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Abstract—With the arrival of industry 4.0, industrial control
systems are converted into “smart” industrial cyber-physical
systems that depend on high interconnectivity enabled by ubiq-
uitous applications. As these applications can significantly reduce
maintenance and supervision costs, the integration of these ap-
plications is done with the “cost” being the focus overlooking the
security aspect that suffers from the vulnerabilities that occurred
due to increased attack surface. The adversaries aim to create
physical alterations by exploiting these cyber vulnerabilities via
so-called “cyber-physical” attacks. In this work, we introduce
CASPER, a context-aware ubiquitous machine learning-based
anomaly detection infrastructure that utilizes ubiquitous comput-
ing to detect anomalies of an industrial robotic arm. CASPER
monitors the robotic arm’s movements to ensure the arm follows
a predetermined trajectory. The CASPER can reach an accuracy
and F1 score of 97% which is promising for an industrial domain.
We modify the joint velocity of an industrial robotic arm to create
anomalies which we detect via CASPER.(Demo Video)

Index Terms—anomaly detection, predictive maintenance,
ubiquitous computing

I. INTRODUCTION

The legacy industrial control systems (ICS) are being con-

verted into industrial cyber-physical systems (ICPS) adopting a

highly interconnected infrastructure enabled by the utilization

of disciplines such as the Internet of Things (IoT), cyber-

physical systems (CPS), and cloud computing. The increased

attack surface is the main con of this increased automation,

digitalization, and networking. The recent industrial cyber

incidents [1] show that the adversaries targeting industrial

systems cause physical impact by exploiting vulnerabilities

occurring due to the integration of information technology

(IT) systems into operational technology (OT) systems. The

network-only cybersecurity mechanisms fail to detect physical

alterations as the physical data generated on the edge can be

spoofed by adversaries to misguide the monitoring systems.

The physicality of ICPS is examined under two mutually

inclusive main disciplines: fault diagnosis, and predictive

maintenance. The traditional methods apply statistical analysis

to signals [2] generated by industrial equipment (e.g., current,

and voltage). These methods have two big disadvantages: i)

they require a deep knowledge about the system which is

hard to obtain as current ICPS are heterogeneous, ii) they are

not scalable as a change in the system requires redesigning

the whole solution due to parameters being dependent. Data-

driven approaches [3] are getting popular as they offer a

solution to these problems by being dependent only on the data

characteristics. In this work, we apply a data-driven approach

to inertial measurement unit (IMU) data that we gather from

an industrial robotic arm to detect movement-related anomalies

via the open-source machine learning (ML) pipeline [4].

We make the following contributions: i) we propose an

open-source1 end-to-end context-aware anomaly detection sys-

tem that includes edge (Nicla Sense ME), fog (human-machine

interface (HMI) based on Raspberry Pi 4B (Pi-HMI)), and

central nodes (local PC/cloud) (Fig. 1), ii) we introduce the

CASPER dataset, iii) we test the proposed system on Universal

Robots UR3e which is an industrial robotic arm.

II. SYSTEM ARCHITECTURE

We detect movement-based anomalies of an industrial

robotic arm via a low-cost anomaly detection system (that

we call CASPER) that utilizes Bluetooth Low Energy (BLE)

to transmit the data from edge to fog. We attach an edge

development board which can generate IMU data via built-

in accelerometer, gyroscope, and magnetometer sensors. We

teach the normal movement of an arm to a neural network

model which utilizes 1D convolutional neural network (1D-

CNN) layers by feeding non-anomalous IMU data during

1https://github.com/hkayann/CASPER-PerCom

https://iotgarage.net/projects/demos/HakanPerCom2023Demo
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Fig. 1: The main system components.

training. We utilize Tensorflow (tensorflow.org) for this par-

ticular work.

A. System Components

Edge node. We use a Nicla Sense ME as an edge devel-

opment board. It has a 64 MHz Arm Cortex microcontroller,

built-in IMU (accelerometer, gyroscope, and magnetometer),

gas, pressure, temperature, and humidity sensors, and a BLE

chip. It is relatively small (22,86 x 22,86 in mm), micro USB-

powered and programmable, operates in low power (15 mAh

during the test). It also has a memory built-in but in this demo,

as we transmit the IMU data over BLE we do not store any

data on the edge. We run an Arduino sketch that generates

and transmits IMU data from Nicla to fog node where we use

Node-RED to receive such data. Fog node.We build an HMI

based on a Pi (Pi-HMI). It displays the IMU data from the

Nicla Sense ME and forwards it to a local PC (a data science

workstation) where we store the data. Central node. The local

PC that we use for training and testing has an NVIDIA RTX

A6000 48GB GDDR6 GPU.

B. The Testbed and Use Case Scenario

We have two industrial robotic arms manufactured by

Universal Robots (UR3e). While these arms are introduced

as cobots they are capable of completing tasks standalone as

well. These arms can perform many tasks [5] ranging from

pick and place, and screw-driving to surgical operations. For

this particular demo, we design a pick and place task as it

is one of the most common processes seen in manufacturing

systems. The task we implement is repetitive, continuous, has a

certain frequency, and does not require any human interaction.

