
FOODS: Ontology-based Knowledge Graphs for Forest
Observatories

Wildlife research activities generate data on ecosystems and species interactions from varied independent

projects. Forest Observatories are online platforms that curate, integrate, and analyze wildlife research data

for forest monitoring. However, integrating data from disparate sources can be challenging due to data

heterogeneity. This study, in collaboration with a research facility in the forest of Sabah, Malaysian Borneo,

proposes a novel approach to integrate heterogeneous wildlife data for Forest Observatories. We used the Forest

Observatory Ontology (FOO) to standardize wildlife data entities generated by sensors. Four semantically

modeled wildlife datasets populated FOO, resulting in an ontology-based knowledge graph named FOODS

(Forest Observatory Ontology Data Store). We evaluated FOO and FOODS using specialized open-source

ontology scanners, domain experts’ feedback, and applied use cases. This study contributes FOODS, the

�rst ontology-based knowledge graph for Forest Observatories, which provides accurate query responses,

reasoning about data, and granular data acquisition from diverse datasets. FOO documentation and FOODS

resources are available at https://w3id.org/xxx/xxx* and https://xxxxxxxx.xxxxxx-xxxxxxxxxxx.org.
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1 INTRODUCTION

Forest Observatories integrate and analyze wildlife data to answer questions that support data-
driven analysis and forest monitoring [53]. Such observatories can enhance the understanding
of ecosystems, species interactions, and environmental changes, aiding conservation e�orts and
informed decision-making [29]. In wildlife research activities, multiple methods are employed to
collect data, including �eld surveys, direct observation censuses, GPS tracking, motion-activated
trail cameras and airborne sensors. However, the collected data often exist in silos or isolation due
to the independent handling of maintenance, analysis, and storage by separate research activities.
In addition, many environmental scientists lack expertise in managing data using computer science
methods, which can lead to data management being overlooked rather than a planned process [92].

Siloed data hinder collaboration as groups work independently, thereby reducing opportunities for
data sharing [71]. For example, consider one group studying the impact of elephant populations on
soil health in a speci�c ecosystem, whereas another group investigating the behavior and movement
patterns of the same elephant population. The �rst group collected data on soil composition,
nutrient levels, and erosion rates, whereas the second group collected information on migration
routes, feeding habits, and social interactions. Soil researchers might need to understand elephant
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movement patterns to assess their impact on soil compaction and nutrient distribution, whereas
elephant researchers could bene�t from insights into how soil quality in�uences elephant grazing
behavior. Collaboration between these two groups can be facilitated by using a common data
store that standardizes the datasets and links their entities. This online data store can integrate
these diverse data in a way that is comprehensible to both humans and machines. E�ective data
management for Forest Observatories improves the long-term collection, quality, and persistence of
data, enhancing the ability to address key ecological questions regarding conservation and natural
resource management. Traditional data management strategies such as data warehousing and lakes
are commonly employed to integrate data from various sources [76, 105, 114].

Data warehousing involves extracting, transforming and loading of data from di�erent sources
into a structured database system, ensuring uniform storage, and facilitating accessibility and
analysis for data scientists. Conversely, data lakes serve as repositories for structured and unstruc-
tured data in raw formats. Conceptual models of how animals interact with and use habitats that
link diverse research data exist in past studies [18, 19, 56]. However, these approaches often lack
meaningful connections between the data entities. Data scientists can derive substantial bene�ts
from incorporating Semantic Web technologies such as ontologies and knowledge graphs into
their work�ow. The Semantic Web equips computers with the necessary tools and languages to
understand and process the data in a way that is meaningful and useful for speci�c applications,
enabling rule-based and automated reasoning, data integration, and complex querying capabilities.

Ontologies [49] are structured frameworks that describe the types, properties, and interrelation-
ships of concepts within a speci�c domain. They serve as formal representations of a set of concepts
and their connections, facilitating a shared understanding that can be communicated between
people and their computational systems. Knowledge graphs [52], on the other hand, represent
a way of structuring and integrating knowledge based on relationships between entities (such
as objects, individuals, concepts, or events), enabling machines and people to interpret and use
interconnected information e�ectively. Ontology-based knowledge graphs focus on developing
semantic relationships in data. These relationships form meaningful connections between concepts
in a particular domain, enabling an understanding and interpretation of how these concepts relate to
each other. The Semantic Web technologies enable precise querying, complex relationship analysis,
semantic consistency, and data interoperability. Moreover, the reasoning capabilities can enable
data scientists to infer implicit knowledge that is not overtly speci�ed within the data.

Our research employed a foundational ontology integrating elements from established ontologies
to unify the Internet of Things (IoT) and wildlife concepts (biodiversity, conservation biology, habitat
fragmentation, and endangered species management). We applied semantic modeling techniques
to reformat various wildlife datasets into graphs and merged them with our ontology to produce
four knowledge graphs. Our study’s contributions to Forest Observatories include the following:

(1) The Forest Observatory Ontology (FOO) and its knowledge graphs, equipped with online
documentation for describing wildlife data generated by sensors.

(2) A resource website for FOO and its knowledge graphs, o�ering information on their creation
and usage.

(3) An analytical executable notebook to remotely query, visualise and analyse four distributed
wildlife knowledge graphs in a granular uni�ed manner.

The proposed interface allows users to script granular SPARQL search queries and to obtain
information from remotely located datasets. Our study provides a novel (modular) approach to
managing and analyzing wildlife data to support conservation and wildlife management applications.
The remainder of this paper is structured as follows: Section 2 reviews related work. Section 3
includes the methodology for developing ontology. Section 4 introduces FOODS (Forest Observatory
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Ontology Data Store), the proposed ontology-based knowledge graphs. Section 5 evaluates FOODS.
Section 6 discusses the proposed system and suggests future work. Section 7 Finally, concludes the
paper.

2 RELATED WORK

This section provides an overview of the relevant research on wildlife data management. It begins
by examining how Semantic Web technologies are used to model wildlife data and compare
di�erent approaches. It then discusses ontologies and knowledge graphs, explaining how they can
be developed, and why using ontologies to create knowledge graphs could be bene�cial to relevant
stakeholders.

2.1 Semantic Modelling for Wildlife Data

Semantic Web technologies enable data interoperability and integration of multiple types of wildlife
data, leading to the development of knowledge graphs for querying and analysis [40, 85, 110].
Technologies such as GPS tracking, Wireless Sensor Networks (WSN) [94, 116] and the Internet of
Things (IoT) devices [17, 30, 65, 100] collect diverse environmental data and require integration
techniques such as knowledge graphs [48, 80, 115]. These graphs provide deep insights into
species connections, ecological relationships, and environmental impacts on wildlife [7, 83], thereby
supporting interdisciplinary collaboration for e�ective conservation and decision-making [77, 79].

Past research, such as Athanasiadis et al. [8] developed a semantic framework for large carnivore
conservation in northern Greece, integrating animal tracking data with ecological niche modelling
for habitat suitability. In contrast, our work di�ers in location, integration process, output �exibility,
and employs an executable interface for interactive analysis across various data types. Wang et al.
[112] applied semantic technology to model wildlife observations, including pollution e�ects on
ecosystems, and storing provenance data for traceability. Despite some similarities, our semantic
modeling diverges in data transformation using the Resource Description Framework (RDF) Map-
ping Language (RML) and modular pipelines for scalable data conversion into triple data stores, in
contrast to Wang et al.’s manual RDF model conversion.

Mireku et al. [75] and Zheng et al. [96] employ semantic inference for knowledge discovery and
predictive analytics to support the dynamics of animal movement trajectories. In contrast, Wannous
et al. [113] focused on the development of a trajectory ontology that combines elements from
three key concepts, namely, (i) moving objects, (ii) marine environments, and (iii) spatiotemporal
models. This was accomplished by converting their data into an OWL ontology using an open-
source tool (uml2owl). Wannous et al. constructed a domain ontology that integrates various
subontologies tailored to speci�c use cases. In our research, we adopted a di�erent approach by
allowing semantically modeled data to populate a foundational ontology. Furthermore, our method
includes ontology documentation, publication, and maintenance plans as recommended features.

2.2 Wildlife Ontologies

In computer science, ontology is a formal and explicit speci�cation of a conceptualization used to
represent knowledge in a particular domain [49]. Ontologies have been used in various domains,
including biodiversity, to model knowledge [3]. Previously, the development of ontologies was
based on manual curation by domain experts. However, this process is time-consuming and prone
to errors. In the context of biodiversity, ontologies have been developed to represent concepts, such
as species, habitats, and ecosystems. The Semantic Web for Earth and Environmental Terminology
(SWEET) [91] is an example of a large-scale ontology that covers several domains related to the
environment. The Wildlife Ontology (WO) [90] is another example of an ontology developed
speci�cally for wildlife data. In principle, ontologies are logically well-de�ned vocabularies that
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link various data sources and de�ne their connections �rmly. They comprise classes, relations, and
instances. Data entities are represented as graphs with nodes and edges using a data model such
as the RDF. Using the RDF model, a piece of information is converted into a graph composed of
(subject, predicate, object), for instance (Soil_ID, Soil_pH, 4.88). Ontologies can be expressed as a
tuple of �ve elements [106], formulated as follows:

Ontology = ( C , HC , R , HR , I ) (1)

Where:

� = (instances of "rdf:Class") stands for concepts.
�� = (“rdfs:subClassOf”) stands for concept hierarchy.
' = (instances of “rdf:Property”) stands for relationships between concepts.
�' = (“rdfs:subPropertyOf”) stands for relationship hierarchy.
� = (“rdf:type”) the instantiation of the concepts in a particular domain.

2.2.1 Ontology Development Methodologies. We searched the ACM digital library (dl.acm.org) and
Google Scholar (scholar.google.com) to identify a suitable methodology. Our search terms included
"ontology methodology," "ontology development methodology," and "ontology building approaches."
The methodologies we researched include the eXtreme design (XD) methodology [15], which is a
modular, incremental approach that maps a set of competency questions to one or more Ontology
Design Patterns (ODPs) [42] before integrating them into the ontology under construction. The
DILIGENT methodology [86] provides a more �exible trial-and-error approach, recommending
the order of discussion, evaluation, justi�cation, and testing in a use-case. METHONTOLOGY
methodology [37], on the other hand, proposes a waterfall, an incremental development approach
that focuses on the lightweight ontology version. Although METHONTOLOGY provides detailed
guidelines for the life-cycle development of ontologies, it needs to be generalized to �t multiple
domains. The On-To-Knowledge Methodology (OTKM) [104] focuses on the initial setup, enterprise
applications, and maintenance of ontologies. Other well-known methodologies include "Ontology
Development 101" by Noy et al. [78] and NeON by Suárez-Figueroa et al. [102]. Whereas the former
focuses on ontology conceptualization, the latter divides the ontology development process into
nine distinct scenarios to accommodate a broader range of use cases. Further ontology development
methodologies were reviewed by Aminu et al. [6] and Singh et al. [98]. The Linked Open Terms
(LOT) project [87] builds on over two decades of ontological engineering experience, taking
inspiration from the Neon methodology [46]. It emphasizes borrowing and reusing classes from
related ontologies and allows for including natural language statements and tabular data during
the requirement-gathering phase. Moreover, LOT promotes the sharing of ontologies following the
Linked Data and FAIR principles for the Semantic Web [13, 39] to facilitate their reuse by the research
community and software applications. Table 1 compares the di�erent ontology development
methodologies.

2.3 Knowledge Graphs

A knowledge graph [14, 51] organises information into a graph structure, where nodes represent
entities and edges de�ne their relationships. The term "Knowledge Graph" gained popularity with
Google’s Knowledge Graph project [31]. Subsequently, the term has been used in various contexts
and evaluated by many scholars [20, 21, 55, 81, 118]. A commonly accepted de�nition of a knowledge
graph is one that captures knowledge by de�ning entities and their relationships [32]. Knowledge
graphs o�er several bene�ts in wildlife data management, enabling data integration, uni�cation,
linking, and reuse by combining characteristics of di�erent data management paradigms [2].
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Table 1. Compares ontology development methodologies. CQs= Competency�estions, NLs= Natural
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The eXtreme Design (XD) [15] * * * * * *

DILIGENT [86] * * * * * *

METHONTOLOGY [68] * * * * * *

On-To-Knowledge Methodology [104] * * * * * * *

Ontology Development 101 [78] * * * * * *

NeOn Methodology [102] * * * * * *

Linked Open Terms (LOD) [87] * * * * * * * * * * *

2.3.1 Knowledge Graphs Creation Methodologies. A knowledge graph [14, 51] organizes informa-
tion into a graph structure, where nodes represent entities and edges de�ne their relationships.
Di�erent methodologies exist for creating knowledge graphs, and the choice of method depends
on factors such as the stakeholders involved, domain, intended applications, and available data
sources. Some approaches include starting with an essential core and gradually enhancing it,
following an Agile or "pay-as-you-go’ approach [9]. Another approach involves initiating a knowl-
edge graph without prede�ning its schema (i.e., ontology) and gradually building both schema
and instances during creation. However, designing a knowledge graph schema beforehand can
signi�cantly enhance its utility [64]. A six-step process involving data identi�cation, ontology con-
struction, knowledge extraction, data processing, data integration, and knowledge graph evaluation
is also commonly used [45]. Furthermore, employing robust tools for linked data, data integration,
and data management while continuously analyzing and adjusting deliverables is another viable
methodology [10]. The ad hoc creation of knowledge graphs that reuse existing knowledge by
interlinking relevant classes and properties from existing ontologies has also been practiced [60].
The World Wide Web Consortium (W3C) (w3.org) recommends using RDF mapping languages
(w3.org/TR/r2rml/), such as RML (rml.io/specs/rml/), R2RML (w3.org/TR/r2rml/), and xR2RML [74]
for scalability and interoperability. RML is designed to map heterogeneous data structures onto
the RDF (w3.org/RDF/). The process starts by generating a text �le de�ning the mapping rules
that an RML processor executes to create the output RDF dataset [27]. Prior academic studies have
extensively explored the development of semantic knowledge graphs and the evaluation of mapping
languages and systems to generate RDF knowledge graphs from heterogeneous (semi-)structured
data. Ryen et al. [93] and Van Assche et al. [108] contributed to the study area. In addition, Corcho
et al. [24] presented a notable case in which they designed an ontology to create a knowledge
graph for an ICT �rm. These studies collectively emphasize the signi�cance of semantic knowledge
graphs and the utility of RDF-based approaches in representing and integrating data across various
domains.

