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SUMMARY

The growth of real-world objects with embedded and globally networked sensors allows to consolidate
the Internet of things paradigm and increase the number of applications in the domains of ubiquitous and
context-aware computing. The merging between cloud computing and Internet of things named cloud of
things will be the key to handle thousands of sensors and their data. One of the main challenges in the cloud
of things is context-aware sensor search and selection. Typically, sensors require to be searched using two
or more conflicting context properties. Most of the existing work uses some kind of multi-criteria decision
analysis to perform the sensor search and selection, but does not show any concern for the quality of the
selection presented by these methods. In this paper, we analyse the behaviour of the SAW, TOPSIS and
VIKOR multi-objective decision methods and their quality of selection comparing them with the Pareto-
optimality solutions. The gathered results allow to analyse and compare these algorithms regarding their
behaviour, the number of optimal solutions and redundancy. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Internet of things (IoT) is an ecosystem that interconnects physical objects with telecommunica-
tion networks, joining the real world with the cyberspace and enabling the development of new kinds
of services and applications. The IoT world is composed of small sensors and actuators embedded
in the objects such as electronic devices (e.g. smartphones or tablets), clothes, alarm systems, cars,
domestic appliances and industrial machines, which are capable of interacting with each other and
with their environment.

Recently, the number of devices has grown rapidly, and it is anticipated that between 2015 and
2016, about 20 billion devices will be connected to the Internet creating a market of around 91.5
billion dollars [1]. These things generate an amount of data that cannot be handled in a standalone
power-constrained IoT environment. The integration of IoT with cloud computing, named Cloud
of things (CoT), can facilitate unprecedented ubiquitous sensing services and powerful resources to
process sensing data streams beyond the capability of individual things [2].

Different domains can benefit from CoT applications such as logistics [3, 4], healthcare [5], smart
cities [3], environmental monitoring [6, 7] and assisted driving [4, 8]. However, the CoT poses new
challenges as it needs to combine different types of services provided by multiple stakeholders and
support a large number of users and devices. One of these challenges is to provide a set of tools and
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environments for development of dynamic applications and ensure their seamless execution to meet
the quality of context (QoC) and quality of service (QoS) requirements imposed by different kinds
of applications [9].

While the nature of the CoT makes it suitable for provisioning the aforementioned services, ensur-
ing their QoS and QoC requirements imposes complex challenges such as the resource-constrained
environment, redundant data, heterogeneity of the sensors nodes, dynamic network topology and
size and an unreliable communication medium. These factors can affect the user experience [10].
In addition, it is common to find two or more conflicting QoS and QoC requirements in this kind
of service.

Thus, several papers such as [11–13] use some kind of multiple-criteria decision analysis
(MCDA) to perform the sensor search and selection to achieve the best trade-off between the QoS
and QoC properties. On the other hand, these papers do not show any concern about the quality of
the selection presented by these methods regarding aspects like redundancy and dispersion of the
selected sensors.

In this paper, we present a qualitative study of three MCDA methods used to establish the relative
importance of multiple attributes and alternatives. In particular, we investigate the behaviour of the
simple additive weight method (SAW), the technique for the order of prioritization by similarity
to ideal solution (TOPSIS) and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)
under different conditions. We also analyse the quality of the solutions proposed by these methods
comparing them with the available Pareto optimal solutions. The scientific contributions of our work
can be summarized as follows:

� We proposed a methodology that can be used to compare different sensor search techniques
from a quality of search perspective. We have demonstrated how our proposed methodology
works using three different sensor search techniques.
� We examined the impact of ‘number of context properties’ towards the overall quality of sensor

search.
� We examined the impact of ‘number of sensors required to be selected’ towards the overall

quality of sensor search.
� We evaluated and compared the overall quality of sensor search between three different MCDA

techniques, namely, SAW, TOPSIS and VIKOR.

The paper is organized as follows: Section 3 describes the analysed multiple-criteria decision-
making algorithms and the methodology used to evaluate them. The results are then discussed
in Section 4. Section 5 presents a literature review of existing approaches for sensor search and
selection. Finally, the conclusions and directions for future work are presented in Section 6.

2. BACKGROUND

One of the most accepted definitions of what is IoT is described by Vermesan et al. [14]: ‘The IoT
aims to allow people and things to be connected at any time or place with anything or anyone by any
path, network or service.’ Usually, the IoT is considered as a three-layer architecture, as represented
by Figure 1a, showing the perception layer, network layer and application layer [2, 15]. On the
other hand, some authors such as Khan [16], Aazam and Huh [2] and Fersi [17] consider two extra
layers named as middleware and business, as show in Figure 1b. The main layers’ objectives can be
summarized as follows:

� Perception layer: Its main function is to perceive and collect the real-environment informa-
tion and bring them to the virtual environment. Sensors, bar code labels bar, radio-frequency
identification devices, GPS and cameras are concentrated in this layer [2]. These devices can
be described by metadata or specific languages such as SensorML, OGC/SWE, SSN W3C,
HyperCat and semantic models to enable its use by the up layers [18].
� Network layer: It is responsible for transporting data from the perception layer to be processed.

