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Cities are increasingly getting augmented with sensors through public, private, and academic sector initiatives.

Most of the time, these sensors are deployed with a primary purpose (objective) in mind (e.g., deploy sensors

to understand noise pollution) by a sensor owner (i.e., the organization that invests in sensing hardware,

for example, a city council). Over the last few years, communities undertaking smart city development

projects have understood the importance of making the sensor data available to a wider community – beyond

their primary usage. Di�erent business models have been proposed to achieve this, including creating data

marketplaces. The vision is to encourage new start-ups and small and medium-scale businesses to create

novel products and services using sensor data to generate additional economic value. Currently, data are

sold as pre-de�ned independent datasets (e.g., noise level and parking status data may be sold separately).

This approach creates several challenges, such as (i) di�culties in pricing, which leads to higher prices (per

dataset), (ii) higher network communication and bandwidth requirements, and (iii) information overload for

data consumers (i.e., those who purchase data). We investigate the bene�t of semantic representation and

its reasoning capabilities towards creating a business model that o�ers data on-demand within smart city

Internet of Things (IoT) data marketplaces. The objective is to help data consumers (i.e., small and medium

enterprises (SMEs)) acquire the most relevant data they need. We demonstrate the utility of our approach by

integrating it into a real-world IoT data marketplace (developed by synchronicity-iot.eu project). We discuss

design decisions and their consequences (i.e., trade-o�s) on the choice and selection of datasets. Subsequently,

we present a series of data modeling principles and recommendations for implementing IoT data marketplaces.
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1 INTRODUCTION

Over the last decade, many cities have initiated projects that deploy di�erent sensors for various

reasons. One popular application domain is environmental monitoring. After accomplishing the

primary objectives, such data are often discarded or stored somewhere where access can be di�cult

outside the initial project. There often needs to be a mechanism (or motivation) to share data with

outside parties (other than the organization that deploys the sensing infrastructure). This approach

leads to a waste of resources and can limit the potential bene�ts derived from such data. Internet

of Things (IoT) data marketplaces for smart cities are being proposed as a solution to address this

challenge. Urban data Exchange1 is one such data marketplace aimed at facilitating businesses to

develop IoT and AI-enabled services to improve citizens’ lives and grow local economies. Data

marketplaces have received limited attention in the academic community. However, the buying and

selling of data have taken place for a long time, especially within the business-to-business (B2B)

context. Initially, these data transactions took place o�ine between companies and their alliances.

Data have been widely sold across various domains, such as travel, advertising, and insurance. Even

though we are not focusing on personal data marketplaces in this paper, we will brie�y introduce

and discuss them in the Related Work section. Typically, a data marketplace comprises three types

of stakeholders: (i) data buyers (who can also combine multiple data sources), (ii) data consumers,

and (iii) data brokers. The key contributions of this work are as follows:

• We propose an ontology aggregating other well-known ontologies to model sensor data

in IoT marketplaces. We made design decisions during the ontology engineering process

that led to di�erent trade-o�s. We discuss the trade-o�s of each decision and highlight good

practices observed in existing e�orts.

• We propose a unique on-demand data o�er creation technique. Buyers can create their custom

data requests (i.e., data order) by considering four aspects: location, data type, date/time, and

service level agreement.

• Through a series of use cases, we demonstrate the utility of knowledge engineering (including

reasoning/ inferencing) in the context of data marketplaces. We also present di�erent levels

(dataset level, market level, buyer level) of knowledge engineering approaches and their

utility and related costs (e.g., computational complexity).

• We evaluate the performance of the proposed approach in three di�erent data marketplace

setups. We measured some parameters and extracted several recommendations for future

marketplace deployments.

2 MOTIVATION AND THE PROBLEM DEFINITION

Currently, IoT data marketplaces sell data per entire dataset, as shown in Figure 1. For exam-

ple, potential buyers could buy weather forecast data and parking status data in bulk. Each of

the datasets may contain multiple pieces of data packed together in a pre-de�ned manner (e.g.,

temperature, relativeHumidity may be included in the Weather Forecast data o�er). There are

multiple problems with this approach.

