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ABSTRACT The economic and social impact of poor air quatityowns and cities is increasingly being
recognised, together with the need for effective ways of creating awareness of real-time air quality levels
and their impact on human health. With local authority maintained monitoring stations being
geographically sparse and the resultant datasets also featuring missing labels, computational data-driven
mechanisms are needed to address the data sparsity challenge. In this paper, we propose a machine
learning-based method to accurately predict the Air Quality Index (AQI), using environmental monitoring
data together with meteorological measurements. To do so, we develop an air quality estimation framework
that implements a neural network that is enhanced with a novel Non-linear Autoregressive neural network
with exogenous input (NARX) model, especially designed for time series prediction. The framework is
applied to a case study featuring different monitoring sites in London, with comparisons against other
standard machine-learning based predictive algorithms showing the feasibility and robust performance of
the proposed method for different kinds of areas within an urban region.

INDEX TERMS Air Quality Estimation, Air Pollution, Machine Laaing Prediction, Neural Network

l. INTRODUCTION links between road traffic and large-scale construction
With the growing population of the world and the migration activities with toxic air in towns and cities across the UK.
of people to urban areas [1], it becomes imperative to createoor air quality has clear public health impacts, with 40,000
an intelligent and sustainable environment that offersjeaths annually in the UK (9,500 in London) directly
citizens a high quality of life and is geared towardsattributable to air pollution and exacerbating health
supporting their well-being. The direct effect of this urbanconditions with those with heart or lung conditions [3].
drift has had profound effects on social, economic andSpikes in air pollution levels have also been directly linked
ecological systems, causing stresses on the environmefith increased hospital and GP visits [4], pointing to
and society. The social and economic implications includeadditional costs faced by the public health service in treating
impacts from human activities such as transport,conditions exacerbated by poor air quality. This calls for
industrialization, combustion, construction etc., all of which effective ways of creating awareness of real-time air quality
have a direct or indirect bearing on the environment. Thesgvels and their impact on human health.
pollution sources have led to release of pollutants such as Since air pollution is highly location dependent [2] and air
Nitrogen dioxide (NQ), Particulate Matter (PM), Sulphur quality monitoring sensors installed at fixed-site stations,
dioxide (SQ) etc. into the atmosphere. though very accurate, have high installation costs, are bulky
It is recognized that air pollution is influenced by urbanand geographically sparse (the UK's DEFRA Automatic
dynamics [2]. Recent media repdrtsave highlighted the Urban and Rural Monitoring Network (AURN) has 168 sites
covering the entire UK [5]), this poses challenges for
evidence-based real-time air quality-related decision making,
both for city authorities and citizens. Secondly, the data from

