
Efficient Opportunistic Sensing using Mobile

Collaborative Platform MOSDEN

Prem Prakash Jayaraman∗, Charith Perera, Dimitrios Georgakopoulos and Arkady Zaslavsky

CSIRO Computational Informatics

Canberra, Australia 2601

Email: {prem.jayaraman, charith.perera, dimitrios.georgakopoulos,

arkady.zaslavsky}@csiro.au
∗Corresponding Author

Abstract—Mobile devices are rapidly becoming the primary
computing device in people’s lives. Application delivery platforms
like Google Play, Apple App Store have transformed mobile
phones into intelligent computing devices by the means of
applications that can be downloaded and installed instantly. Many
of these applications take advantage of the plethora of sensors
installed on the mobile device to deliver enhanced user experience.
The sensors on the smartphone provide the opportunity to
develop innovative mobile opportunistic sensing applications in
many sectors including healthcare, environmental monitoring
and transportation. In this paper, we present a collaborative
mobile sensing framework namely Mobile Sensor Data EngiNe
(MOSDEN) that can operate on smartphones capturing and
sharing sensed data between multiple distributed applications and
users. MOSDEN follows a component-based design philosophy
promoting reuse for easy and quick opportunistic sensing appli-
cation deployments. MOSDEN separates the application-specific
processing from the sensing, storing and sharing. MOSDEN
is scalable and requires minimal development effort from the
application developer. We have implemented our framework on
Android-based mobile platforms and evaluate its performance
to validate the feasibility and efficiency of MOSDEN to oper-
ate collaboratively in mobile opportunistic sensing applications.
Experimental outcomes and lessons learnt conclude the paper.

I. INTRODUCTION

Today mobile phones have become a ubiquitous central
computing and communication device in people’s lives [1].
The mobile device market is growing at a frantic pace and
it wont be long before it outnumbers the human population.
It is predicted that mobile phones combined with tablets will
exceed the human population by 2017 [2]. Mobile phones more
specifically smartphones are equipped with a rich set of on-
board sensors, such as ambient light sensor, accelerometer,
gyroscope, digital compass, GPS, microphone and camera.
Moreover, current generation smartphones are equipped with
technologies such as NFC, Bluetooth, WiFi that enable them
to communicate and interact with external sensors available in
the environment.

Smartphones have the potential to generate an unprece-
dented amount of data [3] that can revolutionise many sectors
of economy, including business, healthcare, social networks,
environmental monitoring and transportation. According to
Gartner1, at present, smartphones dominate mobile phone
sales with estimates indicating rapidly increasing smartphone

1http://www.gartner.com/newsroom/id/2525515

shipments in the future. The data generated by an individual
smartphone can be used to infer information about its user and
to certain extent the environment around the user. By fusing
data from a multitude of smartphones from a population of
users, high level context information can be inferred. E.g.,
using an individual’s smartphone, we can detect the current
activity of the individual [4], [5]. On the other hand, using
data obtained from a population of individual’s, we can detect
the environmental context i.e. ambient light, noise in the
environment [6]. In either form, the data generated by the
smartphones are valuable and offers unique opportunities to
develop novel and innovative applications.

Most mobile sensing applications can be classified into
personal and community sensing [1], [7]. Personal sensing
applications focus on the individual. On the contrary, com-
munity sensing also termed opportunistic/crowdsensing2 takes
advantage of a population of individuals to measure large-scale
phenomenon that cannot be measured using single individual.
In most cases, the population of individuals participating in
crowdsensing applications share a common goal. To date most
efforts to develop crowdsensing applications have focused
on building monolithic mobile applications that are built for
specific requirements [8]. Further, the sensed data generated
by the application are often available only within the closed
population [9]. However, to realise the greater vision of a
collaborative mobile crowdsensing application, we would need
a common platform that facilitates easy development and
deployment of collaborative crowd-sensed applications.

The key challenge here is to develop a platform that
is autonomous, scalable, interoperable and supports efficient
sensor data collection, processing, storage and sharing. The
autonomous ability of the system enables it to work indepen-
dently when the device is off-line. Further, indiscriminately
collecting all sensor data and transmitting it to a central server
is expensive due to bandwidth and power consumption. We
strongly believe that providing an easy to use, scalable plat-
form to deploy collaborative mobile crowdsensing applications
will be significant for many new applications. To this end, we
propose a collaborative mobile sensing framework namely Mo-
bile Sensor Data Engine (MOSDEN). MOSDEN is capable of
functioning on multitude of resource-constrained devices (e.g.
Raspberry Pi3) including smartphones. MOSDEN is a scalable

2In this paper, we use the terms opportunistic sensing , crowdsensing and
participatory sensing synonymously.

3http://www.raspberrypi.org/

CharithMini
Text Box
Prem Prakash Jayaraman, Charith Perera, Dimitrios Georgakopoulos and Arkady Zaslavsky, Efficient Opportunistic Sensing using Mobile Collaborative Platform MOSDEN, Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing (COLLABORATECOM), Austin, Texas, United States, October, 2013, Pages 77-86 (10) More: www.charithperera.net

platform that enables collaborative processing of sensor data.
The platform follows a component-based system paradigm
allowing users to implement custom algorithms and models
depending on application requirements. The key contributions
of this paper are summarised as follows:

• We present the design and implementation of MOS-
DEN, a scalable, easy to use, interoperable platform
that facilitates the development of collaborative mobile
crowdsensing applications

• We demonstrate the ease of development and deploy-
ment using MOSDEN platform by demonstrating a
collaborative mobile crowdsensing application

• We present experimental evaluation of MOSDEN’s
ability to respond to user queries under varying work-
loads to validate the scalability and performance of
MOSDEN.