The transmission medium can use wired networks or wireless networks such as 3G, UMTS,
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Figure 1. Inter of things architectures.

Wifi, Bluetooth, infrared and ZigBee depending directly on the types of sensor devices and the
environment in which they are deployed [16].
� Middleware layer: Its goal is to offer services and store data received from the network layer.

Their services must process the information and make automated decisions based on their
results [2, 16]. Currently, there are several middleware solutions such as the global sensor net-
works (GSN) [19] and openIoT [20] to support the management of sensor networks. Usually,
these solutions are able to abstract the sensors available in the perception layer and offer their
resources as a service to end users.
� Application layer: It presents data from the network layer or middleware layer. This layer must

be concerned to present the information according to the specifications or constraints of an
user [2].
� Business layer: It is responsible for system management including its applications and services.

It defines the business models, graphics and execution flows based on data received from the
application layer. The success of IoT depends directly on establishing good business models to
analyse the results and determine future business strategies [16].

Nowadays, there is much research conducted for the different layers of the IoT architecture, which
aim to solve problems related to interoperability, scalability, reliability, data management, privacy
and security. One of the most significant challenges involves the middleware layer. Specifically,
concentrating on how to support the search and selection of sensors regarding the QoS and QoC
properties determined by a user [9].

3. MULTIPLE-CRITERIA DECISION ANALYSIS

Multiple-criteria decision analysis refers to making decisions in the presence of multiple, usually
conflicting, criteria [21]. MCDA algorithms aims to aid in the judgement of the decision-making
team using a set of objectives and criteria, estimating their relative importance weights and
establishing the contribution of each option regarding to each performance criterion [22].

An MCDA problem can be described using an analysis matrix (M � N ) in which element qij
represents the performance of the option according to the decision criterion cj in different and
non-comparable units and scales, as represented in Equation (1). The evaluation matrix is used
to represent the relative performance of q0ij using a value/utility function to enable comparisons
between the different criteria [23].
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(1)

All MCDA algorithms explicitly define their options and contributions to each criterion, but dif-
fers in how they combine the input data. Although MCDA problems are found in different contexts,
they usually share common features such as multiple attributes/criteria often forming a hierarchy,
conflict among criteria, hybrid nature, uncertainty, large scale and assessments that may not be con-
clusive [21]. Sections 3.1– 3.3 describe three MCDA methods, namely, SAW, TOPSIS and VIKOR
algorithms for MCDA. Section 3.4 proposes the use of the Pareto-optimality based on the proposed
criterion to evaluate the applied MCDAs to select a subset of sensors.

3.1. Simple additive weight

The SAW method is one of the most popular MCDA methods [24, 25]. It provides the additive
properties to calculate the final score of alternatives used for weight determinations and preferences,
which is the basis of other MCDA methods such as the Analytic Hierarchy Process and Preference
ranking organization method for enrichment evaluation [24]. According to [25], SAW is used in sev-
eral application domains such as supply chain management, personnel selection problems, project
manager selection and facility location selection.

Simple additive weighting uses an evaluation score to rank each available option. The score
is obtained using a normalized criteria value multiplied by a weight. The options are ranked in
descending order according to their final score, which is the sum of the scores for individual criteria
[26]. SAW algorithm can be summarized by the following three steps [23]:

1. Normalize the analysis matrix Q described in Equation (1) to Q’ according to Equation (2) if
the criterion should be maximized or the Equation (3) if the criterion should be minimized.

q0ij D
qij � q

min
j

qmax
j � qmin

j

for a criterion to be maximized (2)

q0ij D
qmax
j � qij

qmax
j � qmin

j

for a criterion to be minimized (3)

2. Compute the score vector � of each available option. Each score q0i can be calculated using
Equation (4), where wj corresponds to the criterion weight and N represents the number of
criteria in the evaluation matrix.

