
A Comparison of Open Data Observatories

NAEIMA HAMED, School of Computer Science and Informatics, Cardi� University, United Kingdom

OMER RANA, School of Computer Science and Informatics, Cardi� University, United Kingdom

PABLO OROZCO-TERWENGEL, School of Biosciences, Cardi� University, United kingdom

BENOÎT GOOSSENS, School of Biosciences, Cardi� University, United kingdom

CHARITH PERERA, School of Computer Science and Informatics, Cardi� University, United Kingdom

Open Data Observatories refer to online platforms that provide real-time and historical data for a particular

application context, e.g., urban/non-urban environments or a speci�c application domain. They are generally

developed to facilitate collaboration within one or more communities through reusable datasets, analysis

tools, and interactive visualizations. Open Data Observatories collect and integrate various data from multiple

disparate data sources—some providing mechanisms to support real-time data capture and ingest. Data

types can include sensor data (soil, weather, tra�c, pollution levels) and satellite imagery. Data sources can

include Open Data providers, interconnected devices, and services o�ered through the Internet of Things. The

continually increasing volume and variety of such data require timely integration, management, and analysis,

yet presented in a way that end-users can easily understand. Data released for open access preserve their value

and enable a more in-depth understanding of real-world choices. This survey compares thirteen Open Data

Observatories and their data management approaches - investigating their aims, design, and types of data. We

conclude with research challenges that in�uence the implementation of these observatories, outlining some

strengths and limitations for each one and recommending areas for improvement. Our goal is to identify best

practices learned from the selected observatories to aid the development of new Open Data Observatories.

CCS Concepts: • Information systems → Information integration; Data model extensions; Data manage-

ment systems.

Additional Key Words and Phrases: Urban and non-urban data observatories, FAIR Open Data principles, Data

integration, Data platforms.
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1 INTRODUCTION

Structured, semi-structured, and unstructured data can be generated from diverse sources, including

government authorities, academic institutions, and citizens. These data categories apply to every sort

of data, with structured data including inventories and catalogs organized in tables, semi-structured
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data such as operational manuals in JSON (JavaScript Object Notation) and XML (eXtensible Markup

Language) formats, and unstructured data including text andmedia. These data are collected through

various methods, such as questionnaires, web scraping and Internet of Things (IoT) devices. While

many governments have embraced the "Open Data" principles and made some of their data public,

some commercial organizations collect large volumes of data, but only a fraction is accessible.

Open Data refer to data that are made available to the public by governments, organizations, and

individuals [51]. They promote transparency, collaboration, and innovation, which can improve the

quality of scienti�c research and contribute to the development of a sustainable ecosystem [15, 36].

Open Data portals, Open Data Observatories, and Repositories represent distinct systems within

the data-sharing ecosystem, each serving unique functions and targeting speci�c audiences. Open

Data portals serve as gateways to a wide range of datasets and resources from various sources. They

provide search and discovery tools, data visualization capabilities, and options for downloading data

[18]. Open Data portals are centralized platforms where governments, non-pro�t organizations,

and private companies release datasets to the public, aimed at enhancing transparency, enabling

societal and economic bene�ts, and fostering innovation through open access to information on a

variety of topics such as government operations, demographics, and economics [43].

Open Data Observatories are online platforms that curate and integrate real-time and historical

data from di�erent sources, presenting them in a uni�ed manner. They focus on monitoring and

analyzing speci�c datasets for trends and insights, typically in public or research domains. The

reliance on Open Data Observatories has become increasingly crucial in tackling the complex

challenges faced by contemporary society and the environment. Previous research initiatives in

[2] developed methods to survey Open Data platforms, providing insights into their availability

and helping data publishers select the most suitable platforms for their data. A series of studies by

Miller et al. [48], Moustaka et al. [49], Ma et al. [44], and Liu et al. [41] provided an understanding

of the role of Open Data platforms in areas such as urban sustainability, smart city analytics, and

ocean science.

Repositories provide broad platforms for sharing diverse research outputs. They can be domain-

speci�c (storing data from a speci�c subject or �eld) or Generalist (serving multiple domains). Stall

et al. [61] introduced the Generalist Repository Comparison Chart (GRCC) to assist researchers in

identifying a generalist repository when a domain-speci�c repository [27] is unavailable for storing

their research data. Generalist repositories (e.g., Zenodo, Figshare, and Dryad) archive diverse types

of scholarly work, including datasets, articles, and preprints, thus supporting interdisciplinary

research and increasing the visibility and impact of academic work beyond traditional publication

venues. Such repositories require users to deposit their research outputs under open licenses,

ensuring accessibility for further use.

Our study aims to compare di�erent Open Data Observatories to highlight their distinct char-

acteristics, methodologies, and challenges they encounter. By identifying and extrapolating best

practices from these observatories, the goal is to facilitate the development of new Open Data

Observatories and to better understand their impact on decision-making and policy formulation in

urban and non-urban settings.

Our research questions are:

• What are the key features and functionalities of di�erent Open Data Observatories?

• How do di�erent Open Data Observatories compare regarding data coverage, accessibility,

and usability?

• What are the strengths and limitations of di�erent Open Data Observatories?

• What are the challenges organizations face when building Open Data Observatories, and

how can these challenges be addressed?
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To answer the research questions, we (a) selected and compared thirteen Open Data Obser-

vatories based on various criteria, such as data types, data coverage, accessibility, and usability;

(b) investigated the data management approaches in the context of Open Data Observatories; (c)

outlined their strengths and limitations and recommended areas for improvement; and (d) identi�ed

the critical challenges faced by organizations when building Open Data Observatories, such as

technical and intellectual challenges.

This paper is structured as follows: Section 2 investigates the use of the term Open Data, its

principles, and main sources (providers). Section 3 discusses the study’s research methodology.

Section 4 introduces the thirteen selected Open Data Observatories, individually describing their

aim, data management approaches, and the (smart) services they support. Section 5 recapitulates

the types of data they support, examining their themes, sources and the methods employed in

their processing. Section 6 describes four key research challenges, namely data integration, quality,

provenance, and privacy. Section 7 interpret the study’s �ndings, compare them with existing

knowledge, address research questions, evaluate implications, and guide future research directions.

Finally, Section 8 concludes the paper.

2 OPEN DATA

Open Data are free data, released under open licenses [21] and shared in formats that follow

established standards and conventions. Open Data are accompanied by metadata, which provides

additional information about the data, such as their source, creation date, data dictionary, and

other relevant details. The metadata helps users better understand and contextualize the data.

High-quality Open Data are presented in formats that are designed to be easily read and processed

by computer programs and algorithms [36]. This enables automated analysis, integration of the

data, making them more accessible and useful for a wide range of applications [68].

2.1 Open Data Principles

The expansion of Open Data is in�uenced by fundamental frameworks such as the Berners-Lee

Five-Star Model [51]. This model evaluates Open Data on a scale from one to �ve stars, with higher

ratings indicating data that are open, machine-readable, and compliant with open standards. Kucera

et al. [34] investigated the challenges related to publishing and reusing Open Government Data,

emphasizing methodologies and best practices in this domain. This includes the establishment

of a publication methodology within the COMSODE project, which highlights the role of Open

Government Data in fostering transparency and citizen engagement. Open Data principles, further

expanded upon by groups such as the Sebastopol [67] attendees and the Sunlight Foundation [25],

establish a comprehensive framework to ensure government data are openly accessible.

The FAIR data principles [8, 30, 70] provide a set of guidelines aimed at enhancing data reusability

for both humans and machines, stressing the importance of data being Findable, Accessible, Interop-

erable, and Reusable. Table 1 integrates Open Data principles, as discussed by both the Sebastopol

group and the Sunlight Foundation, with the broader framework of the FAIR data principles, pro-

viding a comparative overview of their alignment. It shows ten critical principles identi�ed for

the openness and availability of government data, ranging from ensuring data completeness and

primacy to guaranteeing accessibility, machine processability, and non-discrimination. Moreover,

it introduces considerations for non-proprietary formats, license freedom, permanence, and the

elimination of usage costs to foster a more inclusive and accessible digital ecosystem. This align-

ment is further enhanced by indicating which of these Open Data principles correspond to which

element of FAIR data principles.
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Table 1. Description and comparison of OpenData principles proposed by Sebastopol, the Sunlight Foundation
and how they correspond to the FAIR (Findable, Accessible, Interoperable and Reusable) data principles.

Principle Description Sebastopol Sunlight Foundation FAIR Data Principles

1. Complete Data must be a complete

and accurate representation

of the original observations,

including all computational

details.

✓ ✓ Findable

2. Primary Data collected at the source

with detailed metadata.

✓ ✓ Findable

3. Timely Data published promptly af-

ter collection.

✓ ✓ Accessible

4. Accessible Data must be easily accessi-

ble in both printed and digital

forms.

✓ ✓ Accessible

5. Machine-processable Data in a format that can be

easily processed by comput-

ers.

✓ ✓ Interoperable

6. Non-discriminatory Data are accessible to anyone

without restrictions.

✓ ✓ Accessible

7. Non-proprietary Data in a format that does not

require proprietary software.

✓ ✓ Interoperable

8. License Data with clear open license

to support unrestricted use.

✓ ✓ Reusable

9. Permanence Data remain accessible on-

line, including all versions.