Problem 1: Higher network communication and bandwidth requirement: (↑ �
?
8 ∝ �1

8 ↑)

In the current approach, data o�ers are sold as pre-de�ned data bundles. There is no way to

limit the number of data within a bundle that a buyer acquires (whether the buyer may request

past (archival) data or future data (as a subscription)). The consequence of this approach

is higher network download time and cost. For example, if a data consumer wants bicycle

docking station data in Santander, they will need to buy the entire Docking Stations - SAN

1https://urbandata.exchange/
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Fig. 1. Urban Data Marketplace (Current Approach): FIWARE data models are used to organize the data into

datasets. They have been harmonized to enable data portability for di�erent applications, including Smart

Cities, Smart Agrifood, Smart Environment, Smart Energy, Smart Water, and others. The key weakness of

this approach is that data buyers need to buy the entire dataset (e.g., Noise Level Helsinki) whether they

need the entire dataset or not. This approach leads to higher data prices.

dataset whether they need the entire dataset or not. Therefore, there is a positive correlation

between network communication, bandwidth requirement and volume of data. Given that

the price of a data o�er 8 is �
?
8 and the bandwidth required is �1

8 , the price is proportional to

bandwidth.

Problem 2: Di�culties in pricing which leads to higher prices: (↑ �
?
8 ∝ �E

8 ↑) Currently,

each data bundle comprises large volumes of data. The cost of acquisition for a large amount

of data is high. Therefore, the cost of the bundle has to be high as well. In a data marketplace,

the price of a data o�er has to cover the cost of data acquisition plus a pro�t margin. Therefore,

there is a positive correlation between data prices and volume. Given that the price of a data

o�er 8 is �
?
8 and volume is �E

8 , price is proportional to volume.
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Problem 3: Information overload for data consumers: (↑ �E
8 ∝ �

??
8 ↑) .

In data science projects, 80% of time and e�ort is often devoted towards preparing the data

(i.e., acquiring, cleaning, transforming, etc.), and only 20% is used to do the actual analysis.

Therefore, the larger the buyers’ dataset, the more e�ort they need to prepare and �lter

the relevant data. Assume that a given data analysis task is related to weekends data (e.g.,

parking slot status). First, data scientists need to query the entire dataset, remove the data

related to weekdays and select only the data related to weekends. Therefore, the current bulk

pre-de�ned data o�ering approach unnecessarily increases data scientists’ workload (i.e.,

data consumers’). Given the size of a data o�er, 8 is �E
8 , the cost of data pre-processing is �

??
8

– the cost of data pre-processing is proportional to volume.

Problem 4: Limited data discovery capabilities: Currently, IoT data marketplaces organize

datasets by type (broadly) and location. For example, it is usually up to the data seller to

bundle the data into an o�ering as they see �t, as shown in Figure 1. Here, data o�ers are

pre-de�ned and static without any mechanism to request customized data. Data search

primarily relies on location. There is no way for data consumers to acquire traffic data in

London on rainy days over the last three years in the current data marketplace scenario.

2.1 Design Principles and Architecture

We suggest design principles to help data consumers communicate the data they need. These e�orts

yielded Competency Questions (CQs) for our data model.

2.1.1 Design Principles. We enlisted twenty-one participants with backgrounds in computer and

data science to extract the following design principles. The identi�ed expressed their priorities

using question terms: (1) where, (2) what, (3) when, and (4) how. Let us explain each of these design

principles with a concrete example. As illustrated in a series of Figures (2(a), 2(b), 2(c), 2(d)), we

have implemented the proposed IoT data marketplace by following these design principles.

Fig. 2. Custom Data Request Builder

We considered the selected participants for their expertise in three key areas: (i) their under-

standing of the IoT domain, (ii) their knowledge of semantic web technology for the IoT from an

ACM Trans. Internet Things, Vol. 9, No. 9, Article 99. Publication date: September 9999.
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end-user perspective, and (iii) their pro�ciency in semantic data modelling. We reviewed their

quali�cations, expertise, and past experiences, sourcing them from professional networks, academic

institutions, conferences, and events. The participants’ questionnaire responses supplemented us

with the necessary data for these �lters to make deductions. For instance, one of the questions

asked, "Do you believe that bikes available for hire in London city will be less accessible than usual on
a sunny day?" The response showed that over 70% of the participants agreed with this statement.

