag. ([±1300 (x, y), ±2500(z)] `T & 0.02 `T)

* By "Raw", we mean accelerometer, gyroscope, and magnetometer data. ) : Tesla, 3?B: degrees per second, 6: G-force. Acc: Accelerometer, Gyro: Gyroscope, Mag: Magnetometer.
Ranges are the default ones.

• Adafruit consumes less power overall. Out of three edge development boards, the power
consumption of Adafruit is signi�cantly lower than Arduino while being closer to Nicla. If
we supply these boards with 9 Volts 250 mAh battery, we would expect the Adafruit to run
around 20 hours, Nicla to run around 16 hours, and Arduino to run around 10 hours.
• Nicla provides the most stable data. As Adafruit and Arduino generate a higher noise, it is
hard to judge if the resolution re�ects the actual change. However, analysis of gyroscope data
revealed the existence of random spikes, which may introduce potential outliers to the data.

6.3 Dataset Generation and Characteristics

In this work, we change the arm’s motion by modifying the joint velocity to create anomalies. We
apply changes at di�erent magnitudes to evaluate the sensitivity of the proposed anomaly detection
system. Thus, we have two states: normal state where the arm joints move at default velocity (1.05
rad/s), anomalous state where the arm joints move at various velocities. The anomalous state also
has two phases: the �rst phase where the joint velocities are higher than the default, and the second
phase where the opposite applies. The Table 8 demonstrates the anomalies with respect to time.

Table 8. The Generated Anomalies

Time Interval (minutes*) 900-936 972-1008 1044-1080 1116-1152 1188-1224 1260-1296 1332-1368 1404-1440
Velocity Change 10% Increase 35% Increase 65% Increase 100% Increase 50% Decrease 5% Decrease 20% Increase 25% Decrease

*Whole test is 1460 minutes. The arm joints runs at normal velocity during non-mentioned time intervals.

In total, the CASPER dataset is a time series dataset containing four �les generated from a
pick-and-place operation lasting around 24 hours: The �rst Comma Separated Values (CSV) �le
consists of IMU data. We gather data via Nicla attached to one of the arms (see Figure 3b). The
data include accelerometer, gyroscope, and magnetometer data. The second and the third �les (one
�le per arm) contain built-in arm parameters (e.g., joint positions, velocities, and currents). We
gather both data at 20Hz which corresponds 50 ms di�erence between two consecutive data points.
The �nal �le is a PCAP containing the network tra�c between the local controller PC and the
arms. Table 9 demonstrates the datasets while providing the feature names and characteristics. In
this study, our focus is solely on the data generated by Nicla, as our objective is to investigate the
e�ectiveness of an air-gapped IoT anomaly detection system. We share the built-in and network
data for researchers who are working in related �elds.

6.4 Anomaly Detection

Anomaly detection application on IMU data obtained from an edge development board attached to
an industrial robotic arm that performs repetitive tasks contains the following challenges: (I) Each
arm is idle for a certain period causing data to contain a high number of near-zero data points.
This beclouds the use of common feature extraction methods for time series data, such as applying
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(a) The gyroscope from Arduino generates random spikes when we query with magnetometer data. Thus, we

applied a smoothing filter (moving median with a window length of three) to eliminate these. The graph on

the le� is without the filter.
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(b) We generated three sample datasets with 5000 data points at 20Hz to observe the behavior of IMU sensors

of each edge board. We applied the available calibration methods (the methods provided in open-source code

repositories) and have not tweaked the source codes. Our findings show that Nicla generates less noisy data

overall.
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Fig. 4. Edge data generation comparison.
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Table 9. The CASPER Dataset

Data Features Number of Data Points/Packets Size

Nicla - IMU
Accelerometer (x, y, z)
Gyroscope (x, y, z)

Magnetometer (x, y, z)
1750932 138.9 MB

Arm Parameters*

Timestamp
Joint Positions
Joint Velocities
Joint Currents
Joint Voltages

Cartesian Coordinates
Generalized Forces
Joint Temperatures
Execution Time
Safety Status

Norm of Cartesian Linear Momentum
Robot Current

Tool Acceleration
Tool Current

Tool Temperature
Tool velocity
Elbow Position
Elbow Velocity
TCP Force

Anomaly State

1762650 2.0 GB

Network 267** 14582826 3.7 GB

*: This is for only one single arm, we have two arms in total. **: This is the number of common TCP features
that can be extracted from the pcap �le. The total number of available features (wireshark.org/docs/dfref)
are a lot more.

