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SUMMARY

A large number of cloud middleware platforms and tools are deployed to support a variety of internet-of-
things (IoT) data analytics tasks. It is a common practice that such cloud platforms are only used by its
owners to achieve their primary and predefined objectives, where raw and processed data are only con-
sumed by them. However, allowing third parties to access processed data to achieve their own objectives
significantly increases integration and cooperation and can also lead to innovative use of the data. Multi-
cloud, privacy-aware environments facilitate such data access, allowing different parties to share processed
data to reduce computation resource consumption collectively. However, there are interoperability issues
in such environments that involve heterogeneous data and analytics-as-a-service providers. There is a lack
of both architectural blueprints that can support such diverse, multi-cloud environments and corresponding
empirical studies that show feasibility of such architectures. In this paper, we have outlined an innovative
hierarchical data-processing architecture that utilises semantics at all the levels of IoT stack in multi-cloud
environments. We demonstrate the feasibility of such architecture by building a system based on this archi-
tecture using OpenIoT as a middleware, and Google Cloud and Microsoft Azure as cloud environments. The
evaluation shows that the system is scalable and has no significant limitations or overheads. Copyright ©
2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent studies have shown that we generate 2.5 quintillion bytes of data per day [1] and this is
set to explode to 40 yottabytes by 2020. This will amount to approximately 5200 GB for every
person on earth. Much of these data is and will be generated from the internet of things (IoT)
[2]. IoT is a part of the future internet and comprises billions of Internet-connected objects or
‘things’ where each thing can sense, communicate, compute, potentially actuate and have intelli-
gence, multi-modal interfaces, physical/virtual identities and attributes. Internet-connected objects
can include wireless/wired sensors, Radio-Frequency Identification (RFID), data from social media,
smart consumer appliances (TV, smart phone, etc.), smart industries (such as equipments fitted with
sensors), scientific instruments (e.g. high energy physics synchrotron) and actuators. The vision
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of IoT is to allow ‘things’ to be interconnected any time, anywhere, with anything and anyone,
ideally using self-configured paths, networks and services. This vision has led to IoT emerging
as a major producer of big data. Today, cloud technologies [3, 4] provide the ability to store
and efficiently process large-scale datasets by offering a mix of software and hardware resources
with modest operating costs proportional to the actual use (pay-as-you use model) [5]. It is well
understood that the IoT big data applications need to process and manage streaming data from
geographically distributed data sources. The cloud computing model has emerged as a suitable
solution to fulfil IoT big data applications’ data processing needs. The cloud essentially acts as
a transparent layer between the IoT and applications providing flexibility, scalability and hiding
the complexities between the two layers (IoT and applications). The fusion of cloud and IoT into
‘Cloud of Things’ has given rise to the following new cloud computing paradigms (but not limited
to): Sensing-as-a-Service, Sensing- and Actuation-as-a-Service, Video-Surveillance-as-a-Service,
Big Data Analytics-as-a-Service, Data-as-a-Service and Sensor-Event-as-a-Service. However, the
integrated Cloud-of-Things approach impose several challenges right from the IoT layer including
device discovery, cost-efficient communication, device management and monitoring, interoperabil-
ity, quality of service and machine-to-machine (M2M) issues to the cloud layer including service
discovery and delivery, big data management and analytics, cloud monitoring and orchestration,
mobility issues in cloud access, privacy and security and Service Level Agreement (SLA) man-
agement. Further, the notion of �-as-a-service model will enable multiple independent operators to
provide various services across the Cloud-of-Things layers that will need to be integrated based
on application requirements. The prolific rise of IoT and the corresponding ecosystem will soon
result in device being owned and operated by independent providers. These solutions will mostly
be constrained into independent multiple-cloud provider silos. A multi-cloud environment consists
of several data centres, which are geographically and topologically distributed across the Internet
[6, 7]. The focus of this work is to address the challenge of facilitating multi-cloud data analyt-
ics for IoT data originating from things that are owned and operated by multiple service providers.
Enabling third parties to access this data and the analytic capabilities can significantly increase the
innovation and value of end-user applications. IoT big data applications that need to process and
manage streaming data from multiple sources need to exploit the resources hosted across multiple
cloud data centres because of following reasons [8]:

� IoT datasets and data sources can be geographically distributed; hence, moving them to a single
centralised data centre could lead to high network communication overhead.

� The IoT data storage and processing needs cannot be fullfilled by the computational and storage
resources offered by any single data centre. For example, in the Azure Cloud, there is a limit of
300 cores per application deployments (i.e. the maximum number of VMs that can be deployed
at any instance of time). Clearly, this could lead to serious problems if the IoT datasets flow at
a very high volume and velocity.

� IoT datasets may be constrained by security and legal policies; that is, data may not leave a
national jurisdiction or cannot be streamed into a remote international data centre.

In this paper, we present hierarchical data analytics model for multi-cloud environments. Our
proposed approach allows an end-user application to integrate and take advantage of independent
infrastructure and analytics service providers. We present a use case to demonstrate the proposed
hierarchical and distributed multi-cloud approach to facilitate effective and efficient sharing of anal-
ysed data across cloud providers. We use the popular open-source IoT middleware platform, namely,
OpenIoT [9] to demonstrate the feasibility of our approach in multi-cloud environments. Finally, we
conduct experimental evaluations on Google Cloud and Microsoft Azure platforms to establish the
performance of the proposed hierarchical and distributed multi-cloud approach system.