1 https:/imww.theguardian.com/environment/2018/aug/28/too-dirty-to-
breathe-can-london-clean-up-its-toxic-air
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these monitoring stations has lots of missing labels due to thalgorithm for air quality index, given pollutant and
maintenance schedules of the devices in the station [6]. meteorology data. The novel predictive method apple
Since there are a large number of air pollutants, which cabon-linear Autoregressive neural network with exagen
combine actively or reactively to form secondary pollutants,input (NARX) time series prediction model that considers
countries have adopted the Air Quality Index (AQI) as ameteorological inputs and previous pollutant valu€ke
measure of pollutants in the air. It is an easily understandablgelected AQI calculation model algwoposes and evaluates
value that shows how polluted the air is or how polluted ittwo approaches for AQI characterization and prediction: the
will be in future. This information can be used to warn thefirst of which trains the NARX algorithm directly on the
public or sensitive groups about the state of pollution of thecalculated historical AQI values, and the second predicts
environment. individual pollutant values before feeding them into the AQI
Beginning with the first use in Toronto in 1969, AQI calculation model. Evaluations based on a real-world dataset,
calculation and prediction has gained popularity and isand comparison to the state-of-the-art methods in terms of
widely adopted by many countries [7]. The complexity andstandard evaluation metrics, i.e., Root Mean Squared Error,
number of factors affecting the AQI has motivated the use oMean Absolute Percentage Error, and Band Accuracy, show
computational intelligence techniques in the prediction of airthe feasibility and performance improvements achieved from
quality, achieving higher accuracy than statistical methodshe proposed approach.
such as moving average or linear or Gaussian interpolation The rest of the paper is organised as follows. Section 2
[8].- The emerging paradigm of urban computing [9], which provides a review of the related work and techniques for AQI
aims to analyse the correlations and patterns from urban bignd pollutant estimation. The details of the AQI calculation
data to infer unknown knowledge [10], has researchednodel andmeteorology factors characteristics described
various aspects of air pollution, for instance, by employingin Section 3. Section 4 presents the AQI estimation
data-informed air quality prediction algorithms (to mitigate framework, including algorithmic details of the NARX
the data sparsity challenge [11]), with the developedpredictive model. Section 5 presents the experiments
Machine-Learning (ML)-based algorithms achieving a highperformed on a dataset collected from a real-world
performance in terms of the prediction accuracy anddeployment of monitoring sites across several boroughs of
efficiency [8, 12, 13]. Most of these research worksthe city of London and also discusses the evaluation results
implement techniques to predict and identify patternsbased on the standard metrics by comparing to existing
relevant to individual pollutant concentrations, for example,methods. Section 6 concludes the paper and outlines the
PM, 5 [6, 14], Carbon Monoxide (CO) [12, 13, 15], RNB, future research directions.
16] and Nitrogen Oxides (N [8, 15-17]. Other allied
works seek to employ supervised methods that take intd. RELATED WORK
account historical AQI values in order to perform short-termPrediction of air quality levels is important for
predictions of AQI measures for the same or neighbouringgommunicating pollution risks and exposure level. However,
regions [18, 19]. it is a complex measure to calculate since the form and
However, it has been noted that there should be thregispersal patterns of pollutants are affected by environmental
stages involved in predicting AQI [20]: Bstablishment of ~and meteorological factors. The early approach was human-
an Air quality modeJ 2) identification ofmeteorology factors ~ centred, where data collected from different monitoring
and forecast, and 3) doing the actual AQI forecast ancstations were evaluated based on human experience; hence,
estimation based on identified algorithm3he AQI making it unreliable. Currently, computational intelligence
calculation model choice is important singellutants vary ~ approaches involve use of smart algorithms such as decision
from place to place, for example, an urban area may b#ees, neural networks, self-organizing maps, support vector
concerned about Nbecause of large vehicular presence, anmachines etc. in predicting air quality. This method is
industrialized area might want to monitor S&hd a city like ~ advantageous because of its high accuracy and computational
Madrid may be interested in pollen because of its prevalencefficiency [21].
in this region. Thus, the AQI model needs to consider Zhang et al [22] identified the major techniques for AQI
individual pollutants or a combination of theMeteorology ~ forecasting to include simple empirical approach and
is an influencing factor since it has been established thegtatistical approach. The empirical approach is based on
factors such as temperature, atmospheric pressledive persistence, which factors in current AQI into the prediction
humidity, wind speed and wind direction are dominantof future AQI since it assumes that the current pollutant value
factors that influence pollutant concentration and byhas a direct effect on tomorrow's predicted value. This
extension AQI [16]. approach is simple and good for stationary conditions but
To implement the requisite three phases and to address t§@n't handle sudden changes in pollutant and weather.
data sparsity and unlabeled data challenges, this paper séatistical approach relies on the fact that weather and
out a comprehensive air quality estimation framework thatrollutant concentrations are related statistically i.e. there is
implements an AQI model encompassing a predictivecorrelation between these two elements and therefore
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regression and trained neural network functions are Deep Learning approaches: Recent studies [6, 14] have
employed to forecast pollutant concentration. investigated the use of different deep learning neural
Machine learning-based approaches. Zhang et al. [22] networks to perform forecasting of pollutant concentrations.
mention the common algorithms to include ClassificationThe Deep Air Learning (DAL) model [6] uses a sparse auto-
And Regression Tree (CART), Artificial Neural Network encoder to impose sparsity constraints on the input units to
(ANN), and fuzzy logic. Their work noted that ANN has fast enable the irrelevant input features to be ignored and the
computational speed and an ability to learn and adapt itself tmain features relevant to the target to be explicitly revealed
new instances. Moustris et al. [15] applied an ANN modelfor association analysis. The deep neural network-based
for short-term forecasting of SONO,, Ozone (@ and CO  approach in [14] uses a spatial transformation component for
levels across seven monitoring sites in Athens, withspatial correlation and a distributed fusion network to merge
evaluation statistics showing a good agreement betweeall the influential factors for PM forecasting.
predicted and observed pollutant values. The study Urban Computing approaches. Allied research on
concluded that ANN can be used effectively for time seriedransport-related themes has considered the impact of
prediction and is optimized for problems with big state weather changes on predicting traffic levels at different
variables or large dimensions. Hourly concentration of NO points in a city [23], and predicting transport carbon
and NO and meteorology were used in [17] to forecast theiemissions within a city [24]. Recent studies have explored
values using neural network and Support Vector Machineurban models to predict air quality in city districts by
(SVM), with SVM'’s ability to set the size of the hidden considering a range of spatio-temporal urban big data sources
layers automatically providing better performance than ANN.such as meteorology, vehicular traffic and points of interest
Another finding from this was that factor-less prediction i.e.(POI) [2]. It is worth noting that different cities and their
prediction without external variables, is fine but additional public spaces are characterised differently based on their
external variables greatly improve prediction. The downsidespecific natural and built environment [23], which needs to
of this is that if the external variables are predicted, then ibe considered while calculating and predicting the pollution
could worsen the performance of the algorithm due tondex and discovering the latent temporal and spatial
accumulated prediction error. The use of ANN for hourly patterns.
prediction of pollutants was also demonstrated in [16], with From the review of existing works, it is apparent that
known pollutant concentration values at 1, 2 and 3 hourseveral authors have used neural networks in their work to
respectively, prior to the prediction, used to approximate thenodel and predict air quality and pollutant concentration.
impact of background factors such as industrial, restaurarithe choice of this machine learning algorithm is strongly
and resident emissions. This method was used to predittased on its fast-computational attributes and its ability to
pollutant concentrations an hour in advance. Comparison dearn and adapt to new instances. Hassan et al. [25] noted that
this ANN-based method with multiple linear regressionair quality prediction has complex and non-linear patterns.
models shows that regression models perform better fofhese patterns of data can be efficiently handled by neural
predicting CO and Pl values, with mixed results for NO networks. Additional features in air quality prediction
(comparable performance) and GNN performs markedly increase the dimension of data, and Hassan et al. stated that
better). The authors also introduced an ‘unknown-ANN is naturally suited for problems with large number of
background® ANN method, where the predicted state variables. Neural networks’ abilty to make
concentrations were used as background factors for thgeneralizations given an input and its non-mapping capability
following hour prediction, resulting in improved performance makes it a good tool for time series prediction. Thus, in this
for the ANN method. Grid-based forecasting of gMvels  work, we explore a neural network-based algorithm and
using ANN for a spatial classifier that co-trains a semi-incorporate a time delay to take into account prior pollutant
supervised model with spatial features such as points-ofeoncentrations into the prediction of future AQIs. Compared
interest density and highway length, was used in [8]. Thido the existing works, our work considers all individual
was extended with a temporal classifier based on conditiongdollutant concentrations to provide a comprehensive AQI
random field that considered temporal features such as trafficharacterisation and prediction framework.
and meteorology. To address the problem of data sparsity
from geographically sparse air quality monitoring stations!!l. BACKGROUND
installed by government agencies, HazeEst [13] and the work) this section, we first establish the adopted AQI calculation
in [12] combined the data from static sites with mobile sensofmodel, setting out how to calculate Air Quality Index (AQI)
data to forecast CO values for the metropolitan area obased on the collected dataset. The characteristics of the
Sydney by training and evaluating a number of regressioﬁensmg sites that are used as the data sources are then
models. Their findings show that SVR has the samePresented and analysed. Then we present the statistics of the
estimation accuracy as decision tree regression, but high&ellected meteorological and pollution data.
than multi-layer perceptron and linear regression.
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TABLE | TABLE Il
INFORMATION OF SENSING SITES DATA STATISTICS OFSENSING SITES
Borough Site Site Type Meteorological Data| Pollutant Data
Barking and Dagenham Rush Green Suburban c S <
2|l S = e <
Belvedere West Urban Background 1 2|8|8|=|=|8|2 2
Bexely " grou Site 9§§§§%£~3 go|e = T8
Erith Industrial 8 |slB SIE|IxX| D g =\0|= Olall & |€lo
ElS|e|E|2 |5l T || |~ 2 1g|e
Horley Suburban s §-§ S < £18
Reigate and Banstea n 5=
Poles Lane Rural o
Richmond Upon Thames Ntl Physical Lab Suburban Rush Green Yy MM M NO, 100 14
Westminster Marylebone Road Kerbside Belvedere Wesp Y |Y | Y M Y Os | 6920
Erith Y|Y|Y Y PM;o| 90 50
Horley Y|IYIY|Y|Y Y PMyo| 8Q 37
A. _AQl CALCULA-“ON . Poles Lane YY|Y Y O; [ 8§ 6
This section sets out the adopted AQI calculation model; .
which is the first stage for AQI estimation for an urban Nt Physical LagiY Y |¥ Y Os | 8941
region. Marylebone Rogly |Y |Y Y|Y|Y| |Y|Y[NO;| 7134