Consequently, we established logical rules to infer sunny days based on the decreased availability

of bikes for hire. Moreover, the participants’ responses revealed interesting insights about their

demographics. Most participants have achieved a minimum of a bachelor’s degree, with approxi-

mately 30% of them having pursued further education at the postgraduate level. The majority of

participants, as such, have direct experience in applying semantic web technology to handle and

analyze IoT data (e.g., database management, AI and machine learning). The distribution of years

of experience in the current �eld is quite diverse, with 25% having 1-2 years, 30% having 3-5 years,

and a sizeable proportion having more than ten years. Participants also have a wide range of ages,

with the majority in the 25-34 and 35-44 age groups, respectively. Figure 3 and 4 show the study

participants’ education background and demographic information.

Fig. 3. Participants education and experience background in Computer Science.

Fig. 4. Participants demographic information.

ACM Trans. Internet Things, Vol. 9, No. 9, Article 99. Publication date: September 9999.
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To guide potential data consumers, we have designed a user interface and developed a ques-

tionnaire to gather the necessary information as shown in Figure 2(a). Based on our preliminary

investigation, the most critical decision data scientists make is to choose the area of interest (where).

As illustrated in Figure 2(b), data consumers need to express the area of interest, and then available

cities within the desired area will appear (e.g., London, Manchester). They can subsequently narrow

down the search in a more granular way. For instance, they may select speci�c postcodes and

zones or mark an area by drawing a polygon(s) on the provided map. As illustrated in Figure 2(c),

consumers can select which data types they want. Data are categorized into logical groups. To

organize the data types, we follow the data categories provided by FIWARE2.

As shown in 2(d), the next stage allows data consumers to express their ‘Time’ window of

interest. First, data consumers must scope their requests for the overall duration (e.g., last ten years,

following four years). Secondly, data consumers are o�ered to narrow down their requests using

an expressive set of semantic terms (e.g., weekdays, weekends, rainy days, and sunny days). These

�ltering terms are only possible due to Semantic Web technologies. We will discuss this capability

(as well as the principles and technologies behind facilitating such capability) in detail later in

this paper. The next stage allows data consumers to express their Service Level Agreement (SLA)

requirements, such as their ’co-location’ requirements. For example, a data consumer who has a

focus on developing a park and cycle app. might want to understand air and noise pollution. In

order for data to be meaningful, data consumers need to gather air and noise pollution data

near car parks and bicycle stations (e.g., co-located within half a mile).

2.1.2 Architecture. The IoT data marketplaces need to be distributed in nature. Data owners

are expected to store and manage data items and only share their metadata with brokers such

as the IoT data marketplaces. Consequently, when a broker receives a request, it knows from

where to gather the data (or to decide whether it is possible or not to ful�ll the request). Figure

5 depicts the architecture of the IoT data marketplace, and details are presented here (https:

//gitlab.com/synchronicity-iot). In summary, we have developed a user interface that allows data

consumers to build their data requests. We then organize each data request using a standardized

JSON schema and send it to the validation engine. The validation engine determines whether the

IoT data marketplace can ful�ll a given request based on the available metadata. Then, one or

multiple SPARQL queries will be generated based on the requirements of the data request (and

depending on where the actual data reside).

3 DATA MARKETPLACE DESIGN

To address the requirements stated in 2.1.1, we propose an IoT data marketplace that allows potential

data consumers to buy only the data points/records they need to solve a given problem. Pre-de�ning

many data o�erings is not feasible; therefore, the best approach is to allow consumers to create

their data o�erings (i.e., data requests). To illustrate the notion, assume a new tourism company is

interested in purchasing various data entities to build an AI decision support system. These entities

may contain speci�c observations about local attractions such as beaches, museums, parking

spots, and bike docking stations. Thus, the organization prepares a single order that includes the

data records from the datasets instead of acquiring the entire dataset for each entity separately.

Nonetheless, this method has several drawbacks in terms of the following: (see Table 1 ).

• Data pricing could be complicated because each data source may price its observations-

depending on their size and novelty. In addition, the broker fees and any variable extra

charges have to be carefully calculated and added to the total bill.

2https://www.�ware.org/smart-data-models/
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Fig. 5. Semantically Enhanced IoT Data Marketplace Architecture

• Data publishing could raise privacy and ownership concerns because data providers may

have di�erent privacy policies and credit preferences. Therefore, appropriately tailored

privacy and data ownership agreements must exist to satisfy all parties.