✓ Accessible

10. Usage costs Accessing and obtaining data

incur no fees.

✓ Accessible and reusable

2.2 Open Data Sources

Scienti�c research heavily relies on Open Data sources for replication, validation, and growth. Open

Data can be obtained from various entities, including government bodies, academic institutions, and

citizens. For example, government bodies publish a wide range of information such as demographics

(age, gender, race), economic indicators (GDP, unemployment rates), weather data, and public

health indices. These data types enable researchers to examine social trends, economic patterns,

public health outcomes, and their interrelationships.

Researchers are increasingly required by funders to make the data contributing to a paper publicly

available. This includes surveys and observational data that could be used to provide empirical

evidence. By sharing these data openly, researchers foster collaboration, facilitate replication, and

allow for the expansion of scienti�c knowledge. In recent years, citizen-generated data through

smartphones and mobile devices have gained increasing value, particularly in social science and

humanities studies [32]. These data include information collected through social media platforms,

GPS tracking devices, and other mobile applications. Researchers can use citizen-generated data to

study topics such as online communities, human behaviour, social interactions, urban dynamics and

cultural trends. Sensor networks signi�cantly contribute data on environmental conditions, vehicle

movements, and electricity usage. These networks provide valuable information for research related

to urban planning, environment sustainability, transportation patterns, and energy consumption.

While Open Data sources o�er numerous bene�ts, they also present challenges. Data quality

assurance, privacy protection, and managing diverse data types are some hurdles researchers must
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address. However, the potential of Open Data sources is evident, and they are expected to play an

increasingly signi�cant role in scienti�c research.

3 RESEARCH METHOD

We employed the SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research type)

methodology [17] to guide our search for Open Data Observatories. SPIDER is speci�cally designed

for conducting transparent and reproducible research. To ensure comprehensive coverage, we

extracted keywords for each SPIDER element based on synonyms and related terms derived from

our research questions. We conducted searches using the Google search engine, Google Scholar,

ACM digital library, and Cardi� University library, focusing on the following terms:

(1) Sample: Open Data observatory.

(2) Phenomenon of Interest: domain-speci�c data observatory, multi-domain data observatory.

(3) Design: Open Data platforms.

(4) Evaluation: relevance, transparency, accessible.

(5) Research type: descriptive, survey, research article.

3.1 Search Plan

Our search plan used the Boolean operators AND and OR to connect the search items corresponding

to each SPIDER element. This approach allowed us to construct comprehensive search queries that

incorporated relevant terms. For instance, the search query for the SPIDER elements would look

like this: Sample AND Phenomenon of Interest AND Design AND Evaluation AND Research type

("Open Data platform" OR "Open Data observatory") AND ("domain-speci�c data observatory" OR

"multi-domain data observatory") AND ("accessible online platforms" OR "data platform") AND

("relevance" OR "transparency") AND ("descriptive" OR "survey" OR "research article"). Using the

OR operator within parentheses, we expanded the search to include variations and synonyms for

terms such as "Open Data platform" and "Open Data observatory." We incorporated terms related

to the phenomenon of interest, such as "domain-speci�c data observatory," and "multi-domain

data observatory". To capture di�erent aspects of the design and evaluation, we included phrases

like "accessible online platforms" and "data platform." We also encompassed terms related to the

desired research attributes, such as "relevance" and "transparency", and the research types, such

as "descriptive" and "survey". This search strategy ensured we covered a wide range of relevant

literature and maximized the chances of identifying relevant data platforms.

3.2 Observatories Selection Process

The results obtained from the previous step yielded additional platforms, some of which were not

directly relevant to our research questions. We established speci�c inclusion and exclusion criteria

to re�ne the selection process and ensure that only the most relevant platforms were included in

our study. These criteria, outlined in Figure 1, were based on several factors, including the domain

experts’ suggestions, platforms’ establishment date, and relevance to our research questions. By

setting these criteria, we aimed to focus our analysis on the most recent platforms available in

english. We prioritized platforms that demonstrated clear relevance to our research questions.

3.3 Observatories Selection Result

The initial search process yielded 40 Open Data environments. We manually checked each one

to ensure that we focused speci�cally on Open Data Observatories. Through this evaluation, we

were able to �lter out and identify 34 environments that met the criteria of being Open Data

Observatories. After completing a thorough manual evaluation, we arrived at a �nal selection of 13

, Vol. 1, No. 1, Article . Publication date: January 2025.



6 Hamed et al.

Inclusion  

criteria

Accessibility = 

Active AND 

Mature

Language = 

English

Relevance =       

Open Data 

Observatories

Publish Date  

2009-2022

Open Science

Observatories

Repositories

Data portals

Astronomical

Observatories

Selection 
process

 Exclusion 

criteria

Fig. 1. Inclusion and exclusion criteria for selecting the reviewed Open Data Observatories.

Open Data Observatories that satis�ed all the necessary criteria. These 13 observatories (Figure 2)

will be introduced and discussed in the subsequent section. By employing this rigorous manual

veri�cation process, we ensured that the selected Open Data Observatories were reliable, accessible,

and relevant to our research questions.

4 OPEN DATA OBSERVATORIES

This section investigates the selected Open Data Observatories in chronological order according to

their release date. Each observatory is concisely outlined and characterized by its attributes, kinds

of data, and signi�cant accomplishments and challenges.

4.1 The Terrestrial Ecosystem Research Network (TERN)

TERN1 is a national research infrastructure program in Australia that supports ecosystem science,

observations, and data management. TERN was established in 2009 by the Australian Govern-

ment in response to a growing need for a coordinated approach to terrestrial ecosystem research

and management. The network comprises a range of �eld sites and data infrastructure that sup-

ports long-term environmental monitoring and research, including measurements of ecosystem

processes, biodiversity, and land surface properties. TERN’s infrastructure includes over 600 envi-

ronmental monitoring sites across Australia and advanced data management systems that allow

researchers to access and analyze data from multiple sources. TERN aims to support evidence-based

decision-making for ecosystemmanagement and conservation in Australia and to promote a greater

understanding of terrestrial ecosystems and their role in maintaining global environmental health.

TERN hosts a substantial and growing collection of diverse ecosystem datasets from across

Australia, covering topics such as terrestrial and coastal vegetation data, land cover processes,

phenology and abiotic data. It provides a variety of data tools and services, including SHaRED for

data submission and harmonization, aligning with the FAIR principles, a Data Discovery Portal

for accessing diverse ecosystem datasets, tools for data analysis and visualization such as MCAS-

S and the Data Visualizer, cloud-based research platforms like CoESRA, and resources for �eld

data collection, including a network of monitoring sites. In addition, the Threatened Species Index

-TSX (tsx.org.au) is a dynamic tool that helps understand how Australia’s threatened species are

faring over time. It provides visualizations and detailed data on temporal trends for 286 species of

threatened and near-threatened mammals, birds, and plants in Australia.

1tern.org.au/
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Fig. 2. Timeline displays the selected OpenData Observatories. 1. The Terrestrial Ecosystem Research Network
(TERN) [14], 2. The Channel Coastal Observatory (CCO), 3. The Urban Observatory Project (UOP), 4. The
Global Forest Watch (GFW) [64], 5. The Global Earth Observation System of Systems (GEOSS) [13, 19],
6. NASA’s Earth Observing System Data and Information System (EOSDIS) [7], 7. The Grow Observatory
(GROW), 8. The International Tsunami Information Center (ITIC)- Tsunami Observatory, 9. Southampton
Data Observatory (SDO), 10. The National Ecological Observatory Network (NEON) [6], 11. The India Urban
Observatory (IUO) 12. The Finnish Ecosystem Observatory (FEO) [66], 13. The Open Forest Observatory
(OFO).

4.2 The Channel Coastal Observatory (CCO)

Since 2011, the National Network of Regional Coastal Monitoring Programmes has supported six

projects along the English coastline. The overarching objective of these projects is to gather in-situ

coastal monitoring data [38]. However, Contarinis et al. [16] highlighted some inconsistencies

in the quality of the data and the data collection methodologies. The CCO2 was established in

response to these challenges. In England, 520,000 properties face the risk of coastal �ooding, while

8,900 are threatened by coastal erosion. The CCO aims to provide consistent and reliable data to aid

decision-makers in understanding coastal behaviour and identifying potential risks associated with

coastal �ooding and erosion [46]. The CCO covers various coastal regions, including the Northeast,

East Riding of Yorkshire, Anglian, Southeast region (low-lying land), and Northwest. The primary

data types collected and displayed on its platform include topographic and hydrographic surveys.

Topographic surveys focus on features such as beaches, cli�s, dunes, and coastal defence structures,

while hydrographic surveys extend from the Mean Low Water (MLW) contour to 1 kilometre

o�shore. The CCO o�ers a collection of real-time data on waves, tides, meteorology, and GPS

measurements, which are crucial for understanding and managing coastal environments. The CCO

has a public API that allows developers to access and integrate the real-time coastal data (waves,

2coastalmonitoring.org/
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tides, meteorology) collected by the monitoring programs. It also provides information on how to

access the coastal data through Web Map Services (WMS) in GIS software such ArcMap and QGIS.