Choosing an appropriate model for representing AQI is

challenging. A common and widely used model is that by thgynere Ale is the index for pollutant FCP is the truncated
United States (US) Environmental Protection Agency (EPA).concentration of pollutant pBP, is the concentration
which identifies six major pollutants as AQI indicators. breakpoint that is greater than or equaﬁp, BR_O is the
These include N&) CO, Q, SO, PM;sand PMo. The EPA concentration breakpoint that is less than or equdC4o
model has widely been adopted by many countries, With|Hi and |, are the AQI values corresponding BP, and
slight modifications on the pollutant threshold level. The B|:I>_0 respectively.

Department of Environmental and Food Research Agency This model further converts the pollutant conceiutrat to
(DEFRA) model is only applicable in the United Kingdom as 3 number on a scale of 0 to 500. Any number in excess of
it does not factor in CO in the AQI calculation. This is 100 is considered unhealthy. This is further subdivided into
because of the steady decrease in carbon monoxide emissiogjg categories namel§0-50”, “51-100”, “101-200", “201-

in the UK over the past decade, due to decrease in C@pg, “301-400”, “401-500”, with different countries having
emission sources such as road transport, iron and Ste§iight differences in the breakpoints for the above categories,
production and in the domestic sector as well [26]. On theyhich denote different levels of health concerns, ranging

other hand, the Common Air Quality Index (CAQI) proposedfrom Good (0-50) to Hazardous (>301).
for use in Europe, which uses the same interpolation formula

as the EPA model for calculating the individual AQI of 5. A|R QUALITY MONITORING SITE
pollutants, has a low tolerance of pollutants. This limits itSCHARACTERISTICS
applicability to serve as the basis of a warning system irLondonAir?, the London Air Quality Network (LAQN)
countries outside Europe. website, provides the datasets from the large-scale
In this paper, we adopt the EPA model for AQI deployment of air pollution monitoring sites across London.
calculation. This is because it can be applied across diversgensing sites are deployed on different kinds of areas, with
regions, with a single pollutant concentration or athe designated types covering: Urban Background, Industrial,
combination of two or more of these enough to computeRural, Suburban, and Kerbside. As different kinds of sites
AQI. As a result, the model enables the pollutants of interestneasure different observations, the sites in Table | are
in an area to be considered and also allows for differenselected as both pollution and meteorological data are
pollutants to form the key determinant for the AQI of that monitored and accessible from these sites. These seven
region, which may be the case due to the specific natural arsklected monitoring sites are located in five boroughs of
built environment of that region. London. The framework developed in this paper has been
To compute AQI using the EPA model, the concentrationapplied to real data sources obtained in London, UK, and
of pollutants is measured and their Individual Air Quality contains the following datasets: meteorological: temperature,
Index (IAQI) is computed using the formula in equation 1, aswind speed, wind direction, rainfall, humidity, solar radiation
given in [27]. The highest IAQI value becomes the AQI andand barometric pressure, collected every hour; air pollutants:
the pollutant with the highest AQI becomes the key pollutantreal valued concentrations of six kinds of pollutants,
consisting of N@, PM,o, PMy 5, CO, SQ and Q, reported by

I, —1
AQl =—H o x(C,-BP_)+ I 1
QP BR-“_BFEO ( P LO) Lo ()

2 https://www.londonair.org.uk/LondonAir/Default.aspx
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FIGURE 2. Boxplot Showing the Distribution of Individual Pollutant
800 - Concentrations for the Different London Monitoring Stations.
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Eeoo| | ozl ! cleaning stage of the experiments. However, this approach
N £ = . . . .
g’ z &, may result in some meaningful data being omitted. To
010 . . . . .
§2 . S a0 | % overcome this problem, missing data estimation approaches,
kel et = | . . .
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] 14 | . .
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Figure 1 shows the boxplots of the meteorological data of the
_ R _ _ different sensing sites. Except for the monitoring site of
FIGURE 1. Boxplot Comparing the Distribution of Different Meteorological L
Features for the London Monitoring Stations. Horley, the temperature data shows a similar pattern for the
o _ different areas even in different years. This shows that there
the ground-based monitoring stations every hour. Theyre small variations in temperature values in the inner
datasets were collected over a number of years (2013-17horoughs of London, where the monitoring sites are located,
covering the first five months of the year, i.e. January to engver the winter and spring seasons for the evaluated years.
of May (inclusive), since we found these months to have thehe temperature data for Horley shows a median higher than
most complete datasets. o that recorded at the other sites, but also contains extremely
As shown in Table I, all the monitoring sites report datajgw minimum temperature values of -2D, which might be
for temperature, wind speed, wind direction, and,Nthe atributed to the data containing outliers. Wind speed does
other observations are measured by some of the sites. Thgy vary too much, with the median range from 1 to 2 m/s.
dominant pollutants are NOO; and PM, across the  However, the Poles Lane monitoring site reported some wind
different sites. The dominant rate is derived by CalCUIatln%peed measurements much h|gher than that from the other
the percentage of how many times the pollutant dominates igjtes. A possible reason for this is that the site is a rural area
the calculation of the AQI of the area over the total numbefnd may not have a substantial built environment near the
of measured records. It is apparent from the statistics iRjte, which can act as an obstacle to the wind. Wind direction
Table 1l that the datasets have missing records, foghows stable distributions across all sites. Wind direction was
simplification, these rows are removed during the datameasured within a 36Gangle (i.e. all directions) and the
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measurements were mostly dominated by one direction, i.8V. AIR QUALITY ESTIMATION FRAMEWORK
around 200to the north. Rainfall is reported by only two of Figure 4 presents the proposed air quality estimation
the selected sites in the datasets. Most of the data f&amework, which combines meteorological data as well as
composed of 0 values and several of them are 1, 2, 3, andppllutant data with a one-step temporal delay to provide
mm. Humidity is also measured by two sites; however, ther@stimates of AQI values. The two approaches developed in
is a large difference in the measured values, with the ‘urbathis work are shown in Figure 4. Both approaches begin with
background’ site of Belvedere West reporting highera data cleaning phase. The left-hand side of Fig. 4, which
humidity values than that of the suburban site in Horley.depicts the first approach developed in this work for AQI
Solar radiation and pressure are only available for the Rus@stimation AQIPredict computes AQIs based on the original
Green site; thus, it cannot be compared to the others. pollutant concentrations. It then trains a prediction model that
Figure 2 provides the boxplots of the measured pollutant@pplies meteorological data and the previously calculated
values. NQ is reported by all of the selected sites. ,NO AQIs to predict AQIs. On the other hand, the right-hand side
values at the kerbside site of Marylebone Road are muchf Fig. 4, which shows the second approach being proposed
larger than those from the other sites. This is becausdsNO in this work, Pollutant2AQ| trains a prediction model
mostly generated by road traffic and corresponds to thglirectly with the meteorological data and the previous
kerbside location of this sensing site and the urban nature dfollutant values to predict pollutant values. The individually
this location. On the contrary, Marylebone Road has lowepredicted pollutant values are then used to compute the final
05 values than those reported at the other sites, pointing to @stimates of AQI values.
possible inverse correlation; becausg ©® a secondary |