Table 1. Possible Scenarios

Criteria Current Pre-De�ned Data O�ering Ap-

proach

Proposed On-Demand Data O�ering Ap-

proach

• Pricing Structure Simple Could be complicated

• Pricing Fairness Less fair More fair

• Data Discovery Less discoverable More discoverable

• Publishing Complexity Easy and simple to publish Could be complicated to publish

• Data Preparation Complexity

(from a data consumer perspective)

Higher (as large datasets need to be pro-

cessed and �ltered)

Less (as data is already processed and

�ltered)

3.1 Data Model

Our data model comprised a foundational ontology instantiated with six heterogeneous datasets.

The ontology aims to describe sensor data in the IoT data marketplace. We followed the NeOn

methodology [1–3] to develop the ontology. Although there are numerous other ontology devel-

opment methodologies [4–8], we selected NeOn as it has multiple modular scenarios to choose

from and adapt to our current requirement. Figure 6 shows the ontology development’s life cycle.

We adopted NeOn’s �rst, second and third scenarios. The �rst scenario outputs the Ontology

Requirement Speci�cation Document (ORSD). Then, we identi�ed the non-functional requirements

from the second scenario based on the ORSD (see Appendix A). We followed the process of reusing

existing ontological resources from the third scenario. Following that, we implemented and evalu-

ated the ontology using various tools. Figure 7 depicts the proposed core ontology, Table 2 discusses

the key characteristics of this ontology, and Figure 8 shows the ontology instantiated with six

sensor datasets.
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Fig. 6. Neon Methodology for developing the proposed Urban Data Exchange Ontology

3.2 Ontology Requirements

The �rst step in developing the ontology was to gather the required information. Here, we used

the information collected at the design stage (see section 2.1.1- formulating Competency Questions

(CQs) to develop the ontology. During this step, we produced the ORSD (see Appendix A), which

contains the conceptual building blocks for the ontology as follows:

• Ontology purpose: To describe the sensor data.

• Ontology scope: The Internet of Things (IoT).

• Ontology implementation language: OWL2 Web Ontology Language.

• Ontology intended users: Small to medium businesses (SMEs).

• Ontology non-functional requirements: To List elements that must be included in the ontology,

such as IoT geospatial and time classes.

• Ontology functional requirements: To contain the Competency Questions (CQs) that build

and validate the ontology.

3.3 Ontology Analysis

In this step, we revised the Competency Questions (CQs) from the requirements phase and extracted

knowledge to implement the ontology. We decided to reuse classes from mature ontologies to

develop a new ontology that models the following concepts: 1) sensor data observations, 2) sensing

infrastructure, 3) location, 4) temporal aspects, and 5) units of data.

To �nd suitable state-of-the-art ontologies, we searched Google Scholar [9] and the BioPortal

repository [10], as well as other scholarly websites and ontology repositories, with an inclusion

criteria that the publication date had to be between 2015 and 2020. Di�erent search terms were

used to perform the search: "sensor data ontology", "semantic modeling for sensor data", "semantic

IoT data", and "IoT ontology" [11, 12]. The outcome of the search yielded six ontologies that are

commonly used to model sensor data, such as the Semantic Sensor Network Ontology (SSN) [13].

Among the shortlisted ontologies is the SAREF [14] ontology that describes smart appliances

and related IoT devices and services, which may not be the most suitable ontology for modeling

sensor data observation. Additionally, the IoT-Lite ontology [15] provides a basic set of classes and

properties for describing IoT devices, sensors, and actuators. However, we may need more than

this for our use cases, as we require classes to model the sensor’s observation and properties rather

ACM Trans. Internet Things, Vol. 9, No. 9, Article 99. Publication date: September 9999.
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than the sensor alone. The W3C Web of Things (WoT) ontology3 is a �exible, modular ontology

that can be changed to �t di�erent use cases and allow di�erent IoT systems and domains to work

together. WoT focuses on di�erent aspects of IoT devices and services. However, its �exibility and

generality can also make it challenging to adapt to our requirements. For example, one of the WoT

classes, "Thing", models the IoT device, the service, or the data source. In contrast, the class "Sensor"

is more suitable for modeling the sensor’s observation.