2.4 Why ontologies for knowledge graphs?

Using ontologies in knowledge graphs reduces ambiguity, ensures data compatibility, and establishes
a formal representation of concepts and relationships [16, 58, 67]. With a de�ned ontology, data
collection schemas from di�erent sources can leverage shared vocabulary, resulting in semantic
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data integration. Ontology-powered knowledge graphs improve data interoperability, promote
reusability and data exchange [61], enable automated reasoning, and enhance analytical capabilities.
Table 2 compares the bene�ts of building a knowledge graph with and without an ontology.

Table 2. Compares the benefits of building a knowledge graph with ontology and without ontology

Bene�ts With Ontology Without Ontology

Less Ambiguity Ensures a normalized representation of

concepts and relationships.

Increased ambiguity in data and lack of

a normalised structure.

Data Integration Accelerates data integration. Slower and more complex heteroge-

neous data sources.

Knowledge

Representation Enables complex relationship modelling

and nuanced insights.

Limited ability to model relationships

and capture intricate connections.

Data Interoperability Facilitates seamless data exchange and

system interoperability.

Challenges in integrating data from di-

verse systems.

Reusability Promote ontology reuse and extension

across applications and domains.

Lack of ontology reuse and extension

leads to redundancy and inconsistency.

Reasoning Enables automated reasoning and infer-

ence based on ontology relationships.

Limited ability for automated reasoning

and logical inference.

Improved Search Enhances targeted search and querying

through structured data representation.

Less precise and e�ective search and

querying due to lack of structure.

3 METHODOLOGY

This section proposes the Forest Observatory Ontology (FOO) and outlines the methodology
employed for its development. We delve into the entire ontology development life cycle, providing
detailed insights into each stage, from the study hub and requirement gathering to the sharing and
maintenance phases.

3.1 Dana Girang Field Centre (DGFC)- our research hub

We collaborated with Danau Girang Field Centre (DGFC) (danaugirang.com) as a study hub. DGFC
is a research and education facility located in the heart of Sabah, Malaysia, within the Lower
Kinabatangan Wildlife Sanctuary. It focuses on the conservation of biodiversity and ecosystems in a
region through scienti�c research. The center studies how wildlife adapts to fragmented landscapes
caused by deforestation and human activity. In addition to its research activities, the centre provides
educational programs, including internships and �eld courses for university students, aiming to
train the next generation of conservation scientists and increase awareness of environmental issues.

3.2 Forest Observatory Ontology (FOO)

We propose the Forest Observatory Ontology (FOO), a novel upper-level ontology that represents
wildlife data collected through remote sensing devices. FOO articulates complex relationships
and facilitates the linkage of diverse concepts through a versatile approach that incorporates
classes and properties from established ontologies. FOO standardizes data entities and formalizes
their semantics, thereby enabling the integration of diverse wildlife datasets from various sources.
Speci�cally, it can articulate the relationship between an animal, a sensor, and its geolocation,
and the observations collected when a sensor is attached to an animal record its geolocation.
Furthermore, FOO facilitates the semantic linkage of data sources that share common concepts,
thereby allowing for e�cient retrieval of animal location data through sensor queries. Additionally,
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FOO enhances data analysis capabilities by incorporating rules directly into databases to support
inferences. To develop FOO, we employed the Linked Open Terms (LOT) methodology [87], chosen
for its alignment with our project’s needs, including the ability to model natural language statements
and support the publishing and maintenance of the ontology. The development of the ontology
progressed through iterative stages, including requirement gathering, implementation, evaluation,
and publication. Figure 1 illustrates the comprehensive lifecycle of FOO’s development process.

FOO
Requirements

 
  

Reality Encode Validate Publish Maintain

FOO
 Implementation

 

FOO
 Evaluation

FOO 
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SPARQL 

Fig. 1. FOO Ontology Development phases, inspired by Linked Open Terms (LOT) methodology [87]

3.3 Ontology Requirements

During the initial phase of the ontology development process, we created the Ontology Require-
ments Speci�cation Document (ORSD), adhering to the guidelines outlined in the LOT methodology
and as detailed by Suarez-Figueroa et al. [103]. Our ORSD (see Appendix) outlines critical details,
such as the ontology’s scope, intended purpose, and the use cases it aims to support. This phase
actively involves domain experts in identifying use cases for the ontology and selecting the datasets
to be modeled.

We compiled a list of Competency Questions (CQs), Natural Language Statements (NLSs), and
various use cases for bioscientists and wildlife researchers. CQs, as de�ned in [50], outline the
functional requirements of the ontology by formulating questions that the ontology should answer
using query languages. NLSs are short a�rmative phrases that convey information to be included
in the ontology. Use cases describe real-world scenarios that the proposed ontology aims to address.
To meet these requirements, we engaged in three distinct activities: The �rst activity was an
ethnography to gain insight into the wildlife research community, informed by casual interviews
and observations during data collection. The second involved conducting semi-structured interviews

with eight wildlife researchers from Cardi� University in Wales and the DGFC in Sabah, Malaysian
Borneo. We organized a text-based focus group for the third activity, and conducted a nominal
group technique session. For each activity, we created three types of administrative documents:
participants’ information sheets, consent forms, and demographic questionnaires. Participants’
information sheets brie�y outlined the project objectives and procedures for the activities. Consent
forms enabled us to obtain signed permission from the participants to proceed with the activities.
Finally, the demographic questionnaire collected non-personal details from participants, such as
their education level, occupation, and years of experience.
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Ethical clearance for collecting the necessary data was granted by our university’s research
ethics board. The participants were provided with both online and paper versions of the documents.
To enlist participants, we adopted the snowball sampling technique [41] and collaborated with
DGFC. We initiated the process with biologists within our network, requesting them to refer to
individuals who aligned with the study criteria. Although we initially targeted six participants
for formal interviews, our direct engagement strategy proved to be e�ective, and we successfully
conducted interviews with eight participants. In the discussion groups ( nominal and focus),
we achieved our goal of having at least �ve participants in each, receiving responses from 14
participants via Google Forms. Interviews were transcribed using Microsoft Word, written notes
were taken for the discussion groups and the ethnographic studies were summarized. In line
with methodologies adopted in prior research [33], we manually coded the data gleaned from
both the interview transcriptions and the notes from discussion groups, coding these insights
into Competency Questions (CQs) to guide the ontology’s development. After drafting the initial
proposal, we collaborated with a domain expert to validate the requirements, as documented in
this shared spreadsheet. Table 3 shows the demographic details of the study participants.

No. Level of Education Occupation Years of Experience

1
Master’s degree

Student 1 to 3
2 Operational Manager 1 to 3
3 Wildlife Researcher 4 to 10

4

Bachelor’s degree

Bio-scientist Less than 1
5 BSc Student Less than 1
6 BSc Student 1 to 3
7 Data Manager 11 to 20
8 Wildlife Researcher Less than 1
9 Bio-scientist Less than 1
10 BSc Student Less than 1

11

Doctorate (PhD and DPhil)

Bio-Chemist 1 to 3
12 Bio-scientist More than 20
13 Bio-scientist 11 to 20
14 Bio-scientist 11 to 20

Table 3. Pseudonymized demographic data of the study participants.

In this table, the entries are grouped by the level of education. This grouping makes it easier to
see the distribution of occupations and years of experience within each educational level.

3.3.1 Ethnography. We conducted ethnographic research at DGFC in the summer of 2022 to
observe the collection and processing of wildlife data (Figure 2) [69]. Four activities were carried
out: (i) comparing butter�y diversity, (ii) comparing Proboscis monkey activity, (iii) �nding the
tracked Sunda pangolin, and (iv) �nding the Elephas maximus (Asian elephants).

(1) Comparing butter�y diversity: The ethnographic research contrasted butter�y populations in
a tropical rainforest and an oil-palm plantation. The rainforest revealed rich biodiversity with
372 butter�ies across 23 species, notably G. harina, constituting 67% of its butter�y fauna. In
contrast, the plantation had only nine butter�ies of six species, with no unique species. The
�ndings, showing a mean species richness of 8.4 in the rainforest and 2.2 in the plantation,
highlight the signi�cant impact of habitat on butter�y diversity.
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Fig. 2. Forest Observatory Ontology Development’s activities collage

(2) Comparing Proboscis Monkey Activity: The ethnographic study conducted by BSc students
from Bioscience, with assistance from sta� wildlife researchers at the Danau Girang Field
Centre (DGFC). This study focused on variations in the behavior of proboscis monkeys across
di�erent time periods (multiple days). The study used two methodologies: visual surveys
along the Kinabatangan River and nearby forest trails and bio-acoustic monitoring facilitated
by AudioMoth devices. Preliminary visual data suggested a higher sighting frequency of
monkeys along the riverbank than in the forest, somewhat challenging the initial hypothesis
of peak afternoon activity at the river. However, the acoustic data, encompassing over 22 h
of recordings from each device, are yet to be analyzed and will be crucial in validating or
refuting the hypothesis regarding the unpredictability of activity patterns. Despite its insights,
the study acknowledged several limitations, including adverse weather conditions, human
observation constraints, and the possibility of repeated sightings of the same monkeys.

(3) Finding the tracked Sunda pangolin: In the early hours, we entered the forest, equipped for
protection against insects and rain, aiming to locate the Sunda pangolin using a noise-emitting
antenna designed for close proximity detection. This method is critical for tracking species
in extensive forested areas. The increasing strength of the antenna’s signal indicated our
approach to the pangolin, a species known for its e�ective camou�age and quiet movement.

(4) Finding the Asian elephants (Elephas maximum): We left from Sandakan Jetty, heading
towards the DGFC center through the dense forest. On our boat ride, we suddenly saw a
group of Asian elephants swimming in the lower Kinabatangan River.

3.3.2 Interviews. We carried out eight semi-structured via face-to-face discussions with spe-
cialists in genetics and biology focusing on wildlife conservation. Seven of the interviews were
based in Sabah (Malaysian Borneo), apart from one individual from the United Kingdom who
volunteered in the DGFC. The participants had a diverse range of experience in landscape ecology
and conservation biology research, with their experience spanning from one to twenty-�ve years.
To recruit participants for the study, we identi�ed the �rst bioscientist from our university mailing
list, then we employed a snowball sampling technique [1], in which each participant recommended
another potential participant. We then provided these nominees with an information sheet about the
interview and details of ethics approval two weeks prior to their interviews. During these sessions,
we followed a consistent semi-structured guide to delve into the types of data the participants
collected and processed as well as their aims to use these data to make well-informed decisions
swiftly. Every participant completed their interview within 60 minutes, and we preserved the audio
recordings for detailed analysis. The interview questions covered a range of topics, including:

• What is your opinion about a given User Interfaces mock-ups?
• What features would you like to use?
• What is your feedback about the delivered linked data store prototype/ outcome?
• What are the types of collected data?
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• How do you process the collected data?
• What are the tools and methods used to process the data?
• How do you access and interact with the data?
• What are the drawbacks of your current data system?
• What are the questions that you require your data environment to answer?
• What would the ideal data model look like for you (e.g., chronological data catalogue, inter-

active interface with links to downloadable datasets)?

3.3.3 Interviews analysis and findings. Our analysis of the interview transcriptions was conducted
using inductive coding [12]. This approach entails a thorough examination of the data, including
interview transcripts, �eld notes, and documents, to identify text segments of interest or signi�cance.
Each segment was labeled in a manner that mirrored the participants’ own words or speci�c details
of the data. As the analysis progressed, these initial labels were aggregated into broader themes that
naturally arose from the dataset. The analysis was a cyclical process, we kept comparing new data
to existing codes and themes, re�ning them as needed. Table 4 presents the themes that emerged
from this process along with their descriptions. The research �ndings revealed a collective desire
for improved data management, visualization, and accessibility across di�erent wildlife research
activities. Studies, ranging from animal tracking to vegetation studies, have highlighted the demand
for simple, uni�ed, and user-friendly interfaces for data management. Interviewees expressed
challenges with manual data entry, the integration of disparate data sources, and the need for better
tools to visualize and analyze data, particularly through maps for spatial understanding. Key quotes
re�ecting these themes include:

• Participant(2): "All of this raw data I keep it myself like I save it in my external hard drive as

well" indicating challenges with data accessibility and sharing.
• Participant(5): "We don’t have it in the GPS, in the camera traps, but since I was advised us

to do so, we have now labeled the pictures in the timestamp of the name and using the name."
showing e�orts to improve data organization but still highlighting manual processes.