4.3 The Urban Observatory Project (UOP)

The UOP3 was launched in 2013 and sponsored by the UK Collaboratorium for Research on

Infrastructure and Cities (UKCRIC) - led by Newcastle University in collaboration with �ve other

British universities: She�eld, Bristol, Cran�eld, Birmingham, and Manchester. The UOP aims

to monitor and analyze urban areas through the deployment of various sensors across these

cities. It collects vast amounts of real-time data from sensors and other sources to gain insights

into urban dynamics. Each participating university focuses on speci�c aspects of urban life. For

instance, She�eld Urban Flows Observatory examines the impact of energy and resource �ows on

economic performance and social well-being. At the same time, Bristol Urban Flows Observatory

transforms Bristol into a living laboratory for community engagement. Cran�eld Urban Observatory

provides data-centric and remote-sensing solutions for addressing environmental, social, and

economic issues. Birmingham Urban Observatory monitors critical infrastructure and its interplay

with the environment, economy, and society. Lastly, Manchester Urban Observatory collects,

analyzes, and shares urban data to support decision-making processes. The collaborative e�orts

of these observatories contribute to a better understanding of urban dynamics and o�er insights

for sustainable and e�cient urban development [59]. The UOP’s data types include tra�c �ow,

parking spaces, cycling docking, pedestrian count, weather data, air quality, water quality, seismic

activity, noise-level, water-level (rainfall), beehives, energy usage data, thermal imaging, visual and

hyper-spectral mapping, social media feeds, employee feedback, and quantifying the impacts of

COVID-19 measures. More details about UKRIC observatories are available as supplement materials

in Appendix A 8.

4.4 The Global Forest Watch (GFW)

The GFW initiative4 is a non-pro�t organization that is part of the World Resources Institute

(wri.org). The GFW collaborates with over 100 organizations to provide a transparent and ac-

tionable platform that is supported by satellite technology and cloud computing. This initiative

empowers various stakeholders, including law enforcement, companies, and governments, in

forest management and combating deforestation. The GFW’s web-based platform (observatory),

which was launched in 2014, provides data and tools for monitoring forests and land use. The

platform has amassed over four million users worldwide, bene�ting diverse groups such as local

law enforcement, park managers, international corporations, and civil society organizations in their

endeavors to safeguard forests. The GFW’s key applications include the Forest Watcher mobile app

for real-time threat detection, The GFW Pro for managing deforestation risks in supply chains, and

the Global Forest Review for monitoring global forest objectives. Moreover, national governments

employ the GFW’s technology for forest resource management, while small grants and fellowships

support additional advocacy and research. Collectively, the GFW assists in forest surveillance

and management, combats illegal deforestation, promotes sustainable commodity sourcing, and

supports conservation research on a global scale. The GFW data types include satellite imagery

for observing changes in forest cover, forest change data for tracking deforestation and regrowth,

and land cover data for understanding land usage. In addition to data about biodiversity, climate

dynamics, and commodity supply chains, as well as legal and administrative boundaries, �re alerts,

and water resources. The GFW provides both developer-focused tools (APIs and open-source code)

3urbanobservatory.ac.uk
4wri.org/initiatives/global-forest-watch
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and a user-friendly MapBuilder platform to enable the creation of customized interactive mapping

applications that leverage the GFW’s robust spatial data and analysis capabilities.

4.5 The Global Earth Observation System of Systems (GEOSS)

GEOSS5 was created following directives from the 2002 UnitedNationsWorld Summit on Sustainable

Development and the G8’s 2005 commitment. Its purpose was to improve the development and

application of earth observation technologies for environmental monitoring and management.

Initiated in 2005 with a 10-year implementation plan, GEOSS aimed to provide comprehensive,

coordinated, and sustained observations of the Earth, focusing on nine key societal bene�ts such as

sustainable agriculture, biodiversity conservation, and climate change adaptation. The success of

GEOSS’s �rst decade led to the implementation of a renewed 10-year plan (2016-2025), which aligned

with global initiatives such as the UN Committee of Experts on Global Geospatial Information

Management (UN-GGIM) and the G8 Open Data Charter to enhance data sharing and management.

GEOSS evolved into more than just a technological project; it became a global partnership that

advocated for the signi�cance of earth observations and engaged with stakeholders to tackle global

challenges. One of GEOSS’s notable achievements was the establishment of GEOSS’s data sharing

principles, which advocated for Open Data access, minimal use restrictions, and prompt availability

of data and metadata. These principles signi�cantly in�uenced global data policies, including

the European Union’s Copernicus program [19]. GEOSS encompasses a wide array of data types,

aiming to facilitate comprehensive, coordinated, and continuous observations of the Earth system.

Data types include but are not limited to, satellite imagery, atmospheric data, oceanographic data,

geological data, biodiversity information, and climate metrics.

4.6 NASA’s Earth Observing System Data and Information System (EOSDIS)

EOSDIS6 is a vital part of NASA’s Earth Science Data Systems Program, providing extensive

capabilities formanaging data from various sources, including satellites, aircraft, �eldmeasurements,

and other programs. EOSDIS supports the Earth Observing System (EOS) satellite missions by

handling tasks such as command and control, scheduling, data capture, and initial processing. These

mission operations are overseen by NASA’s Earth Science Mission Operations Project. EOSDIS’s

Science Operations, managed by NASA’s Earth Science Data and Information System Project,

involve generating higher-level science data products (levels 1-4), archiving, and distributing data

products from EOS missions, as well as other satellite missions, aircraft, and �eld measurement

campaigns. This function is carried out within a distributed system that consists of interconnected

nodes of Science Investigator-led Processing Systems and Distributed Active Archive Centers

(DAACs), which are discipline-speci�c. EOSDIS o�ers a variety of curated data types that are crucial

for evaluating ecosystem conditions, predicting species’ geographical distributions, identifying

materials based on spectral properties, and monitoring human-induced environmental changes.

These data types include vegetation health, spectroscopy, species distribution, and environmental

change tracking data.

4.7 The Grow Observatory (GROW)

GROW7 serves as a citizens’ observatory that has enabled individuals and communities to take

proactive measures about soil and climate across Europe. GROW collected soil moisture, tempera-

ture, and light level data from low-cost "Flower Power" sensors deployed across 24 locations in

5geoportal.org/
6earthdata.nasa.gov/eosdis
7growobservatory.org/
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13 European countries, resulting in a network of 6,502 ground-based soil sensors and a dataset of

516 million rows of soil data. The sensors were installed and maintained by a network of citizen

scientists, community groups, land managers, and researchers. The sensors’ data were collected

every 15 minutes and uploaded to GROW servers using mobile phones. GROW integrated the

sensors’ data through an online platform, allowing members to register their sensors and visualize

the data through time-series graphs and maps. GROW also used GEOSS (observatory 6) data to

provide public access to archived earth observation data. This information was then used to more

accurately predict extreme events, such as �oods, droughts, and wild�res. In addition, GROW data

played a signi�cant role in validating and calibrating satellite observations, such as those from the

European Space Agency’s (ESA), SMOS (Soil Moisture and Ocean Salinity) mission and the future

SMAP (Soil Moisture Active Passive) satellite. Artists and designers have played a signi�cant role in

GROW, with the former creating artworks re�ecting the importance of soil ecosystems and remote

sensing satellites and designing dynamic visualizations for agriculture and climate forecasting. It

has also helped farmers in the Canary Islands reduce their water usage for irrigation by 30%. GROW

received awards, including the Land and Soil Management Award 2019, the Stephen Fry Award for

Excellence in Public Engagement 2020, and recognition as the �rst in the European Commission’s

annual GEO Plenary Statement on signi�cant Earth Observation developments in 2019.

4.8 The International Tsunami Information Center (ITIC)- Tsunami Observatory

In March 2017, NOAA’s National Tsunami Warning Center and Paci�c Tsunami Warning Center,

in partnership with the Tsunami Service Program, centralized their information on a Tsunami

Observatory8. Serving as a hub for information on tsunamis, it provides warnings, advisories,

watches, and threat evaluations for Alaska, British Columbia, Washington, Oregon, and California

regions. The observatory o�ers real-time updates on seismic events that could cause tsunamis.

These updates include speci�c information such as event magnitude, depth, coordinates, and the

time the seismic event occurred. It also shares bulletins and statements about the current tsunami

status, clearly indicating if there are any warnings, advisories, watches, or threats in e�ect for the

mentioned areas. Tsunami Observatory aims to inform the public about tsunami risks following

seismic activities, promoting safety and preparedness among residents of potentially a�ected

regions. It also provides connections to various initiatives, such as the Deep-ocean Assessment

and Reporting of Tsunamis (DART) project, which is a component of the U.S. National Tsunami

Hazard Mitigation Program. DART employs sea�oor bottom pressure recorders (BPR) and surface

buoys to identify and report tsunamis in real-time. DART system has two generations, with the

second-generation DART II enabling bidirectional communication since 2008. This system can

detect tsunamis as small as 1 cm and transmits information to ground stations through a GOES

satellite link for early detection and data collection. Moreover, the NOAA Tsunami Stations o�er

information on tide stations equipped to detect tsunamis along various coastlines, while the IOC

Sea Level Monitoring Facility provides real-time monitoring of sea level stations worldwide.