The FIESTA-IoT ontology 4, as such, models IoT-related concepts but has more entities than what

we need. It borrows classes from the SSN ontology (Version 1) [16], the W3C Web of Things (WoT)

Thing Description, and the oneM2M standard5. The IoT-Semantics Ontology is another �exible

ontology that lacks su�cient documentation, making it challenging for developers to adapt. After

scouring and comparing the state-of-the-art ontologies, we decided to reuse concepts from the SSN

ontology (Version 2) [13], mainly for its modular property. SSN ontology (Version 2) integrates

three distinct ontologies. That is the SSN ontology (Version 1), the Sensor, Observation, Sample,

and Actuator (SOSA) ontology [17], and the Quantities, Units, Dimensions, and Types (QUDT)

ontology [18], qualifying it to be the optimal choice for our use case. Further, we named our new

ontology the Urban Data Exchange Ontology (UDEO).

Sensor data observations: From SSN (Version 2), we re-used the SOSA ontology. The SOSA

ontology is designed to be interoperable with other Semantic Web standards like RDF, OWL,

and SPARQL, making it easy to integrate with other data sources and applications. Moreover,

the SOSA ontology is continuously maintained and updated by a community of researchers

and developers, ensuring that it stays relevant to current IoT applications. The ontology is

also modular and extensible, making it easy to customize for our use cases.

Sensing infrastructure: SOSA provides su�cient facilities to model sensing infrastructure.

Therefore, we also reused the concepts and properties for this purpose.

Location: This work focuses on outdoor locations, easily identi�ed using GPS Coordinates.

Temporal aspects: We decided to store the timestamp of each observation using XML Date-

Time data type (i.e., xsd:dateTime). We considered OWL-Time [19] to be incorporated into

our ontology. However, we concluded that SPARQL’s Time function also provides most of

the OWL-Time capabilities. Therefore, we omitted it from our ontology.

Units of data: We adopted concepts from the Quantities, Units, Dimensions, and Types Ontol-

ogy (QUDT) Ontology to model data units. QUDT is part of SSN ontology (Version 2) and

provides a modular approach to ontology development, which allows for compatibility and

interoperability with other systems that use QUDT or a similar ontology.

3.4 Ontology Implementation

As mentioned in the analysis step, we mainly adopted most of the UDEO classes from the SOSA

ontology as shown in �gure 7. The conceptual ontology model, or the lightweight version, was

designed as a UML diagram in draw.io software6. The ontology diagram in 8 was discussed between

UDEO stakeholders before its digitization. Each of the concepts and relationships modelled in UDEO

is listed in Table 2. We encoded the digital version in the Protege ontology editor and exported it to

a dedicated knowledge graph platform [20].

3https://www.w3.org/TR/wot-thing-description11/
4http://iot.ee.surrey.ac.uk/ontology/�esta-iot.owl
5https://www.onem2m.org/
6https://app.diagrams.net/
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Fig. 7. The adopted classes for the proposed Urban Data Exchange Ontology (UDEO)

Table 2. Proposed data model: Concepts and relationships. [O�icial definitions are in Italics]

Concept Description

Observation

(OWL Class)

[sosa]

Act of carrying out an (Observation) Procedure to estimate or calculate a value of a property of

a FeatureOfInterest (e.g., Room). Observation can be seen as a placeholder that links relevant

information together. As illustrated in Figure 8, observation can be considered an ID for each data

record in our data model. Each raw depicts a data record.

ObservableProperty

(OWL Class)

[sosa]

An observable quality (property, characteristic) of a FeatureOfInterest. (e.g., temperature, humidity,

presence)

Sensor (OWL

Class) [sosa]

Device, agent (including humans), or software (simulation) involved in, or implementing, a Procedure.

(e.g., Temperature sensor, humidity sensor, motion sensor). In our model, we have created a unique

ID for each sensor based on its hosted platform.

Platform (OWL

Class) [sosa]

A Platform is an entity that hosts other entities, particularly Sensors, Actuators, Samplers, and other

Platforms. In UDEO, sensors are attached to di�erent types of platforms, as shown in Figure8.

We do not necessarily keep track of the exact location of the platform. However, location can be

approximately identi�ed by using the feature of interest.