• Participant(7): "So you might want to say into Google like where are the elephants right now or

where have the elephants been in the last two weeks?" This illustrates the need for intuitive
data query methods that can provide real-time or speci�c historical insights based on natural
language processing.

These �ndings highlight the need for wildlife research platforms that integrate diverse data
sources, improve contextual data access, and enable e�cient, complex query resolution. The ideal
system should manage and visualize current data, such as GPS tracking, while adapting to evolving
conservation needs by incorporating new data types and analytical methods.

3.3.4 Focus and nominal groups. In the form of visual materials, we created a map of Sabah,
Malaysian Borneo, displaying diverse types of wildlife data, such as elephant movements. Three
information cards were printed, detailing the GPS collar, soil sensor, and vegetation data, with
blank spaces for note-taking and participant comments. Over two consecutive days, nominal and
focus groups were held, with six members and one moderator in the former and seven members
in the latter. Attendees were provided with a copy of the primary map and three data type cards
and were requested to suggest ideas, potential use cases, and questions that could be addressed
using these di�erent datasets. From the discussion groups, we collected a list of use cases for
FOO and the relevant datasets, exploring their potential applications and usefulness in informed
decision-making. Screenshots of the maps and cards with written information are included in the
appendix. This exercise has been a great portion of CQs and NLSs for ontology, o�ering valuable
insights into its development and application. Participants gathered various perspectives and
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Theme Description

Design Participants’ impressions of the mock-up’s ease of use, visual appeal,
and overall user experience.

Functional Require-
ments

Features participants �nd essential or desirable for their work, such as
data visualization tools, search functionality, or customization options.

Data Diversity The variety and nature of data that participants deal with, including
qualitative, quantitative, temporal, or spatial data.

Analytical Methods How participants process data, including data cleaning, analysis tech-
niques, and the transformation of raw data into usable information.

Technology Software, tools, and methods used for data processing, highlighting
preferences, e�ectiveness, and limitations.

Usability How participants access, explore, and manipulate data, including the
use of databases, APIs, or interactive dashboards.

Challenges Identi�ed issues with current data systems, such as lack of integration,
poor usability, or inadequate functionality.

Prototype Evaluation Participants’ assessments of the prototype’s functionality, performance,
and how well it meets their needs or expectations.

Desired Outcomes The Speci�c questions or problems participants need their data envi-
ronment to address, re�ecting on gaps in current systems.

Vision for the Future Participants’ conceptualization of the ideal data model or system.

Table 4. Overview of Participant Feedback Themes. This table outlines the main feedback themes from the

evaluation of our proposed data management system, including design impressions, functional requirements,

and user experiences.

Table 5. Functional Requirements Validation Criteria as stated by [50]

Criteria Results Bio-
scientists

Wildlife Re-
searchers

Ontology Devel-
opers

Computer
Scientists

Correctness All requirements relate to FOO’s concepts. ✓ ✓

Complete The intended user con�rmed FOO’s su�ciency. ✓ ✓ ✓

Consistent There were no con�icts between FOO requirements. ✓ ✓ ✓

Clear Each requirement has one precise meaning. ✓ ✓ ✓ ✓

Concise All requirements were relevant. ✓ ✓ ✓ ✓

Comprehensible The stakeholders understood FOO requirements. ✓ ✓ ✓

ideas, including those new to such activities, resulting in a rich collection of spoken and written
information. Both sessions were conducted ethically, with consent obtained, and video recordings
were recorded. Subsequently, the ontology development sheet containing the CQs and NLSs, along
with the ontology requirements speci�cation document (ORSD), were �nalized and uploaded to
the ontology GitHub repository.

3.3.5 Ontology requirements validation. Following the methodology proposed by Grüninger
and Fox [50], functional requirements must meet certain standards prior to formal acceptance. We
evaluated the functional requirements of the ontology against these criteria, as outlined in Table 5.
The stakeholders involved in the FOO project con�rmed that these requirements were (i) accurate,
(ii) comprehensive, (iii) coherent, (iv) unambiguous, (v) concise, and (vi) clearly de�ned.
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Table 6. Lists and compares IoT and wildlife ontologies. SSN = Semantic Sensor Network [23], SOSA =

Sensors, Observations, Samples, and Actuators [59], S3N = Smart Sensor Network [95], SSxN [23], IoT-Lite,

IOT-o [97], OBOE = Extensible Observation Ontology [70], SAREF = The Smart Applications REFerence

[26], ncbitaxon, Ecocore , BBC-WO = BBC wildlife Ontology, African-Wo = African Wildlife Ontology [62],

GeoSpecies ontology .

IoT Domain Wildlife Domain
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Sensor * * * * *
Observation * * * * *
Observable Property * * * *
Feature of Interest * * * * *
Results * * * * *
ResultsTime * * * * *
TaxonRank * *
TaxonName *
Person *
Image *

3.4 Ontology Implementation

Based on the Ontology Requirements Speci�cation Document (ORSD) crafted in the requirements
phase, we established that the FOO’s scope would include both Internet of Things (IoT) concepts,
such as sensor and its observation, and wildlife aspects, like animals. For example, our datasets
of interest and proposed use cases include data from "sensors" monitoring "animals" and "land".
For instance, an animal GPS collar tracks an elephant, recording geographic location observations
at di�erent and equally spaced time intervals along with temperature readings at each speci�ed
interval. We conducted a search across various scholarly resources and ontology repositories to
identify ontologies relevant to our research. The search included Google Scholar [47], BioPortal
repository, and other pertinent websites. Our selection criteria stipulated that publications must be
published between 2015 and 2020. We used a variety of search terms, such as "sensor data ontology,"
"semantic modeling for sensor data," "semantic IoT data," and "IoT ontology."

We found several domain-speci�c ontologies for modeling sensors and wildlife data. The Semantic
Sensor Network (SSN) ontology describes the sensory observation processes (SSN, SSN2). Within
SSN Version 2, there is a Sensor, Observation, Sample, and Actuation (SOSA) ontology that is suitable
for lighter use without the full SSN [59]. IoT-Lite ontology provides foundational descriptions of
IoT resources, while the Smart Applications REFerence (SAREF) ontology focuses on referencing
IoT appliances [26]. The Extensible Observation Ontology (OBOE) [70] models terms, such as
observation and its measurement. For wildlife ontologies, notable examples include GeoSpecies
ontology , BBC Wildlife Ontology (BBC-WO) (bbc.co.uk/ontologies/wildlife-ontology/), the African
wildlife ontology [63], and an ontology of core ecological entities named Ecocore , catering to
speci�c wildlife aspects depending on the intended purpose and use case. As a result, we manually
�ltered out the most commonly used ontologies for modeling sensor data, such as the SSN [111].
Among the shortlisted ontologies, the SAREF ontology [26], which is designed for smart appliances,
IoT devices, and services; however, it may not adequately model sensor data observations. IoT-Lite
ontology [11] provides a basic framework of classes and properties for describing IoT devices,
sensors, and actuators. However, for our speci�c use cases, we needed more classes to model the
sensor’s observations and associated properties than just the sensors.
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The W3C Web of Things (WoT) ontology (w3.org/TR/wot-thing-description11/) is a �exible and
modular ontology that can be customized to �t di�erent use cases, allowing for interoperability
across various IoT systems and domains. Although it covers di�erent aspects of IoT devices and
services, its �exibility and generality can make adapting to our speci�c requirements challenging.
For instance, the ’Thing’ class in WoT models the IoT device, service, or data source, whereas
the ’Sensor’ class is better suited for modeling sensor observations. The FIESTA-IoT ontology
(iot.ee.surrey.ac.uk/ontology/�esta-iot.owl) primarily focuses on modeling IoT-related concepts
but includes more entities than we need. It incorporates classes from the SSN ontology (Version
1)[23], W3C Web of Things (WoT) Thing Description, and oneM2M standard (onem2m.org). The
IoT-Semantics Ontology is another �exible ontology; however, its lack of su�cient documentation
makes it challenging for developers to adapt.

After conducting an in-depth examination and comparison of contemporary ontologies, we
adopted concepts from SSN ontology (Version 2) [111]. This ontology distinguishes itself from its
modular structure, comprising three integrated ontologies: the original SSN ontology (Version 1), the
Sensor, Observation, Sample, and Actuator (SOSA) ontology [59], and the Quantities, Units, Dimen-
sions, and Types (QUDT) ontology. Such integration makes the SSN ontology (Version 2) well-suited
to our needs. FOO applied the extraction of Ontology Design Patterns (ODPs) as a way of ontology
reuse [38, 88]. FOO extracted SOSA ontology from SSN version 2 using owl:imports. FOO classes
‘foo:Sensor‘, ‘foo:Observation‘, ‘foo:ObservableProperty‘, and ‘foo:FeatureOfInterest‘ were aligned
with the corresponding SOSA classes (‘sosa:Sensor‘, ‘sosa:Observation‘, ‘sosa:ObservableProperty‘,
and ‘sosa:FeatureOfInterest‘) using ‘owl:sameAs‘. FOO directly uses the geolocation points, speci�-
cally longitude and latitude, from the W3C’s Basic Geo (WGS84 lat/long) Vocabulary available at
(w3.org/2003/01/geo/). As elaborated in Section 2.2, our analysis encompasses various ontologies
relevant to wildlife concepts. Our modelling e�orts concentrated on sensor data observations,
geographical locations, data units, and wildlife characteristics, as shown in Table 6.

Sensor data observations: We adopted classes and properties from the SOSA ontology.
Location: We relied on GPS coordinates, as this work focuses on outdoor locations.
Temporal aspects: A timestamp is a crucial element in semantic modeling. This enabled us to

di�erentiate observations within the same dataset and link them to those in other datasets. For
this project, we opted to record the timestamp of each observation using the XML DateTime
data type ( xsd:dateTime). Although OWL-Time ontology can be used to model dates and
times, the SPARQL Time function ful�lls a similar role. Consequently, we decided to omit
the OWL-Time from FOO.

Units of data: To model the units of our observations, we chose to reuse classes from the
Quantities, Units, Dimensions, and Types Ontology (QUDT) [101], which is part of the SSN
(version 2) ontology.

Wildlife features: We explored several wildlife ontologies (see Table 6), including the African
Wildlife ontology [62] and the BBC Wildlife Ontology. Ultimately, we selected the BBC
Wildlife Ontology (WO) for its comprehensive coverage of concepts and properties, such as
the hierarchy of taxonomic ranks encompassing all levels of biological classi�cation. Figure
?? shows the classes reused from the SOSA and BBC wildlife ontology and their relationships,
sharing the common upper class (owl:Thing).

Hence, we created and discussed conceptual models (i.e., diagrams) with ontology stakeholders.
Following the graphical representations, we encoded FOO in Web Ontology Language (OWL),
edited it with Protégé (protege.stanford.edu), and developed pipeline codes in Python to serialise the
datasets populating FOO. We publish and maintain all data and ontological resources in dedicated
GitHub repositories and a website. Figure 3 illustrates the design of the proposed ontology... Table
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7 summarizes its content, including concepts that represent wildlife data generated by sensors and
extracted from data collected during the ontology requirement phase. Speci�cally, FOO includes
data on wildlife species and devices observed during ethnography, such as the Asian elephant and
motion-activated cameras.