Fig. 2 demonstrates the use case scenario.

III. ANOMALY DETECTION SYSTEM

This section demonstrates the proposed solution. The

anomaly detection system we build depends on an ML model

which is based on 1D-CNN layers. Usually, the Recurrent

Neural Network (RNN) layers are applied to time series data

as they have a “memory” [6]. However, the computational

complexity of RNNs makes their usage questionable for

resource-constrained environments. 1D-CNNs are also known

to be effective against time series data thanks to strong 1D
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Fig. 2: I) The arm picks the ball, II) drops it to an inclined

platform, III) the ball rolls down over the platform until it hits

to a stopper, IV) then it is picked by other arm and so on.

temporally correlated structure [7]. For this particular demo,

we utilize 1D-CNN as our future work aims to bring anomaly

detection to the resource-constrained edge environment.

A. The Input Data Structure and the Dataset

The choice of an ML algorithm depends on the input

data characteristics. In this work, we have 3 data sources

where each of which is 3-dimensional as the accelerometer,

gyroscope and magnetometer are 3-axis (x, y, z) sensors.

Thus, in total, we have 9 individual inputs combined into one

multivariate input. As we try to minimize the computational

complexity, we do multivariate analysis [8]. We apply min-

max normalization with the range of 0 to 1 to avoid the dom-

ination of higher-scale inputs. While applying normalization,

min/max values are computed via train set only. The whole

train set is non-anomalous while the validation and test sets

include 50% of anomalous data. The test is 24 hours and the

data frequency is around 20Hz.

B. The Machine Learning Model

CASPER utilizes 1D-CNN layers with ReLU activation

function to extract exclusive features that occur thanks to

high temporal correlation. We stack two 1D-CNN layers to

access deeper features. They are followed by pooling layers

to prevent overfitting while reducing the computational cost

as our model is prone to overfitting due to input data being

periodic while having a train set with zero anomalies. Then, we

pass the output of pooling to flatten layer to convert the multi-

dimensional output to two-dimensional. Finally, we output 9

predictions per given input. Fig. 3 demonstrates the structure

of the model with given hyperparameters.

C. Creating Realistic Anomalies

The desired way of creating anomalies is to simulate a real

cyberattack. However, due to the possibility of damaging high-

cost equipment we choose to create controlled anomalies by

changing the joint velocity of the arms. The arm consists of

6 joints in total. The arm moves its joints in synchronization

via applying forward kinematics per a given “pose” parameter

which includes the tool center point (TCP) and the joint angles.

tensorflow.org
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Fig. 3: The structure and the hyperparameters of model.

The anomalies we create range from 10% to 100% increase

and 5% to 50% decrease in joint velocity where the default

joint velocity is 1.04 rad/s (≈ 60 deg/s).

D. Detecting Anomalies

Training: We train the model with non-anomalous data

while applying grid search to hyperparameters to figure out the

most efficient model. The initial hyperparameter to analyze is

the input sample length. Due to high-frequency data, we utilize

input windows rather than single data point inputs.

We apply autocorrelation to find an input window length

with highest Pearson correlation coefficient (indicates pe-

riodicity). For the other hyperparameters (e.g., convolution

kernel size, number of filters), we use the commonly accepted

parameters. We decide the efficiency of the model by looking

at train, validation, and test losses calculated via mean squared

error (MSE). Fig. 4 presents the loss graph, Table I presents

the best performing hyperparameters.
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Fig. 4: The loss graph.

TABLE I: The Best Performing Hyperparameters

Number of Filters Max Pooling Kernel Size Convolution Kernel Size Sample Window Length Batch Size
32 3 5 755 256

Non-ML Baseline: We compare the model to a non-ML

baseline to justify implementing an ML-based approach. We

calculate the overall mean absolute error (MAE) of the sample

windows shifted by the correlation coefficient. We see that

the ML model beats the common-sense approach with a high

margin.

Detecting Anomalies: To convert anomaly labels into

anomalous windows, we count their number per window. We

consider such a window as anomalous if more than half of it

is formed from anomalous points. Then, we calculate absolute

residuals per sample window. We decide the threshold via

applying a grid search that maximizes the F1-score as our work

is in an industrial domain where “false” conditions matter.

Anything above the threshold is accepted as anomalous. We

can see from the confusion matrix (see Fig 5) that the proposed

model has around 99% accuracy and F1-score thus justifying

the use of CNN for periodic time series data.
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Fig. 5: The confusion matrix.

IV. CONCLUSION

Ubiquitous computing is revolutionizing many domains

including ICPS as wireless communication technologies are

becoming reliable. Anomaly detection is crucial for applying

predictive maintenance. Thus the development of ubiquitous

anomaly detection systems that can efficiently work in the

resource-constrained environment is significant to build more

secure ICPS. In this demo, we demonstrate CASPER which

is a ubiquitous context-aware anomaly detection system that

utilizes 1D-CNN layers. CASPER can detect movement-based

anomalies with more than 97% accuracy. The future work

includes adding edge anomaly detection capability.
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