FeatureOfInterest

(OWL Class)

[sosa]

The thing whose property is being estimated or calculated in the course of an Observation to arrive

at a result, or whose property is being manipulated by an Actuator, or which is being sampled or

transformed in the act of Sampling. In the context of UDEO, BuidlingSpaces are the FeatureOfInterest

(e.g., o�ces, zones, �oors). Most of the sensors are used to observe a property (phenomenon) of a

location (e.g., the temperature in a room) [21].

Result (OWL

Class) [sosa]

The Result of an Observation, Actuation, or act of Sampling. To store an observation’s simple result

value, one can use the hasSimpleResult property. Result is a placeholder to link related information,

such as values and units. The UDEO model stores the data value and its unit type.

resultTime

(Datatype Prop-

erty) [sosa]

The result time is the instant of time when the Observation, Actuation or Sampling activity was

completed. Each data record in the UDEO system comes with a time stamp. We attach a timestamp

to each observation using this data property.

SpatialThing

(OWL Class)

[WGS84]

A class for representing anything with a spatial extent, i.e., size, shape or position.

3.5 Ontology Evaluation

This step evaluates the ontology quality in terms of structure, semantic representation, and in-
teroperability. To evaluate the structure and semantic representation, we used the open-source

online scanner, Oops! [22] and Pellet reasoner [23] built-in to Protege. Following that, we executed
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SPARQL queries against the knowledge graph (i.e., UDEO instantiated with IoT datasets) to answer

the Competency Questions (CQs) listed in the Appendix.

3.6 Experimentation Plan

Our experimentation plan consists of three layers, as shown in Figure 19, (i) data sources, (ii)

adaptor layer; and (iii) evaluation. We aim to simulate a data marketplace using the most practical

solution that �ts the purpose.

• Data Sources: We expanded the UDEO to accommodate six data sources: docking stations, air

quality, noise level, parking status, museums, and beaches. Further, we generated synthetic

datasets for each data source that adhered to the FIWARE data model structure.

• Adaptor Layer: We mapped the six datasets into the Resource Description Framework (RDF)

graph - referencing UDEO.

• Evaluation Layer: We stored the data from the adaptive layer in triple-store databases under

three di�erent architectures and evaluated each one’s performance.

SynchroniCity IoT Data Marketplace receives data as JSON �les (modeled using FIWARE stan-

dards) from data owners/publishers. SynchroniCity IoT Data Marketplace currently has a limited

amount of data. It was not su�cient for us to conduct an experiment to uncover the utility of

Semantic Web technologies and their impact on computing infrastructure. Therefore, we developed

an algorithm to produce the required number of synthetic sensor data observations in JSON format

(depending on the speci�c experiment). Then we transformed JSON data into Resource Description

Framework (RDF) graph and loaded graph data into a triple-store database. We meant our algorithm

could run and update concurrently or partially by modules. For example, the user may run the

algorithm’s �rst part to generate JSON data and then transform the output JSON �le into RDF

using the second part as an independent code. Our experience found that running the algorithm in

stages consumed less time when generating many data observations (e.g., 1000K+). Code Snippet 1

explains the technique used. The UDEO and datasets were connected to create a knowledge graph.

We employed Stardog [20], a knowledge graph platform that integrates heterogeneous and isolated

data sources. Stardog hosts the triple-store databases and has an IDE (Stardog Studio) capable of

performing numerous operations, including SPARQL, GraphQL, arti�cial intelligence, and machine

learning. We wrote complex SPARQL queries to test the e�ciency of retrieving information and

inferring new phenomena. Further details are in the evaluation section.