Im
p

o
rt

e
d

 o
n

to
lo

g
y
: 

B
B

C
-W

il
d

li
fe

 O
n

to
lo

g
y
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

  
  
 w

o
:<

h
tt

p
s:

//
b

b
c
.c

o
.u

k
/
o

n
to

lo
g

ie
s/

w
il
d

li
fe

-o
n

to
lo

g
y
#

>

R
e

p
ti

ll
ia

E
le

p
h

a
n

ti
d

a
e

P
y
th

o
n

id
a

e
P

ro
b

o
sc

id
e

a
S

q
u

a
n

m
a

ta
A

n
im

a
li

a
  

C
h

o
rd

a
ta

 B
a
s
ic

 G
e
o

 V
o

c
a
b

u
la

ry
  

rd
f:

ty
p

e

fo
o

:m
a
d

e
O

b
s
e
rv

a
ti

o
n

 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

  
  
  
  
  
 

E
N

T
IT

IE
S

R
E

L
A

T
IO

N
S

H
IP

S

rd
fs

:s
u

b
C

la
ss

O
f 

(C
la

ss
e
s)

R
e
la

ti
o

n
sh

ip
s 

b
e
tw

e
e
n

 
E
n

ti
ti

e
s

rd
f:

ty
p

e
 

(i
n

d
iv

id
u

a
ls

)

FO
O

  
In

s
ta

n
c
e

s
B

a
s
ic

 G
e

o
 

V
o

c
a
b

u
la

ry

FO
O

 
o
w

l:s
a
m

e
A

s
w

o

FO
O

 o
w

l:s
a
m

e
A

s
 S

O
S

A
 

fo
o

:T
a

x
o

n
R

a
n

k

w
g

s8
4

_
p

o
s:

S
p

a
ti

a
lT

h
in

g

fo
o

:S
e

n
so

r 

fo
o

:O
b

se
rv

a
ti

o
n

"0
.0

4
"^

^
x

sd
:f

lo
a

t

"2
5

5
.4

0
"^

^
x

sd
:f

lo
a

t

<
h

tt
p

s:
//

w
3

id
.o

rg
/x

x
x
/
fo

o
#

im
a

g
e

0
1

>
^

^
x

sd
:a

n
y
U

R
L

fo
o

:F
a

m
il

y

fo
o

:O
b

se
rv

a
b

le
P

ro
p

e
rt

y
 f

o
o

:o
b

s
e
rv

e
d

P
ro

p
e
rt

y

w
g

s
8
4
_
p

o
s
:l

o
c
a
ti

o
n

w
g

s8
4

_
p

o
s:

lo
n

g

fo
o

:G
P

S
_

ID
fo

o
:S

o
il

_
ID

fo
o

:V
e

g
_

ID
fo

o
:I

m
a

g
e
_

ID

"5
.0

0
"^

^
x

sd
:f

lo
a

t

fo
o

:s
p

e
e
d

fo
o

:t
re

e
_
h

e
ig

h
t

fo
o

:s
il
t

fo
o

:p
a
th

fo
o

:F
e

a
tu

re
O

fI
n

te
re

st

rd
f:

ty
p

e

fo
o

:S
o

il

fo
o

:L
ia

n
a

s
fo

o
:I

m
a

g
e

fo
o

:h
a
s
F

e
a
tu

re
O

fI
n

te
re

s
t

fo
o

:o
b

s
e
rv

e
s

w
g

s8
4

_
p

o
s:

la
t

fo
o

:E
le

p
h

a
sM

a
x

im
u

s
rd

f:
ty

p
e

fo
o

:K
in

g
d

o
m

fo
o

:O
rd

e
r

fo
o

:P
h

y
lu

m
fo

o
:C

la
ss

M
a

m
m

a
li

a

rd
f:

ty
p

e

rd
fs

:s
u

b
C

la
s
s
O

f

Im
p

o
rt

e
d

 X
M

L
 S

c
h

e
m

a

 x
s
d

: 
<

h
tt

p
:/

/.
.w

3
.o

rg
/2

0
0
1
/X

M
L

S
c
h

e
m

a
#
>

F
o

re
s
t 

O
b

s
e
rv

a
to

ry
 

O
n

to
lo

g
y

 
fo

o
: 

<
h

tt
p

s
:/

/w
3
id

.o
rg

/d
e
f/

fo
o

#
>

w
g

s
8
4
_
p

o
s
:<

h
tt

p
:/

/w
3
.o

rg
/2

0
0
3
/0

1
/g

e
o

/w
g

s
8
4
_
p

o
s
#
>

Imported ontology: Sensor Observation Sample and Actuation (SOSA) 

sosa: <http://w3.org/ns/sosa/> 

rd
f:

 <
h

tt
p

:/
w

3
.o

rg
/1

9
9
9
/0

2
/2

2
-r

d
f-

s
y
n

ta
x
-n

s
#
>

rd
fs

: 
<

h
tt

p
:/

/w
3
.o

rg
/2

0
0
0
/0

1
/r

d
f-

s
c
h

e
m

a
#
>

D
ire

ct
 

re
use

 

 o
w

l:
 <

h
tt

p
:/

/w
3
.o

rg
/2

0
0
2
/0

7
/o

w
l#

>

)

Fig. 3. Lightweight version of the Forest Observatory Ontology (FOO), main classes, properties and instances.
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Table 7. Main Classes and relationships from the The Forest Observatory Ontology (FOO), foo=

h�ps://w3id.org/def/foo#

OWL Class Preferred
Label

Description

foo:ElephasMaximus Asian Ele-
phant

Elephas maximus, commonly known as the Asian elephant, is a species of large mammal
native to various regions in South and Southeast Asia, including India, Sri Lanka, Thailand,
and parts of Indonesia. It is distinguished by its smaller ears compared to its African relatives,
and it has a prominent domed head with two hemispherical bulges. The Asian elephant is
classi�ed as Endangered due to signi�cant threats from habitat loss, fragmentation, and
poaching. This species plays a crucial ecological role, aiding in forest maintenance through
seed dispersal and the creation of clearings in dense vegetation.|Bornean elephants exhibit
distinct morphological and behavioural traits compared to mainland Asian elephants, and
their genetic uniqueness emphasises their priority for conservation e�orts. Although they
are considered an evolutionary signi�cant unit requiring tailored conservation measures,
their formal recognition as a subspecies awaits further research. Restricted to about 5%
of Borneo, primarily in Sabah, Bornean elephants typically form family groups of 5 to 20
individuals, occasionally merging into larger herds of up to 200.

foo:Nasalislarvatus Proboscis
Monkey

Nasalis larvatus, aka the proboscis monkey, is a primate species endemic to the island of
Borneo. Characterized by its large, pendulous nose in males, this arboreal monkey primarily
inhabits mangrove forests, riverine, and coastal areas, and is known for its distinct vocal-
izations and swimming abilities. Male proboscis monkeys have notably large noses, which
are believed to have evolved due to their sexually competitive social system. Signi�cant
correlations exist between nose size, body size, testis size, and the number of females in a
male’s harem. This suggests that both male competition and female choice have driven the
evolution of these enlarged noses.

foo:Soil Soil A dataset describing soil properties from organic and mineral soil across various land uses
in Sabah, Malaysia, sampled and measured at the Forest Research Centre Sabah Malaysia.

foo:ManisJavanica Sunda Pan-
golin

Sunda pangolin aka Manis Javanica is a mammal distinguished by its protective armor
of keratin scales, which cover its body except for its belly and face. Native to Southeast
Asia, including Malaysia, Thailand, Indonesia, and Vietnam, this species is adapted to
various habitats, ranging from primary and secondary forests to wetlands, mangroves,
and grasslands. Characterized by its elongated body, small head, and long, prehensile tail,
the Sunda pangolin is primarily nocturnal and has a diet mainly consisting of ants and
termites, which it extracts using its long, sticky tongue. It plays a vital role in its ecosystem
by controlling insect populations. Manis Javanica is a species critically threatened by
poaching and habitat loss. It is one of eight pangolin species, all of which are considered
Vulnerable, Endangered, or Critically Endangered according to the IUCN Red List and listed
in CITES Appendix I. The Sunda pangolin, critically endangered and the only species found
in Malaysia, inhabits Peninsular Malaysia and Malaysian Borneo, including Sabah and
Sarawak. Despite its high protection status in Sabah, where it is (totally protected) under
the Wildlife Conservation Enactment 1997, the species faces severe threats from illegal
wildlife trade and habitat degradation. In 2019, authorities in Sabah seized over 30 tonnes
of pangolin products, highlighting the extensive illicit trade network. The Sunda pangolin
occupies various habitats, from primary and secondary forests to wetlands, mangroves, and
grasslands.

foo:MalayopythonReticulatus Reticulated
Python

Malayopython reticulatus, aka the reticulated python, is a large snake species native to
Southeast Asia. Renowned for its impressive length, it is the longest snake in the world, often
exceeding 6 meters. It inhabits various environments, including rainforests, woodlands, and
plantations, demonstrating adaptability. As a generalist predator, it feeds on many animals,
contributing to its ecological signi�cance.

foo:Sensor Sensor Device, agent (including humans), or software (simulation) involved in, or implementing, a
Procedure. (e.g., Temperature sensor, humidity sensor, motion sensor). In our model, we
have created a unique ID for each sensor based on the platform it is hosted by.

foo:ObservableProperty Observable
Property

An observable quality (property, characteristic) of a FeatureOfInterest. (e.g., Temperature,
humidity, presence)

foo:Observation Observation Act of carrying out an (Observation) Procedure to estimate or calculate a value of a property
of a FeatureOfInterest (e.g., Elephant). Observation can be seen as a placeholder that links
relevant information together. In our ontology, observation can be considered an ID for
each data record.

foo:FeatureOfInterest Feature of
Interest

The thing whose property is being estimated or calculated in the course of an Observation
to arrive at a Result, or whose property is being manipulated by an Actuator, or which is
being sampled or transformed in the act of Sampling. In the context of FOO, Soil is the
FeatureOfInterest. Most of the sensors are used to observe a property (phenomenon) of a
location (e.g., the moisture of soil).
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3.5 Ontology Evaluation

We investigated various ontology evaluation techniques and discovered that ontology evaluation
primarily focused on assessing quality and accuracy during and after its development [82]. Raad et al.
[89] identi�ed four ontology assessment methods from the literature: (i) gold standards, (ii) corpus-
based, (iii) criteria-based, and (iv) task-based. McDaniel et al. [72] described ontology evaluation
as a two-fold process, namely, the glass-box and black-box approaches. The former evaluates the
ontology incrementally throughout its lifecycle, which is also known as component evaluation. By
contrast, the latter is a task-based approach associated with evaluating an ontology’s performance
in a speci�c task or application [73]. The most suitable method for evaluating an ontology depends
on the intended purpose. Our proposed ontology, FOO, is designed to support applications that
integrate heterogeneous data sources for decision-making. Thus, we initially evaluated structure,

semantic representation, and interoperability. To assess the structure and semantic representation,
we selected the open-source online scanner, Oops! (oops.linkeddata.es), as the baseline, and the
domain expert feedback for evaluating semantic representation. Subsequently, we applied the
black-box (i.e., task-based) approach to assess the applicability and interoperability of knowledge
graphs (i.e., FOO instantiated with heterogeneous RDF datasets), focusing on how well it addresses
use cases and their e�ciency in data exchange between di�erent computer systems. The �nalized
details regarding the validation criteria after implementation are listed in Table 9.

3.5.1 FOOPS! Evaluation. FOOPS! [44] is a web service created to evaluate the compliance of
vocabularies and ontologies with the FAIR principles, making sure that the ontology under eval-
uation is Findable, Accessible, Interoperable and Reusable. FOOPS! performs a series of checks to
ensure compliance with the FAIR principles. For the Findable dimension, it conducts nine checks
that assess whether the ontology URI is persistent and resolvable, includes a resolvable version
IRI that is unique for each version and contains minimum descriptive metadata such as title and
description. Moreover, it veri�es if the ontology pre�x and namespace are registered in external
registries like pre�x.cc (pre�x.cc/foo) and Linked Open Vocabularies (LOV) (lov.linkeddata.es/). In
the Accessible dimension, three checks ensure proper content negotiation with at least one RDF
serialization and HTML format and verify that the URI protocol is open and accessible. The Inter-

operable dimension includes three checks that determine if the vocabulary references pre-existing
vocabularies within its metadata annotations, classes, properties, or data properties. Finally, in the
Reusable dimension, nine checks verify the availability of human-readable documentation, ensure
the presence of provenance metadata, license information, and detailed vocabulary metadata, and
check that ontology terms are well-described with labels and de�nitions. Our ontology FOO passed
the test and scored a respected 78%, outperforming SOSA ontology with a score of 67%. Figure 4
shows a screenshot of the test results of both SOSA and FOO.

3.5.2 Evaluation with SPARQL �eries. To evaluate FOO with SPARQL queries, We �rst needed to
understand the structure of the ontology by inspecting its classes, properties, and instances. We
then formulated SPARQL queries to explore FOO and subsequently evaluated the performance of
each query. The table presented in 8 is a summary of the performance metrics for various SPARQL
queries used to evaluate FOO. Each row in the table provides a concise description of a speci�c
query’s function, such as retrieving all classes, properties, instances, triples, or labels within the
ontology. The performance of each query is evaluated based on three key metrics: latency, precision
2, and recall 3. Latency, measured in seconds, indicates the time taken to execute the query. As
a negative-oriented metric, lower latency signi�es faster response times. Precision and recall are
used to evaluate the accuracy of query results against expected results (i.e., ground truth) retrieved
from FOO beforehand. Precision measures the ratio of relevant instances correctly retrieved by the
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SOSA FOO

Fig. 4. FOOPS pitfall scanner results of our ontology FOO compared to SOSA ontology.

query to the total instances retrieved, re�ecting the accuracy of the results. Recall, on the other
hand, measures the ratio of relevant instances retrieved to the total number of relevant instances
available, indicating the completeness of the query results. A score of 1 in both precision and recall
was achieved. It means that all retrieved results are relevant (precision) and all relevant results
have been retrieved (recall) and that’s justi�able because the ontology and queries were perfectly
aligned. This executable notebook shares all the executable codes that queried FOO from its URL.