4.9 Southampton Data Observatory (SDO)

SDO9 collects data from various stakeholders in Southampton and Hampshire and combines them

with nationally published data, providing access to professionals, businesses, the voluntary sector,

citizens, and communities. The observatory has been developed in partnership with statutory

partners, including the National Health Service (NHS) Hampshire, Southampton, Isle of Wight

(CCG), and Southampton Voluntary Services- with data contributions from other partners such

8tsunami.gov
9data.southampton.gov.uk/
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as the National O�ce of Statistics (ONS), Hampshire Constabulary, Hampshire Fire and Rescue

Service, and South Central Ambulance Service. SDO is accountable to the Southampton Health

and Well-being Board and the Southampton Safe City Partnership for delivering the Joint Strategic

Needs Assessment (JSNA) and the Safe City Strategic Assessment. It considers data protection

issues and ensures su�cient safeguards and disclosure controls are in place to protect the identity of

individuals. SDO’s data types include links to demographics, economy, education, health, housing,

road safety and environment speci�c to Southampton and its immediate surroundings within the

United Kingdom.

4.10 The National Ecological Observatory Network (NEON)

NEON10 is an Open Data Observatory funded by the National Science Foundation. Initiating its

operational phase in the summer of 2019, NEON allows access to data on various topics, including

climate, land use, and biodiversity. NEON adopts a specialized method for selecting its study

locations spanning across the United States, including Hawaii and Puerto Rico, to capture a diverse

range of environmental conditions. These areas were divided into 20 distinct zones, each comprising

its own set of ecosystems, landscapes, and natural processes. This approach allowed NEON to

gather extensive data on various aspects, such as the well-being of plants and animals, soil and

water quality, and more, using state-of-the-art sensor technology and direct �eld observations.

As a result, NEON provides standardized data on a continental scale collected from 81 �eld sites

equipped with automated sensor systems and �eld instruments that continuously collect data on

environmental factors. NEON’s focus on long-term, standardized data collection allows researchers

to track and analyze changes in ecological systems over time, providing insights into the impacts

of climate change and other environmental factors. The program also encourages engagement with

the scienti�c community, allowing researchers to use NEON data for their research projects.

4.11 The India Urban Observatory (IUO)

IOU11 is an Open Data Observatory established by the Ministry of Housing and Urban A�airs

(MoHUA) in India. IOU serves as a centralized hub for data and insights related to urban areas

in the country. Its primary objective is to provide policymakers, researchers, and citizens access

to reliable urban planning and development information. IUO aims to facilitate evidence-based

decision-making and improve the e�ciency of urban planning processes. It o�ers a wide range of

data, including city-level indicators encompassing population statistics, infrastructure development,

and economic growth. The observatory also provides data on various urban services such as water

supply, sanitation, and waste management. IUO o�ers visualization and analysis tools to enhance

data re-use and understanding. These tools enable users to explore and interpret the data in a

user-friendly manner, promoting more signi�cant insights and informed decision-making.

4.12 The Finnish Ecosystem Observatory (FEO)

FEO12 is a research and monitoring infrastructure that serves as a resource for obtaining high-

quality ecosystem data across diverse terrestrial and aquatic ecosystems in Finland. It aims to

facilitate access to data and observations for researchers, policymakers, and the general public. The

data available through FEO encompass a wide range of parameters, including climate, hydrology,

biogeochemistry, and biodiversity. To gather such data, FEO employs various monitoring techniques

such as eddy covariance �ux towers, radiometers, anemometers, and infrared gas analyzers. FEO

10data.neonscience.org/
11iuo.mohua.gov.in/portal/apps/sites
12feosuomi.�/en/
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also provides standardized �eld monitoring methods, calibration guidelines, and �eld data collection

apps to ensure consistent and reliable data collection. One of the research at FEO, Mäyrä et al. [47]

combined deep learning and remote sensing to improve forest monitoring, speci�cally by classifying

tree species using airborne hyperspectral imagery and LIDAR data. Conducted in Finland’s Boreal

forests, the study demonstrated the e�ectiveness of high-resolution hyperspectral data and ground

reference measurements in e�ciently distinguishing between di�erent tree species for improved

biodiversity monitoring.

4.13 The Open Forest Observatory (OFO)

The OFO13 employs drones to map and identify trees without needing traditional ground surveys. It

establishes more than 100 forest plots, each roughly 25 hectares in size, to gather data vital for forest

management in the face of issues such as droughts and wild�res. This initiative aims to improve

research in forest ecology and disturbance ecology by creating three innovative cyberinfrastructure

tools. The �rst tool is an AI-driven software work�ow that e�ciently transforms drone-captured

imagery into detailed forest inventory information. This includes creating maps that accurately

pinpoint individual trees, along with their size and species. The second tool is a searchable and

open database that contains tree maps from over 100 plots, each covering 25 hectares. These plots

are coordinated with existing forest inventory networks, such as the NSF’s NEON, and cover a

range of environmental and disturbance gradients. Lastly, the initiative includes comprehensive

documentation and training programs, both online and in-person, to empower researchers to

generate and share their data and tools. The software used in this observatory employs advanced

photogrammetry to create 3D models of forest structures. It also uses multi-view computer vision,

supported by neural networks, for accurate species classi�cation and to �lter out incorrect tree

identi�cations. The OFO is primarily funded by the National Science Foundation with additional

support from the Nature Conservancy. It is housed in three academic institutions, the Department

of Plant Sciences at the University of California, Davis, the CIRES Earth Lab at the University of

Colorado, Boulder, and the Bio5 Institute at the University of Arizona. It relies on ground-reference

forest inventory data from two sources, the USDA Forest Service Paci�c Southwest Region and

NEON 4.10. The OFO also uses CyVerse (cyverse.org/) and Jetstream2 computing infrastructure to

support its operations.

5 DATA THEMES AND MANAGEMENT

This section delves into the data from the selected Open Data Observatories, examining their

themes, sources and the methods employed in their processing. Our thematic analysis, referencing

[11], revealed two main themes, urban data and non-urban data. This division was motivated

by the need to distinguish the selected Open Data Observatories at the highest level, as urban

and non-urban settings present fundamentally di�erent characteristics. We started the thematic

analysis by reading through the data types collected for the selected observatories and taking

notes. Table 2 shows data types managed by the selected observatories. Then, using NVIVO 12

software, we generated codes that helped us with the data themes. Words coded under "Transport"

are indicative of urban data, while the words coded under "Soil Data" and "Seismic Events" fell

under the non-urban data theme. Table 3 lists the selected Open Data Observatories’ geographic

scopes and the data themes classi�cation.

13openforestobservatory.org/

, Vol. 1, No. 1, Article . Publication date: January 2025.



A Comparison of Open Data Observatories 13

Table 2. Lists the Open Data Observatories and their data types.

Open Data Observatory Data types available

1. The Terrestrial Ecosystem Research Network (TERN) Terrestrial and coastal vegetation data, land cover processes, phenology
and abiotic data.

2. The Channel Coastal Observatory (CCO) Topographic and hydrographic surveys. Real-time data about waves,
tides, weather and GPS data .

3. The Urban Observatory Project (UOP) Urban data include tra�c �ow, parking spaces, cycling docking, pedes-
trian count, weather data, air quality, water quality, seismic activity,
noise-level, water-level (rainfall, river and tides), beehives, energy usage
data, thermal imaging, visual and hyper-spectral mapping, social media
feeds, employee feedback.

4. The Global Forest Watch (GFW) Satellite imagery, biodiversity, soil, climate dynamics, commodity sup-
ply chains, legal and administrative boundaries, �re alerts, and water
resources.

5. The Global Earth Observation System of Systems (GEOSS) Satellite imagery, soil, atmospheric data, oceanographic data, geological
data, biodiversity information, and climate metrics.

6. NASA’s Earth Observing System Data and Information
System (EOSDIS)

Soil, vegetation, spectroscopy, species distribution, and environmental
change.

7. The Grow Observatory (GROW) Soil, temperature, and light level.
8. The International Tsunami Information Center (ITIC) Water-level data, historical tsunami, recent tsunamis.
9. Southampton Data Observatory (SDO) Urban data include links to demographics, economy, education, health,

housing, road safety and environmental data.
10. The National Ecological Observatory Network (NEON) Soil, atmospheric data for climate change, biogeochemistry, ecohydrol-

ogy, land cover processes, organisms, populations, and communities.
11. The India Urban Observatory (IUO) Urban data include population statistics, infrastructure development,

and economic growth, water supply, sanitation, and waste management.
12. The Finnish Ecosystem Observatory (FEO) Climate, soil, hydrology, biogeochemistry, and biodiversity.
13. The Open Forest Observatory (OFO) Forest drone imagery, forest structure metrics, tree sizes and species.

5.1 Urban Data

Urban data refer to information generated within the context of cities, including data on smart

transportation, human behavior, demographics, and social systems. Smart transportation data

involve metrics such as tra�c �ow, vehicle counts, public transit usage, parking availability, con-

gestion levels, average speeds, journey times, and pedestrian counts. Urban observatories, such

as the UOP, SDO, and IUO, collect and analyze various types of urban data. The UOP focuses on

providing real-time data on city transportation, including tra�c congestion, parking availability,

and public transit usage. SDO gathers links to data on transportation usage and behavior, including

walking, cycling, and driving patterns, as well as transportation infrastructure like roads and public

transit systems. Similarly, IUO collects data on transportation infrastructure (roads, highways,

railways), transportation usage and behavior (vehicle ownership, mode choice, travel patterns).