The rest of the paper is organised as follows. Section
II discusses related work. Section III considers a motivation
scenario. Section IV presents the proposed MOSDEN platform
architecture. Section V discusses MOSDEN implementation
and Section VI presents MOSDEN platform evaluations and
results. Section VI concludes the paper with indicators to
future work.

II. RECENT WORK

Mobile crowdsensing popularly called community sensing
[9], [10] is an autonomous collaborative sensing approach that
requires minimal user involvement (e.g. continuous processing
of noise level around users location). Numerous real and
successful mobile crowd-sensing applications have emerged
in recent times such as WAYZ4 for real-time traffic/navigation
information and Wazer25 for real-time, location-based citizen
journalism, context-aware open-mobile miner (CAROMM) [6]
among others. Mobile crowdsensing applications [11], [12]
thrive on the data obtained from diverse sets of smart phones
owned and operated by humans. Until recently mobile sensing
application such as activity recognition (personal sensing),
where people’s activity (e.g. walking, talking, sitting) is clas-
sified and monitored, required specialised mobile devices [4],
[5]. This has significantly changed with advent of smartphones
equipped with powerful computing, storage and on-board sens-
ing capabilities. More recently, research efforts have focused
on development of activity recognition, context-aware [13]
and data mining models on smartphones [14]–[16] that take
advantage of smartphone’s on-board sensing capabilities.

The efforts to build crowdsensing application have focused
on building monolithic mobile application frameworks that
are built for specific purpose and requirements. Extending
these frameworks to develop new applications is difficult, time-
consuming and in some cases impossible. Crowd-sourcing data
analytics system (CDAS) [17] is an example of a crowd-
sensing framework. In CDAS, the participants are part of a
distributed crowd-sensed system. The CDAS system enables
deployment of various crowd-sensing applications that require
human involvement for simple verification tasks delivering

4http://www.wayz.com/
5https://www.wazer2.co.il/

high accuracy. The system follows a two-stage approach. In the
first stage, the given job is performed by a high-performance
computer. The result of the job is then broken into subparts
and sent to human workers for verification using Amazon
Mechanical Turk (AMT). The results from human workers
are combined to compute the final result. The CDAS system
incorporates complex analytics that enables it to disseminate
jobs, obtain results and compare results obtained from different
workers to determine the correct one. Mobile edge capture and
analysis middleware for social sensing applications (MECA)
[18] is another middleware for efficient data collection from
mobile devices in a efficient, flexible and scalable manner.
MECA provides a platform by which different applications can
use data generated from diverse mobile data sources (sensors).
The proposed MECA architecture has three layers comprising
data layer (mobile data sources mobile phones), edge layer
(base stations that select and instruct a device or group of de-
vices to collect data and process data), phenomena/application
layer (the backend that determines the edge nodes to process
application request). The mobile analytics performed on the
data in CDAS and MECA are at the cloud/remote-server layer.

The MetroSense [19] project at Dartmouth is an example
of another crowdsensing system. The project aims in develop-
ing classification techniques, privacy approaches and sensing
paradigms for mobile phones. The CenceMe [20] project under
the MetroSense umbrella is a personal sensing system that
enable members of social networks to share their presence.
The CenceMe application incorporates mobile analytics by
capturing user activity (e.g., sitting, walking, meeting friends),
disposition (e.g., happy, sad, doing OK), habits (e.g., at the
gym, coffee shop today, at work) and surroundings (e.g., noisy,
hot, bright, high ozone) to determine presence. The CenceMe
system comprises two parts, the phone software and back-
end software. The phone software is implemented on a Nokia
N95 running Symbian operating system. The phone software is
developed in Java Micro Edition (JME) which interfaces with
Symbian C++ modules controlling the hardware. MineFleet
[15] is a distributed vehicle performance data mining system
designed for commercial fleets. In MineFleet [15], dedicated
patented custom built hardware devices are used on fleet trucks
to continuously process data generated by the truck. MineFleet
system comprises an onboard data stream mining module that
performs extensive processing of data using various statistical
and data stream mining algorithms. This data stored locally
is transmitted to an external MineFleet Server for further
processing when network connectivity is available.

Mobile crowdsensing is becoming a vital technique and has
the potential to realise many applications that require large
amounts of data from distributed communities in a collabo-
rative fashion. The aforementioned crowdsensing frameworks
and applications are mostly hard wired allowing very little flex-
ibility to develop new applications. Further, frameworks like
MECA [18] use the smartphone as a dumb data generator while
all processing is offloaded to the server layer (Edge). This is
good for certain types of applications but may not be suitable
in scenarios where the smart phone may go off-line [21].
Moreover, crowdsensing applications like Waze4, MetroSense
[19] and MineFleet [15] are built around specific data handling
models (e.g. GPS for Waze, Microphone for MetroSense and
Data mining algorithms for object monitoring). On contrast,
the proposed MOSDEN platform has been developed with the

2

2
1

1

1

MOSDEN
MOSDEN

MOSDEN

MOSDEN

User communities

User communities

Cloud platform for
Resource Intensive processing

Applications Using
Crowd sensed data

3

1
2

Fig. 1: Environmental Monitoring - Mobile Crowdsensing Scenario

design goal of ease of use, ease of development/deployment,
scalability, easy access to both on-board and external sensors,
support for on-board data analytics and collaboration and
data sharing. The MOSDEN platform provides the applica-
tion developer with implementation options i.e. choice of
using processing on the smartphone and/or processing at the
server. The MOSDEN platform promotes a distributed sensing
infrastructure where each MOSDEN instance running on a
smartphone is self-managed.