�.qi / D

NX
jD1

wj � q
0
ij (4)

3. Sort options qi in decreasing order according to the score � (q0i ) to obtain the ranking of
suitable options.

3.2. Technique for the order of prioritization by similarity to ideal solution

Technique for the order of prioritization by similarity to ideal solution explores the attribute infor-
mation to provide a set of ranked alternatives and requires independent attribute preferences. The
application domains that uses the TOPSIS method have been Supply Chain Management and
Logistics, Design, Engineering and Manufacturing Systems, Business and Marketing Management,
Health, Safety and Environment Management, Human Resources Management, Energy Manage-
ment, Chemical Engineering and Water Resources Management [27]. TOPSIS sorts a set of options
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according to the Euclidean distance from the ideal and negative-ideal solutions. Each option is nor-
malized using a specific criterion value. The ideal solution represents the most desirable level of
each criterion across the options under consideration, while the negative-ideal solution reflects the
worst-desirable level of each criterion. The options are ranked regarding their closeness to the ideal
solution and farness to the negative-ideal solution [23]. The TOPSIS algorithm can be summarized
in the following steps [28]:

1. Normalize the analysis matrix Q to Q’ according to Equation (5):

q0ij D
qijqPN
iD1.qij /

2

(5)

where N represents the number of options in the evaluation matrix.
2. Determine the positive ideal points (pCj ) and the negative ideal points (p�j ) of all objective

functions using the analysis matrix. For a maximization criterion, the positive ideal and the
negative ideal points can be calculated using Equations (6) and (7), respectively:

pCj D max
i
.q0ij / (6)

p�j D min
i
.q0ij / (7)

3. Compute the distances to the positive ideal solution and (siC) and the negative ideal solution
(si�). The distance of each option q0 to the ideal solution pCj and the ideal negative solution
p�j is given by Equations (8) and (9):

siC D

vuut
nX
jD1

.q0ij � pCj /
2 and (8)

si� D

vuut
nX
jD1

.q0ij � p�j /
2 (9)

4. Calculate the relative closeness to the ideal solution. The relative closeness of q to pCj and
pCj represented by (ciC) can be calculated according to Equation (10).

ciC D
si�

siC � si�
(10)

5. Sort options qi in increasing order according to the relative closeness to ciC.

3.3. VIseKriterijumska Optimizacija I Kompromisno Resenje

The basic concepts of VIKOR are a compromise programming used to obtain the most satisfactory
option by the results of the individual and group regrets. This method has been widely used in
several applications fields, such as location selection, environmental policy and data envelopment
analysis [29].

VIseKriterijumska Optimizacija I Kompromisno Resenje introduces the multicriteria ranking
index based on the particular measure of closeness to the ideal solution. The alternatives are evalu-
ated according to all established criteria and ranks them according to (i) the minimal distance to the
ideal point, (ii) the maximum group utility for the majority, and (iii) the minimum individual regret
of the opponent. VIKOR algorithm can be summarized according to the follow steps [23], [28]:
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1. Determine the best and the worst values for all criteria in Q. For a maximization criterion,
the best and worst criteria values represented by q�j and q�j can be calculated respectively
according to Equations 11 and 12:

q�j D max
i
.q0ij / (11)

q�j D min
i
.q0ij / (12)

2. Compute the utility measure and the regret measure. The utility measure represented by Si is
used to show the average gap of our options and can be calculated according to Equation (13),
where wj corresponds to the criteria weights, expressing their relative importance. A regret
measure represented by Ri is used to show the maximal gap for improvement priority and it
can be calculated according to Equation (14).

Si D

nX
jD1

wj jq
�
j � qij j

jq�j � q
�
j j

(13)

Ri D max
j

wj jq
�
j � qij j

jq�j � q
�
j j

(14)

3. Compute the group utility represented by Qi of each solution. The v parameter is used to
represent the weight of the strategy of ‘the majority of criteria’. Equation (15) is used to
calculate Qi .

Qi D
v � .Si � S

�/

.S� � S�/
C
.1 � v/ � .Ri �R

�/

R� �R�
; (15)

where

S� D min
j
SiandS� D max

j
Si

R� D min
j
RiandR� D max

j
Ri

v D 0:5

4. Sort options qi in decreasing order according to the values Si ,Ri andQi . The results are three
ranking lists.

5. Propose as a compromise solution the alternative q, which is ranked the best by the measure
Q(minimum) if the following two conditions are satisfied:

C1. Acceptable advantage

qiC1 � qi > DQ;

where DQ D 1
.N�1/

and N is the number of options
C2. Acceptable stability in decision-making

The alternative qi must also be the best ranked by S or/and R.
If one of the conditions is not satisfied, then a set of compromise solutions is

proposed, which consists of the following:

� Alternative qi and qiC1 if only condition C2 is not satisfied, or
� Alternative qi , qiC1, . . . , qn if condition C1 is not satisfied; and qn is determined

by the relation qn � qi < DQ for maximum n.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
DOI: 10.1002/spe



A DEMONSTRATION OF THE SOFTW. PRACT. EXPER. CLASS FILE

In summary, the methods presented in this section are used to compute the relative impor-
tance of multiple criteria and solutions based on a weighting strategy. They have been successfully
applied to several real-world scenarios, where multiple conflicting objectives should be satisfied.
The next section describes how the quality of the selection of sensors provided by each algo-
rithm can be evaluated. We also present all performed experiments and the environment where they
were executed.