rolling mean/median to input windows. (II) IMU data by nature contain highly correlated features,
which can lead to unstable predictions generated by less reliable models due to multicollinearity. (III)
There is a possibility of label mismatching. We modify the joint velocity of the arms via a controller
PC. However, the data that we apply anomaly detection to is generated via a di�erent source
(an edge development board). Hence, we also utilize one of the features (X-axis of a gyroscope)
where anomalies are obvious to generate accurate anomaly labels. Figure 5 presents the IMU
data generated by Nicla where we can spot the anomalies on the aforementioned feature. The
anomaly detection methodology as follows: The dataset is divided into two sets, non-anomalous and
anomalous, and the optimization of anomaly detection algorithms is done on the non-anomalous
set where we target the minimized loss (RMSE) without over�tting the models. Then, anomalous
windows are inputted into these optimized models where window labeling is performed through
thresholding where thresholds are determined via grid search. The performance of these models is
then evaluated using the confusion matrix, and relevant performance metrics (accuracy, recall, F1
score, and precision) are generated.

6.4.1 Feature Processing. We employ several feature processing techniques. First, we remove some
of the noise by applying rolling median �lter (see Fig. 6). The optimal window length for the �lter
is found via grid search considering the trade-o� between information loss and noise reduction.
We apply z-score normalization to the data-driven models only, by �tting the models exclusively
with the training data to prevent the validation/test data from having access to any training data
characteristics.
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Fig. 5. Demonstrates IMU data generated via an edge development board a�ached to an industrial robotic

arm. We can easily see that the anomalies reflect on the X-axis of gyroscope data.

Table 10. Autocorrelation Analysis

Feature AccX AccY AccZ GyroX GyroY GyroZ MagX MagY MagZ
A∗, F ∗ ∗ 0.995, 755 0.998, 755 0.977, 755 0.997, 755 0.996, 755 0.995, 755 0.998, 755 0.999, 755 0.999, 755

A *: The Pearson correlation coe�cient. F**: Window length.

6.4.2 Correlation Analysis. We apply autocorrelation to �nd the highest time-dependent Pearson
correlation coe�cient (r) denoted as d where � is the expected value, ` is the mean and f is the
standard deviation (see Equation 1) to �nd the periodicity. We utilize the period as an input window
length for baseline and data-driven approaches. All input features autocorrelate most when the
window length is set to 755 data points (see Table 10). We also analyze how features (sets of features)
correlate with each other due to the aforementioned reasons. We make the following observations
from the feature correlation heatmap (see Figure 7), and canonical-correlation analysis (CCA) (see
Table 11): (I) The X and Y-axes of the accelerometer are the most correlated features followed by
the Y-axes of accelerometer and magnetometer. (II) Gyroscope features do not correlate with others.
(III) The accelerometer and gyroscope features are the least correlated features. (IV) CCA shows
that the overall, accelerometer and magnetometer features correlate. As correlated input features
are undesired, we also investigate the correlation of the quaternion representation of IMU data. We
see two main advantages of utilizing quaternions over raw IMU: (I) The transformation reduces the
number of input features from 9 to 4, (II) the quaternions generated via the Madgwick algorithm do
not show any collinearity on the contrary of Mahony algorithm. Figure 8 compares the correlation
heatmap of quaternions generated by both algorithms.

d-- (C1, C2) =
� [(-C1 ) − (`C1 ) (-C2 ) − (`C2 )]

fC1fC2
(1)
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Fig. 6. Demonstrates the e�ect of noise removal on all features. The bo�om three figures are the noise-

removed data.

Table 11. Canonical-correlation Analysis

Accelerometer - Gyroscope Accelerometer - Magnetometer Gyroscope - Magnetometer
[0.48561, 0.07371, 0.02834] [0.96962, 0.58022, 0.27068] [0.41173, 0.30430, 0.07603]

AccX AccY AccZ GyroX GyroY GyroZ MagX MagY MagZ
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Fig. 7. The correlation of input features. We see that several features are highly correlated (e.g., X and Y-axes

of accelerometer. This is expected due to the nature of IMU data.
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(a) Correlation heatmap of Madgwick�aternions.
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(b) Correlation heatmap of Mahony�aternions.