pollutant formed by the reaction of N@vith hydrocarbons NO, // PMas

under ultraviolet light. The other observations of ;plind M,/ co oate Qﬁi{;’ifg;&l

PM,s show similar distributions but differences in the 0s 50, pata Cleaning

extreme values. For example, Marylebone Road contain I} ey Precieed

high PMy, values, while Erith has large values reported for e o e o —>1 A

PM,, and PM, pointing to a link to its industrial location. b i .

CO and S@are only measured at the Marylebone Road site v i Learning Modes ]

in our datasets. These two pollutants show low tearing |, /" Meteorologal s ';f:ted

concentrations at this site and are not considered the ma | i Model

source of pollution in London. Predicted Data Cleaning Rainfal
Figure 3 shows the AQI distributions of the different Temperature Pressure

sensing sites. Calculated AQI values of Rush Green an Approach 1: Wind Speed Hurmidity

AQIPredict

Solar

Wind Direction
Radiation

Horley show low values throughout, with more than 75%
falling within the ‘Good’ band and the maximum AQI value
in the Moderate band. The AQIs of Belvedere West, ErithFIGURE 4. Air Quality Estimation Framework.

Poles Lane, and Ntl Physical Lab show a larger variance than

the previous two sites. Although most of them are within the The Learning Model in the framework applies a Nonlinear
ranges of the Moderate and Good bands, some values af¢itoregressive Neural network with eXogenous input
high and extend to the ‘Unhealthy’ and ‘Very Unhealthy’ (NARX) [28, 29] to provide time series pollution data/AQI
bands. For the kerbside Marylebone Road site, most valug¥ediction with meteorological data as exogenous input.
are Good or Moderate, but the maximum calculated AQINARX is based on recurrent dynamic neural network, which

reaches the ‘Hazardous' range. has a memory of its previous state. The NARX will learn a
function of equation:
Hazardous 1
| =
300 | y(t) f (yt—d 7Xmeteoro|ogical ) )
Very Unhealthy T :
| -
200 | i 1 i 1
Unneaiiy | : ! wherey,_ is the previous value of y and d is the output time
. \ ! ! . . .
Unhealiny for Sensitive Groups | Q | delay (1 in our experimentsX ueyoiogical IS @ Vector of
Moderate | | Q .
50 1 K = meteorological data.
Goog lJT_l 1 %’ 1 I

The NARX can be trained by steepest descent algorithm,
Newton’s method as well as Levenberg Marquardt (LM)
algorithm [30, 31]. LM algorithm is applied in our
framework and introduced below. The aim of the training is
to get the weights for least square error. The sum of squared

Rush Green
Belvedere West
Erith

Horley

Poles Lane

Nt Physical Lab
Marylebone Road

FIGURE 3. Boxplot Comparing the Air Quality Index Distributions for
the Different London Monitoring Stations.
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error of NARX is defined as a functiok(®) of weights
vector @ with N samples.

E(w) =§Z(e(co>)2 )

a=1

The Gauss-Newton method provides a solution
changing weightdA® for a step as follows:

Ao = -[D*E(w) | OE(0) @)

where J°E(o) is the Hessian matrix arldE(m) is the

gradient, which can be calculated by following equations:

0°E(e) = 3" (0) J(©) + So) (5)
DE(w) = J" (o) €w) (6)
where J(®) is the Jacobian matrix of sizd X P, P being
the size of® ;
[ de(w) | dg(w) 08 (o) |
17 0w, 0w
_| og,(») e, (o) 0, (o)
o)== o o | @
og (@)  0g (o) oe, (o)
| 0w 0w, 0w, |
and
N
S(e) =) §(@)0’ g(®) (8)
q=1
Gauss-Newton method assunfm) = 0, thus,
Bo =7 () I@)] I (o) dw) ©
while the LM algorithm makes the following modification to
it:
Do =[ 37 (@) I(@)+ 1] I (0) o) (10)

where | is an identity unit matrix ang/ is a parameter
controlling the size of the trust region. Whghis large, the

Algorithm 1. LM Training

1. INPUT: Training datased
2. OUTPUT: Converged networket

3. Compute outputs of the netwonletbased on the inputs éh
using Equations (12) and (13)

4. Compute the sum of squared errref netusing Equation (3)

5. Compute the Jacobian matdxsing Equations (15) (14) (11)
and (7)

6. Get changing of weightA(O using Equation (10)
7. Compute sum of squared err&g,, of a network using new

weights @, = ® + A®

. IFEww<E
9. Reducel{ in Equation (10) byﬂ
10. Apply @, tonet
11. IF converged
12. Stop and retummet
13. ELSE
14. Repeat from Line 3
15. END IF
16. ELSE