It is important to note that our approach is not application dependant. Therefore, it can be gener-
alised in to any application domain where only the analytical functions employed would need to be
differed. Any type of analytical functions can be used on our proposed infrastructure. In this paper,
we assume that all the cloud instances who engaged in a given data analytics task are trust-able and
verified, before organise them into a certain hierarchical composition in order to support a given
application.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
DOI: 10.1002/spe



ANALYTICS-AS-A-SERVICE

2. MOTIVATION: ANALYTICS-AS-A-SERVICE

In sensing-as-a-service [10] model, data are exchanged seamlessly among data producers (owners)
and consumers via the cloud resources. Data producers are owners of the IoT devices (products)
and deploy them in their environments. These IoT products sense, analyse and perform actuation to
solve the needs of the data owners. While these data normally reside in individual silos, sensing-as-
a-service model promotes the sharing of data (liberating data from silos) allowing data consumers to
access the data using secure mechanisms. For example, a plant biologist studying the spread of cer-
tain diseases in plants may want to know the list of affected farms to better understand the trajectory
of the diseases. In this case, the aim of the biologist is not to identify individual farms, but a while
set of farms in specific areas. When the number of data providers and consumers increase, there is a
need to develop an open data market. The data from this market may not necessarily freely available
[11] (may follow the cloud computing pay-as-you-go model), but in the meta-data description, the
data would be. The meta-data will enable users and other services to discover relevant data stored
in data owner silos.

Analytics-as-as-Service refers to next generation IoT data processing applications where third
party will be responsible for hosting IoT Analytics and data processing applications (e.g. detecting
events from video camera feeds and detecting events from smart home sensors) on private/public
cloud infrastructures. These analytics applications will be offered to end-users under pay-as-you-
go model. Currently, such a service model is offered for cloud-based hardware (CPU, storage and
network) and software (databases, message queuing systems, etc.) resources by providers such as
Amazon Web Services. Providers such as SalesForce.com offers pay-as-you-go model for enterprise
resource planning (ERP) and customer relationship management (CRM) applications. However,
ERP and CRM applications are fundamentally different from IoT analytics applications. Moreover,
Analytics-as-a-Service model introduces further complexities as there is need to describe not only
the data but also the analytics performed on the data. Further, when data analytics exists as data silos
within independent data owner clouds, there is a need to develop systems that can function across
multiple cloud providers. Such systems will inherently require the following capabilities, namely, (i)
ability to interoperate via standard interfaces, (ii) ability to describe data, (iii) support for machine
to machine communication and (iv) ability to describe the analytics built on the acquired data.

Another advantage provided by Analytics-as-a-Service model is that it supports knowledge shar-
ing while reducing the privacy risks. Because this model does not share raw data, it eliminates the
risks associates with sharing raw data such as anonymised sharing of analysed data and enforce
restrictions on data storage location. Another advantage is the savings of computational resources
due to the elimination of redundant data processing. This means that when one cloud IoT platform
perform a certain data processing task over data, the recipient cloud platforms do not required to
perform the same data processing task again. For example, one IoT cloud platform may collect
data form motion sensors and cameras to determine how much time in average a person may wait
in a certain queue. Once such data processing is carried out, the recipient cloud can take average
waiting time as an input. We elaborate on this example in Section 5 when we present the use-case
scenario. Further, Analytics-as-a-Service model also reduces the data communication requirements.
Typically, raw data are large in term of size. However, the processed data are significantly smaller
that raw data. Therefore, the amount of data that need to be transferred from one cloud to another
reduces drastically by saving network communication bandwidth and costs.

3. CURRENT STATE OF THE ART: PROCESSING DISTRIBUTED INTERNET OF
THINGS DATA

Existing big data processing technologies and data centre infrastructures [12] have varied capa-
bilities with respect to meeting the distributed IoT data processing challenges. In this section, we
summarise capabilities of existing technologies based on the review given in our past work [8]. The
proposed analytics-as-a-service model is expected to be extensively leverage these technologies. We
have reviewed literature under six different themes: (i) basic data centre cloud computing infrastruc-
ture service stacks, (ii) massive data processing models and frameworks, (iii) trusted and integrated
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data management services across data centres, (iv) data-intensive workflow computing, (v) bench-
marking, application kernels, standards and recommendations and (vi) sensing middleware in the
Cloud.

1. Basic data centre cloud computing infrastructure service stacks

Commercial or public data centres, for example, Amazon Web Services and Microsoft
Azure offer computing, storage and software resources as remotely programmable cloud
services via application programming interface (API). These resources are orchestrated by
deploying virtualisation software/middleware stacks. It is well understood that virtualisation
allows data centre providers to obtain more out-of-physical resources by allowing multi-
ple instances of virtual cloud resources to run concurrently. For example, virtual machine
orchestration systems such as Eucalyptus and Amazon EC2, image management tools such as
FutureGrid image repository [13], massive data storage/file system such as Google file system
(GFS), Hadoop Distributed File System and Amazon S3 and data-intensive execution frame-
work including Amazon Elastic Map Reduce. In addition, FutureGrid‡ and OpenStack also
provide software stack definition for cloud data centres.