Table 8. Performance for SPARQL�eries Latency in Seconds

Description SPARQL Query Latency (s)

Retrieve all classes in the ontology SELECT DISTINCT ?class WHERE {?class rdf:type

owl:Class .}

0.0067

Retrieve all properties in the

ontology

SELECT DISTINCT ?property {?property rdf:type

owl:ObjectProperty .}

0.0090

Retrieve all instances of a speci�c

class

SELECT DISTINCT ?instance {?instance rdf:type

foo:Sensor .}

0.0076

Retrieve labels for all classes SELECT DISTINCT ?class ?label {?class rdf:type

owl:Class . ?class rdfs:label ?label .}

0.0091

Retrieve instances with speci�c

properties

SELECT * {?instance rdf:type foo:Observation ;

foo:madeBySensor foo:Jasmin ;

foo:hasFeatureOfInterest ?FeatureOfInterest .}

0.0080

Retrieve all instances and their

labels

SELECT ?instance ?label {?instance rdf:type

foo:Sensor . ?instance rdfs:label ?label .}

0.015

Retrieve instances with their labels

and de�nitions

SELECT * {?FeatureOfInterest rdf:type

foo:FeatureOfInterest; rdfs:label ?label ;

skos:definition ?definition .}

0.013

rdf: <http://w3.org/1999/02/22-rdf-syntax-ns#> owl: <http://w3.org/2002/07/owl#> foo: <https://w3id.org/def/foo#>

The precision metric is calculated as:

Precision =

True Positives

True Positives + False Positives
(2)
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Table 9. FOO’s Validation a�er Implementation

Criteria Results FOOP! Pellet [99] Bio-Scientists

Consistent There were no con�icts between FOO requirements. ✓ ✓ ✓

Veri�able FOO was able to answer complex questions. ✓

Clear Each entity has one precise meaning. ✓ ✓

Comprehensible The stakeholders understood FOO requirements. ✓

The recall metric is calculated as:

Recall =
True Positives

True Positives + False Negatives
(3)

3.5.3 FOO Validation. We returned to our participants with the FOO documentation, themes, CQs
that FOO is expected to answer. We also provided them with access to an interactive dashboard to
visualize elephant movements. Table 9 summarizes the evaluation outcomes.

3.6 Ontology Publication and Maintenance

When creating ontologies, it is a common practice to use editors to export them in formats such
as Turtle, RDF/XML, and JSON-LD. However, these formats can be complex to understand and
use. To address this challenge, researchers can turn to articles or technical reports. However, these
sources often prioritize scienti�c contributions to the detailed de�nition of each ontology entity. An
alternative solution is to document ontology entities. The Semantic Web community has developed
tools that extract annotation properties from OWL ontologies and generate HTML documentation
for classes, properties, and instances. This approach can aid in making ontologies more accessible
and understandable [25].

We selected WIZARD for DOCumenting Ontology (WIDOCO), a tool based on the Live OWL
Documentation Environment (LODE), which is utilized within the seven-star linked data model
platform [43, 84], to document FOO. WIDOCO enabled us to generate HTML pages that present
human-readable and machine-readable visualizations of FOO along with Oops! evaluation. More-
over, we used OnToology (ontoology.linkeddata.es) [5] to secure a persistent identi�er for FOO
documentation (https://w3id.org/xxx/xxx#), ensuring it can be reliably referenced and accessed
over time under the Creative Commons 4.0 International SA (CC BY-SA 4.0) license. We have
made FOO and its associated documentation available on FOO’s GitHub page to facilitate collabo-
ration and interoperability with other software applications within the research community and
for maintenance purposes. Adhering to W3C best practices, we ensured FOO’s accessibility in
various interoperable formats on the web and deposited it in the BioPortal repository. FOO and
its documentation are accessible online through dedicated websites. Figure 5 conveys screenshots
from the websites.

4 FOODS

This section describes our approach to modelling wildlife datasets using semantic data modelling.
First, by leveraging FOO, we constructed four distinct knowledge graphs from the datasets of
interest. Next, we demonstrate how to connect and query knowledge graphs (i.e., data sources) on
a single display. This approach enabled the representation and integration of diverse wildlife data
sources.

4.1 Overview

We developed FOO to create four distinct wildlife knowledge graphs for a wildlife research facility.
Figure 6 shows the relationships between the proposed ontology (FOO) and wildlife knowledge
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Fig. 5. The screenshots show FOO’s interactive website and documentation. They feature interactive HTML

elements that detail the development process and guidelines for usage, along with links to downloadable

datasets and the GitHub repository. The middle screenshot is a conservation Artificial Intelligence (AI) chatbot

embedded in FOO’s website to ease question-answering and granular data acquisition. The documentation

contains entities’ definitions and links to the ontology file, downloadable in multiple formats.

graphs. To transform four wildlife datasets—encompassing soil data, vegetation and site habitats,
GPS collar data, and trail camera images into knowledge graphs, we used the Matey web user
interface (rml.io/yarrrml/matey), powered by YARRRML (Yet Another RDF Rules Language) [54,
109]. YARRRML (rml.io/yarrrml) speci�es a set of pre�xes to create namespaces and o�ers mapping
rules to generate RDF triples from the data sources. In addition, we developed modular pipelines to
manage large data volumes, ensuring data serialization with names or schemas that align with those
de�ned in FOO. Figure 6 illustrates the connections between FOO and wildlife datasets. Resources
related to this study, including the ontology and code, are available on the proposed website.

GPS Collar Knowledge 

Graph

Trail 

Images  

Knowledge 

Graph

Vegetation 

Knowledge 

Graph

Soil Knowledge Graph

Forest 

Observatory 

Ontology (FOO)

Observation

Animal

Time

Location

Location

Observation

Observation

Observation

Fig. 6. Main related concepts between FOO and the proposed knowledge graphs

4.2 Soil Knowledge Graph

Based on the experience drawn from ontology development, we decided to outsource the soil data.
The selected dataset contained characteristics and nutrient content for logged and unlogged tropical
forests in Sabah, Malaysia. Soil properties were obtained using buried ion-exchange membranes,
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and nutrient levels were measured. These data were made possible by the BALI collaboration,
which was funded by the UK’s Natural Environment Research Council (NERC) [34]. YARRRML
(Yet Another RDF Rules Language) syntax was used to de�ne RDF mappings in a human-readable
format. YARRRML speci�es pre�xes to de�ne namespaces and shorthand notations for Uniform
Resource Identi�ers (URIs). The mappings represented in listings 1, 2 de�ned the rules for the
"Observation" entity. They speci�ed the data source as "soil.csv csv" and mapped the observation
properties using the "s" subject template, which combines the foo namespace with the value of
the "Identi�er" column. The po (predicate, object) mapped section lists the properties and their
corresponding values for observation.

Listing 1. Soil data prefixes

foo : " h t t p : / / w3id . org / xxx / xxx # "

xsd : " h t t p : / / w3 . org / 2 0 0 1 / XMLSchema# "

s o s a : " h t t p : / / w3 . org / ns / s o s a / "

Listing 2. Soil data YARRRML

mappings :

s o i l :

s o u r c e s :

− [ ' s o i l . c sv ~ csv ' ]

s : foo : $ ( I d e n t i f i e r )

po :

− [ a , s o s a : O b s e r v a t i o n ]

− [ foo : S i t e , $ ( S i t e ) ]

− [ foo : Land_Use , $ ( Land_Use ) ]

− [ foo : Plot_Name , $ ( Plot_Name ) ]

− [ foo : Subp lo t , $ ( S u b p l o t ) ]

− [ foo : Horizon , $ ( Horizon ) ]

Figure 7 shows the classes and instances distribution for the soil knowledge graph. Meanwhile,
Table 10 describes them. Table 11 provides a descriptive analysis of the modelled data.

Table 10. Soil data set variables Description

Name Instance of Class Data Type Description

foo:Identi�er foo:Observation rdf:type Unique Sample Identi�er
foo:site foo:ObservableProperty xsd:string Geographical area/site which samples were taken from
foo:land_Use foo:ObservableProperty xsd:string Land use of the study plots: Unlogged tropical forest, Logged tropical

forest or Oil palm plantation
foo:plot_Name foo:ObservableProperty xsd:string Name of the 1 Ha plot sampled
foo:subplot foo:ObservableProperty xsd:string Number of the subplot sampled within each 1 Ha plot
foo:horizon foo:ObservableProperty xsd:string Soil horizon sampled
Soil_Moisture foo:ObservableProperty xsd:�oat Gravimetric soil moisture
foo:horizon_Depth foo:ObservableProperty xsd:�oat Depth of the organic soil horizon sampled
foo:bulk_Density foo:ObservableProperty xsd:�oat Measured Bulk Density of soil sample
foo:soil_pH foo:ObservableProperty xsd:�oat Measured pH of the soil sample
foo:total_C foo:ObservableProperty xsd:�oat Total carbon content of the soil sample
foo:total_N foo:ObservableProperty xsd:�oat Total nitrogen content of the soil sample
foo:inorganic_P foo:ObservableProperty xsd:�oat Inorganic/soluble phosphorus concentration of the soil sample
foo:C:N foo:ObservableProperty xsd:�oat Carbon to nitrogen ratio of the soil sample
foo:C:P foo:ObservableProperty xsd:�oat Carbon to inorganic phosphorus ratio of the soil sample

4.3 Vegetation Knowledge Graph

These datasets contained records of plants from 49 plots in Sabah, Malaysian Borneo, spanning 14
fragmented forest areas and four continuous forest sites. The vegetation data collected from two to
three sites in each of the 18 locations included information on living plants and dead trees. The data
encompassed plant properties, measures of forest structure, and metrics of forest fragmentation in
the surrounding landscape of the plots. The primary objectives of collecting these data were to
support research focused on (i) understanding the factors driving the spread of exotic plant species
in fragmented forest areas, and (ii) evaluating the e�ectiveness of conservation set-asides in palm
oil plantations to preserve carbon storage and plant diversity [35]. Figures 8 and Table 12 illustrate
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Fig. 7. Soil Knowledge Graph

Table 11. Soil data descriptive analysis

Soil_Moist. Horizon_Depth Bulk_Density Soil_pH total_C total_N Inorganic_P C N C:P

Count 222 222 222 222 222 222 222 222 222
Mean 26.71 3.74 0.69 5.59 6.04 0.39 33.97 15.04 0.27
STD 9.37 1.91 0.28 0.85 4.61 0.21 51.56 3.52 0.16
MIN 7.62 0.20 0.17 3.22 0.83 0.09 3.77 6.65 0.01
25% 20.56 2.35 0.49 4.92 3.74 0.27 14.34 12.96 0.17
50% 26.43 3.50 0.66 5.58 4.94 0.34 20.49 14.46 0.24
75% 31.91 5.00 0.86 6.32 6.33 0.43 32.91 16.47 0.33

MAX 65.10 9.50 1.84 7.42 33.45 1.49 571.25 39.59 0.89

the vegetation knowledge graph modeling and its descriptive data analysis, respectively. The RDF
mappings were modeled in a human-readable format using YARRRML (Yet Another RDF Rules
Language) syntax. These mappings de�ned rules for the "Observation" entity by specifying the
data source as "veg.csv csv" and mapped observation properties through the "s" subject template,
which merges the FOO namespace with values from the "Site_name" column. The po (predicate,
object) map section enumerates the properties and their corresponding values for the observation.
This mapping approach was similarly applied to the GPS collar and trail image data.

Fig. 8. Vegetation Knowledge Graph
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Table 12. Lianas data descriptive analysis

Tree_indv_no Tree_dbh_cm Tree_ht_m Tree_N_lianas Liana_dbh_cm Subplt_radi._m ID1

Count 3070.00 3070.00 1103.00 3070.00 3070.00 3070.00 3070.00
Mean 1984.24 30.09 20.05 5.74 3.91 25.51 1535.50
STD 1132.74 17.66 10.73 4.65 2.27 4.97 886.38
MIN 2.00 10.00 3.00 1.00 2.00 20.00 1.00
25% 1028.00 17.50 12.00 3.00 2.40 20.00 768.25
50% 2094.50 26.30 17.00 4.00 3.20 30.00 1535.50
75% 3022.00 37.00 25.00 7.00 4.60 30.00 2302.75

MAX 3895.00 140.00 60.00 31.00 21.80 30.00 3070.00

Table 13. GPS Collar Sensor Metrics

Name Instance of Class Data Type Description

foo:ID foo:Observation rdf:type A unique identi�er for each GPS collar sensor observation.
foo:localDate foo:ObservableProperty xsd:date The local date in Sabah, Malaysia, when the GPS collar records its readings.
foo:localTime foo:ObservableProperty xsd:time The local time in Sabah, Malaysia, when the GPS collar records its readings.
foo:gMTDate foo:ObservableProperty xsd:date The date in GMT for standardising time across data collections.
foo:gMTTime foo:ObservableProperty xsd:time The time in GMT for standardising time across data collections.
pos:lat wgs84_pos xsd:�oat Latitudinal coordinate of the elephant at the moment of data collection.
pos:long wgs84_pos xsd:�oat Longitudinal coordinate of the elephant at the moment of data collection.
pos:alt wgs84_pos xsd:�oat Altitude of the elephant in meters at the moment of data collection.
foo:temperaturefoo:ObservableProperty xsd:double Estimated temperature of the elephant in Celsius at the moment of data collec-

tion.
foo:speed foo:ObservableProperty xsd:�oat Speed of the elephant at the moment of data collection.
foo:direction foo:ObservableProperty xsd:�oat Direction of elephant travel at the moment of data collection.
foo:distance foo:ObservableProperty xsd:�oat Distance (m) travelled from the last to the current data collection point.
foo:count foo:ObservableProperty xsd:integer Observation count per data set.
foo:hdop foo:ObservableProperty xsd:integer Horizontal Dilution of Precision (HDOP), indicating GPS accuracy in latitude

and longitude. Lower values indicate better precision.