17.  Increaseld by ,B

18. Repeat from Line 6
19. ENDIF
20. The algorithm is converged when the norm of the gradient

DE((D) (Equation (6)) is less than a predefined value, or
when the sum of squared err@$as been reduced to a certain

error goal.
oe (®
factor. By defining & =£= f'(nef) , the
onet’

elements in Jacobian matrix can be written as

_08(0) _0&(w) _0g()dnef _
" 0 oaf,  onef odf;

p

J (11)

where q is the §sample, p is the'pweight, afi indicates
the weight connects unit j to unit i in th8 layer, I’le§k is the

input of unit i in the K layer, andoj is the output of unit i
from unit j in the (k-1 layer. The relations of them are:

nelk = Nfa)lkj q<_l + b( (12)
i

wherem, , is the number of units in layer k-1;
and

o = f(nef) (13)

This can be computed by backpropagation algorithm

method turns into a steepest descent method with a small
:
step sizel/ (7, whereas it turns into Gauss-Newton method 8 = f '(net*)@*** 8" (14)

when £ =0 . If one step reduces overall errgtf is

divided by a factor3. Otherwise,l/ is multiplied by the
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where f '(net*) is the derivative of function in of a unitin RMSE

[
[
layer k with respect to its input, with a modification at the 1 ‘\
final layer. 3 l
\'
_ ' L 21
5t =—f (net') CONNNES ) i

Rush Green  Belvedere Erith Horley Poles Lane  Ntl Physical Marylebone

whereL indicates the final layer. West tab Road
Algorithm 1. LM Training describes the process of (a) Root Mean Squared Error (RMSE)

training a neural network with LM algorithms. Given a .

Training datasetl, LM algorithm iteratively adapts weights ;| MAPE

in the network until it is converged. In the first iteration, it os |
calculates outputs of an initial network net based on g;‘
Equations (12), (13), and inputs éh(Line 3). With those  ,,

outputs and original outputs i the sum of squared errdgs 01 -

can be obtained according to Equation (3) (Line 4). The *°

Rush Green  Belvedere Erith Horley Poles Lane  Ntl Physical Marylebone
algorithm then computes the Jacobian matrix and get West Lab Road
Chang|ng Of WelghtS O-het (Llne 5_6) NeW WEIghtS are ®Pollutant2AQI LR mPollutant2AQI LoR ~ ® Pollutant2AQI SVR  m Pollutant2AQI NARX

® AQlPredict LR ® AQIPredict LoR AQlIPredict SVR AQlIPredict NARX

calculated and applied to a network to compute sum o.
squared errorg&,e, based ord (Line 7). If B,y < E, 1 in
Equation (10) is reduced Iffy the new weights are applied to
thenetto continue the next iteration (from Line 3); otherwise
M in Equation (10) is increased K3, the algorithm re-
computes (from Line 6) changing of weights reét and Belvedere West
compares new errors with (Line 8-19). During this check, _
if the algorithm converges under the condition at Line 20, the Erith

04
final trainednetis returned. Horley _

Poles Lane 0.85

(b) Mean Absolute Percentage Error (MAPE)

Rush Green

0.95

V. EXPERIMENTS AND RESULTS Nt Physi

. . ysical Lab
To evaluate our proposed AQI estimation methods, we 08
design experiments to compare the two proposed approachMarylebone Road
for AQI prediction introduced in Figure 4 with different 0. 0.0 b P
learning algorithms, i.e., Linear Regression (LR) [32], N gﬁ‘i‘&f}g‘*‘f\?‘(fo‘?‘gﬁ‘i‘lﬁ*f
Logistic Regression (LoR) [33], SVR [34, 35], and NARX
[30, 31], with the datasets described in Section Ill. The
algorithms are implemented using the Statistics and Machine o _
Learning Toolbox and Deep Learning Toolbox in Matlab FIGURE 5. Results of AQI Prediction of Different ML Approaches.
R2017b. The NARX neural network applies 10 hidden
layers. The meteorological data are set without any time _100& |y - ¥ 17)
delay while the pollution data/AQIs are set with one-step MAPE_TZT
time delay. The experiments randomly choose 75% data for '
training and 15% for testing. For the proposed NARX-basedvheren is the number of data points in the test sgi the
method, another 15% are used for validation. All the methodgredicted value for thih input, andy; is the corresponding
are performed 10 times and evaluated by using the meaarget value.
values of the following evaluation metrics: Root Mean
Squared Error (RMSE), Mean Absolute Percentage Errop. AQI PREDICTION: RESULTS AND DISCUSSION
(MAPE), and band accuracy. RMSE and MAPE areln the results’ diagrams, we us&QIPredict to indicate
calculated as per equations 16 and 17, and band accuracyAgproach 1 that uses meteorological data and historical
the percentage of how many predicted AQIs are in the samgalues of AQI (calculated from the individual pollutants’
band of actual AQIs over the total number of data points irconcentrations using Eq. 1, prior to training) to predict future

Pollutant2AQI |  AQIPredict

(c) Heatmap of Band Accuracy

i=1

the test set. AQI values. We usé@ollutant2AQIlto present Approach 2
- that uses meteorological data and the historical pollutants
RMSE= /12(9 —y)2 (16) values to predict individual pollutant values and then
A=t ! computes the AQIs based on predicted values, using Eq. 1.
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Figure 5 (a), (b) and (c) show the results for RMSE, The Erith sensing site monitors three meteorological
MAPE and band accuracy, respectively, for the predictedeatures and three kinds of pollutants: INBM;, (dominant),
AQI values. It is clear that the results vary a lot across thend PMs The AQIs of this site range from 0 to around 170,
different sensing sites. This is because firstly, the differentovering four bands, with the majority of the AQI values
monitoring sites are sited differently (e.g. kerbside vs. rurafalling within the Good and Moderate bands. HliPredict
location) and located in different kinds of areas which havd LR method performs the best for RMSE (Fig. 5a) and band
different meteorological and pollution characteristics. accuracy (Fig. 5c), while thBollutant2AQI SVR performs
Secondly, these sensing sites measure differenthe best for MAPE (Fig. 5b). Overall, tHeollutant2AQI
meteorological and pollution data, thus features of the modeainethods have higher RMSE values but lower MAPEs. This
are different between different sites. Thirdly, pollutants’ shows thatPollutant2AQI methods can perform accurate
concentrations are dispersed differently and dominatgredictions when the actual values are small; however, for
different areas, depending upon a number of factors such points where actual values are large, the predicted values of
as industrial activities, vehicular emissions, human activitiesPollutant2AQI methods are further from the actual values
such as construction, etc than those of other methods, which results in large RMSE