On the other hand, private data centres are constructed typically by combining multiple
types of software tools and services. These software can include cluster management sys-
tems such as Torque, OSCAR, VMWare’s vCloud and/or vSphere suites and Simple Linux
Utility for Resource Management, parallel file/storage systems such as storage area network
(SAN)/Network attached storage (NAS)§, Lustre and data management systems such as BeST-
Man¶ and dCache||. Apart from, some private data centres are enabled for resource sharing with
grid computing middleware, such as Globus Toolkits, Unicore and gLite. In general, access
to private data centre resources is restricted to known group of application administrators and
users because of stringent security and privacy concerns.

2. Big Data processing models and frameworks

Big Data processing frameworks include software frameworks [14] that enable creation of
Big Data application architecture [15]. These frameworks can be classified as follows:

� Large-scale data mining frameworks (FlexGP, Apache Mahout, MLBase and Yahoo
SAMOA) implement a wide range of data mining algorithms (clustering, decision
trees, latent Dirichlet allocation, regression and Bayesian) to analyse massive data sets
(historical and streaming) in parallel, by exploiting distributed resources.

� Distributed message queuing frameworks (Amazon Kinesis and Apache Kafka) provide
a reliable, high-throughput and low-latency system of queuing real-time streams of data.

� Parallel and distributed data programming frameworks (Apache Hadoop and Apache
Storm). Such frameworks enable development of distributed applications that deal with
large sets of cloud resources to parallel process massive amounts of historical and stream-
ing data [15, 16]. The large-scale data mining frameworks mentioned earlier are generally
implemented on top of parallel and distributed data programming frameworks. Low-level
distributed system management complexities (task scheduling, data staging, fault man-
agement, inter-process communication and result collection) are automatically taken care
of by these frameworks.

� Data store frameworks are categorised as NoSQL and Structured Query Language (SQL).
NoSQL frameworks (MongoDB, HyperTable, Cassandra and Amazon Dynamo) support
access based on transactional programming primitives, where an exact key allows search
for an exact value. Such predetermined access patterns lead to better scalability and pre-
dictions of performance, which is suitable for storing large amounts of unstructured data
(e.g. social media postings). SQL data stores (MySQL, SQL Server and PostGreSQL)

‡http://FutureGrid.org/.
§ http://capitalhead.com/articles/san-vs-das-a-cost-analysis-of-storage-in-the-enterprise.aspx.
§http://wiki.lustre.org/.
¶https://sdm.lbl.gov/bestman/.
||http://www.dcache.org/.
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manage data in relational tables, where the generic SQL can be used to manipulate data
(insert, delete and update). In essence, SQL data stores are more effective than NoSQL
stores, where transactional integrity (ACID properties) is a strict requirement. Future Big
Data applications are likely to use both NoSQL and SQL data stores, driven by data
varieties and querying needs. SQL engines (Apache Hive and Apache Pig) enable the
querying of data across a variety of cloud storage resources including Amazon S3 and
Hadoop Distributed File System based on structured query language.

3. Data-intensive workflow orchestration framework

Typical workflow frameworks for managing scientific Big Data applications [17, 18] include
Pegasus, Kepler, Taverna, Triana, Swift and Trident. Traditionally, in service computing
domain, orchestration with Business Process Execution Language (BPEL) and yet another
workflow language (YAWL) [19] has been extensively explored. On the other hand, service
choreography has been carried out using WS-CDL**. More recently, orchestration frameworks
such as Yet Another Resource Negotiator ([20]) and Mesos [21] have emerged for coordinat-
ing IoT data analytics workflow tasks across multiple Big Data processing frameworks (e.g.
Apache Hadoop and Apache Storm).

4. Benchmark, application kernels, standards and recommendations

Several benchmarks and application kernels have been developed, for example, Graph
500 (graph500.org/), Hadoop Sort†† and Sort benchmark (sortbenchmark.org), MalStone
[22], Yahoo! Cloud Serving Benchmark‡‡, Google cluster workload§§, TPC-H benchmarks
(www.tpc.org/tpch), BigDataBench, BigBench, Hibench, PigMix, CloudSuite and GridMix
powered by the needs of analysing the performance of different Big Data workloads. These
benchmark suites model workloads for stress testing one or more categories of Big Data pro-
cessing frameworks such as Apache Hadoop and Apache Mahout. In the current generation
of framework suites, BigDataBench and BigBench are the most comprehensive ones. This
is because they incorporate Big Data workload models for variety of processing frameworks
including NoSQL, DBMS, SPEs and batch processing frameworks. Mainly, BigDataBench
targets the application domains such as search engine, social network and e-commerce. Hav-
ing said that, their are limited benchmarks and application kernels available for heterogeneous
data centres and IoT data types. Specially, there is no consensus on available performance
benchmarking for executing large-scale IoT applications across distributed data centres. Lit-
erally, the absence of inter-centre benchmark and standards needs to be the primary research
agenda for the future. As of now, international organisations including NIST, OGF, DMTF
Cloud working group, Cloud Security Alliance and Cloud Standards Customer Council are all
working on cloud standards (occi-wg.org/)¶¶.