III. MOTIVATING SCENARIO - ENVIRONMENTAL

MONITORING

In this section we present a motivating futuristic scenario
that explains the need for a scalable, collaborative, mobile
sensing platform like MOSDEN. The scenario under consid-
eration is an environmental monitoring scenario (e.g. noise
pollution) in smart cities as depicted in Figure 1. In step (1),
a remote-server (cloud-based) registers the interest for data
within user communities. In the example depicted in Figure
1, the user communities are grouped based on location. In
step (2), the processed data from the smartphones are sent to
the remote-server (push/pull). In step (3), the crowd-sensing
application obtains data from the remote-server for further
processing and visualisation. The above scenario is a typical
case for many crowdsensing applications that require data
from diverse user communities. The same approach can be
used to deploy a crowdsensing application that computes air
pollution within the environment. To this, the smartphone
will also have to rely on external sensors that are part of a
smart city infrastructure to obtain air pollution data. Using a
monolithic approach may results in developing a niche class of
applications that may not be scalable for other scenarios which
is a major obstacle. To achieve this goal, the crowdsensing
platform needs to support real-time data collection, processing
and storage, support to implement specific algorithms/models,
energy-efficient operation, autonomous functions i.e. ability
to work with minimal user interaction and support offline
modes. The proposed MOSDEN platform supports the above
mentioned features natively.

IV. MOSDEN - MOBILE SENSOR DATA ENGINE

We propose MOSDEN, a crowdsensing platform built
around the following design principles:

• Separation of data collection, processing and storage
to application specific logic

• A distributed collaborative crowdsensing application
deployment with relative ease

• Support for autonomous functioning i.e. ability to self-
manage as a part of the distributed architecture

• A component-based system that supports access to
internal and external sensor and implementation of
domain specific models and algorithms

These design principles address the obstacles mentioned in
Section III. The proposed MOSDEN platform overcomes the
key barriers of developing and deploying scalable collaborative
mobile crowdsensing applications.

A. Platform Architecture

MOSDEN platform follows similar design principle of
Global Sensor Network (GSN) architecture [22]. GSN is
a sensor network middleware developed to run on high-
powered computing devices (e.g. servers and cloud resources).
GSN presents a unified middleware approach that facilitates
acquisition, processing and storage of sensor data. It uses
the concept of virtual sensors that abstracts the underly-
ing data source (e.g. wireless sensor network). Since, GSN
was not developed for resource constrained environment, we
made significant enhancement to GSN when designing and
implementing MOSDEN. MOSDEN follows a component-
based architecture allowing extensibility without modifying the
existing codebase. The architecture of the proposed MOSDEN
platform is presented in Figure 3 followed by description of
each component.

Plugin: In MOSDEN, we introduce the concept of Plugins.
In GSN, a developer had to implement wrappers to
accommodate new sensor data sources into the system.
This required the system to be recompiled and redeployed.
This approach is not very practical. The use of plugin

overcomes this challenge. The Plugins are independent
applications that communicates with MOSDEN. Plugin
define how a sensor communicates with MOSDEN. We
have developed a plugin descriptor that crowdsensing
application developer can use to implement plugins for
the new sensor types. MOSDEN can dynamically discover
new plugins at run-time. A conceptual description of the
plugin is shown in XML format in Figure 2.

<DataFields>
<DataField>

<name> accelerationX_axis_incl_gravity </name>
<type> double </type>
<description> Acceleration force along the X axis
(including gravity)measures in m/s2.

 </description>
</DataField>
<DataField>

<name> accelerationY_axis_incl_gravity </name>
<type> double </type>
<description> Acceleration force along the Y axis
(including gravity)measures in m/s2.

 </description>
</DataField>
<DataField>

<name> accelerationZ_axis_incl_gravity </name>
<type> double </type>
<description> Acceleration force along the Z axis
(including gravity)measures in m/s2.

 </description>
</DataField>

</DataFields>

Fig. 2: A Conceptual Description of MOSDEN Plugin

Virtual Sensor: The virtual sensor is an abstraction of the
underlying data source from which data is obtained. This
concept has been carried forward from GSN design. The
virtual sensor lifecycle manager is responsible to manage
the instantiation, updation and removal of virtual sensor
resources.

Processors: The processor classes are used to implement
custom models and algorithms that processes the incom-
ing data. For example, a Fast Fourier Transform (FFT)
algorithm to compute the decibel level from microphone
recordings.

Storage Manager: The raw data acquired from the sensor
is processed by the processing classes and stored locally.
This is a key feature of MOSDEN as local storage
supports off-line modes.

Query Manager: The query manager is responsible to
resolve and answer queries from external source. An
external source can be another MOSDEN instance, a
user or an application querying for data collected by the
smartphone.

Service Manager: The service manager is responsible to
manage subscriptions to data from external sources. The
service manager registers subscription request and de-
pending on the mode of data delivery (push/pull) will de-
liver available data to the requested external source when
possible. The service manager is specifically designed to
manage the working on MOSDEN in resource constrained
environments where frequent disconnection occurs.

API Manager: The application programmable interfaces
(APIs) provides a standard way to subscribe and access
data to/from MOSDEN instances. The API’s requests are
received and processed over HTTP.

Each MOSDEN instance running on the mobile smart-

S S S S
Sensors

Plugin Plugin Plugin Plugin

S
m

a
rt

p
h

o
n

e

MOSDEN

Virtual Sensor Virtual Sensor Virtual Sensor

Virtual Sensor Lifecycle Manager

Storage ManagerQuery Manager

Service Manager

API (HTTP)

External Sensors

Processor Processor Processor

Processor Lifecycle Manager

...

...

S S SS

Fig. 3: MOSDEN Platform Architecture

phones can run with minimal user interaction. It can register
a data request from a remote-server (e.g. cloud-based). MOS-
DEN then works in the background processing the request by
collecting, processing and storing the requested data locally.
When the processed data is required by the application running
at the remote-server, it can query the MOSDEN instance
for the data (push/pull). MOSDEN realises a true distributed
system architecture as it has the ability to function independent
of the remote-server (support for off-line modes).