According to Table I, Rush Green is a site recording sixvalues but still small MAPE values.
kinds of meteorological data but only one type of pollution Poles Lane and Ntl Physical Lab are two similar sites,
data: NQ. Its AQI in Fig. 3 shows that the pollution values which monitor the same three meteorological features and
range from 0 to around 100 and most of them are below 28wo kinds of pollution data: N£and Q (dominant). Boxplot
i.e., the AQIs are always in the ‘Good’ band. For thesefigures in Figure 3 show that their AQIs’ distributions are
reasons, all the methods perform well on this datasealso similar. Compared to the other sites, RMSEs of these
achieving a band accuracy of close to 100% (over 99.6%, sd@/o sites are larger, band accuracies are smaller, but MAPEs
Fig. 5c). With respect to RMSE and MAPE, the proposeddo not show much difference. An interesting finding is that
NARX methods perform the best on both approaches. It iAQIPredict NARX performs the best for the RMSE and
worth noting that even though the RMSE values do not shoAPE evaluations for both sites, bRollutant2AQINARX
much difference between the evaluated machine learninbas a better band accuracy tha@lPredict NARX. For
algorithms, the MAPE values of LoR on boNQIPredict Poles LanepPollutant2AQI NARX achieves the best band
and Pollutant2AQlare much worse than the others. This isaccuracy, while for Ntl Physical Lab, band accuracy is about
due to the fact that the AQI data values from Rush Green arg% lower than those of Poles Lane, &ulutant2AQISVR
small, hence, a small number of errors may not reflect muclachieves the best band accuracy.
on the RMSE value but may show up in the MAPE which is The Marylebone Road kerbside site measures three
significantly affected when the calculation involves the ratiometeorological features and five kinds of pollution data; NO
of small actual values. (dominant), PMy, Os;, CO and SQ The majority of the AQI

Another similar sensing site is Horley, which records fourvalues of this site are close to 50, which is the boundary
meteorological features and two pollutants’ data:,N@d  between the Good and Moderate band. However, the
PMyo (with PM;o the dominant pollutant). The mean values maximum AQI values reach the Hazardous band, i.e., the
of AQIs of this site are slightly higher than that of Rush values cover the entire range of the 6 AQI bands; from Good
Green, nevertheless, almost all the AQIs fall within theto Hazardous. For the prediction performance for this site,
‘Good’ band. Hence, the band accuracies of predicted value&AQIPredict NARX achieves the best RMSPopllutant2AQI
from this site are also close to 100 percent (over 99.1%, sddARX achieves the best MAPE, whildQIPredict LoR
Fig. 5¢). RMSE and MAPE values are low for all the achieves the best band accuracy.
methods. RMSE values are close to each other as shown inTo summarise, for RMSEPollutant2AQI NARX and
Fig. 5a, but the MAPE results of tRellutant2AQImethods  AQIPredict NARX perform the best on datasets from three
are less than those ARIPredictmethods. Among them, the sites each, with AQIPredict LR showing the best
proposedPollutant2AQI NARX method performs the best performance on the seventh case. For MAPE values (see Fig.
for both evaluations. For band accurad@dpllutant2AQl  5b), Pollutant2AQI NARX performs the best on datasets
NARX reaches an accuracy of 99.13%, slightly less than thérom four sitesAQIPredict NARX performs the best on two,
best achieved result of 99.42% obtainedHAntlutant2AQl  and Pollutant2AQI SVR performs the best on one. It is a
LR andPollutant2AQILoR. mixed picture for band accuracy as shown in Fig. 5c, with

Belvedere West is a site with four meteorological featuredPollutant2AQI NARX showing the best performance for
and four kinds of pollution data: NOPM;q, O; (dominant  three datasets AQIPredict LR, AQIPredict LoR, and
pollutant), and PMs AQIs of this site ranges from 0 to Pollutant2AQISVR separately showing the best performance
around 250, covering five bands. Most of the AQIs areon one dataset each, an@ollutant2AQl LR and
located in the Good and Moderate bands. With regards to theollutant2AQILoR tied in for similar accuracies on the last
evaluation results for this sitePollutant2AQlI NARX one. Taking into account all the datasets from the seven sites,
performs the best for all three metrics. Pollutant2AQI NARX performs the best on most of the
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HLR WLoR ®WSVR mNN

datasets, and provides competitive results for the rest. Thi
indicates thaPollutant2AQINARX has robust performance 080 NO,
for different kinds of datasets and can be recommended fc = ° |
AQI prediction.

0.50
0.40
0.30

MAPE

B. POLLUTANT PREDICTION: RESULT AND 020
DISCUSSION
In addition to AQI prediction, we also compared MAPES for — °® e sehesre  Eritn Horly  Polestane N Physial  Maryebone

West Lab Road

the prediction of the individual pollutant values (as part of

the Pollutant2AQI approach) by the different methods, i.e., o PN o |80,
LR, LoR, SVR, and NARX. The results are presented in os 2 014
Figure 6. We get the worst performance with LoR as the . | ] ol
training algorithm across most of the datasets, with the onl\ 2o 051 008 |
exception being the MAPE results for pMata from Horley ol 20 ol

and the CO data from Marylebone Road (second lowes oos %031 002
MAPE Value)' For NQ the proposed NARX approaCh o0 Belvedere Erith Horley ~ Marylebone 0.007Marylebone 0‘CloiMarerbone
performs the best for 6 sites, while SVR performs the best o st foxd foad foad
data from Belvedere West. Both SVR and NARX get the ** 0, ore PM, 5

same MAPE on N@data from Marylebone Road. However,
the NARX method does not appear to be the best one fc
predicting PM, data. Among the four sites monitoring RM
concentrations, LR achieves the two best MAPEs, while LOF o4
and SVR achieving the best MAPE values on one datas¢ o
each. For @data, NARX performs the best for two datasets,  °®  .cwer roestone wtphysicaltab maryiebone sehedere | Erih
with LR and SVR performing well on one each. SVR also foad west
performs the best on one Rhlataset with NARX performs FIGURE 6. Results of Pollution Data Prediction of Different Learning
the best on the other one. NARX performs well for both SO Algorithms.
and CO datasets. ) ) ) ) _ o
Overall, NARX can achieve a good performance forllnear_ regression to_ predict AQI if the dominant pollution is
prediction of pollution data except for that of BM PMH_) in the area of interest. In summary, the resu_lts_ show the
Therefore, for predicting AQIs, NARX can be used on aread€@sibility of our proposed approaches for predicting AQIs
whose dominant pollutant is not Riywith LR proving to be based on meteorological data and the historical pollutant
a better choice for such locations. This is in agreement wittflata/AQls. _
findings in the existing literature [16], where multiple linear !N the future, we plan to analyse correlations between
regression models achieved better results than ANN for mea?£"Sing sites located close to each other to uncover latent
relative and absolute error percentages as well as for RMSEMilarities in pollutant or AQI patterns and to analyse if they