3.4. Proposal of evaluation of multiple-criteria decision analysis methods

This section presents the research methodology used in the experiments. As a base of our study,
we assume the SAW algorithm used by Gao et al. [13] and compare it with other popular MCDA
(TOPSIS and VIKOR) algorithms. Our evaluation approach is based on a set of sensor data that will
be ranked according to an MCDA method and context properties. The desired number of sensors
are retrieved from the top of the ranked list, and the Pareto-optimal fronts are calculated. Figure 2
synthesizes the whole processing proposal for evaluating MCDAs.

The Pareto-optimality criterion [30] is used to compare the quality of the solutions obtained by
each method. It uses the dominance concept to determine when a solution is better than other. For
example, given two solutions x and y, x dominates y (x � y) if two conditions are respected:

1. The x solution is better than y in at least one objective function;
2. The x solution is at least equal to y in all objective functions;

The set of non-dominated solutions is named Pareto-optimal set, which represents the set of
optimal available solutions for the problem. The Pareto fronts is the set of values of the objective
functions of the Pareto-optimal solutions set. The solutions that are dominated only for the Pareto-
optimal solutions are located in the second Pareto front. The number of Pareto fronts that are used
in an experiment are directly proportional to the number of non-dominated solution. In this sense,
our evaluation process will consider the number of used sensors in the Pareto-optimal set and the
number of Pareto fronts used by each MCDA solution. The Pareto fronts are computed through the
fast-non-dominated-sort algorithm described by Deb et al. [31].

We considered two metrics to evaluate the MCDA methods: (i) the number of fronts, which
indicates the MCDA method with more non-dominated solutions; and (ii) the overall non-dominated
vector generation ratio (ONVGR) [32] metric, which shows the number of optimal solutions in the
Pareto front as a proportion of the number of solutions proposed by the MCDA methods in each
front. As closer the ONVGR value is to one, the better is the solution proposed in that front.

The test environment is composed by one physical machine. Table I describes the hardware and
software specification used to perform the experiments.

The experimental methodology was based on four factors: (i) the number of sensors descriptions,
(ii) the MCDA method, (iii) the number of selected sensors, and (iv) the number of context properties
required. In this context, the term context properties will be used to refer to the analysed sensor
criteria. Table II shows the used experimental factors and levels, where the combination of the levels
of each factor gives a total of 45 experiments.

Figure 2. Evaluation workflow. MCDM, multiple-criteria decision-making; SAW, simple additive weight;
TOPSIS, technique for the order of prioritization by similarity to ideal solution; VIKOR, VIseKriterijumska

Optimizacija I Kompromisno Resenje.
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Table I. Physical environment.

Hardware/ssoftware Specification

Processador AMD Processor Vishera 4.2 Ghz
Memory 32 GB RAM DDR3 Corsair Vegeance
Hard disk HD 2TB Seagate Sata III 7200 RPM
Operating system Linux Ubuntu Server 14.04 64 Bits LTS
Java JDK 1.7
Database MongoDB 3.0

Table II. Factors and levels used in the experiment.

Factor Level

Number of sensors descriptions 100 000
MCDA method SAW, TOPSIS and VIKOR
Number of selected sensors 1000 , 5000 and 10 000
Number of context properties 2,3,4,5 and 6

MCDA, multiple-criteria decision analysis; SAW, simple additive
weight; TOPSIS, technique for the order of prioritization by simi-
larity to ideal solution; VIKTOR, VIseKriterijumska Optimizacija
I Kompromisno Resenje.

We assume that sensor descriptions such as sensor capabilities and measurements (e.g. frequency
and power consumption) are based on the 4027A Series from Bird Technologies†. Similarly, we
assume that context data related to each sensor are retrieved from OpenWeatherMap‡, and their
current property values used in this experiment (e.g. battery, price, drift and response time) are
assumed to be retrieved by software systems that manage such data and are available to be used.

The criteria and objectives functions used to maximize (max(cj )) or minimize (min(cj ))
the criteria follow this order: max(battery), min(price), min(drift), max(frequency), min(energy
consumption), min(response time).

4. EVALUATION RESULTS AND LESSONS LEARNED

In this section, we present the gathered data of the performed experiments. In order to make the
data visualization and their meaning easier, we will present the results of each method regarding the
number of context properties.

4.1. Evaluation results

We will analyse the results regarding the SAW, TOPSIS and VIKOR methods. Two graphics rep-
resent the number of used fronts and the ONGVR metric. To represent the number of used front,
the graphic have two ordinate axis. The abscissa axis has the indexes of the Pareto fronts from the
first front to the last one . The left ordinate axis presents the number of solutions retrieved by each
method (different colours lines) from each Pareto front. The right ordinate axis corresponds to num-
ber of Pareto fronts needed to cover a given subset of sensors. To represent the ONVGR metric, a
graphic with one ordinate axis and one abscissa axis is used. The ordinate axis corresponds to the
ONVGR value, and the abscissa axis has the indexes of the Pareto fronts.