4.4 GPS Collar Knowledge Graph

The GPS collar datasets were acquired from the Danau Girang Field Centre (DGFC). These sets
included data from GPS collars �tted on twenty-two adult Asian elephants, encompassing 14
females and eight males. The �tting process involved a collaborative e�ort among researchers,
trackers, and a wildlife veterinarian. Supplied by Africa Wildlife Tracking, the collars weighed
approximately 14 kg and were equipped with a Global Positioning System (GPS) receiver and
a Very High Frequency (VHF) transmitter. Between 2012 and 2018, these devices systematically
recorded data on time, location, and temperature, among other variables, at two-hour intervals, as
detailed in Table 13 [36, 69]. Figure 9 shows the distribution of classes and instances within the
collar knowledge graph. Owing to the sensitive nature of the data and the risk of poaching, it will
not be made publicly accessible, prioritizing the protection of these endangered species [36, 69].
In addition, Figure 10 exempli�es how a sensor’s observations (GPS collar named after elephant
Abaw) were connected to SOSA and BBC-wo ontologies.

4.5 Camera Trap Images Knowledge Graph

A dataset containing 1000 images of Asian elephants was modeled. Prior to their transformation
into RDF graphs, the metadata of the images were extracted and stored as CSV �les. The RDF
dataset includes unique paths that point to image locations on a protected cloud server. Figure 11
and Table 14 illustrate the results of the semantic modeling and the data entities, respectively.
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Fig. 9. GPS Collar knowledge graph

Fig. 10. Integrating the GPS collar data with other components involves a set of blocks. The initial block

corresponds to the data observations, followed by the second block, which links the SOSA sensor via an

rdf:type observation. The third block connects the interest category feature to the Elephas Maximus (Asian

elephant) instance type. Finally, the fourth block combines the BBC wildlife ontology by formally defining

Elephas maximus as an elephant.

Table 14. Trail Camera’s metrics

Namespace Instance of Class Data Type Description

foo:DGFC_ID foo:Observation rdf:type Unique Sample Identi�er
foo:name DGFC:Name xsd:string The named assigned to an image at collection time
foo:path foo:ObservableProperty xsd:string The URI to point at the location of the image in secure cloud
foo:localDate foo:ObservableProperty xsd:date The current local date in Sabah, Malaysia when the GPS collar collects its readings.
foo:localTime foo:ObservableProperty xsd:time The current local time in Sabah, Malaysia when the image collects its readings.
foo:model foo:ObservableProperty xsd:string The model of the trail camera used to capture the image
foo:make foo:ObservableProperty xsd:string The make of the trail camera used to capture the image

4.6 FOODS

The overall architecture and elements of FOODS are depicted in Figure 12. In this system, wildlife
data collected from various research activities are managed by a data manager, who assigns each
dataset to an RDF graph using its speci�c mapper code. These RDF graphs, along with the Forest
Observatory Ontology (FOO), are stored together in a uni�ed database known as a triple store.

The process of creating a knowledge graph involves mapping data from the source schema—the
schema of the original data source—to the target schema—the schema of the knowledge graph. This
target schema is represented here by RDF, which is a structured format governed by a vocabulary or
ontology [107]. The role of the ontology is critical as it serves to interlink these diverse datasets. It
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Fig. 11. Camera Trap images knowledge graph conceptual model

achieves this by using a common URL for each dataset, which referenced their conversion into RDF
format. Once these RDF formatted datasets are merged within the same triple store, they inherently
connect and form a uni�ed graph. This uni�ed graph not only maintains data integrity but also
enhances data interoperability across di�erent research datasets, thereby creating a comprehensive
resource for ecological research.

Furthermore, the knowledge graphs are not only stored but also published as URLs, which can
be accessed and parsed using libraries such as RDFLib in Python environments like Colab. This
accessibility allows for easy integration with existing data analysis tools and enhances collaborative
opportunities across the scienti�c community. To interact with and use these knowledge graphs,
we employ the SPARQL Protocol and RDF Query Language [4], which facilitates various operations
such as data mapping, virtualization, and interactive visualization. This query language enables
authorized users— including wildlife researchers, data scientists, and developers— to access and
manipulate the graphs.

FOODS provide a powerful foundation for integrating Arti�cial Intelligence (AI) technologies to
enhance the capabilities of intelligent systems. The formal, logic-based representation of knowledge
in the knowledge graph enables the application of semantic reasoning techniques, such as rule-based
inference and probabilistic reasoning, to derive new insights and make inferences. Natural language
processing can be used to extract entities, relationships, and attributes from unstructured text and
populate the knowledge graph, while the graph structure can also improve NLP tasks by providing
valuable contextual information. Machine learning models can be trained on the structured data in
the knowledge graph to perform classi�cation, prediction, and recommendation, with the relational
features enhancing the accuracy and interpretability of these Arti�cial Intelligence (AI) models.

The �exible knowledge representation in the graph also enables the use of deep learning tech-
niques to learn vector representations of entities and relationships, improving reasoning and
inference. Furthermore, the semantic nature of knowledge graphs can help make Arti�cial Intelli-
gence (AI) systems more transparent and explainable by tracing the reasoning behind outputs using
the encoded relationships and logical rules. Knowledge graphs can integrate diverse data sources,
and techniques like entity resolution and data fusion can be applied to maintain data quality and
consistency. The synergistic combination of FOODS and Arti�cial Intelligence (AI) technologies
is a key driver of the growing �eld of "Contextual AI", enabling more intelligent, contextual, and
explainable systems.

, Vol. 1, No. 1, Article . Publication date: July 2024.



F
O
O
D
S
:O

n
to
lo
g
y
-b
a
sed

K
n
o
w
led

g
e
G
ra
p
h
s
fo
r
F
o
rest

O
b
serva

to
ries

25

Fig. 12. This figure shows the management of wildlife research data through RDF graph assignment by a data manager, with RDF graphs and the ontology

FOO stored in a unified database (triple Store). It highlights the process of knowledge graph generation as a mapping between source and target schemas,

focusing on RDF for the target schema. The division of FOODS into four distinct graphs for di�erent data types (e.g., soil knowledge graph), stored separately,

on the same platform, and published online.
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Education Occupation Experience

P1 4 4 5 5 4 5 4 5 5 Master’s Researcher 4 to 10

P2 4 4 2 3 5 4 3 4 5 Master’s Researcher 4 to 10

P3 4 5 3 4 4 4 1 5 4 Master’s Researcher 4 to 10

P4 5 5 4 5 5 4 2 5 5 Doctorate Researcher 4 to 10

P5 5 5 4 5 5 4 3 5 5 Master’s Data Scientist 4 to 10

P6 5 5 5 5 5 5 4 4 5 Master’s Researcher 1 to 3

P7 5 4 4 5 5 4 3 5 5 Bachelor’s Data Manager 11 to 20

P8 5 4 3 5 4 4 3 5 5 Doctorate Researcher 4 to 10

P9 3 3 3 3 4 3 3 4 3 Doctorate Conservation Biologist 4 to 10

Table 15. Usability study results. (1= Strongly Disagree), (2 = Disagree), (3= Neutral), (4= Agree), (5= Strongly

Agree). Q1. I feel confident in the tool’s ability to merge and manage data from multiple sources. Q2. The tool

is useful in answering questions from di�erent data sets. Q3. Learning to use the data integration tool can be

easy. Q4. The tool’s performance (speed, stability) meets my expectations. Q5. Integrating data using this

tool saves me time. Q6. The user interface of the data integration tool is clear and understandable. Q7. I

require technical support frequently when using this data integration tool. Q8. The tool provides clear

visualization of di�erent animals’ movements. Q9. I am satisfied with how the data integration tool handles

complex data sets.

5 FOODS EVALUATION

This section assesses FOODS using a task-based approach. To evaluate the usefulness of our
proposed tool, we conducted a usability study involving nine domain experts to assess system
performance; six of these experts are related to DGFC and had participated in the discussion groups
during the ontology requirement gathering phase. We then discuss three use cases—5.2, 5.3, and
5.4—derived from the requirements outlined in Section 3.3. We conducted an in-depth evaluation
of the third use case (5.4), as it encapsulates a real-life scenario. This evaluation highlighted the
primary bene�ts of FOODS, particularly through the extraction of several competency questions
from use cases.

5.1 Domain Experts Evaluation

The usability study for testing FOODS was judged by the presence of a conservation biologist among
the participants. Participants were provided presentations about the dashboard and how to query
and analyze the knowledge graphs. Responses were quanti�ed on a Likert scale from 1 (Strongly
Disagree) to 5 (Strongly Agree) across several aspects such con�dence in the tool, its usefulness,
ease of learning, performance, time e�ciency, UI clarity, need for technical support, visualization
quality, and data handling satisfaction. Table 15 shows participant feedback on our proposed FOODS
across various dimensions. We analyzed the results and visualized them, reducing the dimensions
to con�dence, ease of use, learning curve, performance, and data handling capabilities for simplicity
(Figure 13).

5.2 Use Case 1: Elephants spending time together

Elephants, as mammals, maintain connections with their families and interact with elephants
from other herds. They engage in activities such as traveling, foraging, and socializing. Their
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Fig. 13. Box plot representation of usability ratings across five key metrics (Confidence, Ease of Use, Learning

Curve, Performance, Data Handling) as evaluated by participants in a usability study. Each box indicates the

interquartile range (IQR) with the median highlighted, encapsulating the central tendency and dispersion of

ratings, thus providing insights into the tool’s perceived e�ectiveness and user satisfaction.

interactions in the wild can be complex and vary based on factors, such as age, sex, and familial ties.
Researchers have employed GPS collars and motion-activated trail cameras to observe elephant
behavior and track their movements in their natural habitat. Understanding the migration patterns
of elephants in Sabah forest is vital for shaping forest management strategies. It helps to identify key
habitats for conservation, reduces human-elephant con�icts, and guides the allocation of resources
such as deploying rangers and �tting motion-activated cameras. These patterns reveal the areas
where elephants move and �nd essential resources, allowing for focused conservation initiatives,
strategies to minimize con�icts, and e�ective usage of anti-poaching resources. Moreover, it enables
researchers to deduce when di�erent elephants spend time together. For example, observing two
elephants traveling or foraging in the same geographic area could indicate their social interactions.
Access to data from GPS collars, soil sensors, and camera traps collectively aids researchers in
understanding elephant social dynamics and migration patterns. To illustrate this concept, we
formulate the SPARQL query in 3. It shows how to select observations of certain elephants based
on a geospatial criterion—speci�cally, identifying observations within a 5-kilometer radius of the
Lower Kinabatangan Wildlife Sanctuary on January 1, 2023. This query is structured to work
within the constraints of SPARQL’s capabilities, assuming the absence of direct support for complex
geospatial functions or extensions, such as GeoSPARQL.

5.3 Use Case 2: Salt licks locations

Salt licks, also known as mineral licks, are natural deposits of salts and minerals that animals
consume as essential nutrients. In Sabah, several protected areas, such as the Danum Valley
Conservation Area, Tabin Wildlife Reserve, and Maliau Basin Conservation Area, harbor salt licks
that attract elephants and other wildlife species. The exact locations of these salt licks may be kept
con�dential to prevent disturbance or exploitation of wildlife. Elephants can obtain vital minerals
and nutrients from salt licks, which may not be readily available in their regular diet. However,
excessive use of salt licks can lead to detrimental e�ects such as overgrazing and soil erosion,
which can harm the surrounding ecosystem. Having a tool that provides access to curated and
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semantically integrated data about elephant GPS locations and information about salt lick areas,
including soil conditions and vegetation, can empower wildlife conservationists to make informed
decisions to protect the natural habitats and resources of wildlife. The SPARQL query listed in
Listing (4) allows users to select elephants observed in the Danum Valley and gather information
about salt licks in the area. In this use case, the sensor observations include the name of the elephant,
which can be selected in the query.

Listing 3: Retrieve observations of elephants (?elephantGPS) and images (?image) recorded
on January 1st, 2023, within a 5-kilometer radius of the Lower Kinabatangan Wildlife
Sanctuary.

SELECT ∗ {

? e lephantGPS a s o s a : O b s e r v a t i o n ;

foo : l o c a l D a t e " 2023 −01 −01 " ^^ xsd : d a t e ;

pos : long ? long ;

pos : l a t ? l a t .

? image a wo : Image ;

foo : l o c a l D a t e ? Date .

# E s t ima t e l o c a t i o n o f t h e Lower Kinabatangan W i l d l i f e S an c t ua ry

BIND ( 5 . 4 0 AS ? t a r g e t L a t ) # T a r g e t l a t i t u d e

BIND ( 1 1 8 . 0 8 AS ? t a r g e t L o n g ) # T a r g e t l o n g i t u d e

# C a l c u l a t e l a t i t u d e and l o n g i t u d e bounds f o r a 5km r a d i u s

# Note : The s e a r e rough a p p r o x ima t i o n s

BIND ( ? t a r g e t L a t − ( 5 / 1 1 1 ) AS ? minLat )

BIND ( ? t a r g e t L a t + ( 5 / 1 1 1 ) AS ? maxLat )

BIND ( ? t a r g e t L o n g − ( 5 / ( 1 1 1 ∗ COS ( RADIANS ( ? t a r g e t L a t ) ) ) ) AS ? minLong )

BIND ( ? t a r g e t L o n g + ( 5 / ( 1 1 1 ∗ COS ( RADIANS ( ? t a r g e t L a t ) ) ) ) AS ? maxLong )

FILTER (

? l a t >= ? minLat && ? l a t <= ? maxLat &&

? long >= ? minLong && ? long <= ? maxLong ) }

Listing 4: Assuming that the Danum Valley has salt licks and we want to formulate a
SPARQL query to select elephants observed at the Danum Valley and gather information
about the salt licks in the area.