As depicted in the architecture, each individual MOS-
DEN instance is self contained and managed and is capable
of working in mobile environments that encounter frequent
disconnections. The use of APIs to communicate between
instances encourages collaborative workload sharing and pro-
cessing. The plugin based approach increases usability and
promotes interoperability allowing MOSDEN to communicate
with any sensors both internal and external. This remove the
burden on crowdsensing application developer. Further, the use
of a component-based architecture enables system developers
to implement domain specific algorithms with ease. Moreover,
the MOSDEN platform enables the development of mobile
crowdsensing applications that can scale from an individual
to a community. For example, the platform can be used to
develop a personal fitness monitor application that works on
an individual smartphone taking advantage of on-board sensing
capabilities to noise pollution application that compute noise
pollution by obtaining inputs from a community of users.

V. IMPLEMENTING A CROWDSENSING APPLICATION

USING MOSDEN

In Section III we presented an environmental monitoring
scenario to determine the noise pollution level from data
obtained from a community of user. Using the information
obtained from the user communities, a crowdsensing appli-
cation running on a remote-server can further analyse and
visualise the noise pollution level at a given location. Each
user community in this scenario is grouped by location.

In this section we present a detailed description of the
noise pollution crowdsensing proof-of-concept application im-
plementation using MOSDEN platform. Figure 4 presents
the overview of the noise pollution crowdsensing application
implemented on MOSDEN platform. In the scenario depicted

MOSDEN MOSDEN

MOSDEN

Global Sensor

Network

Message Broker

1

1
1

1

2 2
2

Fig. 4: Implementation of Crowdsensing Application using
MOSDEN

in 4, in step (1) MOSDEN instances running on the smartphone
registers with the cloud GSN instance. Once registration is
complete in step (2) the cloud GSN instance registers its
interest to receive noise data from MOSDEN. When data is
available, MOSDEN streams the data to the cloud GSN. The
streaming processes can be push or pull based depending on
application requirement. In this specific example we imple-
mented a pull-based approach.

The MOSDEN reference architecture has been imple-
mented on the Android6 platform. We deployed the noise
pollution application developed on MOSDEN platform on a set
of smartphones that represent user communities. To compute
the noise decibel level, we implemented a modified version
of the processing class from Audalyzer open source project7.
The microphone sensor on the smartphones was used to obtain
raw sound recordings. Code to interface with the sensor was
already available as a part of the MOSDEN platform via
plugins (we have developed plugins for on-board sensors). As
MOSDEN is similar to GSN design, it is compatible with GSN.
For our proof-of-concept implementation, we implemented
GSN in the cloud that queries data from individual MOSDEN
instances. A MOSDEN instance registers itself with the GSN
in the cloud. As we stated earlier, the design of MOSDEN
makes it easily extensible to suit any crowdsensing application
requirements. To validate this, we implemented the registration
process via a message broker as depicted in Figure 4. Along
with the registration, each MOSDEN instances also updates
the cloud GSN instance with a list of available sensors. We
note, MOSDEN API supports any form of registration. It is
the responsibility of the crowdsensing application developer
to choose the most appropriate registration process. It is to
be noted that the cloud GSN instance can be replaced by
another smartphone running MOSDEN. In such a scenario,
the MOSDEN requesting crowdsensed data performs further
processing and visualisation. Screenshots of the MOSDEN
implementation on Android smartphone (Figure 5a) and GSN
in the cloud (Figure 5b, 5c) are illustrated in Figure 5. We note,
the default version of GSN with no enhancements was used to
demonstrated the proof-of-concept implementation. Figure 5c
depicts the noise graph computed from 3 MOSDEN users. In
this example, we have plotted the noise data individually.

6http://www.android.com/
7https://code.google.com/p/moonblink/

(a) MOSDEN User Interface

(b) GSN Sensor Registration Screenshot

(c) GSN Noise Plot Screenshot

Fig. 5: Crowdsensing Application - Noise Pollution - Screen-
shots

A. Benefits of MOSDEN Design

The proposed MOSDEN model is architected to support
scalable, efficient data sharing and collaboration between
multiple application and users while reducing the burden on
application developers and end users. The scalable architecture
can easily be orchestrated for crowdsensing application that
range from an individual to a community of users. It facilitates
easy sharing of data among large community of users which
is a vital requirement for crowdsensing applications.

By separating the data collection, storage and sharing
from domain-specific application logic, our platform allows
developers to focus on application development rather than
understanding the complexities of the underlying mobile plat-
form. In fact, our model hides the complexities involved in
accessing, processing, storing and sharing the sensor data on
mobile devices by providing standardised interfaces that makes
the platform reusable and easy to develop new application.
This we believe will significantly reduce the time to develop
new innovative crowdsensing applications. Since, MOSDEN is
designed as a component-based architecture, it provides easy
interfaces to implement application specific processing models
and algorithms.

Further, our model works in the background with minimal
user interaction reducing the burden on smartphone users. By
providing support for processing and storage on the device,
we also reduce frequent transmission to a centralised server as
compared to current crowdsensing frameworks. The potential
reduction in data transmission has the following benefits: 1)
helps save energy for users’ mobile device; 2) reduces network
load and avoids long-running data transmissions.

To validate the performance of the proposed MOSDEN
platform to support scalable, efficient data sharing and col-
laboration, in the next section, we evaluate the performance
of MOSDEN to function under extreme loads when working
collaboratively with other smartphones running MOSDEN
instances.

VI. EVALUATION OF MOSDEN PLATFORM

In this section, we present the details of experimentation
test-beds and evaluation methodology. Further, we discuss
the results and present the lessons learnt from experimental
evaluations.