Fig. 8. A comparison of correlation heatmaps of two common quaternion algorithms.
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Fig. 9. The lag is obvious as the gap between the window increases. Mean baseline RMSE is 0.3909, while the

median one is 0.3999. Hence, mean baseline performs be�er than the medium baseline with metrics of 84.6%

accuracy and 83.4% F1 score.

6.4.3 Baseline. We utilize a statistical baseline to establish a minimum level of con�dence to be
beaten by the data-driven approaches to justify their use. We divide the data into input windows
(generated from non-anomalous data only) where the window length is the period found via
the aforementioned correlation analysis. The comparison of input windows reveals the random
unknown lag proving the deviations on the sampling rate set to 20Hz during the experiment. The
lag is minimal in consecutive windows (ranging from -3 to 3 data points) but expands over time
causing a delay of around a quarter of the window length. To come up with a stronger baseline,
we eliminate the lag by considering the �rst window (755 data points) as the base window. We
generate the mean and median windows. Then, we calculate the overall RMSE (see Equation 2).

RMSE =

√

√

1

=

=
∑

8=1

(~8 − ~̂8 )2 (2)

for both where ~8 is the actual and ~̂28 is the predicted value. The mean baseline beats the median
one hence used to detect anomalies via thresholding based on RMSE. We measure the performance
of anomaly detection methods via a confusion matrix consisting of four main parameters: (I) True
positives (TP)-when an anomaly is detected as an anomaly, false positives (FP)-when normal is
detected as an anomaly, true negatives (TN)-when normal is detected as normal, false negatives
(FN)-when normal is detected as an anomaly. We calculate performance metrics which are accuracy,
precision, F1-score, and recall via these parameters as shown below. Figure 9 demonstrates the lag,
mean, and median baselines and their di�erence, and confusion matrix of baseline.
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Algorithm 1 Anomaly Detection Algorithm for Data-driven Approaches

Input: Test data - ∈ R=×9, `CA08=8=6 ∈ R1×9, fCA08=8=6 ∈ R1×9, threshold list) ∈ R:

Output: List % ∈ 0, 1; , where ; =< − 755 + 1, where< = = − 755, where = = |- | ,

1: -̂ =

-−`CA08=8=6
fCA08=8=6

⊲ Normalize test data via training parameters

2: , ∈ R755×9 ⊲ Initialize a sliding window with size 755
3: ' = [ ], ( = [ ], % = [ ] ⊲ Initialize empty lists for RMSE values, RMSE rolling sums and �nal labels
4: for 8 = 1 to = − 755 do

5: , = -̂8 : 8 + 754, : ⊲ Select the 8Cℎ window of test data
6: ~̂ = 51D-CNN (, ) ∈ R

1×9
⊲ Predict the next point using 1D-CNN model

7: ~ = ~̂ · f + ` ∈ R1×9 ⊲ Inverse normalize the predicted value

8: A8 =
√

1
9

∑9
9=1 (~8,9target − ~8,9 )2 ⊲ Calculate RMSE per time step

9: ' ← [A8 ] ⊲ Append to RMSE list
10: end for

11: (8 =
∑8

9=8−, +1 ' 9 for 8 =,,, + 1, . . . , |' | ⊲ Apply rolling sum for RMSEs with window length,

12: for 9 ← 1 to |) | do ⊲ Generate a prediction label list via thresholding
13: % ← []

14: for 8 ← 1 to |( | −, + 1 do
15: if (8 > )9 then

16: % ← % + [1]

17: else

18: % ← % + [0]

19: end if

20: end for

21: end for

6.4.4 Partial Least Squares regression. Due to the high correlation of input features, we investigate
the feasibility of using Partial Least Squares regression as an anomaly detection method. PLS
reduces the number of predictors to 7 capturing around 99% of the variation of the data where the
correlations between the predictors are near-zero. The computational complexity of PLS is far less
than data-driven approaches. While the loss (RMSE) is similar to data-driven approaches, the PLS
fails to generate relatively high RMSEs when the input consists of anomalous points.