These observatories aim to provide insights into how urban transportation systems function and

how they can be improved to better meet the needs of city residents. The data collected by these

observatories cover a range of urban data metrics, as analyzed in Figure 3. Environmental data are

collected in cities by one of the UOP observatories, to illustrate the concept, Figure 4 shows the

environmental data types and parameter counts at Newcastle’s Urban Observatory Project. Table 4

lists examples of the data types’ parameters and their measuring units. Here, weather data include

temperature, humidity, wind speed, and precipitation through a network of sensors deployed across

Newcastle and the surrounding region, and the water level data entail river and tide levels. Raw

data were obtained from (newcastle.urbanobservatory.ac.uk/api-docs/doc/sensors-dash-types-csv/).

5.2 Non-urban Data

Non-urban data refer to information and metrics collected from areas outside city boundaries,

including rural, wilderness, and natural environments. The non-urban and natural environments

data collected by our selected Open Data Observatories span a wide array of environmental variables
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Table 3. Lists Open Data Observatories, including their geographic scope and the data themes they provide.

Open Data Observatory <abbr> Geographic
Scope

Data
API

Urban
Data

Non-
urban
Data

1. The Terrestrial Ecosystem Research Network TERN Australia Yes *
2.The Channel Coastal Observatory CCO UK Yes *
3. The Urban Observatory Project UOP UK Yes *
4. The Global Forest Watch GFW USA Yes *
5. The Global Earth Observation System of Systems GEOSS Worldwide Yes *
6. NASA’s Earth Observing System Data and Information System EOSDIS USA Yes *
7. The Grow Observatory GROW Europe No *
8. The International Tsunami Information Center ITIC Worldwide Yes *
9. Southampton Data Observatory SDO UK No * *
10.The National Ecological Observatory Network NEON North America Yes *
11. The India Urban Observatory IUO India No *
12. The Finnish Ecosystem Observatory FEO Finland No *
13. The Open Forest Observatory OFO USA No *

3. The Urban Observatory Project (UOP)   9. Southampton Data Observatory (SDO) 

     11. The India Urban Observatory (IUO)

   

Urban 

Data 

Smart 

transportation

Traffic flow

9.SDO

3. UOP

11.IUO

Pedestrian count

9.SDO

3.UOP

9.SDO

Cycling docking
3.UOP

9.SDO

Parking space 

3.UOP

Fig. 3. Transport data metrics collected by Open Data Observatories.

crucial for understanding ecosystem dynamics, climate change, and biodiversity. This diverse range

of data supports a holistic understanding of Earth’s non-urban environments, facilitating research

and conservation e�orts across multiple disciplines. Notably, variables related to vegetation, soil,

and environmental change are prominently collected across these observatories.

5.3 Data Sources

Open Data Observatories obtain data from various sources including Open Data portals, wireless

sensor networks, and smart devices. Table 5 lists and compares data sources used by each obser-

vatory. Sensing devices play a signi�cant role in urban and non-urban data collection [26]. For

urban data, the UOP uses a network of over 3600 sensors to capture diverse data streams from

di�erent physical environments. For non-urban data, GROW employs Flower Power sensors to

monitor in-situ soil moisture, fertilizer levels, and air temperature at 15-minute intervals [33, 71].

Other technologies contributing data to these observatories include LIDAR, ARGUS cameras, and

satellites. The ITIC- tsunami observatory provides data on water-levels, historical and recent

tsunamis. The water-levels data sourced from the DART (Deep-ocean Assessment and Reporting

of Tsunamis) system and the National Oceanic and Atmospheric Administration (NOAA) coastal
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Fig. 4. Newcastle Urban Observatory parameters
count by data type.
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Sewage Sewage Level mm 
   

Table 4. Newcastle Urban Observatory parameters
examples and their measuring unit.

water-level stations. The DART system obtains water-levels data from bottom pressure recorders

on the sea�oor, which measure water pressure with a resolution of approximately 1 mm of sea

water and take 15-second averaged samples. The data are then transmitted to a ground station via

satellite telecommunications, enabling real-time reporting. The DART II systems transmit standard

mode data containing 24 estimated sea-level height observations at 15-minute intervals, once every

six hours. The OFO uses drone imagery in a multi-step process to source data. First, numerous

overlapping drone photos are taken from various angles to estimate each tree’s three-dimensional

structure. Next, the Canopy Height Model (CHM) is generated by processing the data to create a

high-resolution Digital Surface Model (DSM) that displays the vegetation’s height in each pixel

above the ground. Then, an algorithm identi�es individual trees in the forest area using drone

imagery and CHM data, resulting in tree-level maps of forest stands. NEON sources data and

samples using a combination of automated instruments, �eld technicians, and airborne remote

sensing. TERN gathers data using a variety of sensors, including Eddy covariance �ux towers,

heat �ux plates, radiometers, anemometers, infrared gas analyzers, spectrometers, CosmOz soil

moisture meters, groundwater bores, ecoacoustic sensors, phenocams, terrestrial laser scanners,

UAV/drones, camera traps, and photopoints [57]. The analysis of data sources used by our selected

Open Data Observatories shows that smart devices are the most common, used by 85% of observa-

tories. Wireless sensors follow at 77%, while satellite/LIDAR and �eld surveys are each used by

over 60%. Weather stations and crowd-sourcing are used by around 50%, citizen data and drones

by 46%, and digital cameras by 38%. Sensing vehicles are the least used, appearing in 23% of the

observatories.

5.4 Data Processing

Most of the selected Open Data Observatories develop open-source software to harmonize and

integrate diverse open data sources. Such data processing techniques are set to realize the potential

value of Open Data by making them FAIR (Findable, Accessible, Interoperable, and Reusable) for

researchers, decision-makers, and the broader community. TERN includes several tools and applica-

tions for data processing and analysis. Tomention a few, SHaREDData Submission (shared.tern.org.au)

allows ecologists to upload their research data to the Australian Ecological Knowledge and Ob-

servation System (ÆKOS) and assists in creating structured metadata and assigns Digital Object

Identi�ers (DOIs). CoESRA Virtual Desktop (coesra.tern.org.au) enables access to a web-based

virtual desktop from any device and equipped with scienti�c software such as RStudio, Jupyter
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Table 5. Lists and compares the Open Data Observatories’ data sources.
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1. The Terrestrial Ecosystem Research Network (TERN) * * * * * * *

2. The Channel Coastal Observatory (CCO) * * * * * * * *

3. The Urban Observatory Project (UOP) * * * * * * * * *

4.The Global Forest Watch (GFW) * * * *

5. The Global Earth Observation System of Systems (GEOSS) * * * * * *

6. The Earth Observing System Data and Information System (EOSDIS) * * * *

7. The Grow Observatory (GROW) * * * * * *

8. The International Tsunami Information Center (ITIC) * * * * *

9. Southampton Data Observatory (SDO) * * *

10. The National Ecological Observatory Network (NEON) * * * * * * * * * *

11. The Indian Urban Observatory (IUO) * * * *

12. The Finnish Ecosystem Observatory (FEO) * * * *

13. The Open Forest Observatory (OFO) * * *

Notebook, and QGIS. EcoImages (ecoimages.tern.org.au) serves as a repository that organizes

images of vegetation, soil, and landscapes. To process live streams of diverse data, the UOP deploys

real-time machine learning models on CCTV feeds and uses data queues, data sharding, and many

edge processors along with hourly replication to reduce the occurrence of problems during live

data streaming. The GFW uses machine learning for detecting and mapping tree cover and loss,

involving image segmentation, classi�cation, and change detection to produce forest datasets. At

the ITIC tsunami observatory, raw data from the tide gauges and DART buoys are processed by the

PMEL (Paci�c Marine Environmental Laboratory) and NGDC (National Geophysical Data Center)

to remove errors and archive. NEON developed proprietary software to process raw data from

sensors and �eld apps into standardized data products. NEON employs a unique "NEON Ingest

Conversion Language" to establish and update data processing protocols as necessary. The OFO

presents three cyber-infrastructure innovations to enhance data processing capabilities. These

include a scalable, reproducible, AI-enabled software work�ow for converting drone imagery into

forest inventory data, a searchable database of tree maps that are aligned with forest inventory

plot networks and accessible to the public, and documentation and training resources to encourage

researchers to contribute their own data and analytical tools. Moreover, research [73], which o�ers

resources for individuals who want to create e�cient and detailed tree maps of conifer forests

without requiring extensive customization of image acquisition and processing parameters.

5.5 Data Visualization

Data visualization transforms information into meaningful graphical representations that intended

audiences can interpret [72]. The selected observatories employ various visualization techniques

to present and communicate their collected data e�ectively. Visualizations include static and in-

teractive maps [24], charts such as time series, scatter plots, histograms [60], bar, and pie graphs.