A. Experimentation Testbed

For the evaluation of the proof of concept implementations,
we used four mobile devices and a laptop. From here onwards
we refer them as D1, D2, D3, D4, and D5 respectively. The
technical specifications of the devices are as follows.

• Device 1 (D1): Google Nexus 4 mobile phone, Qual-
comm Snapdragon S4 Pro CPU, 2 GB RAM, 16GB
storage, Android 4.2.2 (Jelly Bean)

• Device 2 (D2): Google Nexus 7 tablet, NVIDIA Tegra
3 quad-core processor, 1 GB RAM, 16GB storage,
Android 4.2.2 (Jelly Bean)

• Device 3 (D3): Google Nexus 7 tablet, NVIDIA Tegra
3 quad-core processor, 1 GB RAM, 16GB storage,
Android 4.2.2 (Jelly Bean)

• Device 4 (D4): Acer Iconia Tab A501, Nvidia Tegra 2
T20 Dual-core 1 GHz Cortex-A9, 1 GB DDR2 RAM,
Updated to Android 4.2.2 (Jelly Bean),

• Device 5 (D5): ASUS Ultrabook Intel(R) Core i5-
2557M 1.70GHz CPU and 4GB RAM (Windows 7
operating system)

For experimentation, we devised two setups as illustrated
in Figure 6 and evaluated the proposed framework in each
setup independently. The mobile devices are configured to run
our proposed framework, MOSDEN, and the laptop computer
is configured to run GSN engine [22].

(a) (b)Computer

D1 D2 D2D3 D4D3

D5

D1

Fig. 6: Experimental Testbed has been configured in two dif-
ferent ways: (a) Setup 1: Three mobile devices are connected
to a laptop and (b) Setup 2: three mobile devices are connected
to another mobile device.

B. Experimentation Strategy

The overall objective of the experimental evaluations we
conducted is to examine the performance of MOSDEN plat-
form in collaborative environments. Two different collaborative
setups are illustrated in Figure 6. In this section, we explain
the objectives behind each experiment we conducted in detail.
Next section discusses the results and lessons learnt in detail.
Number of sensors used for sensing has been kept fixed
throughout the experiments8. In all the evaluations, CPU usage
(consumption) is measured in units of jiffies9. Sampling rate
for all evaluations is one second.

A query in the form of a request is sent from the server
to MOSDEN client instances. Depending the number of sen-
sors queried on MOSDEN instances, the number of requests
increase. We use the term ’MOSDEN client’ to refer to client
devices where MOSDEN act as a client such as D1, D2 and
D3 in setup 1 in Figure 6(a) and D2, D3 and D4 in setup 2 in
Figure 6(b)). We use the term ’MOSDEN server’ to refer to
server device where MOSDEN act as a server such as D1 in
setup 2 in Figure 6(b)).

We configured the experimental test-bed as illustrated in
Figure 6(a) - Setup 1. In Figure 7, 8, and 9, we compare the
performance of restful streaming and push-based streaming
methods in term of CPU usage and memory usage by both
client and server devices which runs MOSDEN and GSN.

8All the sensors available on the given device has been used (e.g. In D1:
accelerometer, microphone, light, orientation, proximity, gyroscope, magnetic,
pressure).

9In computing, a jiffy is the duration of one tick of the system timer
interrupt. It is not an absolute time interval unit, since its duration depends
on the clock interrupt frequency of the particular hardware platform

Restful streaming is designed to have a persistent connection
between the client and the server. On the other hand, the push-
based approach makes a new connection every time to transmit
data. Both these techniques can be used to perform communi-
cation between two (or more) distributed GSN or MOSDEN
instances (i.e. GSN ↔ GSN, MOSDEN ↔ MOSDEN, GSN ↔
MOSDEN). The two approaches have their own strengths and
weakness. The former is good for clients running MOSDEN
that have a reliable data connection. The latter is useful for
clients that need to work in offline modes. The MOSDEN
platform supports both the operations and the application
developer has the choice to choose the best approach suited to
application requirements.

Figure 7 illustrates the difference between CPU usage
in MOSDEN when number of requests increase. Figure 8
illustrates the variation of memory consumption of MOSDEN
when number of requests increase. Figure 9 illustrates how
memory consumption of GSN changes in the server when
number of queries it handles increase.

In Figure 10, we examine how storage requirements vary
when number of sensors handled by the MOSDEN client
increases. For this experiment, we used Setup 1 in 6. All the
sensors onboard the client mobile device (i.e. accelerometer,
microphone, light, orientation, proximity, gyroscope, magnetic,
pressure) are used as sensor sources. Sampling rate for sensors
are configured as one second. The D1 (Setup 1) has been
configured to receive data request from the server in an one
second interval. The experiment was conducted for three hours.
The exact storage requirements depend on multiple factors
such as number of active sensors sending data, number of data
items generated by the sensor10, sampling rate, and history
size [23]. We used external sensor to increase the number
of sensors connected to MOSDEN during the experiment in
order to examine the behaviour of MOSDEN from a storage
requirement perceptive.

For the next set of experiments, we configured the test-bed
as illustrated in Figure 6(b)-Setup 2. In Figure 11 and 12, we
compare the performance of restful streaming and push-based
streaming techniques in terms of CPU usage and memory
usage by the server mobile device (D1) which runs MOS-
DEN. Figure 11 illustrates the difference between CPU usage
in MOSDEN when number of requests increase. Figure 12
illustrates the variation of memory consumption of MOSDEN
when number of requests increase.

Figure 13 shows how round trip time11 is impacted when
the number of requests handled by GSN (D5 in Figure 6(a))
and MOSDEN (D1 in Figure 6(b)) increase. Both restful
streaming and push-based streaming techniques are evaluated
separately. Figure 14, compares the amount of time (average)
it takes to process a single request12. This is different from
round trip time presented in Figure 13. Time it takes to process
a single request is calculated as denoted in Equation 1.