6.4.5 1D convolutional neural network. We design a 1D-CNN-based ML algorithm to detect anom-
alies. We expand the receptive �eld by stacking two 1d-CNN layers to extract deeper local/temporal
features. These layers are followed by a max pooling layer that makes the model more robust to
over�tting. Finally, we output our features via the fully connected layer. We are implementing a
sliding window approach in which the input window consists of 755-time steps (window length),
while the output window consists of only 1-time step, then we shift by 1-time step. We do not
manually eliminate any lags as we have done for the baseline. Recti�ed Linear Unit (ReLU) is used
as an activation function. The best hyperparameters are found via grid search. We follow the same
approach for the anomaly labels. The sliding windows with more anomaly points are accepted as
anomalous (see Algorithm 1). We see that the 1D-CNN beats the baseline by a high margin. Figure
10 demonstrates the model architecture, hyperparameters tried during the grid search, and the
related confusion matrix.

6.4.6 Long Short-Term Memory recurrent neural network. As LSTMs are de facto choice for many
application where time series data are present due to their ability to "remember" past inputs,
we compare the proposed approach to a LSTM-based approach. The LSTM model comprises a
single LSTM layer followed by two dense layers with recti�ed linear unit (ReLU) activation. In
order to address over�tting, which is commonly observed with LSTMs, we introduce a dropout
layer and L1 regularization on the LSTM layer. Despite these measures, we observe over�tting,
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{Sample Feature 

Dimensions

(9, 755*N)

Input Dimensions (B, T, 9)

Kernel Dimensions (9, K)

F
la

en

F
u

lly
 C

o
n

n
ected

{
Filters (F)

C
o

n
v
-1D

 (R
eL

U
)

C
o

n
v
-1D

 (R
eL

U
)

M
ax

 P
o

o
lin

g
 - 1D

 (9, M
)

C
o

n
v
-1D

(R
eL

U
)

C
o

n
v
-1D

(R
eL

U
)

M
ax

 P
o

o
lin

g
 - 1D

B: Batch Size = [32, 64]

F: Number of Filters: [8, 32, 64]T: Timesteps = 755 M: Max Pooling Kernel Size = [2, 3]

K: Convolution Kernel Size = [5, 50]N: Sample Length Multiplier = [1 , 5]

pAccX

pAccZ

pAccY

pGyroX

pGyroY

pMagX

pGyroZ

pMagY

pMagZ

Predictions (1, 9)

(a) The architecture of the 1D-CNN model and the utilized hyperparameters.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.015

0.020

0.025

0.030

0.035

0.040
Training Loss
Validation Loss

(b) The loss graph of the model.

0 1

0
1

True Neg.
295265

0.46

False Pos.
5995

0.0093

False Neg.
3730

0.0058

True Pos.
337507

0.53 50000

100000

150000

200000

250000

300000

(c) The confusion matrix for the 1D-CNN-based

anomaly detection model.

Fig. 10. Demonstrates the neural network architecture, loss graph, and the confusion matrix. One epoch

takes around 4 minutes for the final chain of cross-validation.

which we attribute to the simplicity of the input data. The loss graph, along with corresponding
hyperparameters, is available in our GitHub repository.

6.4.7 XGBoost. Among decision tree regressors, we adopt the XGBoost which is a state-of-the-art
boosting algorithm. We specify the mean squared error loss function and train the algorithm
through the use of 10-fold forward chaining cross-validation. Experimental results reveal that
XGBoost is capable of achieving comparable performance, even when trained on just 10% of the
data corresponding to the �rst fold of cross-validation, while also boasting greater computational
e�ciency than its neural network counterparts. Notably, we implement Algorithm 1 with a singular
modi�cation, wherein we shift data with window length generating only two windows (input, and
target which is the window length shifted version of input) instead of traditional sliding windowing
that we implemented on 1D-CNN. This is necessary as tree-based algorithms rely on 2-dimensional
inputs. Optimal hyperparameters, including the number of estimators and the maximum depth, are
selected via grid search. We do not manually eliminate the lag as we have done for the baseline.

6.4.8 Comparison of anomaly detection methods. Table 12 compares the performances of imple-
mented anomaly detection systems on IMU data. The statistical baseline, where we manually
eliminate the lag to make it stronger, performs well, indicating its usefulness for applications where
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Table 12. Comparison of Anomaly Detection Approaches

Approach RMSE Accuracy Recall Precision F1 Score

Baseline 0.3909 0.8744 0.7660 0.9971 0.8664
PLS 0.1586 0.49 0.49 0.52 0.51
1D-CNN 0.1175 0.9848 0.9890 0.9825 0.9857
XGBoost 0.1301 0.9782 0.9900 0.9695 0.9797
LSTM 0.0947 0.8661 0.7510 0.9960 0.8563

(a) A Node-RED setup enabling BLE communication. (b) Real-time IMU data visualized via Grafana

dashboard.