5. Sensing Middleware in the Cloud

Over the last few years, number of IoT cloud has been made their way in the sensing mid-
dleware marketplace. Thingworx (thingworx.com) and Xively (xively.com) are cloud-based
online platforms that process, analyse and manage sensor data retrieved through a variety of
different protocols. HomeOS [23] is a platform that supports home automation. HomeOS is
a software platform that can be installed on a normal PC. As with the smartthings platform,
applications can be installed to support different context-aware functionalities (e.g. capturing
an image from a door camera and sending it to the user when someone rings the doorbell).
Lab-of-things [24] is a platform built for experimental research. It allows the user to easily
connect hardware sensors to the software platform and enables the collection of data and the
sharing of data, codes and participants. However, most of these platforms hosted on the cloud
by their owners and customers have no choice on the cloud technologies used. There are a few
open source IoT platforms, developed by both research community (e.g. OpenIoT [9]) and

**http://www.w3.org/TR/ws-cdl-10/.
††http://wiki.apache.org/hadoop/Sort.
‡‡http://research.yahoo.com/Web_Information_Management/YCSB.
§§http://code.google.com/p/googleclusterdata/.
¶¶http://www.dmtf.org/standards/ovf.
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industrial players (e.g. WSO2IoT-wso2.com/landing/internet-of-things/) that can be hosted in
any cloud available in the market today. Therefore, in this paper, we used OpenIoT as the IoT
platform of choice to develop the prototypes.

4. HIERARCHICAL DATA ANALYTICS IN MULTI-CLOUDS

In this section, first, we explain what hierarchical data analysis means in multi-cloud environment
and its important feature and characteristics. We then present the widely used open-source IoT
platform OpenIoT and describe its features that enable multi-cloud hierarchical processing. The
presented OpenIoT platform is driven by semantic web concepts and hence incorporates extensive
use of ontologies to define devices and services. This feature of OpenIoT, which will be presented
in detail, is the foundation for achieving the hierarchical multi-cloud data analytics model.

Let us consider Figure 1. It is important to note that hierarchical data analytics does not mean that
communication network has to be hierarchical. Hierarchical data analysis can happen in any type
of network. The fundamental idea is as follows. First, data are captured by leaf nodes. In Figure 1,
nodes A, B, C and D can be considered as leaf notes, which are responsible for gathering data
streams generated by different sources. Data sources could be hardware sensors (e.g. temperature
sensor) or a virtual sensors (e.g. calling a weather service). First, the leaf nodes may analyse the data
they gathered. Each node may have their own data analytical capabilities (as denoted in a1 : : : a10)
based on the library of data analytics tools they have access to. Once data analytics is applied by
leaf node, the data are transferred to the next layer of nodes (i.e. node E and F). These nodes will
run another set of analytics over the incoming data streams and generate more abstract outputs (i.e.
a data stream). Finally, E and F nodes transfer their outputs to node G.

It is important to note that data processing does not follow any particular layered structure. The
idea is to perform analytics in a node and pass the results onto another node to perform another set
of analytics. As a result, nodes A, B, C and D do not have to be in the same layer. One stream of
data may directly be sent to node A without sending them to node E if the analytics performed in
node E is not required by the node A.

In both Sensing-as-a-Service model and Analytics-as-a-Service models, nodes are collecting and
processing data in order to achieve their own objective. Hierarchical data analytics in multi-cloud

Figure 1. Theoretical view of hierarchical data analytics.
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environment occurs, when a given node does not have access to required data (e.g. node G). In
such occasions, initiation node sends requests to other nodes in order to obtain access to the data
it requires. Further, as shown by red arrows in Figure 1, the amount of data needs to be transferred
between nodes as well as the bandwidth requirement get reduced at each layer. Primarily, the rea-
son for this is that each layer performs some kind of analytics over the data and generates more
aggregated results. For example, an average function may aggregate data over 5 min and generate a
single tuple. In another instance, a function may combine sensor data from video cameras to iden-
tify the number of people entering into a certain area over an hour. Without sensing streaming video
feeds, each processing node may only stream the number count to the next node in the hierarchy.
The proposed model has several advantages, namely:

� It facilitates integration of services across various layers
� It allows seamless integration of data producers and consumers staying agnostic to infrastruc-

ture and technologies
� It is a platform to build complex end-user applications without owning the data production

infrastructure nor the data processing tools/infrastructure
� It allows seamless discovery of service provider capabilities that can be implemented using

many mechanisms including semantic discovery, probabilistic discovery and SOA-style
discovery.

4.1. OpenIoT: an open source middleware for internet of things

The OpenIoT middleware [9] is a versatile blueprint architecture for collecting and processing data
from Internet of Things data sources. OpenIoT provides an innovative complete IoT stack plat-
form for IoT/cloud convergence, which enables (i) the integration and streaming of IoT data and
applications within cloud computing infrastructures, (ii) the deployment of semantically interoper-
able applications in the cloud, (iii) the implementation of mainstream cloud computing concepts
and properties in the IoT domain, including the concept of ‘Sensing-as-a-Service’ (i.e. on-demand,
utility-based access to IoT services) and the concept of pay-as-you-go for IoT applications and (iv)
handling of mobile sensors (e.g. smart phones) and associated QoS parameters (e.g. energy effi-
ciency). OpenIoT currently uses standard communication protocols such as Transmission Control
Protocol /Internet Protocol and RESTful architecture to enable communication between the different
components. However, it is an open framework with support for any new protocols such as CoAP.