10E.g. accelerometer generates 3 data items i.e. x, y, and z while temperature
sensor generate one data item

11The round-trip time is the time taken for the server to request a data item
from a given virtual sensor on a client. The total time is computed as the
interval elapsed between server request and client response.

12Time taken to process a single request is the time interval elapsed between
two subsequent requests made by the server to any client irrespective of the
virtual sensor

=
Duration of the Experiment

Total number of Round Trips Completed
(1)

In Figure 15, we presents results of our experiment (Figure
6-Setup 2) that examine how each request was processed.
We compared the performance using both restful streaming
and push-based streaming. In this experiment, we configured
MOSDEN server to make 30 requests from each of the
three distributed client MOSDEN instances. We conducted the
experiment for a fixed interval of time. Later, we calculated,
using the Equation 2, the number of round-trips completed
by each request and plotted them as a percentage. We denote
the total number of round-trip requests completed for a virtual
sensors S as Si where i is the virtual sensor identifier. The
x-axis in Figure 15 represents i.

=

(

Number of Round trips Completed by Si

Total number of Round Trips Completed
∑

n

i=1
Si

)

×100

(2)

In Figure 16, we visually illustrate how delay occurs in
processing the 90 requests (in Figure 15, we only show 7
requests due to space limitation). Each request is shown in
a different colour. Different requests have different round-trip
times depending on how processing capabilities and priorities
of both server and client devices.

C. Results and Discussion

In this section, we provide a detailed analysis and discus-
sion of the experimental outcomes. According to Figure 7, it is
evident that restful streaming is slightly better than push-based
streaming in CPU consumption perceptive. This slight different
can be due to above explained reasons. On contrast, restful
streaming consumes more memory than push-based streaming
as depicted in Figure 8. One reason could be the overheads to
maintain a persistent network connections.

0 5 10 15 20 25 30
0

10

20

30

40

50

60
Restful Streaming

Push-based Streaming

Number of Requests Processed by MOSDEN ClientC
P

U
 U

s
a

g
e

 (
A

v
e

ra
g
e

 u
n
it
s
 o

f
jif

fi
e

s
)

Fig. 7: Comparison of CPU Usage by MOSDEN Client

It can also be noted that the memory consumption of GSN
engine running on the server as depicted in Figure 9 also
increases with load but not as significant as the mobile device.
This observation is straightforward attributed to the difference
in computing capacity of the two nodes (mobile device and
laptop). Based on the experience in MOSDEN client-side, it
is fair to predict that, we will be able to see a different if we
increase the number of requests to be processed towards tens
of thousands. According to the outcome shown in Figure 10,

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

Restful Streaming

Push-based Streaming

Number of Requests Processed by MOSDEN Client

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Fig. 8: Comparison of Memory Usage by MOSDEN Client

storage requirements are linear. It is to be noted that to stress
test MOSDEN client instances, we used external sensors, on-
board sensors and additional data source generators to simulate
30 virtual sensors. This further demonstrates the scalability of
MOSDEN. In both GSN and MOSDEN, storage can be easily
controlled by changing the history-size. History-size defines
how much data record needs to be stored at a given time. Large
history sizes can be used for summarising purposes or archival
purposes. However, the amount of storage in easily predictable
due to history size, because MOSDEN always deletes old items
in order to accommodate new data items. Specially, for real
time reasoning history can be set to one. Considering all the
above factor, it is fair to conclude that modern mobile devices
have the storage capacity to store sensor data collected over
long period of time.

1 15 30 60 90
0

50

100

150

200

250

300

350

400

450

Memory Consumption (Both Restful and
push based streaming)

Number of Requests Generated by GSN Server

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Fig. 9: Comparison of Memory Usage by GSN Engine

1 min 5 min 10 min 30 min 1h 2h 3h
0

0.5

1

1.5

2

2.5

3

3.5

One Virtual Sensor 7 Virtual Sensors

15 Virtual Sensors 30 Virtual Sensors

Time in Minutes

S
to

ra
g
e

 R
e

q
u
ir

e
m

e
n
t

(M
e

g
a

b
y
te

s
)

Fig. 10: Storage Requirement of MOSDEN

According to Figure 11 and Figure 12 Push based stream-
ing is slightly better that restful streaming. Further, it is impor-
tant to note that both techniques maintain the same amount of
CPU consumption over time despite the increase in requests in

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80
Restful Streaming

Push-based Streaming

Number of Requests Handle by MOSDEN ServerC
P

U
 U

s
a

g
e

 (
A

v
e

ra
g
e

 u
n
it
s
 o

f
jif

fi
e

s
)

Fig. 11: Comparison of CPU Usage by MOSDEN Server

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160
Restful Streaming

Push-based Streaming

Number of Requests Handled by MOSDEN Server

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Fig. 12: Comparison of Memory Usage by MOSDEN Server

handles. Additionally, MOSDEN server consumes significantly
less amount of memory in comparison to MOSDEN client.
One reason is that MOSDEN client performs sensing activities
in addition to sending data to the server. In contrast, MOSDEN
server performs data requesting task only (from clients). As
we mentioned earlier, when number of requests handled by
MOSDEN increase (give that no other tasks are performed),
restful streaming technique performs better in term of both
CPU consumption and memory consumption.

According to Figure 13, it is clearly evident that resource
constrained device such as mobile phones take more time to
perform computations. As a result delay time is comparatively
high when the server node is a mobile device in contrast to a
computer-based server node. Further it has been observed that
(also we predicted in earlier section), push-based technique has
much larger delay time due to additional overheads involved
in connection setup and teardown. For laptop-based server
instances, the reason for having much less round trip time
when handling 90 requests is due to the availability of more
computational resources. However, when resource constrained
devices play the role of a server node, they do not have
additional CPU or memory to allocate in comparison to a
laptop-based server. As a result round trip time increases
for mobile device-based server nodes. Figure 14 also shows
the impact of increased overheads when using a push-based
streaming technique.