Fig. 11. The demonstration of an IoT supervision system.

the accuracy of anomaly detection is not signi�cantly critical as seen in the industrial domain. All
other approaches beat the statistical baseline in terms of predicting normal data. PLS, which is
the computationally least expensive approach, fails at anomaly detection as the anomaly inputs
generate similar outputs causing small losses and rendering thresholding approaches ine�ective in
distinguishing between normal and anomalous data. This approach is better suited for forecasting
non-anomalous data only. The LSTM model performs worse (fails to detect most of the 5% decrease
in joint velocity anomalies) than its counterparts due to over�tting despite the introduced counter-
measures such as the dropout layer and L1 regularization. The 1D-CNN and XGBoost perform the
best while 1D-CNN slightly provides better results.

6.5 IoT Supervision System

Our analysis of recent cyber incidents (see Section 2) demonstrates the signi�cance of having
supervisory systems. In this work, as we assume that the integrity of built-in data is corrupted, we
provide an IoT supervision system for the IMU data generated via the edge development board. We
transfer edge data to a fog device over BLE (Nicla Sense ME contains an nRF52832 microcontroller
o�ering BLE 4.2 connectivity.) that provides encrypted transmission. We utilize Node-RED, which
is an open-source �ow-based programming tool. We developed a Node-RED package8 that provides
nodes (one for scanning, one for transmission) to establish a BLE communication between the
edge and the fog device. We utilize Arduino IDE to upload an Arduino sketch (provided in the
GitHub repository) which enables BLE transmission from an edge device. The transmitted data are
registered to In�uxDB. We query this data via the Grafana server that runs on the fog device and

8https://www.npmjs.com/package/node-red-contrib-ble-sense
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demonstrate on the Grafana dashboard hence providing a real-time live stream of IMU data. Figure
11 demonstrates the Node-RED setup and the Grafana dashboard.

6.6 Discussions

Undesired delay due to lack of control. We utilized two UR3e industrial robotic arms classi�ed
as collaborative robots equipped with a control box and an HMI (known as a teach pendant). The
intended use of the manufacturer for this arm involves control through the teach pendant limiting
synchronization with other industrial edge components such as additional robotic arms or conveyor
belts. To address this issue, the manufacturers developed a custom protocol, known as Real Time
Data Exchange (RTDE), which enables remote control. This protocol relies on the Python socket
library9, which provides TCP/IP communication. However, due to the limited control over delay
o�ered by the library, the local PC and both robotic arms were not entirely synchronized during
the experiment, which resulted in undesired delays.
Matching anomaly labels from a di�erent data source. The anomalies are created via the

local controller PC which also generates the built-in data. The anomaly detection is done on the
data generated from an attached edge development board. Both data-generating processes (�xed at
20Hz) are independent of each other. Due to mismatching lengths of these two data occurring due
to the edge development board not running at 20Hz exactly, we utilize one of the features where
the anomalies are obvious to generate correct anomaly labels. This requires manual identi�cation
of the drift and the obvious presence of anomalous behavior on a certain feature which might not
be the case for all scenarios.
Correlated input features due to nature of an IMU data. The correlation of IMU features

is expected as they de�ne the aspects of motion. Our correlation analysis demonstrates that the
accelerometer and magnetometer features exhibit a high correlation for the pick-and-place use case
scenario. This �nding highlights the e�ectiveness of the proposed 1D-CNN-based model even in
the presence of highly correlated input features. As our future work aims to run this model on an
edge development board, we have analyzed the feature correlation of quaternion representations
which consists of only four features allowing us to reduce computational complexity. Our analysis
shows that Madgwick quaternions are less correlated than Mahony quaternions making them more
promising for our research work with the current dataset.