TERN-ANU Landscape Data Visualizer (maps.tern.org.au) is a user-friendly atlas that o�ers com-

prehensive spatial data on Australian landscapes, soil, ecosystems, and water resources. The data

can be visualized on a map and explored through time-series data for speci�c locations. The UOP

employs interactive maps, digital comparison tools, thematic cartography, real-time data visualiza-

tion to explore and understand urban dynamics. NEON collaborates with Google to enhance the
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visualization and accessibility of its environmental data via the Google Cloud Platform, incorporat-

ing tools such Google Earth Engine and BigQuery. This integration enables users to engage with

and visualize extensive datasets directly in the cloud. The GFW visualizes data through its Open

Data portal, interactive map features, downloadable datasets, geospatial monitoring frameworks,

and software like the Forest Trends Analysis Tool. EOSDIS visualizes data through the Earthdata

Cloud, which provides users with free access to NASA Earth science data for research purposes.

The ITIC - tsunami observatory provides real-time and historical tsunami data through 1-minute

water level readings, event search tools, and interactive maps. These resources o�er numerical and

graphical representations of water-levels, crucial for early tsunami detection. IUO employs diverse

visualization methods such as data stories, interactive maps using ArcGIS, thematic dashboards,

and an Open Data portal to share urban insights with stakeholders such as government bodies,

researchers, and the public. GROW uses interactive maps, visualization tools to e�ectively visualize

the soil moisture data it collects and share them with its stakeholders [62].

6 RESEARCH CHALLENGES

Establishing Open Data Observatories involves addressing various challenges related to integrating

diverse data sources and systems. These challenges include ensuring data interoperability, scalability,

and replicability since each data source has its own design and computing speci�cations. Combining

and merging disparate data, without careful consideration, can lead to service con�icts, resulting in

degraded data quality, loss of data provenance, and potential privacy breaches. This section explores

these challenges, as depicted in Figure 5 and how each observatory addresses each challenge.

6.1 Data Integration

Data integration is the process of combining data from disparate sources into a uni�ed view

[39]. Integrating heterogeneous data can positively impact decision-making; however, achieving

valid integration faces many challenges, as noted by various researchers [5, 20, 22]. Figure 5

outlines the main data integration components that Open Data Observatories may encounter. The

interoperability challenge refers to the di�culty of integrating and harmonizing disparate data

sources and systems, ensuring that di�erent datasets with varying formats, structures, and standards

can e�ectively work together and exchange information. Interoperability is one of the Open Data

FAIR principles, as explained in section 2.1 [5, 50]. Integrating data from disparate sources may also

involve using ontologies, managing large data volumes, and handling high-velocity data streams.

E�ective use of APIs is crucial for accessing and integrating data from di�erent platforms.

To overcome this challenge, several observatories implemented various strategies. For instance,

TERN harmonized the plot-based ecology using EcoPlots (ecoplots.tern.org.au), a semantic data

integration system that maps each data source to TERN’s Plot Ontology. The term ’ontology’

is a structured framework that de�nes the relationships between concepts within a speci�c do-

main, providing a shared vocabulary for that domain [12, 28]. OWL (Web Ontology Language)

[4] is a formal language used to create and share these ontologies on the web, enabling better

data interoperability. The UOP deployed a platform called the "Urban Data Exchange (UDX)"

(urbandatacollective.com/urban-observatories-case-study) that acts as a central hub for onboarding,

harmonizing, and serving the real-time data streams from the di�erent urban observatory systems.

EOSDIS enhanced data interoperability through standardization of data formats and metadata, a

distributed and interoperable architecture across nodes like the Science Investigator-led Processing

Systems (SIPS) and Distributed Active Archive Centers (DAACs), which enabled e�cient data

retrieval [55].
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6.2 Data �ality

Applied research de�ned the term data quality di�erently [54], a commonly used de�nition by

Strong et al. [63] describing data quality as data �t for the intended purpose. Byabazaire et al.

[10] and Taleb et al. [65] testi�ed that data quality is a mature research topic in big data and

database management. However, Perez-Castillo et al. [54] claimed its youth in Smart Connected

Products (SCP) [74] and the Internet of Things. Data quality plays a signi�cant role in Open Data

Observatories, as a su�cient quality level can build trust between the cyber and physical world

[10, 54]. Each observatory addresses data quality using di�erent strategies, the UOP manages

data quality by using automated checks for data anomalies, calibrating sensors against precision

stations, and incorporating user feedback. They also recognize the limitations of low-cost sensors

and design their data use accordingly. The GFW ensures data are up-to-date by automating updates

or requesting providers to notify them of changes. EOSDIS methodology ensures metadata quality

of Earth observation data hinges on a framework prioritizing correctness, completeness, and

consistency. NASA uses automated and manual reviews to identify and rectify issues, demanding

active collaboration with data providers to implement enhancements [9].

The CCO and NEON implement quality assurance and control practices. The CCO ensures

the reliability of marine observations, �agging poor data but not eliminating them, while NEON

applies rigorous quality measures to ensure data quality. For example, observation system data

use mobile apps with constraints and validation rules. Instrument System data bene�t from sensor

placement, maintenance, and calibration. Airborne Remote Sensing data are calibrated and tested

pre- and post-�ight. Automated checks and expert reviews ensure reliability, while �ags and metrics

provide transparency. IUO handles quality through trusted data sources, accuracy, transparency,

and interactive visualizations but has limitations in completeness and update frequency.

The OFO prioritizes data quality through standardized, open-source work�ows for drone-based

forest mapping, accessible via its GitHub repository. It also employs cloud-based tools to process

drone imagery into detailed forest maps, facilitating ease of use as well as a central database to

support data sharing and quality enhancement through community feedback. As shown in Figure

5, data quality challenges in the selected Open Data Observatories are closely related to the FAIR

principles, particularly data �ndability, accessibility, and reusability. Using trusted sources and

maintaining rigorous data entry standards minimize anomalies, facilitating easier data discovery.

Sensor calibration, data entry rules and constraints implementation provide reliable data and

enhance their accessibility. Data completeness and consistency through quality assurance processes

also contribute to better metadata and documentation, making the data reusable.

6.3 Data Provenance

Data provenance, which traces the origins and lineage of data, is crucial in Open Data Observatories.

Maintaining rigorous data provenance allows observatories to ensure data transparency, reliability,

and reproducibility [3, 29, 52]. TERN releases weather data accompanied by their lineage, including

(a) the type and model of the automatic weather station used for collection; (b) the speci�c location

and characteristics of the site; (c) the instruments used for measuring di�erent weather parameters,

along with their accuracy and resolution; (d) the methodology for data recording and the intervals

at which data were stored; (e) the procedures followed in case of sensor failure including using

alternative data sources for gap �lling and indicating this within the dataset; and (f) the availability

of the data and contact information for access to more granular data (hourly data).

Similarly, SDO commits to full metadata inclusion for all its published data compendiums and

resources, encompassing data sources and time frames. NEON’s dedication to rich metadata and

thorough documentation strengthens the provenance and traceability of its data o�erings. This
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commitment includes the provision of Digital Object Identi�ers (DOIs) for NEON data packages,

enhancing their �ndability and citability. NEON’s approach to data provenance involves metadata

management, adherence to FAIR principles, data citation tracking, and handling data from diverse

sources, focusing on transparency and accessibility. In a di�erent vein, research [69] recommends

applying blockchain technology for data provenance. Blockchain can revolutionize how data are

managed, enhancing transparency, security, and trust. By leveraging its immutable ledger, data

integrity and authenticity can be guaranteed, ensuring that once data are recorded, it cannot

be altered. Moreover, the decentralization o�ered by blockchain reduces risks associated with

centralized data storage by distributing data across a network, thus enhancing data resilience

and accessibility through peer-to-peer sharing. Furthermore, blockchain’s encryption and smart

contracts safeguard sensitive data and automate data access permissions, ensuring only authorized

access. It also o�ers a transparent audit trail for all data modi�cations and transactions, facilitating

traceable data lineage and enforcing open data licenses automatically. Data provenance in our

selected Open Data Observatories aligns with the FAIR principles through elements like data

access licenses, documentation, transparency, data lineage, and citations. As shown in Figure 5,

clear data access licenses enhance accessibility and reuse, while documentation and transparency

improve �ndability and interoperability. Data lineage ensures reliability and supports reusability,

and citations facilitate proper attribution, enhancing �ndability.

6.4 Data Privacy

Data privacy is critical in protecting personal and sensitive information from unauthorised access

and disclosure. Open Data Observatories implemented various measures to address data privacy

challenges, including data anonymization, access controls, and encryption [29, 40, 45, 56, 58]. These

observatories handle massive amounts of data from various data sources through orderly collection,

aggregation, and analytics. However, these data may contain sensitive details such as personally

identi�able information and endangered species locations [1, 23, 35, 42, 53, 58].

TERN, the CCO, and the UOP all have dedicated privacy statements that outline their data privacy

practices. These include compliance with regulations like GDPR, providing privacy notices, de�ning

lawful data processing, implementing security measures, and respecting user rights. Similarly, the

GFW and GEOSS approach data privacy through transparency, consent-based processing, security,

and clear points of contact for users. NASA’s EOSDIS also has a privacy policy that emphasizes

protection and proper use of information in line with relevant laws and regulations. GROW

addresses privacy by using an open data license, collecting only anonymized sensor data without

personal identi�ers, and operating under institutional oversight. The ITIC-tsunami observatory’s

privacy policy covers aspects like cookies, email handling, and user rights under the Privacy Act.