4.1.1. Selection using six context properties. Figure 3 presents the quality behaviour of the selection
of 1000 (Figure 3a), 5000 (Figure 3b) and 10 000 (Figure 3c) of available sensors considering six
context properties (as defined in Section 3.4). The number of Pareto front slightly increases as the

†Bird Technologies – http://www.birdrf.com/
‡OpenWeatherMap – http://openweathermap.org/
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Figure 3. Pareto fronts for six context properties. SAW, simple additive weight; TOPSIS, technique
for the order of prioritization by similarity to ideal solution; VIKOR, VIseKriterijumska Optimizacija I

Kompromisno Resenje.

Figure 4. Overall non-dominated vector generation ratio (ONVGR) metric for six context properties. SAW,
simple additive weight; TOPSIS, technique for the order of prioritization by similarity to ideal solution;

VIKOR, VIseKriterijumska Optimizacija I Kompromisno Resenje.

number of selected sensors is raised. Also, the number of optimal sensors available in each front
increases according to the number of selected sensors. The MCDA methods concentrates the major
part of the solutions in the first fronts because of a high number of conflicts between the used criteria.

Figure 4 shows the ONVGR value in each front of the selection of 1000 (Figure 4a), 5000
(Figure 4b) and 10 000 (Figure 4c). The ratio value in the first fronts increases proportional to the
number of selected sensors. On the other hand, the ratio value shows a high loss of optimal sensors
as the ratio values changes from 0.2 to 0.6 in the worst and best scenarios, respectively.

The MCDA methods does not use the Pareto optimality concept to select the sensors. They aim
to select sensors that present a certain level of stability between the context properties values, while
the Pareto optimality solutions do not care about the stability between the context properties values
but try to obtain the greatest number of context properties with the best possible values.

Regarding the MCDA methods, the TOPSIS method presented the worst solution as it shows the
lowest ratio value of the analysed MCDA methods in all scenarios. In addition, the SAW method is
slightly better than VIKOR method when 1% of the sensors were desired as it uses less fronts, while
the proposed solutions when 5% and 10% of the selected sensors were equivalent.

4.1.2. Selection using four and five context properties. Figures 5 and 6 present the quality behaviour
of the selection of 1000 (Figures 5a and 6a), 5000 (Figures 5b and 6b) and 10 000 (Figure 5c
and 6c) of available sensors considering four and five context properties, respectively . Analogous
to Section 4.1.1, the number of Pareto front and the number of optimal solutions increases propor-
tional to the number of selected sensors. For four and five context properties, the number of Pareto
fronts is twice as the results presented in Section 4.1.1 and are not so different; it varies from 6 to 16.

Figures 7 and 8 show the ONVGR value in each front of the selection of 1000 (Figures 7a and 8a),
5000 (Figures 7b and 8b) and 10 000 (Figures 7c and 8c). Although the number of solutions found by
each method and the number of Pareto solutions are different from Section 4.1.1, the ratio between
the number of selected sensors and the number of Pareto solutions are practically the same as pre-
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Figure 5. Pareto fronts for four context properties. SAW, simple additive weight; TOPSIS, technique
for the order of prioritization by similarity to ideal solution; VIKOR, VIseKriterijumska Optimizacija I

Kompromisno Resenje.

Figure 6. Pareto fronts for five context properties. SAW, simple additive weight; TOPSIS, technique
for the order of prioritization by similarity to ideal solution; VIKOR, VIseKriterijumska Optimizacija I

Kompromisno Resenje.

Figure 7. Overall non-dominated vector generation ratio (ONVGR) metric for four context properties. SAW,
simple additive weight; TOPSIS, technique for the order of prioritization by similarity to ideal solution;

VIKOR, VIseKriterijumska Optimizacija I Kompromisno Resenje.

Figure 8. Overall non-dominated vector generation ratio (ONVGR) metric for five context properties. SAW,
simple additive weight; TOPSIS, technique for the order of prioritization by similarity to ideal solution;

VIKOR, VIseKriterijumska Optimizacija I Kompromisno Resenje.
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sented in Figure 4. They also show a low ratio value that changes approximately from 0.2 to 0.6 in
the best and worst scenarios, respectively.

Considering the MCDA methods, the solution proposed by the SAW method is again slightly
better than the solution proposed by the VIKOR method when 1% of the sensors were desired; while
the proposed solutions when 5% and 10% of the selected sensors were equivalent. On the other
hand, TOPSIS presents a lower quality solutions as it shows a minor number of sensors in the top
first fronts.