4.1.1. OpenIoT: architectural overview. The OpenIoT architecture is composed of seven main ele-
ments that belong to three different logical planes, as illustrated in Figure 2. These planes are the
Utility/Application Plane, the Virtualised Plane and the Physical Plane, which include the following
modules:

Utility/Application Plane: The utility and application plane is responsible for managing inter-
action with end-user applications. In particular, it provides a set of tools and interfaces that users
can use to deploy IoT application on-the-fly. It comprises the following key components, namely:

� The Request Definition enables the specification of service requests to the OpenIoT plat-
form. It comprises a set of services for specifying and formulating such requests, while also
submitting them to the Global Scheduler. This component can be realised using a feature
rich Graphical User Interface allowing user interaction or via APIs for machine-to-machine
communication.

� The Request Presentation is responsible for visualising the outputs of an IoT service. This
component creates mashups from the service description in order to facilitate presentation
of analysed data.

� The Configuration and Monitoring component enables the management and configuration
of functionalities over the sensors and the (OpenIoT) services that are deployed within
the OpenIoT platform. Moreover, it enables the user to monitor the health of the different
deployed modules.
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Figure 2. OpenIoT architectural overview.

Virtualised Plane: The virtual plane is responsible to bridge the device layer (physical) to the
application layer. The virtual plane in most cases is deployed on cloud environments and is
responsible for providing core functionalities and services to the physical and application layer.
Note that the cloud infrastructure could be either a public infrastructure (such as the Amazon
Elastic Compute Cloud (EC2)) or a private infrastructure (e.g. a private cloud deployed based on
Open Stack (http://www.openstack.org/)). It comprises the following components

� The Directory Service (Linked Sensor Middleware Light (LSM-Light)-Light) keeps infor-
mation about all the sensors and services that are available in the OpenIoT platform. It also
provides the means (i.e. services) for registering sensors and services with the directory, as
well as for the look-up (i.e. discovery) of sensors and services. The architecture specifies the
use of semantically annotated descriptions of sensors as part of its directory service. This
component is developed by extending the World Wide Web Consortium (W3C) Semantic
Sensor Network (SSN) ontology [9] allowing representation of both sensors and their corre-
sponding services, respectively. The directory service can be characterised as a sensor cloud,
given that it primarily supports storage and management of sensor data streams (and of their
metadata). This component of OpenIoT is vital to the relational of the proposed hierarchical
multi-cloud data analytics approach and will be discussed in detail in the following section.

� The Global Scheduler processes all the requests for on-demand deployment of services and
ensures their proper access to the resources (e.g. data streams). This component undertakes
the task of parsing the service request and accordingly discovering the sensors that can
contribute to its fulfilment. It also selects the resources, that is, sensors that will support the
service deployment, while also performing the relevant reservations of resources.

� The Service Delivery & Utility Manager (SDUM) performs a dual role. On one hand, it
combines the data streams as indicated by service workflow description, in order to deliver
the requested service. To this end, this component makes use of the service description and
the resources identified and reserved by the (Global) Scheduler component. On the other
hand, this component acts as a service metering facility, which keeps track of utility metrics
for each individual service. This allows utility-based metering to facilitate the development
of application using service provided by disparate providers.

Physical Plane: The physical plane refers to the devices deployed in the physical environment.
This can include real hardware sensors and virtual sensors. This layer is responsible for managing
interactions between the device layer and the upper layers (virtual and application). This layer
enables both sensing and actuation capabilities. This layer comprises the following component:
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� The Sensor Middleware (Gateway) collects, filters and combines data streams stemming
from virtual sensors (e.g. signal processing algorithms, information fusion algorithms and
social media data streams) or physical sensing devices (such as temperature sensors, humid-
ity sensors and weather stations). This middleware acts as a hub between the OpenIoT
platform and the physical world, since it enables access to information stemming from the
real world. Furthermore, it facilitates the interfacing to a variety of physical and virtual sen-
sors such as IETF COAP compliant sensors (i.e. sensors providing RESTful interfaces), data
streams from other IoT platforms (such as https://xively.com) and social networks (such as
Twitter). Among the main characteristics of the sensor middleware is its ability to stream W3
SSN compliant sensor data in the cloud. The Sensor Middleware is deployed on the basis
of one or more distributed instances (nodes), which may belong to different administrative
entities. The prototype implementation of the OpenIoT platform uses an enhanced/extended
version of the GSN middleware (namely X-GSN, which is currently as a module of the Ope-
nIoT open source project). However, other sensor middleware platforms could be also used
in alternative implementations and deployments of the OpenIoT architecture.

Security Plane: The security plane cuts across the OpenIoT architecture stack ensuring an end-
to-end security mechanism. The platform uses a token-based authentication system supported by
role-based access control for authentication, authorisation and identity management.

4.2. Hierarchical multi-cloud data analytics using openIot

The OpenIoT system is driven by semantic web technologies. It extensively uses an enhanced ver-
sion of the W3C SSN ontology, namely, OpenIoT ontology [25] to for semantics annotation of data
at each layer of the IoT stack, that is, device layer, virtual layer and the application layers. OpenIoT
exploits other semantic web technologies such as Linked Data[26] for dynamically linking related
sensor data sets with corresponding services and vice-versa and Resource Description Framework
(RDF), Web Ontology Language and Simple Protocol and RDF Query Language (SPARQL) for
semantic modelling, representation, storage and retrieval of sensors and services. In this section, we
will present the features of the OpenIoT architecture that enables the realisation of multi-cloud data
analytics applications.