Southampton Data Observatory adheres to the overall privacy policy of Southampton City Council,

while NEON securely manages user accounts, anonymizes data reporting, and applies Creative

Commons licensing. In contrast, IUO has a privacy-focused approach, avoiding automatic capture of

personal information and only collecting such data if explicitly provided by users, with appropriate

security measures.

Finally, the OFO focuses on openly sharing its forest mapping data and tools, rather than

collecting or managing personal user information, implying a commitment to data transparency

and accessibility. Data privacy in our selected Open Data Observatories involved encryption, access

controls, disclosure of information, anonymization, privacy notices, secure collection of personal

information, privacy statements, and GDPR compliance. As shown in Figure 5, encryption and access

controls ensure secure and restricted data access, aligning with FAIR principles. Disclosure and

privacy notices enhance transparency, improving �ndability and interoperability. Anonymization

and secure collection practices ensure data reusability without compromising privacy. Privacy
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Fig. 5. This diagram captures the intricate web of research challenges in data management, segmented
into four primary categories, Data Integration, Data �ality, Data Privacy, and Data Provenance. Each
challenge extends into related subtopics and approaches to overcome them that touch the periphery of the
web, symbolizing the complex and interconnected nature of these issues. The visual metaphor of a spider
web conveys the idea that each aspect is a critical thread in the overall structure of data management.

statements and GDPR compliance maintain legal and ethical standards, supporting data integrity

and user trust.

7 DISCUSSION

The selected Open Data Observatories are pushing the boundaries of the FAIR principles through

the creation of open-source software and the application of advanced data processing methods.

TERN, for example, not only simpli�es the process of data submission and organization through

the SHaRED Data Submission tool but also promotes data discoverability and citability with

structured metadata and Digital Object Identi�ers (DOIs). On another front, the UOP’s deployment

of machine learning models for the real-time analysis of CCTV data showcases innovative data

handling techniques. The application of machine learning by the GFW for analyzing forest coverage

highlights the pivotal role of advanced technology in the e�orts to preserve natural habitats.

Moreover, proprietary software developed by NEON and the drone imagery processing innovations

introduced by the OFO mark progress in data standardization and quality improvement. Through

these diverse data processing e�orts, these observatories are not just elevating the value of Open
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Data but are also providing deeper insights into urban and non-urban challenges, thereby equipping

researchers and stakeholders with the necessary resources for informed decision-making. Urban

data observatories such as the UOP, SDO and IUO provide essential insights into the fabric of city

life, tracking urban expansion and infrastructure development to support urban sustainability, and

smart city analytics [41, 44, 48, 49]. Non-urban observatories like the CCO and the ITIC tsunami

observatory contribute to our preparedness and response strategies for coastal hazards, safeguarding

communities and ecosystems by relying on real-time and historical data. The observatories o�ered

a variety of data types, with soil, vegetation, and climate data being among the most common. Our

study embarked on facilitating the development of new Open Data Observatories. This e�ort led

us through a complex maze of challenges, from making di�erent data sources work together to

ensuring the data were reliable and protected.

Interoperability, a cornerstone of the FAIR principles for Open Data, presents a notable chal-

lenge in data integration for Open Data Observatories. E�orts, including the implementation of

semantic data systems for data integration, demonstrate advancements in overcoming this obstacle.

Similarly, adopting standardized formats and metadata improved the ease of access and usefulness

of integrated data. Di�erent observatories adopt tailored strategies to maintain and enhance the

quality of their data. For instance, some focus on rigorous quality control measures and real-time

data veri�cation, while others prioritize the accuracy, transparency, and up-to-dateness of their

data through both automated systems and manual oversight. These methods re�ect a shared com-

mitment across observatories to uphold the integrity and reliability of their data. Tracing data back

to their origins is also essential for establishing trust and ensuring transparency within data-centric

environments. Observatories that rigorously document their data sources set a benchmark for

data management, enhancing both the reliability and reproducibility of their data. Using detailed

metadata documentation and Digital Object Identi�ers (DOIs) improves the traceability and acces-

sibility of data. Implementing standardized work�ows and open-source software also contributes

to transparency, making it easier for the wider scienti�c community to verify data.

The methods used by di�erent observatories to tackle data privacy issues demonstrate their

commitment to meeting regulatory standards, yet they vary in their approaches to data collection,

use, and management. For example, while some observatories comply with the General Data

Protection Regulation (GDPR), others emphasize data anonymization and the use of open data

licenses to reduce the collection of personal data. The depth and breadth of these privacy policies

also di�er signi�cantly. Some observatories have developed comprehensive policy frameworks

that address a broad range of legal and operational concerns, whereas others adopt more focused

privacy strategies that rely on obtaining explicit user consent before gathering personal data.

Table 6 highlights the strengths and limitations of the selected Open Data Observatories, along

with future recommendations and key takeaways. The future recommendations are grounded in

speci�c concerns raised by the observatories, existing systems that can be enhanced, or limitations

observed during our examination. For example, GEOSS’s �exibility is a strength, but the lack of

guaranteed data accuracy requires investment in quality assurance and control measures to build

user trust. Recommendations for GROW, the ITIC, and NEON similarly address their respective

limitations by suggesting the integration of additional data sources, improving data quality, and

implementing robust power solutions.

Both urban and non-urban data are indispensable for environmental and societal research,

supporting informed decision-making and sustainable development practices. For instance, non-

urban data on weather and climate can help urban areas prepare for extreme weather, while urban

data on pollution can in�uence non-urban conservation e�orts. When comparing urban and non-

urban data in terms of social aspects, several di�erences emerge. Urban social data typically shows

higher population density, greater diversity, and more extensive social services such as education,

, Vol. 1, No. 1, Article . Publication date: January 2025.



22 Hamed et al.

Table 6. Strengths and limitations of the selected Open Data Observatories, future recommendations and
some takeaways.

Data Observa-
tory

Strengths Limitations Future Recommendation Takeaways

1. TERN14 High-quality data on
environmental monitoring,
along with tools and
expertise, provided to
researchers.

Limited coherent national
capability for monitoring
freshwater ecosystems.

Integrating blockchain for data
provenance and arti�cial intel-
ligence for Linked Data.

Semantic data in-
tegration and the
Threatened Species

Index (TSX)15

2. CCO16 Access to tools and mod-
els to analyze coastal data
and predict morphological
changes.

Outsourcing data storage
may impose security con-
cerns.

Incorporate extreme events
alert system.

Extreme events analy-
sis.

3. UOP17 Ability to provide a wide va-
riety of real-time and his-
torical data on di�erent as-
pects of the urban environ-
ment.

Urban observatories do not
extend their coverage to all
cities across the UK, result-
ing in a limited geographi-
cal reach.

Lack of evident research docu-
menting the positive impact of
the project (e.g., reduce crime
rates).

Real-time data integra-
tion.

4. GFW18 Forest Watcher mobile app
for real-time threat detec-
tion, the GFW Pro for man-
aging deforestation risks in
supply chains, grants and
fellowships.

Limited data lineage. Provide details how data are
collected and evolved over
time to enhance data prove-
nance.

Real-time forest moni-
toring via satellite im-
agery and remote sens-
ing.

5. GEOSS19 Data platform �exibility en-
abling users to adapt it to
their needs.

GEOSS does not guarantee
its Earth Observations’ ac-
curacy or take responsibil-
ity for their use.

Invest in quality assurance and
control.

Platform �exibility.

6. EOSDIS20 Global, long-term and reli-
able Open Data.

Limited validation for
satellite-based data with
ground-based measure-
ments.

Consider real-time update
and alert system for extreme
events.

Data long-term archiv-
ing useful for analysis
and training AI appli-
cations.

7. GROW21 Empowers citizens and
communities to have a say
on soil and climate matters
across Europe.

Limited data types. Integrate more data sources
such as air quality and noise
level.

Citizen science.

8. ITIC22 Centralized and authorita-
tive source for providing
real-time information, and
warnings about tsunami
events and risks.

Data quality and prove-
nance challenges causing
errors in tsunami database.

Addressing data quality for im-
proving the reliability and us-
ability of the tsunami data.

Alert system.

9. SDO23 Crowd-sourcing, allowing
citizens to understand lo-
cal issues and contribute to
problem-solving in urban
development and sustain-
ability matters.

Lack of real-time data and
APIs.

Extend geographic scope. Civic engagement and
transparency.

10. NEON24 Open Data with good qual-
ity and su�cient documen-
tation.

Sensor locations at cer-
tain sites are seasonally ad-
justed or removed due to
unfavorable or unsuitable
measurement conditions.

Implement hybrid power
solutions combining wind
power, solar power and
energy storage systems for
the Oksrukuyik Creek (OKSR)
site, where operations cease
during winter.

Educational resources
such as the learning
and code hub.

11. IOU25 Wide range of urban data. Inconsistent data fre-
quency.

Consider using applications
for data quality assurance.

Urban data diversity.

12. FEO26 Ongoingmonitoring and re-
search initiatives related to
Finland ecosystems.

Limited data coverage, lack
of data privacy statement.

Expand geographic scope. Platform presentation
in multiple languages.

13. OFO27 Educational resources to
understand forests.

Limited data diversity, pri-
vacy policy not shared in
the website.