MAPE

for PMy, concentration predictions. are influenced by other environment factors such as green
cover or traffic. We also plan to further extend the analysis of
VI. CONCLUSIONS AND NEXT STEPS impact on air quality from different types of sensing areas

In this paper we propose two approaches for AQI estimatio@Cross _different cities. Another f_uture work is to _infe_r the
and prediction, both based on meteorological and historicdptent diurnal and seasonal pollution data patterns in different
pollutant data; one learns a model based on the previous A@grts of a city according to its built environment.
and meteorological data to predict AQIs, the other learns
models based on the previous polluton data andXEFERENCES o _

logical d di lluti . fi [1] M. Finch, "Urban Migration," 2015. Available:
meteorological data to predict pollution concentrations first™ |\ i fuiitsu.com/innovation/megatrends
and then compute AQIs. Both approaches can get good baqg J. Y. zhu, C. Sun, and V. O. K. Li, "An Extended Spatio-Temporal
accuracy (over 75%), as shown on the evaluations conducted Sf?nger CausaL'J'% MgdelD ngE/EfTQua"t)t/_ ES“maé'P“DV;"th

. . eterogeneous Urban Big Dal ransactions on bBig Data,
across varlous.datas.ets. The best approgch |s.the latter 1 3, no. 3, pp. 307-319, 2017
approach combined with neural network, which achieves thgs] Bsc. (2018). Pollution hotspots revealed: Check your area
lowest RMSE and MAPE across most of the evaluated Available: https://www.bbc.co.uk/news/science-environment-
: o 42566393

datasets. ThISO approach gets very good band aCCUI‘aCIf‘ﬁ C. P. Goeminne, B. Cox, S. Finch, M. R. Loebinger, P. Bedi, A. T.
(more than 81%) on all the datasets. However, by furthel * iy 1. c. Fardon, K. de Hoogh, T. S. Nawrot, and J. D. Chalmers,
analysing the individual pollutant value prediction step, we  "The impact of acute air pollution fluctuations on bronchiectasis
found that a neural network-based method is not the optimum  Pulmonary exacerbation. A case-crossover analysksjfopean

. . Respiratory J 12018.
at predicting PMy data. Therefore, we recommend using espiratory Journalz

VOLUME XX, 2017 10

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2884647, IEEE Access

IEEE Access

Multidisciplinary ¢ Rapid Review § Open Access Journal

(5]
6l

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[20]

DEFRA. (2018).UK AIR - Air Information ResourceAvailable:
https://uk-air.defra.gov.uk

Z. Qi, T. Wang, G. Song, W. Hu, X. Li, and Z. M. Zhang, "Deep Air [24] X. Lu,

Learning: Interpolation, Prediction, and Feature Analysis of Fine-
grained Air Quality,"IEEE Transactions on Knowledge and Data
Engineeringpp. 1-1, 2018.

on Transport,IEEE Transactions on Big Datapl. 3, no. 2, pp. 126-
139, 2017.

K. Ota, M. Dong, C. Yu, and H. Jin, "Predicting
Transportation Carbon Emission with Urban Big DatéEEE
Transactions on Sustainable Computirgl. 2, no. 4, pp. 333-344,
2017.

J. Garcia, J. Colosio, and P. Jamet, "Air Quality Indexes," in[25] R. Hassan and M. Li, "Urban Air Pollution Forecasting Using

Environmental Communication in the
Proceedings of the 16th Conferen2602.

Information Society -

Artificial Intelligence-Based Tools," irAir Pollution, V. Villanyi,
Ed., ed Rijeka: IntechOpen, 2010.

Y. Zheng, F. Liu, and H.-P. Hsieh, "U-Air: when urban air quality [26] Ricardo-AEA, T. Bush, S. Eaton, S. Gray, C. Jephcote, A. Kent, A.

inference meets big data," in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining,
Chicago, lllinois, USA, 2013.

Y. Zheng, L. Capra, O. Wolfson, and H. Yang, "Urban Computing:
Concepts, Methodologies, and Application®CM Trans. Intell.
Syst. Technolyol. 5, no. 3, pp. 1-55, 2014.

S. De, Y. Zhou, |. Larizgoitia Abad, and K. Moessner, "Cyber—

Physical-Social Frameworks for Urban Big Data Systems: A [28]

Survey,"Applied Sciencespl. 7, no. 10, 2017.

Y. Zhou, S. De, W. Wang, R. Wang, and K. Moessner, "Missing
Data Estimation in Mobile Sensing Environment&EE Access pp.

1-1, 2018.

K. Hu, V. Sivaraman, H. Bhrugubanda, S. Kang, and A. Rahman,
"SVR based dense air pollution estimation model using static and
wireless sensor network," #2016 IEEE SENSOR3016, pp. 1-3.

K. Hu, A. Rahman, H. Bhrugubanda, and V. Sivaraman, "HazeEst:
Machine Learning Based Metropolitan Air Pollution Estimation
From Fixed and Mobile Sensor$ffEE Sensors Journavol. 17, no.

11, pp. 3517-3525, 2017.

X. Yi, J. Zhang, Z. Wang, T. Li, and Y. Zheng, "Deep Distributed

(27]

[29]

(30]

Loader, R. Morris, J. Stedman, K. Vincent, and P. Willis, "Air
Pollution in the UK 2013," September 2014.

AirNow.gov. (May 2016, Accessed on 29 OCT 2018gchnical
Assistance Document for the Reporting of Daily Air Quality — the Air
Quality Index (AQI). Available:
https://airnowtest.epa.gov/sites/default/files/20B8aqi-technical-
assistance-document-may2016.pdf

T. Lin, B. G. Horne, P. Tino, and C. L. Giles, "Learning long-term
dependencies in NARX recurrent neural networkdEEE
Transactions on Neural Networksgl. 7, no. 6, pp. 1329-1338, 1996.
H. T. Siegelmann, B. G. Horne, and C. L. Giles, "Computational
capabilities of recurrent NARX neural networkEEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetiok)27, no.

2, pp. 208-215, 1997.