The virtual layer services, namely, LSM-Light, Scheduler and SDUM, are at the heart of the
OpenIoT architecture that enables the following capabilities, namely: (i) ability to register sensors
with semantic descriptions, (ii) Ability to register service that are composed by the user/application
and (iii) a discovery service that enables semantic discovery of sensors and service. A service in
OpenIoT is defined as a specification that defines the set of analytical operation to be performed on
a stream of sensor data and the respective visual presentation.

Figure 3. Sensor description based on SSN.
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Description of Devices: The OpenIoT Ontology extends the W3C SSN ontology enabling it
to describe and register devices (sensors and things) with the virtual layer. Figure 3 presents
an example of a partial sensor description. The RDF later describes a sensor namely a Vaisala

Weather Station that has the capability to measure temperature and humidity.
Description of Services: The OpenIoT Service Description specification (OSDSpec) is capable
of describing in detail the service composed by the user/application. The OSDSpec is modelled in
the OpenIoT ontology and is stored/managed by the directory service and scheduler components
of the virtual layer. This OSDSpec allows the service to be described in detail including query
control features such as query schedule and permissions on the query. Listing 1 is an example of
an OpenIoT OSDSpec.
Discovery and Invocation of Devices and Services

Once the devices and services are registered with the virtual plane, namely, the directory ser-
vice, the directory service along with the scheduler and SDUM are used to discover and invoke

Listing 1. Sample OpenIoT service specification

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF�8" ?>
<osd:OSDSpec x m l n s : s t =" h t t p : / /www. w3 . org / 2 0 0 7 /SPARQL /

p r o t o c o l � t y p e s # "
x m l n s : v b r =" h t t p : / /www. w3 . org / 2 0 0 7 /SPARQL / r e s u l t s # "
x m l n s : r d f =" h t t p : / /www. w3 . org /1999 /02 /22 � r d f �syn t ax �ns # "
x m l n s : o s d =" h t t p : / /www. o p e n i o t . eu / o s d s p e c "
x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema� i n s t a n c e ">

<osd:OAMO name=" name0 ">
<osd:OSMO name=" name1 ">

< o s d : q u e r y C o n t r o l s >
< o s d : Q u e r y S c h e d u l e >

< / o s d : Q u e r y S c h e d u l e >
< o s d : r e p o r t I f E m p t y > f a l s e < / o s d : r e p o r t I f E m p t y >
< / o s d : q u e r y C o n t r o l s >
< o s d : r e q u e s t P r e s e n t a t i o n >

< o s d : w i d g e t widge t ID =" h t t p : / /www. oxygenxml . com / ">
< o s d : p r e s e n t a t i o n A t t r name=" name2 " v a l u e ="

v a l u e 0 " / >
< o s d : p r e s e n t a t i o n A t t r name=" name3 " v a l u e ="

v a l u e 1 " / >
< / o s d : w i d g e t >
< o s d : w i d g e t widge t ID =" h t t p : / /www. oxygenxml . com / ">

< o s d : p r e s e n t a t i o n A t t r name=" name4 " v a l u e ="
v a l u e 2 " / >

< o s d : p r e s e n t a t i o n A t t r name=" name5 " v a l u e ="
v a l u e 3 " / >

< / o s d : w i d g e t >
< / o s d : r e q u e s t P r e s e n t a t i o n >
< s t : q u e r y � r e q u e s t >

< query > query0 < / que ry >
< / s t : q u e r y � r e q u e s t >
< s t : q u e r y � r e q u e s t >

< query > query1 < / que ry >
< / s t : q u e r y � r e q u e s t >
< / osd:OSMO>

< / osd:OAMO>
< / osd:OSDSpec>
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Listing 2. Sample device discovery query

SELECT ? graphNode_2197552479500_sensor Id
FROM < h t t p : / / o p e n i o t . eu / OpenIoT / s e n s o r m e t a #>
WHERE
{
? graphNode_2197552479500_sensor Id < h t t p : / /www. w3 . o rg /1999 /02 /22 �

r d f �syn t ax �ns # t y p e > < h t t p : / / demo . org / ns # Tes tType > .
< h t t p : / / demo . org / ns # Tes tType > < h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f �

schema # s u b C l a s s O f > < h t t p : / / p u r l . o c l c . o rg /NET/ s snx / s s n # S e n s o r >
.

? graphNode_2197552479500_sensor Id < h t t p : / /www. loa �c n r . i t /
o n t o l o g i e s /DUL. owl# h a s L o c a t i o n > ? graphNode_2197552479500_loc
.

? graphNode_2197552479500_loc g e o : g e o m e t r y ?
graphNode_2197552479500_geo .

? graphNode_2197552479500_loc g e o : l a t ? g raphNode_2197552479500_la t
.

? graphNode_2197552479500_loc g e o : l o n g ?
graphNode_2197552479500_lon .

FILTER ( < b i f : s t _ i n t e r s e c t s > ( ? graphNode_2197552479500_geo , <
b i f : s t _ {p} o i n t > ( 6 .635227203369141 , 46 .52119378179781) , 15) ) .

}

composed services. Listing 2 presents a sample SPARQL query that is used to perform semantic
discovery for devices (things) within a given location. The query also takes additional parameters
such as SensorType and SensorClass to perform more efficient discovery. The discovery service
is also used to discover services, for example, an analytic service offered by a service provider.
Together, the virtual planes enable application to discover services offered by independent sensor
infrastructure owners and analytics service providers.