Integrate more remote sensing
wildlife data, supplemented
with contextual information

Drones and Arti�cial
Intelligence (AI).
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healthcare, and public safety. In contrast, non-urban social data usually re�ects smaller, more

homogenous populations with fewer social services.

Study limitations:Determining the precise size and quality of data was di�cult due to variations

among the chosen observatories; ideally, a summary of the data inventory should have been provided.

A model like that of 4TU.ResearchData (data.4tu.nl/) would have simpli�ed the inventory process.

Consequently, this information was not readily available in each observatory examined. In addition,

our study lacked detailed information on the funding and sponsorships of the observatories, which

can be useful for understanding their sustainability and longevity.

Building Open Data Observatories is challenging but also �lled with potential for signi�cant

impact. The collaboration between technology, policy, and practice is key to navigating these

challenges, ensuring that observatories can thrive long-term. As we move forward, the lessons

learned from our work will undoubtedly facilitate the development of new Open Data Observatories.

8 CONCLUSION

This study compared thirteen Open Data Observatories, spanning both urban and non-urban

settings on a regional and global scale. These observatories, including global initiatives such as

GEOSS and ITIC, and region-speci�c ones such as the GFW, EOSDIS, and the OFO in the USA,

GROW, FEO, the CCO, SDO and the UOP in Europe, IUO in Asia, and TERN in Australia, were

evaluated for their core features, data accessibility, and usability. Despite the inherent di�culty in

comparing the observatories due to their varied sizes and development phases, we noted signi�cant

collaborations and connections, for example, between NEON and the OFO, and between GROW and

GEOSS. The data were organized into urban and non-urban themes, highlighting commonalities in

data types and processing approaches across the observatories. Challenges related to integrating

diverse data sources while maintaining their reliability and integrity were explored, revealing that

solutions varied widely depending on the source of the data. We pinpointed speci�c strengths and

limitations for each observatory, forming the basis of our recommendations for future developments.

These �ndings mark the importance of collaboration, the standardization of data, and adaptable

strategies for overcoming heterogeneous data integration challenges, essential for developing new

urban and non-urban observatories.
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A SUPPLEMENTARY MATERIALS

A.1 Urban Observatory Project (UOP)

The overall framework uniquely applies scienti�c methods to support decision-making through a

multi-scale urban system that observes, analyses, and models both real-time and historical data.

For example, air quality monitoring sensors deployed across Newcastle and Gateshead measure

key air quality parameters such as Nitrogen Dioxide, Ozone, Carbon Monoxide, and Particulates,

generating accurate readings for both authorities and citizens to act upon, thus reducing exposure

to air pollution. There are over 50 data types, including many real-time datasets, freely available

at the urbanobservatory.ac.uk website. These data encompass earth observations, tra�c �ow, air

pollution readings, water quality parameters, and more [59].

(1) Newcastle Urban Observatory28 collects and analyses a vast amount of real-time data from

sensors and other sources in urban areas. It uses a wide array of smart devices capturing

more than a hundred di�erent metrics per second, in addition to static images, videos,

radar, and laser-scan matrices acquired separately. The data generated by these sensors

are precise and actionable by both authorities and citizens to mitigate issues such as air

pollution and tra�c congestion. Nevertheless, managing such massive data volumes presents

a signi�cant challenge, necessitating an e�cient data management approach. Among the

Newcastle Urban Observatory many projects, we examined the Predicting Rainfall Events by

Physical Analytics of Real-time Data (Flood-PREPARED) project. This initiative represents

a pioneering resource for assessing real-time water surface �ood risks and their impacts

on cities, equipping them with innovative physical, analytical methods to predict surface

water �ooding and providing decision-makers with actionable real-time predictions. The

project’s implementation progressed through �ve correlated stages, as shown in Figure 6.

Another work by James et al. [31] quanti�es the impact of COVID-19 measures in the UK.

Leveraging existing Internet of Things data and a comprehensive analytics infrastructure,

the authors developed an interactive COVID-19 dashboard. It visualizes various indicators

that update in real-time, comparing data changes against baselines and o�ering frequent

28newcastle.urbanobservatory.ac.uk/
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automated comparative descriptive statistics (e.g., daily, weekly updates) to facilitate decision-

making. For instance, data from air quality stations, car parks, and tra�c sensors analyzed

showed a signi�cant decline in pedestrian footfall and tra�c volume across Tyne and Wear

city during the UK COVID-19 national lockdown in March 2020. Moreover, the Newcastle

Urban Observatory archives a collection of historical data for various metrics, serving as a

reference for validating the new predictions generated by James et al.’s dashboard. Overall,

this dashboard aims to repurpose part of the observatory’s real-time data for crisis and

disaster management, with analyses replicated in other cities like She�eld, yielding similar

results. Newcastle Observatory may o�er insights that could be adapted by observatories

in rural locations, including an interactive map of various data and sensors, the ability to

download data in multiple formats, and the integration of live Twitter feeds.

(2) She�eld Urban Flows Observatory29: Sponsored by the Engineering and Physical Sciences

Research Council (EPSRC) and in partnership with UKCRIC Universities, the She�eld Urban

Flows Observatory actively aims to foster a carbon-free, healthy environment. It has devel-

oped a dynamic understanding of how the �ows of energy and resources impact economic

performance and social well-being. The observatory collects, stores, and analyzes city data

to monitor the city’s environmental performance interactively, engaging citizens and social

systems. Its technical platform captures real-time data, including air quality, weather, energy

consumption, and both thermal and visual imaging. It consists of various types of sensors

(�xed, mobile, and atmospheric), middleware (to gather, integrate, and transform data into

meaningful information), data storage, and a data analytics unit.

(3) Bristol Urban Flows Observatory 30: The UKCRIC Bristol Infrastructure Collaboratory aims

to transform Bristol into a living laboratory, engaging diverse communities from academia,

business, and the citizenry. It uses Open Data, Wireless Sensor Network (WSN), and smart

technology solutions to address environmental and social sustainability concerns.

(4) Cran�eld Urban Observatory31: The Cran�eld Urban Observatory provides data-centric

and remote sensing solutions for environmental, social, and economic issues. It boasts a

well-established information technology unit that connects a network of spatially distributed

sensors. Its Internet of Things (IoT) network consists of various types of sensors to monitor

noise and air pollution, water consumption, and citizens’ observations. The observatory

extracts data from these sensors and publishes them in real-time, alongside dedicated analyt-

ics tools and visualizations, enabling domain experts to monitor the city’s environmental

performance and make informed decisions to improve life quality, health, and well-being.

(5) Birmingham Urban Observatory32: With the UK’s second-largest population after London,

Birmingham’s high population density may strain infrastructure, public services, and the

environment. Consequently, city administrators invest resources in managing housing, trans-

portation, health, and energy conditions to sustain adequate living standards, particularly

monitoring the environmental, economic, and social factors impacting these critical infras-

tructures.

(6) Manchester Urban Observatory33: An interdisciplinary research hub that collects, analyzes,

and shares urban data for decision support. The observatory collaborates on various themes

with other universities, operating under the dedicated platform "Manchester-I". It o�ers free

and real-time air quality, �ood monitoring, and tra�c �ow information. Linked to Triangulum,

29urban�ows.ac.uk
30bristol.ac.uk/engineering/research/ukcricbristol/collaboratory/
31cran�eld.ac.uk/facilities/urban-observatory
32cityobservatory.birmingham.gov.uk/
33manchester-i.com/home
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Fig. 6. Predicting Rainfall Events by Physical Analytics of REaltime Data (Flood-PREPARED)

a European Union-funded smart city data ecosystem, the Manchester Urban Observatory

team has comprehensively rebuilt the platform, integrating data from numerous city-wide

sensors. They have also developed a web API that leverages the capabilities of semantic web

technology, using JSON-LD [37].

, Vol. 1, No. 1, Article . Publication date: January 2025.


	Abstract
	1 Introduction
	2 Open Data
	2.1 Open Data Principles
	2.2 Open Data Sources

	3 Research Method
	3.1 Search Plan
	3.2 Observatories Selection Process
	3.3 Observatories Selection Result

	4 Open Data Observatories
	4.1 The Terrestrial Ecosystem Research Network (TERN)
	4.2 The Channel Coastal Observatory (CCO)
	4.3 The Urban Observatory Project (UOP)
	4.4 The Global Forest Watch (GFW)
	4.5 The Global Earth Observation System of Systems (GEOSS)
	4.6 NASA's Earth Observing System Data and Information System (EOSDIS)
	4.7 The Grow Observatory (GROW)
	4.8 The International Tsunami Information Center (ITIC)- Tsunami Observatory
	4.9 Southampton Data Observatory (SDO)
	4.10 The National Ecological Observatory Network (NEON)
	4.11 The India Urban Observatory (IUO)
	4.12 The Finnish Ecosystem Observatory (FEO)
	4.13 The Open Forest Observatory (OFO)

	5 Data Themes and Management
	5.1 Urban Data
	5.2 Non-urban Data
	5.3 Data Sources
	5.4 Data Processing
	5.5 Data Visualization

	6 Research Challenges
	6.1 Data Integration
	6.2 Data Quality
	6.3 Data Provenance
	6.4 Data Privacy

	7 Discussion
	8 Conclusion
	References
	A Supplementary Materials
	A.1 Urban Observatory Project (UOP)