4.1.3. Selection using three context properties. Figure 9 presents the quality behaviour of the selec-
tion of 1000 (Figure 9a), 5000(Figure 9b) and 10 000 (Figure 9c) of available sensors considering
three context properties. As seen in Section 4.1.2, the number of Pareto front increases proportional
to the number of selected sensors. This observation is justified because with less context properties,
we also reduce the number of context properties conflicts, the number of Pareto optimal solutions
per front and the number of solutions found per front, which increases the probability for finding
solutions with a higher level of stability.

Figure 10 shows the ONVGR value in each front of the selection of 1000 (Figure 10a),
5000(Figure 10) and 10 000 (Figure 10c). The ratio value in the first fronts are slightly higher than
the ratio values presented in Section 4.1.2 because of the reduction of the number of criteria. In
this sense, the ratio values changes from approximately 0.4 to 0.8 in the worst and best scenarios,
respectively.

Moreover, when the MCDA methods are analysed, the quality of the solution proposed by the
SAW method was slighter better than the quality of the solution proposed by VIKOR method when
1%, 5% and 10% of the available sensors were selected as the SAW solution uses less Pareto fronts.
Similar to Section 4.1.2, the TOPSIS method presented the solution with low quality as it had less
solutions than the SAW and VIKOR methods in the top first fronts.

Figure 9. Pareto fronts for three context properties. SAW, simple additive weight; TOPSIS, technique
for the order of prioritization by similarity to ideal solution; VIKOR, VIseKriterijumska Optimizacija I

Kompromisno Resenje.

Figure 10. Overall non-dominated vector generation ratio (ONVGR) metric for three context properties.
SAW, simple additive weight; TOPSIS, technique for the order of prioritization by similarity to ideal

solution; VIKOR, VIseKriterijumska Optimizacija I Kompromisno Resenje.
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4.1.4. Selection using two context properties. Figure 11 presents the quality behaviour of the selec-
tion of 1000 (Figure 11a), 5000(Figure 11b) and 10 000 (Figure 11c) of available sensors considering
two context properties. Analogous to Section 9, the number of Pareto fronts and the number of
optimal solutions increases directly proportional to the number of selected sensors.

Figure 12 shows the ONVGR value in each front of the selection of 1000 (Figure 12a), 5000
(Figure 12b) and 10 000 (Figure 12c). Because of the minimal number of criteria conflicts, the ratio
value tends to get closer to one as its less optimal solutions are available. In this sense, the ratio
changes from approximately 0.8 to 1 in the worst and best scenarios, respectively, which shows that
all optimal solutions are selected.

Furthermore, the SAW method presented again the solution with better quality independently
of the selected sensors numbers as it presented a high ONVGR value and uses less fronts than
VIKOR and TOPSIS. The solution presented by VIKOR was quite similar to the solution presented
by the SAW method, but its solution uses more fronts than SAW. The TOPSIS method presented
the poorest solution, as it shows a higher number of fronts and a low ONGVG value in the top
first fronts.

4.2. Lessons learned

In this section, we have compared the behaviour and quality of different MCDA methods for sensor
search and selection. Firstly, it is important to highlight the number of optimal solutions available in
each scenario. As expected, the number of optimal solutions increases proportional to the number of
fronts. It occurs due to the non-dominated solution concept used to compute the optimal solutions
set in each front. In this sense, the number of optimal solutions is not influenced by the number of
selected sensors. On the other hand, the number of selected sensor affects the number of optimal
solutions that are founded by the MCDA algorithms. The influence of the number of selected sensors
can be justified, because it increases the chances of the MCDA find the optimal sensors set. In all

Figure 11. Pareto fronts for two context properties. SAW, simple additive weight; TOPSIS, technique
for the order of prioritization by similarity to ideal solution; VIKOR, VIseKriterijumska Optimizacija I

Kompromisno Resenje.

Figure 12. Overall non-dominated vector generation ratio (ONVGR) metric for two context properties. SAW,
simple additive weight; TOPSIS, technique for the order of prioritization by similarity to ideal solution;

VIKOR, VIseKriterijumska Optimizacija I Kompromisno Resenje.
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scenarios, the ONVGR metric clearly shows the significant increase of the ratio between the number
of optimal sensors and the number of sensors found by each MCDA algorithm when more sensors
are selected.

The context properties also influence the number of optimal solutions obtained by each MCDA
algorithm. The number of context properties is directly proportional to number of optimal solutions
available in each front. It is because as more context properties are used, the number of conflicts
between the criteria increases and consequently the number of non-dominated solutions increases.
In other words, we reduce the chances to find a small set of solutions that present the best trade-off
between the analysed context properties.

Also, the ONVGR metric allows to compare how the number of context properties influence
the number of optimal selected sensors. Although the number of selected sensors in each front is
different for six, five or four context properties, the ONVGR value is practically the same for all and
indicates that a low number of optimal sensors is founded in each one. When three or two context
properties are used, the ONVGR value is higher for all scenarios, and consequently, a higher number
of optimal sensors is founded when less context properties is used.