The virtual plane components also provide API interfaces to invoke the discovered services.
The key contribution of the proposed multi-cloud model is to promote interoperability among
different data and analytic service providers. This is achieved by the discovery service combined
with the API allowing the development of the multi-cloud data analytics applications.

5. EXPERIMENTATIONS AND EVALUATIONS

In this section, we present a real-world use-case scenario where we demonstrate the importance
of hierarchical data processing in multi-cloud environments. Then, we describe the experimental
test-bed implemented using the OpenIoT system in order to validate the feasibility and conduct
performance evaluations.

5.1. A case study

TrueLeisure is company that operates different types of entertainment attractions. Among them,
they have franchised their amusement park chain. As depicted in Figure 4, currently, Amusement
parks are located in United States, United Kingdom and Australia. These amusement parks are fully
owned and operated by the franchisees. However, TrueLeisure continuously monitor and assess the
service qualities and several other aspects of each of the amusements part. TrueLeisure takes these
assessment seriously as their brand image is dependent on the quality of the services provided by
the franchisees.

Jane is a data analyst overseeing the quality assessment tasks of amusement parks at TrueLeisure.
She is responsible for continuously monitoring the service quality parameters. In addition to Jane,
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Figure 4. A case study: service quality monitoring of amusement park chain.

each of the franchisees also has their own data analysis and quality control division where they also
monitor their own quality parameters. All the amusements parks are augmented with a large number
of sensors that collects various types information such as environmental parameters (e.g. temper-
ature, humidity and pressure), crowd movements, usage and demand of each rides and attractions
and operational status of machinery used in the amusement part. Each of the amusement parks has
deployed their own IoT platforms to which sensors are connected. Conceptually, a query would look
like SELECT AVG(WaitingTime) FROM the USA, UK and Australia. The importance of this type
of abstraction is that Jane does not need to know how to find waiting times in each location where
each location may employ different technological means to acquire different types of sensors data
to derive waiting times.

One of the important service quality parameter is ‘waiting time’. This is a main contribution fac-
tor towards customer satisfaction. Local quality assessment team continuously measures the crowd
waiting time of each ride and attraction within their own amusement park. The raw data generated
by sensors such as motion sensors, cameras, Bluetooth beacons and RFID tags are used to calcu-
late these waiting times. By measuring waiting times, local data analysis team can recommend their
operational division about any bottleneck within the park, so the management can take necessary
actions to eliminate those to increase customer satisfaction. From Jane’s perspective, who is respon-
sible for overseeing entire portfolio of amusement parks at TrueLeisure, she is only interested in the
big picture. That means Jane would like to create a single parameter of waiting time (i.e. overall
waiting time) by combining individual waiting times (i.e. individual waiting time for each ride or
attraction) together. As a results, she will have three measures where each represents waiting time
of each amusement park locates in the USA, UK and Australia. By plotting these measures in a
line chart , Jane can view how waiting time varies in real time. Jane will report these high-level
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Figure 5. Data flow in hierarchical data processing.

Figure 6. Experimental testbed.
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Table I. OpenIoT implementation details.

ServerName Location/zone Configuration

OpenIoT-1-Azure Australia East Standard Instance, A3(4 cores, 7-GB memory)
OpenIoT-2-Azure Australia East Standard Instance, A2(2 cores, 3.5-GB memory)
OpenIoT-1-Google asia-east1-a n1-standard-2 (2 vCPUs, 7.5-GB memory)

measures to her corporate management, so TrueLeisure can discuss with their franchises on future
development of their theme parks efficiently and effectively. Figure 5 illustrate how data are being
collected, processed and transferred in such a scenario using the proposed hierarchical data anal-
ysis in a multi-cloud environment. This scenario is a typical example of data producers, analysis
service providers and data consumers operating and managing their own infrastructure (each theme
park) and applications integrating these services to address specific requirements (Jane interested in
overall performance of each theme park).

5.2. Experimental setup

The experimental testbed is presented in Figure 6. The analytics service at each level was imple-
mented using the OpenIoT platform. The OpenIoT components presented in Section 4.1.1 have been
implemented using Java J2EE framework using the Virtuoso RDF triplestore[27]. For more details
on the implementation of OpenIoT, refer to www.openiot.eu.

The OpenIoT system was deployed on two instances of Microsoft Azure servers and one instance
of a Google Cloud Server. Table I provides a summary of the server configurations. To test the per-
formance of the system under load, we used Apache JMeter |||| to generate user queries. The OpenIoT
instance on windows azure is connected to the sensor platforms producing the data. For experimen-
tal purposes, we used a test dataset collected from publicly available weather and pollution data
from the year 2014. The total amount of data in the virutoso triple store is around 10 million triples.

5.3. Experiment description

To evaluate the performance of the proposed hierarchical data analytics system using the imple-
mented OpenIoT system on multi-cloud environments, we conduct two experiments. The OpenIoT
instance on the Google Cloud (OpenIoT-1-Google) fetches data from the two OpenIoT instances on
Windows Azure cloud. The OpenIoT-1-Google server fuses data from the two Azure instances to
provide a combined analysis of the data to the end-user. To measure the performance of the system,
we use Cross-Layer Multi-Cloud Application Monitoring-as-a-service (CLAMS) [5], a multi-cloud
multi-layer performance monitoring framework. CLAMS enables a deep understanding of the
performance of each individual component of our hierarchical data analytics systems deployed
across the cloud layers, for example, IaaS and PaaS. CLAMS addresses the gaps in existing cloud
monitoring tools inability to monitor application deployed in multi-cloud provider environments.