SELECT ? e l e p h a n t ? e lephantGPS ? s a l t L i c k ? s a l t L i c k L o c a t i o n ? s a l t L i c k A r e a {

# S e l e c t o b s e r v a t i o n s o f e l e p h a n t s w i th GPS c o o r d i n a t e s

? e lephantGPS a s o s a : O b s e r v a t i o n ;

foo : l o c a l D a t e ? d a t e ;

pos : long ? e l ephantLong ;

pos : l a t ? e l e p h a n t L a t .

# F i l t e r o b s e r v a t i o n s t o t h o s e w i t h i n t h e Danum Va l l e y

FILTER ( ? e l e p h a n t L a t >= DanumValleyMinLat && ? e l e p h a n t L a t <= DanumValleyMaxLat &&

? e lephantLong >= DanumValleyMinLong && ? e lephantLong <= DanumValleyMaxLong )

# S e l e c t s a l t l i c k s and t h e i r l o c a t i o n s i n t h e Danum Va l l e y

? s a l t L i c k a s a l t l i c k : S a l t L i c k ;

s a l t l i c k : l o c a t i o n ? s a l t L i c k L o c a t i o n ;

s a l t l i c k : a r e a ? s a l t L i c k A r e a . }

5.4 Use Case 3: Rescuing the injured elephant

Numerous elephants in the Kinabatangan region are equipped with GPS collars to track and monitor
their movements. These collars are named after the elephants to which they are attached (e.g.,
Jasmin, Seri, Sandi, etc.). Bioscientists regularly access and visualize real-time data from the collars
and store historical data for later analysis. During one such analysis, a chief scientist observed an
unusual pattern in the GPS data for elephant Jasmin; the observations were repeated at the exact
location for two days. Consequently, a wildlife o�cer was dispatched to check Jasmin, leading to
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the discovery that the elephant was injured by a snare near an oil palm plantation. The o�cer
promptly noti�ed the manager, who then contacted a veterinarian to rescue Jasmin.

The proposed solution involves designating predetermined geographical boundaries. If an animal
is found to have crossed these boundaries, it should be treated as a potential danger that may
necessitate intervention. Currently, our system uses historical data due to availability. However, at
the reproduction level, our system can stream real-time data from sensors into our pipeline codes
for transformation into RDF.

We developed such use cases to evaluate the proposed knowledge graphs by focusing on three
main tasks: integrating heterogeneous wildlife data from various sources, providing precise and
immediate data retrieval, and demonstrating the ability to deduce novel information through reason-
ing techniques. These use cases served as benchmarks to assess the performance and e�ectiveness
of the knowledge graphs in achieving these objectives. We derived four competency questions
based on the third use case, Listing (5.4), which depicts a real-life scenario. These questions were
formulated to evaluate the e�ectiveness of the knowledge graphs in providing accurate answers.
CQ1: What are elephant Jasmin’s observations between 2012-02-07 and 2012-02-15?
CQ2: When did elephant Jasmin go near the plantation on 2012-02-07, and how close was it?
CQ3: What are the soil metrics near the elephant Jasmin?
CQ4: What are the other elephants near the palm oil plantations?

The �rst query in Listing (5), investigates how GPS collar information can be merged with
camera-trap images to authenticate elephant identities and assess the urgency of incidents. Listing
(6) aims to elucidate elephant behaviors, such as foraging and socializing. Listing (7) delves into
the signi�cance of soil conditions near elephant locations, which can in�uence their speed and
movement, for instance, by causing their legs to become stuck in mud if the soil is wet. Listing
(8) leverages the reasoning capabilities of Semantic Web technologies to introduce assertive rules
into data. For instance, a logical rule might stipulate that if a snare injures one elephant, the other
nearby elephants could also be at risk. We used Federated SPARQL queries to interrogate the
knowledge graphs, enabling us to retrieve answers from any integrated data source within the
FOO. Responses were obtained from relevant knowledge graphs, including those containing data
from the GPS collar and soil datasets incorporated into FOO. Sample SPARQL queries are provided,
and a comprehensive description of the competency questions, queries, and their corresponding
answers can be accessed on the ontology website and its GitHub repository.

Listing (5)What are Jasmin’s observations be-

tween 2012-02-07 to 2012-02-15?

SELECT ∗

{ GRAPH <urn : Jasmin > {

? s DateTime : gMTDate ? d a t e ;

foo : D i r e c t i o n ? J a s m i n D i r e c t i o n ;

foo : HDOP ? JasmintHDOP ;

foo : Temperature ? JasminTempera ture ;

pos : a l t ? J a s m i n A l t i t u d e ;

pos : long ? long ;

pos : l a t ? l a t ;

FILTER ( ? d a t e >= " 2012 −02 −07 " ^^ xsd : d a t e

&& ? d a t e <= " 2012 −02 −15 " ^^ xsd : d a t e ) } }

Listing (6) When did Jasmin go near the plan-

tation on the 2012-02-15 and how close it

was?

SELECT DISTINCT ? d a t e ? JasminTime ? D i s t a n c e

{ GRAPH <urn : Jasmin > { ? s

foo : GMTDate ? d a t e ;

foo : GMTTime ? JasminTime ;

pos : long ? long ;

pos : l a t ? l a t .

? s1 g e o f : nearby ( 5 . 6 1 2 1 1 7 . 8 4 3 6 100 u n i t : K i l o m e t e r ) .

# Assume t h e p l a n t a t i o n g e o l o c t i o n i s ( 5 . 6 1 2 1 1 7 . 8 4 3 6 ) .

BIND ( g e o f : d i s t a n c e ( ? s , ? s1 , u n i t : K i l o m e t e r )

as ? D i s t a n c e )

FILTER ( ? d a t e = " 2012 −02 −15 " ^^ xsd : d a t e } }
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Listing (7) What are the soil metrics near Jas-

min between 2012-02-15-07?

SELECT ∗ { ? s a s o s a : O b s e r v a t i o n ;

foo : Land_Use " Logged ␣ F o r e s t " ^^ xsd : s t r i n g ;

foo : S i t e ? Site_Name ;

foo : s o i l _ M o i s t u r e ? M oi s t u r e ;

foo : s o i l _ p H ?pH ;

foo : t o t a l _ C ? t o t a l _ C ;

foo : t o t a l _ N ? t o t a l _ N .

SERVICE <db : / / FOO> { ? Jasmin foo : gMTDate ? d a t e .

FILTER ( ? d a t e >= xsd : d a t e ( " 2012 −02 −07 " )

\&& ? d a t e < xsd : d a t e ( " 2012 −02 −15 " ) ) } }

Listing (8) What are the other elephants near

the oil palm plantation?

SELECT DISTINCT ∗ { ? s

foo : GMTDate ? d a t e ;

foo : GMTTime ? Time ;

pos : long ? long ;

pos : l a t ? l a t .

? s1 g e o f : nearby ( 5 . 6 1 2 1 1 7 . 8 4 3 6 100 u n i t : K i l o m e t e r ) .

# Assume t h e p l a n t a t i o n g e o l o c t i o n i s ( 5 . 6 1 2 1 1 7 . 8 4 3 6 ) .

BIND ( g e o f : d i s t a n c e ( ? s , ? s1 , u n i t : K i l o m e t e r )

as ? D i s t a n c e )

FILTER ( ? d a t e = " 2012 −02 −15 " ^^ xsd : d a t e ) }

Listing 9. Prefixes for CQs SPARQL queries

P r e f i x e s

foo : < h t t p s : / / w3id . org / xxx / xxx # >

t ime : < h t t p : / /www. w3 . org / 2 0 0 6 / t ime # >

schema : < h t t p : / / schema . org / >

xsd : < h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# >

d g f c : < h t t p : / / schema . org /DGFC/ e l e p h a n t # >

pos : < h t t p : / /www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos # >

geo : < h t t p : / /www. o p e n g i s . ne t / ont / g e o s p a r q l # >

g e o f : < h t t p : / /www. o p e n g i s . ne t / d e f / f u n c t i o n / g e o s p a r q l / >

u n i t : < h t t p : / / qudt . org / vocab / u n i t # >

Listing 10. Reasoning (IF-Then-Rule) injected

in FOO database

pref ix r u l e : < t a g : s t a r d o g : a p i : r u l e : >

[ ] a r u l e : SPARQLRule ;

I F {

? s pos : long ? long ;

pos : l a t ? l a t ;

< h t t p : / / schema . org /DGFC/ e l e p h a n t # Jasmin >

? Jasmin .

? s1

g e o f : nearby ( 5 . 6 1 2 1 1 7 . 8 4 3 6

50 u n i t : K i l o m e t e r ) .

BIND ( g e o f : d i s t a n c e ( ? s , ? s1 , u n i t : K i l o m e t e r )

as ? D i s t a n c e ) .

BIND ( ? D i s t a n c e <= 50 as ? Hazard ) .

FILTER ( ? Hazard = TRUE ) }

Then {

? s pos : Hazard ? Hazard }

5.5 Results

We conducted an experiment to assess the responses to four competency questions based on
correctness, completeness, and speed. In the Stardog Studio (cloud.stardog.com) knowledge graph
platform, we executed the queries 50 times each without reasoning, with a 3-second interval
between queries, and recorded the response times. Subsequently, we repeated the experiment
after enabling reasoning by activating the reasoning option and incorporating Semantic Web rule
language (SWRL) into the triple store. The SWRL rule speci�es that if the distance between an
elephant and oil palm plantation is less than 50 km, it poses a hazard. Figure 16 illustrates the
response times for each query, with average times of 54.7 ms, 87.29 ms, 259 ms, and 2080 ms for CQ
5, CQ 6, CQ 7, and CQ 8, respectively. Notably, the answers were accurate, with CQ 8 exhibiting the
longest response time owing to the extensive information requested per query. Similarly, CQ 7 took
longer to respond than CQ 5 and CQ 6 because of the need to connect disparate databases. Despite
faster response times after reasoning, the correctness and accuracy of the query results remained
consistent. We conducted the Shapiro-Wilk test for normality and the non-parametric Mann-
Whitney U test to compare the two sets of independent responses. The Shapiro-Wilk test indicated
that the query responses without rules were not normally distributed, whereas a normal distribution
was observed for the SWRL responses. Given the non-normal distribution of the rule-free query
responses, we opted for the Mann-Whitney U test, which revealed a signi�cant di�erence between
the query responses before and after enabling reasoning or inserting SWRL. Documentation for
this evaluation is accessible at https://github.com/xxxxxx/Knowledge-Graphs-Evaluations.git.
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Table 16. Statistics for the four competency questions query responses in milliseconds (ms)

CQ1 CQ2 CQ3 CQ4
Description NO-Rule SWRL NO-Rule SWRL No-Rule SWRL No-Rule SWRL

Mean 54.60 43.04 88.98 70.64 262.30 207.76 2083.42 1646.26
Std 7.84 21.66 25.94 37.27 47.14 102.57 47.17 791.33
Variance 61.46 469.15 972.88 1389.05 2222 10520.6 2225.00 626.203
Minimum 43.00 -6.00 60.00 -8.00 205.00 -25.00 2029 -208.00
Maximum 77.00 89.00 172.00 173.00 390.00 427.00 2246 3064
Shapiro-Wilk test p-value (0.05) 0.001 0.755 3.20-6 0.367 5.916 0.405 7074-06 0.241
Mann-Whitney U test p-value (0.05) 0.001 0.014 0.006 0.001
Count 50 50 50 50

Listing 11: Shapiro Wilk test

Hypotheses

H0 : Samples a r e norma l ly d i s t r i b u t e d

H1 : Samples a r e not norma l ly d i s t r i b u t e d

p− v a l u e c u t o f f = 0 . 0 5 i f p > v a l u e :

R e t a i n H0 − Samples a r e norma l ly d i s t r i b u t e d .

E l s e :

R e j e c t H0 − Samples a r e not norma l ly d i s t r i b u t e d .

Listing 12: Mann-Whitney U test

Hypotheses

H0 : Samples median a r e e q u a l

H1 : Samples median a r e not e q u a l

p− v a l u e c u t o f f = 0 . 0 5 i f p > v a l u e :

R e t a i n H0 − the medians a r e e q u a l .

E l s e :

R e j e c t H0 − the medians a r e not e q u a l .