It is important to note that, even though, the average round
trip time is higher as observed in Figure 13(e.g. 20 seconds
when handling 90 requests) when restful steaming techniques
is used, the amount of time taken to make subsequent requests
by the server is mush less (e.g. less than a second when
handling 90 requests) as observed in Figure 14. This outcomes
is explained in Figure 15. As some virtual sensor requests

15 30 60 90
0

10

20

30

40

50

60

70

80
Restful Streaming (GSN Server)

Push-based Streaming (GSN Server)

Restful Streaming (MOSDEN Server)

Push-based Streaming (MOSDEN Server)

Number of Request handled by GSN / MOSDEN Server

R
o

u
n
d
-T

ri
p
 T

im
e

 (
A

v
e

ra
g
e

)
in

 S
e

c
o

n
d
s

Fig. 13: Comparison of Round-trip Times

15 25 35 45 55 65 75 85
0

0.5

1

1.5

2

2.5

Restful Streaming (GSN Server)

Push-based Streaming (GSN Server)

Restful Streaming (MOSDEN Server)

Push-based Streaming (MOSDEN Server)

Number of Requests Handle by GSN / MOSDEN Server

T
im

e
 t

o
 P

ro
c
e

s
s
 a

 S
in

g
le

 R
e

q
u
e

s
t

(A
v
e

ra
g
e

)
(i

n
 s

e
c
o

n
d
s
)

Fig. 14: Comparison of Data Retrieval and Processing Ability

complete more round trips (as explained earlier) compared to
others, the delay introduced to process request for other virtual
sensors have a direct impact on average round trip time.

According to Figure 15, restful streaming technique allows
each request to have fair amount of computational resources
but push-based streaming does not. The main reason is at-

tributed to the fact that restful streaming maintains a persistent
connection between the client and server. When devices use
push-based streaming, more computational resource needs to
be allocated to handle the connection setup and teardown.
Specially, when the number of requests that need to be handled
increase significantly, it places a significant overhead on round-
trip times for the push-based streaming approach as shown in
Figure 15. Due to restricted resources, under extremely high
loads, in push-based streaming, there is a fair possibility that
some requests made by virtual sensors (in MOSDEN server)
may not get executed at all. In Figure 16, we plotted round trip
times taken by 7 different requests over a period of time. This
clearly shows the significance of the variation stated above.
Some requests (in some point of time) take only 6 milliseconds
whereas some other requests (in some point of time) take 12
seconds to complete a round trip.

Overall MOSDEN performs extremely well in both server
and client roles in collaborative environments. MOSDEN (as
a server) was able to handle 90 requests (i.e. 180 sub requests)
where each request has a sampling rate of one second. This
resulted in a MOSDEN clients processing 1800 data points
every 1 minute and a MOSDEN server (running on a mobile
device) processing 5400 data points every 1 minute from
distributed clients. It is to be noted, that for evaluation purposes
and to validate the efficiency and scalability of MOSDEN,
we conducted experiments on MOSDEN server and client
under extreme loads. Such processing is intensive and rare
in real-world application. However, our experiments showed
that MOSDEN can withstand such intensive loads proving to
be a scalable platform for deploying large-scale crowdsensing
applications. If MOSDEN is configured to collect data from
10 different sensors and handle 30 requests (typical of real-
world situations), it can perform real-time sensing with delay
of 0.4 - 1.5 seconds. When the server node is a computer
(D5 as explained in Section VI-A) both restful streaming and

0

1

2

3

4

5

6
Restful Streaming Push-based Streaming

Different Requests Handled by MOSDEN Server

N
u
m

b
e

r
o

f
R

e
q

u
e

s
t
P

ro
c
e

s
s
e

d

in
 P

e
rc

e
n
ta

g
e

 (
%

)

Fig. 15: Comparison of Requests Processing Variation

0

2000

4000

6000

8000

10000

12000

14000

Time

D
e

la
y
 i
n
 M

ili
s
e

c
o

n
d
s

Fig. 16: Variation of round-trip time (delay / latency) over a period of time where seven requests are being processed

push-based streaming work extremely well without visible
significant differences. However, when the server node is a
mobile device, which runs MOSDEN, restful streaming per-
forms approximately 6 times better than push-based technique.

VII. CONCLUSION AND FUTURE WORK

A mobile crowdsensing application development frame-
work must scale from an individual user to user communities
(100 -1000 users). In this paper, we proposed MOSDEN, a
collaborative mobile crowdsensing platform to develop and
deploy opportunistic sensing applications. MOSDEN differs
from existing crowdsensing platforms by separating the sens-
ing, collection and storage from application specific process-
ing. This unique feature of MOSDEN renders it an easy-to-use,
reusable framework for developing novel opportunistic sensing
applications. We proposed the architecture of the MOSDEN
framework. We then demonstrated its ease of use and minimal
development effort by presenting a proof-of-concept noise
pollution application developed on the MOSDEN platform.
We validated MOSDEN’s performance and scalability when
working in distributed collaborative environments by exten-
sive evaluations under extreme loads resolving and answering
queries from external sources (MOSDEN instances and GSN
in the cloud). Overall MOSDEN performs extremely well
under extreme loads in collaborative environments validating
its suitability to develop large-scale opportunistic sensing
applications. Our next step is to deploy and evaluate MOSDEN
in a real-world application.