Regarding the analysed MCDA methods, it is possible to observe that for all analysed scenar-
ios, the SAW method, which uses regular arithmetical operations of multiplication and addition to
rank the options, presented at least an equal number of fronts and the ONVGR value than TOP-
SIS and VIKOR method. The VIKOR method, which apply the compromise programming concept
providing a maximum group utility for the majority and a minimum of an individual regret for the
opponent, presented a solution pretty closer to the proposed solution by SAW algorithm, but in
some scenarios, its solution has more fronts. Finally, the TOPSIS method, which ranks the solutions
according to the distance to the ideal solution and the greatest distance from the negative-ideal solu-
tion without consider the relative importance of these distances, presented the poorest solution as in
the major part of the scenarios, it uses more fronts and presented a low ONVGR value than SAW
and VIKOR methods.

5. RELATED WORK

Today, there are several approaches that enable the sensor management. Perera et al. [33] and Römer
et al. [34] present surveys that describes several techniques, methods, models, features, systems,
applications and middleware solutions related to the IoT context. These surveys shows that the
algorithms used to perform the sensor search and selection can be splitted in two groups: prediction
models and keyword or context information. In this section, we present the main work related to
each group.

Elahi et al. [35] presents a primitive called sensor ranking to perform the sensor search in an
efficient way. The main idea of sensor ranking primitive is to explore the periodicity presented by
the sensor in some cases using prediction models that rank the sensors according to the probability to
meet a user query. The single-period and the multi-period predictions models are used in this paper,
and the gathered data allow to observe a performance improvement to select the sensors. Ostermaier
et al. [36] present a search engine for the Web of Things called Dyser to conduct searches in scalable
environments with highly dynamic content. Dyser is able to collect and store data and information
from sensors to allow search based on metadata. It also extends the work presented by Elahi et
al. [35] using the aggregated prediction model. The results showed that the algorithms presented a
better quality selection when compared with the random model.

Truong et al. [37] also extends the work presented by Elahi et al. [35] and propose a prediction
model based on fuzzy logic named time-independent prediction model. This model is able to detect
anomalies about sensor behavior using metrics of density and stability. The density metric is used
to estimate the probability of a certain value belonging to a specific sensor, while the stability met-
ric estimates the stability of these sensors in the past. The combination of these metrics allows to
rank the sensors and check their state. Thus, the solution presented is able to reduce the necessary
communication for sensor search and selection.

Carlson and Schrader [38] present a search engine named Ambient Ocean to search and select
sensors using context information. The search engine uses metadata, which is stored in a global
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repository, to establish the sensors context and carry out the search in a more efficient and effec-
tive manner. Ambient Ocean uses multi-task similarity models based on the weighted slope one
algorithm to select the sensors. In scenarios where the characteristics of the sensors are difficult
to model, collaborative filtering techniques are employed to compute similarities between users or
sensors based on information history.

Ding et al. [39] propose a hybrid search engine to IoT environments, able to perform searches
using quantitative values, keywords and spatio-temporal relations. The architecture of this search
engine is based on a bottom-up model with three layers, the first layer is responsible for sensing
and monitor the equipment. The second layer is responsible to store the data in a distributed form.
The third layer provides optimized access to data from the sensors. The search for keywords and
quantitative values is optimized by a B+ tree and the search base on time-space relationships uses an
R tree. This search engine allows the discovery of the objects state at run-time as the sensors sends
continuous data to the storage layer, which index these data according to data structure used.

Guinard et al. [40] propose a module for the integration architecture named SOCRADES, which
aims to enable ubiquitous integration services running on embedded with other business processes
devices. The proposed module is based on the model Publish/Subscribe and uses a global repository
to store metadata about the available devices. The repository works with a monitor that is responsible
to update the devices states and their QoS attributes. The sensor search is made by keywords and
is sorted according to the QoS attributes prioritized by the user. Kothari et al. [41] presents an
architecture-denominated DQS-Cloud to optimize the sensor search, provide resilience to faults and
QoS degradation and also optimize system performance managing sensor data streams. The sensor
search is based on keywords and considers the QoS attributes specified by users. Moreover, in
order to reduce communication overhead, the authors proposes an optimization mechanism to reuse
sensors flows to similar requests. The results showed that the optimization module is able to reduce
the bandwidth and processing rate of the providers.

Shah et al. [11] presents a search mechanism based on coordinate virtual system to find process
in P2P networks. A coordinate is assigned to a node representing a physical location in relation to
other nodes. The sensor search uses keywords, and the returned sensors are ranked according to the
euclidean distance to the QoS attributes specified by the user. A qualitative approach shows that the
proposed search mechanism was the only one able to perform a precision query at real time. Ruta
et al. [42] proposes a framework to manage semantic notations of data streams, devices, high level
events and services. The requests uses the CoAP protocol based on the RESTful architectural style,
which allow to use inference to support the sensor search and their compositions. A data mining
mechanism was used to retrieve the sensor search in real time to improve the sensor selection. The
sensor selection is based in the Concept Covering inference followed by a ranking algorithm.