Experiment 1 - Streaming Data: A key to the realisation of the multi-cloud hierarchical data
analytics model is its ability to handle streaming data. In this experiment, we use different two
cloud configurations, namely, OpenIoT-1-Azure and OpenIoT-2-Azure. We test the stream data
performance by increasing the number of sensors from 1 to 10. Each sensor produces 5 data
streams including temperature, humidity, carbon monoxide, pressure and noise. So in total, when
10 sensors are active, the system handles around 50 data streams. The streaming rate is fixed at
1 data point/second. The data generated is time series data, that is, a combination of timestamps
associated with data points (double).
Experiment 2 - Distributed Hierarchical Query Performance: In this experiment, we measure the
response time for query processing. The queries are generated from the Google Cloud OpenIoT
instance and are processed distributed by the Azure instances of OpenIoT.

||||http://jmeter.apache.org/.
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In both experiments, we also compute the total CPU and memory consumption of each of the
OpenIoT component. This provides us with fine grained understanding of the system’s perfor-
mance under load. Each experimental run was repeated three times and the results presented here
are the average of these outcomes.

5.4. Experimental results

Experiment 1- Streaming Data Performance: Figure 7 presents the outcomes of our experiment.
The three components that are measured here include JBOSS (hosting all the OpenIoT modules),
Virtuoso (the datastore) and X-GSN (the streaming engine connecting sensors to the OpenIoT
platform). The results show some interesting observations including CPU consumption of over
100%. This is because in multi-core CPU, when more than one core is used, the CPU consump-
tion goes over 100. For example, in a four core CPU, the maximum CPU consumption as reported
by CLAMS could be a maximum of 400%. The VM1 refers to the Azure-1 instance while the

Figure 7. Streaming sata performance. (a) 1a: CPU consumption and (b) 1b: memory consumption.

Figure 8. Query tesponse times. (a) 1a: response time – OpenIoT-1-Azure and (b) 1b: response time –
OpenIoT-2-Azure.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
DOI: 10.1002/spe



P. P. JAYARAMAN ET AL.

VM2 refers to Azure-2 instance. Overall, for managing 50 data streams (10 sensors) at the rate of
1 s, the system performs significantly well without any major bottlenecks. Because the memory
consumption of the JBOSS is controlled by the JVM, a trend of higher memory consumption for
VM1 can be noted. This is due to the higher memory availability (7 GB) on VM1 as compared
with VM2 (3.5 GB).
Experiment 2- Distributed Hierarchical Query Performance: Figure 8 presents the outcome of
query response times on the two Azure configuration. The queries originated from the Google
Cloud OpenIoT instance. In general, the overall query response time is very good in the order of
400–450 ms with number of parallel users increasing from 50 to 500. As expected, the Azure 1
instance that has more memory and CPU cores performs better than the Azure 2 instance. The
interesting result here is that the response time decreases as number of users increase. This is
something we suspect to be associated with how the JVM will allocate memory when the load
on the system increases. This outcome is consistent with the outcomes from both the Azure
configurations.

Figure 9. Hierarchical query processing performance. (a) 1a: CPU consumption – OpenIoT-1-Azure, (b)
1b: CPU consumption – OpenIoT-2-Azure, (c) 1a: memory consumption – OpenIoT-1-Azure and (d) 1b:

memory consumption – OpenIoT-2-Azure.
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Figure 9 presents the CPU and memory consumption of both the Azure 1 and Azure 2 instances
while processing the queries from the Google Cloud instance. As described earlier, because of the
higher configuration of Azure 1, we note that the JBOSS component of OpenIoT in Azure 1 con-
sumes upto 300% CPU. The same outcomes is observed with the Memory consumption of JBOSS
on each of the instance.

The experimental outcomes validate the following key contributes of the paper. (i) It is feasible
to deploy a hierarchical data analytics system where the various systems could be owned by differ-
ent providers. (ii) Using device and service discovery, we can compose multi-cloud data analytics
applications. (iii) The performance of such a system implemented using the widely used OpenIoT
system is scalable and does not show any significant limitations or overheads.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel, hierarchical data processing architecture suitable for multi-
cloud environments. This architecture provides flexibility to different parties who host their own
cloud IoT platforms to share processed data to reduce computation resource consumption collec-
tively. This also reduces the risks associated in sharing raw data. Such low privacy risks encourage
data owners to share their data with third parties where they will use such data for secondary objec-
tives. The demonstrated system is semantically inter-operable. Such interoperability allows different
instances deployed in multi-cloud environments to work together to collectively analyse data to
achieve a common objective through hierarchical data processing. This was demonstrated in this
paper by real-world implementation of the OpenIoT system on Azure and Google cloud platforms.
Finally, the experimental results validate the scalability of our proposed multi-cloud data analytics
approach. Moreover, experimental outcomes also show that the system does not impose any sig-
nificant limitations or overheads. Our next step is to develop a complimentary performance model
for such hierarchical data processing in multi-cloud environments for autonomous provisioning of
cloud resources.
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