ACKNOWLEDGEMENT

Part of this work has been carried out in the scope of
the ICT OpenIoT Project which is co-funded by the Euro-
pean Commission under seventh framework program, contract
number FP7-ICT-2011-7-287305-OpenIoT. The authors ac-
knowledge help and support from CSIRO Sensors and Sensor
Networks Transformational Capability Platform (SSN TCP).

REFERENCES

[1] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Camp-
bell, “A survey of mobile phone sensing,” Communications Magazine,

IEEE, vol. 48, no. 9, pp. 140–150, 2010.

[2] P. Lilly, “Mobile devices to outnumber global population by 2017.”
[Online]. Available: http://hothardware.com/News/Mobile-Devices-To-
Outnumber-Global-Population-By-2017/ [Accessed on: 2013-08-06]

[3] N. Eagle, Mobile Phones as Social Sensors. Ox-
ford University Press, 2011. [Online]. Available:
http://realitymining.com/pdfs/handbook.05.pdf

[4] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca,
L. Legrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, P. Klasnja,
K. Koscher, J. Landay, J. Lester, D. Wyatt, and D. Haehnel, “The mobile
sensing platform: An embedded activity recognition system,” Pervasive

Computing, IEEE, vol. 7, no. 2, pp. 32–41, 2008.

[5] T. Starner, “Wearable computing and contextual awarenes,” Ph.D.
dissertation, Massachusetts Institute of Technology. Dept. of
Architecture. Program in Media Arts and Sciences, 1999. [Online].
Available: http://hdl.handle.net/1721.1/9543

[6] W. Sherchan, P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke,
and A. Sinha, “Using on-the-move mining for mobile crowdsensing,”
in Mobile Data Management (MDM), 2012 IEEE 13th International

Conference on, 2012, pp. 115–124.

[7] A. Zaslavsky, P. P. Jayaraman, and S. Krishnaswamy, “Sharelikescrowd:
Mobile analytics for participatory sensing and crowd-sourcing applica-
tions,” 2013 IEEE 29th International Conference on Data Engineering

Workshops (ICDEW), vol. 0, pp. 128–135, 2013.

[8] N. Brouwers and K. Langendoen, “Pogo, a middleware for mobile
phone sensing,” in Proceedings of the 13th International Middleware

Conference, ser. Middleware ’12. New York, NY, USA: Springer-
Verlag New York, Inc., 2012, pp. 21–40. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2442626.2442629

[9] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” Communications Magazine, IEEE, vol. 49, no. 11,
pp. 32–39, 2011.

[10] V.-D. Le, H. Scholten, and P. Havinga, “Towards opportunistic
data dissemination in mobile phone sensor networks,” in Eleventh

International Conference on Networks, ICN 2012. France: International
Academy, Research and Industry Association (IARIA), February 2012,
pp. 139–146. [Online]. Available: http://doc.utwente.nl/80431/

[11] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service
and big data,” in International Conference on Advances in Cloud

Computing (ACC-2012), Bangalore, India, July 2012, pp. 21–29.

[12] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on Emerging Telecommunications Technologies (ETT), pp.
n/a–n/a, 2014.

[13] ——, “Context aware computing for the internet of things: A survey,”
Communications Surveys Tutorials, IEEE, vol. xx, pp. x–x, 2013.

[14] J. Gomes, S. Krishnaswamy, M. Gaber, P. Sousa, and E. Menasalvas,
“Mobile activity recognition using ubiquitous data stream mining,” in
Data Warehousing and Knowledge Discovery, ser. Lecture Notes in
Computer Science, A. Cuzzocrea and U. Dayal, Eds. Springer Berlin
Heidelberg, 2012, vol. 7448, pp. 130–141.

[15] H. Kargupta, K. Sarkar, and M. Gilligan, “Minefleet: an overview
of a widely adopted distributed vehicle performance data mining
system,” in Proceedings of the 16th ACM SIGKDD international

conference on Knowledge discovery and data mining, ser. KDD ’10.
New York, NY, USA: ACM, 2010, pp. 37–46. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835812

[16] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “Contextphone: a
prototyping platform for context-aware mobile applications,” Pervasive

Computing, IEEE, vol. 4, no. 2, pp. 51–59, 2005.

[17] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang,
“Cdas: a crowdsourcing data analytics system,” Proc. VLDB Endow.,
vol. 5, no. 10, pp. 1040–1051, Jun. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2336664.2336676

[18] F. Ye, R. Ganti, R. Dimaghani, K. Grueneberg, and S. Calo, “Meca:
mobile edge capture and analysis middleware for social sensing
applications,” in Proceedings of the 21st international conference

companion on World Wide Web, 2012, p. 699702. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2188184

[19] “Metrosense.” [Online]. Available: http://metrosense.cs.dartmouth.edu/
[Accessed on: 2013-08-06]

[20] A. T. Campbell, S. B. Eisenman, K. Fodor, N. D. Lane, H. Lu,
E. Miluzzo, M. Musolesi, R. A. Peterson, and X. Zheng, “Cenceme:
Injecting sensing presence into social network applications using mobile
phones (demo abstract).”

[21] Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan, “Lowering
the barriers to large-scale mobile crowdsensing,” in Proceedings of

the 14th Workshop on Mobile Computing Systems and Applications,
ser. HotMobile ’13. New York, NY, USA: ACM, 2013, pp. 9:1–9:6.
[Online]. Available: http://doi.acm.org/10.1145/2444776.2444789

[22] GSN Team, “Global sensor networks project,” 2011. [Online].
Available: http://sourceforge.net/apps/trac/gsn/ [Accessed on: 2011-12-
16]

[23] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for
data processing in large-scale interconnected sensor networks,” in
International Conference on Mobile Data Management, May 2007, pp.
198–205. [Online]. Available: http://dx.doi.org/10.1109/MDM.2007.36