Perera et al. [12] proposes a framework named CASSARAM, which performs the sensor search
and selection regarding the QoS attributes specified by the user. The selection process is divided
in two phases. In the first phase, the static sensor attributes, such as manufacturer or type, are used
to limit the user space search. In the second phase, the result query of the first phase is evaluated
in a multi-dimensional space where each axis corresponds to a QoS user attribute. The sensors
are indexed regarding the comparative priority-based weighted index and ranked according to their
euclidean distance to the optimal point. The authors also proposes a heuristic named comparative
priority-based heuristic filtering, which removes the sensors that are far from the ideal point pri-
oritizing the TOP-K selection. The results shows that using up to 10 000 sensors, the framework
presents a satisfactory performance with a high precision.

Gao et al. [13] proposes the automated complex event implementation system to manages dif-
ferent run-time data streams. The sensors and their data streams are described according to SSN
ontology and stored in a repository with their QoS attributes. The system acts such as a middleware
between a sensor data stream and an application. The middleware are able to perform the sensor
search and select using the Simple-Additive-Weighting algorithm to find the best trade-off between
the specified QoS attributes.

Table III summarizes the main characteristics of the works presented in this Section. The authors
[35]–[38] uses prediction models and do not consider QoS attributes to choose the sensors as they
are just interesting in the sensor state. Ding et al. [39] also do not consider QoS attributes but worry
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Table III. Related works summary.

Paper Search technique Search Selection method Quality of service

[35] Prediction model Sensor state Single-period and multi-period NoPrediction model
[36] Prediction model Sensor state Aggregated prediction model No
[37] Prediction model Sensor state Time-independent prediction model No
[38] Prediction model Context information Weighted slope one algorithm No

[39] Index Keywords, sensor state B+ tree and NoContext information R tree
[40] Score and ranking Keywords Not specified Yes

[41] score, ranking Keywords Not specified Yesand similarity
[42] Inference and ranking Keywords Concept covering No
[11] Score and ranking Keywords Euclidean distance Yes

[12] Score and ranking Context information Euclidean distance and comparative Yespriority-based heuristic filtering
[13] Score and ranking Context information Simple additive weighting Yes

about to offer efficient data structures to store the sensor state at run-time. On the other hand, [40]–
[41] highlight the importance to select the sensors based on their QoS properties, but do not present
a specific method for sensor search and selection. Authors [11]–[13] use methods to score and rank
their sensors. The authors of [11] and [12] use the Euclidean distance of the sensor to the optimal
point to score and rank while [13] applies the SAW method.

Briefly, these works present different mechanisms to perform the sensor search and selection
considering QoS properties. However, they do not evaluate and compare the quality of the proposed
solutions of a specific technique according to the number of desired QoS properties. Thus, to fulfill
this gap, we have proposed a methodology to enable the comparison of different sensor search
techniques from the quality of search perspective. In addition, a case study considering three sensor
search techniques is presented to demonstrate our methodology.

6. CONCLUSION

The integration of IoTs with cloud computing composes the CoT and poses several new chal-
lenges. One of these challenges focus on the sensor search and selection field regarding a set of
context properties explicit desired by an user. In this paper, we examined some multi-objective
decision analysis methods applied in different scenarios. Specifically, we have analysed the SAW
method, the TOPSIS and VIKOR according to the number of desired solutions and the number of
context properties.

We described a methodology that uses the Pareto optimality concept to enable comparisons
between the solutions proposed by these methods. The gathered results allowed to observe
the impacts of ‘the number of context properties’ and ‘the number of desired sensors’ towards the
quality of the final solution based on the Pareto-optimality concept.

Using the ONVGR, we observed when six, five and four context-properties are used, the propor-
tion of optimal sensors retrieved is low because of the high number of context-properties conflicts,
and also is practically the same for all. In contrast, when three or two context-properties are used,
the proportion of optimal sensors retrieved increases significantly because of the small number of
context properties conflicts.

In addition, the ONVGR value is directly proportional to the number of selected sensors. In other
words, as more sensors are selected, more optimal sensors are used. Regarding the analysed MCDA
methods, we could observe that the SAW presented the solution with better quality as their ONVGR
value and number of fronts is equal or better than the values retrieved by TOPSIS and VIKOR. For
future work, we will apply these methods in existent centralized and decentralized architectures for
IoT where their performance will be measured. Also, new performance metrics and approaches for
sensor selection will be analysed for each kind of architecture.
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