Realistic data with high number of zeros. In industrial environments, it is common for edge
actuators to remain idle during periods of cooperation. In our investigation, we simulated an
environment where two industrial robotic arms operated consecutively, resulting in a dataset with
a large number of near-zero values. Disregarding these values is not feasible, as anomalies can be
identi�ed through variations in idle time. However, the presence of a high number of near-zero
values presents two signi�cant challenges: (I) Traditional feature extraction methods for time series
data (e.g., mean, median, kurtosis, and skewness) lose their validity. (II) Window sampling based on
the highest Pearson correlation coe�cient can produce unaligned windows, necessitating manual
lag elimination for approaches that require aligned windows.
Grid search to �nd optimal hyperparameters and thresholds. Grid search is a commonly

used approach for identifying optimal hyperparameters in data-driven methods. However, the
computational complexity of this technique increases exponentially with each additional parameter,
rendering the process time-consuming. Since grid search is often conducted manually, there is a
possibility of human error. Despite guidelines for conducting grid search e�ectively, there remains
a need for a more optimized methodology for initializing and accurately estimating the best
parameters. This issue is also relevant when determining themost appropriate threshold for anomaly

9https://docs.python.org/3/library/socket.html
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detection implemented via forecasting. Therefore, it is crucial to explore novel methodologies that
enable more e�cient and reliable hyperparameter optimization and anomaly threshold estimation.
Cause independent cyber-physical detection. The proposed 1D-CNN model demonstrates

the ability to detect the smallest anomaly introduced in the experiment, a 5% reduction in joint
velocities. 1D-CNN layers trained on non-anomalous data can extract discriminative features that
capture the precise pattern of the time series data in a way that when the input (predictor) consists
of anomalies the output (response) is disrupted enough to be detected through thresholding. As a
result, the proposed approach’s performance is independent of the cause of an anomaly, whether it
be due to a cyberattack, aging, power failure, or a physical accident. This approach is vulnerable
to adversarial attacks if the adversary gains control over the industrial robotic arm during the
training process which is unrealistic, given the accuracy requirements of industrial applications,
any unexpected physical deviation would likely have been detected by the relevant sta�, leading to
a halt in training/production.

Continuous anomalous runs longer than the input window. The proposed baseline approach
relies on a static sample window generated through averaging non-anomalous windows. This
approach neglects the temporal correlations present in the data. Instead, a stronger baseline
approach that accounts for these correlations involves averaging the root-mean-square errors
(RMSEs) of consecutive windows. This method can e�ectively detect the beginning of an anomalous
run but is prone to failure when the input window contains anomalous points. Similarly, linear
regression methods are sensitive to anomalous data, as such data can skew the regression line. Data-
driven approaches that are able to learn non-anomalous feature representations of sequence data are
more robust to anomalous inputs. These models may struggle to predict anomalous data accurately
since it deviates from the learned pattern during training, leading to higher RMSE enabling the
detection of anomalous windows via thresholding. As an example of such a data-driven approach
for anomaly detection, the proposed 1D-CNN model o�ers promising results.

7 CONCLUSIONS AND FUTURE WORK

The transition of IT to OT is increasingly continuing thus allowing the development of smart
manufacturing systems where ubiquitous networking technologies are utilized. This causes an
increased attack surface thus bringing new vulnerabilities which are exploitable as we can see
from the recent industrial cyber incidents. The cyber-only solutions are inadequate as attackers
that target industrial domains are capable of performing sophisticated attacks that can deceive
monitoring (e.g., network-based IDSs) systems. As the motivation of these attacks is to cause
the highest damage, attackers try to manipulate the physical processes via cyber-only access. To
prevent such incidents, we do require cyber-physical defense mechanisms utilizing a segregated
network. In this work, we proposed a ubiquitous cyber-physical anomaly detection system that
detects movement-based anomalies of an industrial robotic arm. According to our experimental
results, a 1D-CNN-based deep learning model is capable of accurately learning the behavior of
time series (sequential) data even when the input features are highly correlated as the proposed
model can even detect a 5% decrease in the joint velocities which is the minimal applied deviation.
We also propose an open-source IoT monitoring system that utilizes BLE to transmit edge data via
the developed Node-RED package. We expect our work to encourage the exploration of 1D-CNNs
for time series data as they are computationally more bene�cial than their counterpart RNNs.
Future work includes several improvements to CASPER: increasing the scope of the work via
introducing new anomalies (e.g., adding additional weight, touching the arm, shaking the testbed),
online learning via cloud, use of quaternions, and detecting anomalies at the edge (on the edge
development board) to prevent delay.
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