Fig. 16. Response time for the four competency questions

6 DISCUSSION

FOODS were generally well-received by domain experts, with high scores in con�dence, usefulness,
performance, time-saving, UI clarity, visualization, and data handling across participants with
diverse educational backgrounds and occupations, mainly researchers and data specialists. Our
knowledge graphs’ ease of use and the need for technical support received more varied responses,
indicating areas that few end-users might require prior indication training. The educational back-
grounds and occupations of the participants suggest the knowledge graphs are relevant to academic
and professional research, especially in �elds requiring data integration and analysis. Our FOODS
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answered over 100 Competency Questions (CQs) and addressed three speci�c use cases. By pro-
moting compatibility between di�erent data types, the system facilitates more detailed analysis of
wildlife data. Applying reasoning, particularly through Semantic Web Rule Language (SWRL) rules,
optimized the inferred new knowledge from data and accelerated the query response times while
maintaining accuracy. Through thorough statistical analyses of the results from the third use case,
we proved that our system surpasses traditional data management methods, particularly in terms
of speed and e�ciency, thereby expediting the search and discovery processes. We evaluated FOO
with the goal of improving decision-making by integrating various data sources. This evaluation
involved the use of automated tools such as Oops! and insights from domain experts, thereby
revealing minor structural and semantic issues in the ontology.

Challenges related to data sensitivity and scarcity were encountered, particularly concerning
the ethical implications of GPS collar data for elephants. This emphasizes the need to balance
data utility with conservation ethics. The limited scope of the data is compounded by the lack
of collared status for many elephants and di�culties in data collection owing to environmental
factors. In addition, integrating real-time data into FOO poses distinct challenges, mainly because
of the instability of data generation and connectivity issues. Although our current framework
relies on historical data, we recognize its potential for integrating real-time sensor data streams.
This can be achieved using IoT devices, such as Arduino or Raspberry Pi boards, and protocols,
such as MQTT or WebSockets, for seamless data transmission. Theoretically, embedding logic into
these devices for continuous sensor data collection and converting the data into RDF format would
enable real-time data streaming.

However, this enhancement, although feasible, is beyond the scope of the current project and is
a direction for future development. The need for real-time data is particularly useful in the third
use case scenario, such as the prompt rescue of injured elephants, where reliance on historical data
hinders swift responses to emergencies. The integration of real-time data can facilitate immediate
action to aid wildlife injuries. We concede that, in its present con�guration, FOO does not o�er
bene�ts for the third scenario involving the rescue of an injured elephant unless real-time or near
real-time data are incorporated. The proposed framework, centered on de�ning domain-speci�c
ontologies followed by the data population to generate FOODS, o�ers a �exible and replicable
method across various domains. This approach is applied in healthcare [57], smart cities for urban
planning [66], �nance for market predictions [117], cultural heritage for connecting historical
dots [28], and education for personalized learning solutions [22]. This methodology not only
aids in structuring domain knowledge but also facilitates the extraction of actionable insights,
demonstrating its broad applicability and potential to revolutionize knowledge representation and
decision-making across diverse �elds.

7 CONCLUSION

This study introduced a novel research data solution for forest observatories. It employed semantic
web technologies to merge diverse wildlife research data that were previously separate. By creating
the Forest Observatory Ontology (FOO) to construct knowledge graphs, a robust platform was
established for detailed wildlife data analysis. The development of FOO was informed by qualitative
analysis, which took into account interactions with various wildlife species and researchers in the
forest. This ontology-driven method integrates data from various sources, enhancing advanced
data analysis capabilities. Our proposed FOODS were evaluated using qualitative and quantitative
methods to ensure their e�ectiveness and usability. Incorporating reasoning rules within FOO to
detect potential threats, such as poaching, along with creating a user-friendly website, highlights
this study’s practical applications. Looking ahead, there is a commitment to expand research to
include predictive modeling, which can further aid decision-making in wildlife conservation. These
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e�orts signify promising avenues for future research, with the potential to transform conservation
strategies and contribute to the sustainable management of biodiversity. Integration with Other
Knowledge Graphs
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A APPENDIX: METHODOLOGY DETAILS

A.1 Ontology Requirements Specification Document (ORSD)

A.2 Purpose

The Forest Observatory Ontology (FOO) aims to describe wildlife digital data generated by sensors. The primary

purpose is to backbone the Forest Observatory. That is, a linked datastore that allows uni�ed access to heterogeneous

wildlife data and enables standardised data exchange between di�erent computer systems and applications.

A.3 Scope

The Internet of Things (IoT) and wildlife make up the evolving scope of FOO. It adopts and combines classes and

properties from Sensor Observation Sample and Actuation (SOSA) and BBC Wildlife Ontology (WO).

A.4 Implementation Language

The Web Ontology Language (OWL2) is used to implement FOO.

A.5 Intended End-Users

• Bioscientists.

• Wildlife Researchers.

• Computer Scientists.

• Data Scientists.

A.6 Intended Uses

• To build linked data that o�ers data on-demand (i.e., granular data retrieval from disparate sources).

• For reasoning about the data of interest.

• Build Arti�cial Intelligence (AI) apps.

A.7 Ontology Requirements

A.7.1 Non-Functional Requirements.

• FOO must include IoT elements, such as sensors.

• FOO must include wildlife concepts, such as taxon rank.

• FOO must contain the relationship between the Internet of Things (IoT) and wildlife concepts.

A.7.2 Functional Requirements.

• 106 curated Competency Questions (CQs),

• 10 Natural Language Statements (NLSs), see table 19.

, Vol. 1, No. 1, Article . Publication date: July 2024.



FOODS: Ontology-based Knowledge Graphs for Forest Observatories 39

Open Data Sensor Data

Competency Questions (CQs) So
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eg
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CQ1 Where do elephants forage? * *
CQ2 What are the day-to-day movement patterns for elephant x? *
CQ3 What are the year-to-date (date range) movement patterns for elephant x? *
CQ4 What are the relationships between elephant x’s movements and human/urban areas? * *
CQ5 Has elephant x died? *
CQ6 Why has elephant x died? *
CQ7 What are the suitable environmental conditions for elephant x to survive? * * *
CQ8 What do elephants x, y, z’s movements tell us? *
CQ9 How does elephant x use habitat site y? * *
CQ10 What is the range of habitat sites used by elephants x, y, z? * *
CQ11 Where was elephant x’s location during the �ood season in the Lower Kinabatangan area? *
CQ12 What was the average speed of elephant x during the �ood season? *
CQ13 Is elephant x near the danger zone (poachers’ area) today? *
CQ14 How did elephant x’s movements change with climate change in 2014? *
CQ15 What are elephant x’s preferred habitats based on prolonged stays in areas? * *
CQ16 How far was elephant x from the oil plantation fencing? *
CQ17 When was elephant x near the oil plantation fencing? *
CQ18 What is the distance travelled between each stop (sleeping) by elephant x? *
CQ19 Which elephants met this month? *
CQ20 Which sites were revisited by elephant x this month? *
CQ21 What environment/habitat does elephant x prefer? Based on the prolonged time spent in a certain area. * * *
CQ22 Is there any signi�cant change in elephant x’s movement patterns between June and July 2015? *
CQ23 Has elephant x visited village y this year? *
CQ24 What is the movement range of elephant x during month y? *
CQ25 What is elephant x’s activity (speed) during month y? *
CQ26 Are there any interactions between collared elephants during the �ood season? * *
CQ27 What is elephant x’s tracking collar’s battery activity? *
CQ28 What habitat does elephant x select this season? * * *
CQ29 What is the average elevation of elephant x during a speci�c time range? *
CQ30 Which elephant came near a logged site? * *
CQ31 Which elephant came near a semi-logged site? * *
CQ32 Which elephants crossed the river? *
CQ33 What is the canopy height for the distance travelled by elephant x during the �ood season? * * *
CQ34 Which elephants are near the oil palm plantations this week? *
CQ35 What is the home range for all collared elephants? *
CQ36 What is the distance travelled by elephant y in a speci�c period of time? *
CQ37 What is the altitude of the collared elephants? *
CQ38 What are the body/environment temperatures for collared elephants? *
CQ39 What is the behaviour of elephants x and y this month? *
CQ40 Does elephant x need help? * *
CQ41 What are the distribution patterns of elephants x and y during this month? *
CQ42 Are elephants x and y’s favourite foods in a particular area? * *
CQ43 Do we need to create corridors along rivers/palm plantations, or is it not an obstacle for elephants to roam
across the river?

*

CQ44 What are the elephants collars �tted for almost two years? *
CQ45 What are the migration patterns for elephant x during the �ood season? *
CQ46 What are the favourite locations that elephant x likes to visit during certain times of the year? *
CQ47 Where are elephants likely to come into contact with humans? *
CQ48 What are the places where elephants may be vulnerable? *
CQ49 Where can we assign locations to rangers? *
CQ50 How to track (investigate) the last location of a dead elephant? *
CQ51 Will the elephants be arriving at DGFC soon? *
CQ52 How many satellites did the collar detect? (COV=0, speed=0) *
CQ53 Which elephants are close to the river today? *
CQ54 Which elephants are close to oil plantations? *
CQ55 Which elephant roams near the Sabahmas site? *
CQ56 Which elephant roams near small steep sites? *
CQ57 Which elephant is likely to visit Ribubonus, kg. Kiabau, and Reka Halus 12ha? *
CQ58 What locations could have snares? * *
CQ59 Is elephant x sick, injured, or dead? * *
CQ60 Which elephants are likely to con�ict with humans? *
CQ61 What is the soil condition during a certain time of the year? *
CQ62 What are the types of soil available across the year? Dry, muddy, swamps *
CQ63 What are the soil characteristics with more or less nutrients, minerals? *
CQ64 What are the locations (soil type) that elephants prefer? *
CQ65 What are the mineral content (salt and others) in a particular location? *

Table 17. Competency �estions (CQs) extracted from research activities such as ethnographic research,

interviews, and nominal and focus groups
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CQ66 Is there any metal in the soil in that area? *
CQ67 What are the chemical and agro-chemical concentrations in the soil of a certain area? *
CQ68 Does the soil in location x contain disease pathogens? *
CQ69 Which area needs pesticide spraying? *
CQ70 What is the soil moisture level in a speci�c location? *
CQ71 What is the presence of minerals in the soil? *
CQ72 Are there signs of heavy metals in the soil? *
CQ73 Where are the salt licks located? *
CQ74 What are the mineral and salt concentrations in the soil that indicate the presence of salt licks in a particular
location?

*

CQ75 What is the pH level of the soil? *
CQ76 What is the temperature reading from the soil sensor? *
CQ77 What is the soil moisture in a certain location? *
CQ78 Is the soil in this area healthy for animals? *
CQ79 Is the soil fertile in this area? *
CQ80 What is the moisture rate of the soil in this area (i.e., provide geo-location)? *
CQ81 Where to plant crops for elephants (i.e., soil moisture rates)? *
CQ82 Could planting in safer areas (healthy soil) in�uence animal movements? *
CQ83 Could we predict crop yield based on soil data? *
CQ84 What soil metrics help us predict �ooding? *
CQ85 What are the metrics of healthy soil with less/no chemical pollution from oil palm plantations? *
CQ86 Why do elephants not like to walk on wet soil (movement prediction)? *
CQ87 What are the chemical levels in the soil? *
CQ88 What are the soil nutrient levels? *
CQ89 What is the e�ect of moisture on nutrients and oxygen levels? *
CQ90 What is the ideal soil moisture rate for an elephant to give birth? *
CQ91 What are the soil conditions in the areas that have elephant grass? *
CQ92 How to conserve suitable soils for the elephants to have food in the future (e.g., reduce using fertiliser)? *
CQ93 What soil moisture do elephants spend most time on? *
CQ94 Is it based on the plants grown in that soil? *
CQ95 How does this compare to urban areas? Or logged areas? *
CQ96 What do elephants eat? *
CQ97 Where are elephant grass (Napier), bark, palm shoots, young leaves, trunks, soft plants, and bananas? *
CQ98 Where do bamboo shoots grow? *
CQ99 Where could we �nd areas with the inner trunk of oil palms? *
CQ100 Where could we �nd areas with broad leaves? *
CQ101 Where could we �nd areas with vines? *
CQ102 How do vegetation and site habitat information help understand elephant behavior? *
CQ103 Do elephants drink lots of water? *
CQ104 Where do we �nd fruit farms in lower Kinabatangan? *
CQ105 What areas have fewer trees? *
CQ106 What plant species to conserve in the areas the elephants visit? * *

Table 18. Table1-Continued
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NLS1 Tracking elephant locations so that the wildlife department can give warnings to local people about the
arrival of elephants.

* *

NLS2 Examples of areas with elephant grass (Nappier), other grasses, bark, palm shoots, young leaf trunks, soft
plants, and bananas.

*

NLS3 Focus on the area of Lower Kinabatangan and the 14 collared elephants living there. *
NLS 4 Collared elephants will not go to primary forest sites. * *
NLS5 The datasets in this research could be used to generate predictions. *
NLS6 Elephants do not intend to cause damage. It may occur when their strong and huge bodies come in contact
with things.

* *

NLS 7 Nearly all wild pigs in the area of Kinabatangan died from in�uenza viruses.
NLS 8 There was a famous story about the rhino who lost one leg from poaching. It survived on three legs for a
long time.

*

NLS9 Female Asian elephants are tusk-less. * *
NL10 Male Asian elephants are more likely to explore human areas than females, attracted by food. *

Table 19. Natural language statements and what data set can fulfil the task.

Fig. 17. Research visit and data collection at DGFC
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