M. T. Hagan and M. B. Menhaj, "Training Feedforward Networks
with the Marquardt Algorithm,"IEEE Transactions on Neural
Networksyol. 5, no. 6, pp. 989-993, Nov 1994.

[31] R. Battiti, "1st-Order and 2nd-Order Methods for Learning - between

Steepest Descent and Newton Methddg'ural Computationyol. 4,
no. 2, pp. 141-166, Mar 1992.

Fusion Network for Air Quality Prediction," in Proceedings of the [32] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman,

24th  ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, London, United Kingdom, 2018.
K. P. Moustris, I. C. Ziomas, and A. G. Paliatsos, "3-Day-Ahead

Applied linear statistical modelsol. 4: Irwin Chicago, 1996.

[33] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivépgplied

logistic regressiorvol. 398: John Wiley & Sons, 2013.

Forecasting of Regional Pollution Index for the Pollutants NO2, CO,[34] A. J. Smola and B. Schélkopf, "A tutorial on support vector
regression,"Statistics and computingjol. 14, no. 3, pp. 199-222,
2004.

[35] A. Smola and V. Vapnik, "Support vector regression machines,"
Advances in neural information processing systemk,9, pp. 155-
161, 1997.

S0O2, and O3 Using Artificial Neural Networks in Athens, Greece,"
Water, Air, & Soil Pollutionyol. 209, no. 1, pp. 29-43, June 01 2010.
M. Cai, Y. Yin, and M. Xie, "Prediction of hourly air pollutant
concentrations near urban arterials using artificial neural network
approach," Transportation Research Part D: Transport and
Environmentyol. 14, no. 1, pp. 32-41, 2009/01/01/ 2009.

I. Juhos, L. Makra, and B. Téth, "Forecasting of traffic origin NO and
NO2 concentrations by Support Vector Machines and neural
networks using Principal Component AnalysisSimulation
Modelling Practice and Theoryyol. 16, no. 9, pp. 1488-1502,
2008/10/01/ 2008.

Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li,
"Forecasting Fine-Grained Air Quality Based on Big Data," in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
2015.

W. Wang, S. De, Y. Zhou, X. Huang, and K. Moessner, "Distributed
sensor data computing in smart city applications20t7 IEEE 18th
International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM2017, pp. 1-5.

M. Sharma, S. Aggarwal, P. Bose, and A. Deshpande, "Meteorology
based forecasting of air quality index using neural networkEHE

YUCHAO ZHOU received his Ph.D. degree in
electronic engineering at the University of Surrey
in 2018. He did his B.S. degree in
telecommunications engineering with
management from a joint programme between
Beijing University of Posts and
Telecommunications, China and Queen Mary
University of London, UK, in 2011 and M.Sc.
degree in communications networks & software
from the University of Surrey, Guildford, UK, in

International Conference on Industrial Informatics, 2003. INDIN 2012 He is currently a Research Fellow in the Institute for

2003. Proceedings2003, pp. 374-378.

Communication Systems, at the University of Surrey. His research

[21] K. Karatzas, A. Bassoukos, D. Voukantsis, F. Tzima, K. Nikolaou, jnterests include semantic Web, search techniques for the Web of Things,
and S. Karathanasis, "ICT technologies and computationalgng 0T applications in smart cities.

[22]

[23]

intelligence methods for the creation of an early warning air pollution
information system," inProceedings of the Envirolnfo 2008
(Environmental Informatics and Industrial Ecology) Int. Conference
Aachen, 2008, pp. 482-489.

Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov,
"Real-time air quality forecasting, part I: History, techniques, and
current status,Atmospheric Environmentol. 60, no. pp. 632-655,
2012/12/01/ 2012.

Y. Ding, Y. Li, K. Deng, H. Tan, M. Yuan, and L. M. Ni, "Detecting
and Analyzing Urban Regions with High Impact of Weather Change

VOLUME XX, 2017

11

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2884647, IEEE Access

IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

SUPARNA DE received her Ph.D. and MSc
degrees in Electronic Engineering from the
University of Surrey in 2009 and 2005,
respectively. She is currently a Senior Research
Fellow in the Institute for Communication
Systems, at the University of Surrey. She has
been leading technical work areas related to
various aspects of service provisioning and data
analysns in the Internet of Things domain in several EU projects such a management between autonomous entities, in the
TagltSmart, iKaaS, loT.est, iCore and IoT-A. Her research has bee UniverSelf project, and was technical manager of
supported by grants from the EC H2020 and FP7 programs and througthe iCore project and has the same role in the H2020 project CPaaS.io; he
DTI, UK-funded programs. Her current research interests includewas project leader of loT.est, SocloTal, and currently leads the iKaaS
knowledge engineering methods, machine learning for data analytics, Weproject as well as working area 6, on System Architecture in the 5G
of Things and semantic association analysis. She is a member of IEEE ardnovation Centre at the University of Surrey. His research interests

KLAUS MOESSNER is a Professor in the

Institute for Communication Systems, at the
University of Surrey. He was the founding chair
of the IEEE DYSPAN Working Group (WG6) on

Sensing Interfaces for future and cognitive
communication systems. He was involved in the
definition and evaluation of cooperation

ACM. include cognitive networks, knowledge generation, as well as
reconfiguration and resource management and he is a senior member of
IEEE.

GIDEON EWA obtained his B.Eng degree in
Computer Engineering at University of Uyo,
Nigeria and his M.sc degree in Mobile and
satellite communication from the university of
Surrey, United Kingdom in 2016. He is currently
a Satellite System Engineer with Center for
Satellite Technology Development (CSTD), a
Research Center under National Space Research
and Development Agency (NASRDA) in Abuja,
Nigeria. His research interest is in Wireless
communications, Internet of things (IoT), Smart
Cities and Machine learning.

CHARITH PERERA (M'14) is a Lecturer
(Assistant Professor) at Cardiff University, UK.
He received his BSc (Hons) in Computer Science
from Staffordshire University, UK and MBA in
Business Administration from the University of
Wales, Cardiff, UK and Ph.D. in Computer
Science at The Australian National University,
Canberra, Australia. Previously, he worked at the
Information Engineering Laboratory, ICT Centre, CSIRO. His research
interests are Internet of Things, Sensing as a Service, Privacy, Middleware
Platforms, and Sensing Infrastructure. He is a member of both IEEE and
ACM. Contact him atvww.charithperera.neir charith.perera@ieee.org

VOLUME XX, 2017 12

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