4 EVALUATION

The characteristics exhibited in Figure 2 (d), such as sunny days and weekdays, have been modeled

using SWRL rules. To illustrate the assessment, we inserted the rule into the database. We executed

a query that conveyed, for instance, the condition of a sunny day, assuming a decrease in bike

availability. To evaluate our knowledge graph’s performance in terms of utility and response time,

we evaluated it using three di�erent architectures, each of which di�ers in how it stores and queries

data. In the �rst instance, we used Code Snippet 1 to generate three incremental series of synthetic

datasets. The number of generated observations was equal for each one. However, the volume

varied when serialized into RDF graphs. Table 3 shows the kilobyte (KB) size for the generated RDF

graphs. Furthermore, Figure 10 compares the volume of each data model. It was evident that the

Noise Level dataset with more than 1K triples is the largest. That is due to the increased amount of

metrics (e.g., CO, NOx) in a single observation compared to other data sources. The objective is to

estimate how much data can be stored on a disk for each data model. It helps to understand how

much data storage is required for a given use case, depending on the frequency of the observations
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Algorithm 1: Data Generate, Transform and Load

Part 1– Generate

Function GenerateModel():

Function GenerateId(B8I4 , 2ℎ0AB + BCA8=6):

return join (chars for i in range(B8I4));

model = DataModel(�3 ,C~?4);

n = name ;

v = value ;

model.add(n,v) ;

return model ;

x = observation number (integer only) ;

for 8 in range(x) do

data= GenerateModel();

JSON.dump(data);

end for;

Part 2 –Transform ;

Data = ReadJSON(data) ;

for 8 , A in Data: do

RDFData=Graph.add(subject,property,object);

Graph.serialise(RDFData,5 >A<0C=turtle);

end for;

Part 3 – Load ;

StardogConnection=(endpoint,username,password);

DatabaseName = NewDatabase(RDFData) ;

connection = ConnectStardog(RDFData, StardogConnection);

connection.add(RDFData, 5 >A<0C=turtle);

connection.commit

captured and the number of metrics modeled within each observation. We then interrogated the

data stores to answer Competency Questions (CQs) such aswhere can I park and ride?. We developed

complex SPARQL queries and executed them across the databases in question. Then, we inserted

Semantic Web Rule Language (SWRL) into the databases and reran the queries. We assessed each

approach by checking the correctness of each query’s result (i.e., the answer to the competency

question) and comparing response time on databases with and without SWRL. Subsequently, we

re�ected on the impact of complex queries and reasoning processes on data, highlighting some

strengths and weaknesses. Furthermore, we analyzed the collected data to compare the results

and determine if response time is faster after inserting SWRL rules. In other words, to examine

if reasoning and setup reduce the query response time. Finally, key �ndings suggested the most

suitable approach for the data marketplace. The accumulated response time observations were

analyzed with the following steps to detect the di�erence between the two groups:

• Line graph to visualize and compare the data.

• Testing the data distribution with the Shapiro-Wilk normality test to determine the appro-

priate statistical test for detecting the di�erence between two groups (i.e., parametric or

non-parametric). Here, the histograms and test p-value suggested that the observations were

not found to be not normally distributed. Accordingly, we conducted non-parametric tests.
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' According to Sanahl et al. [1], The museum is a non-profit, permanent institution in
the service of society and its development, open to the public, which acquires,
conserves, researches, communicates and exhibits the tangible and intangible
heritage of humanity and its environment for the purposes of education, study and
enjoyment'.

[{'dayOfWeek': 'Mo, Wed, Thu, Fr','closes' : '19:30','opens
'11:00'}, {'dayOfWeek': 'Sat','closes' : '21:00','opens' : '10:00'{'dayOfWeek':
'Sun', 'closes' : '15:00','opens' : '10:00'}]

[['250', 40], ['315',40], ['400', 40], ['500',40],['630',40],['800',40],['1000',40],
['1250',40], ['1600',40],['2000',40],['2500',40],['3150',40], ['4000', 40],

['8000',40],['10000',40]]
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Fig. 8. The proposed Urban Data Exchange Ontology (UDEO) instantiated with six di�erent sensors’ datasets

• Using Kruskal-Wallis to check if the two groups of observations (No-rule-SWRL) are related

(i.e., sampled from the same distribution)

• Finally, Mann-Whitney, the statistical test proved if there is a signi�cant di�erence between

the two groups. In other words, to examine if SWRL increased or reduced the query e�ciency

and response time.

Therefore, the claimed hypotheses can be formulated as:

Hypothesis 1 (H0). SWRL reduces query response

Hypothesis 2 (H1). SWRL does not reduce query response time.

The signi�cance level of

U = 0.05

We retain the null hypothesis if the p-value is greater than the signi�cance level.

4.1 Rule-based Reasoning

In the context of the Semantic Web in general and RDF graphs in particular, reasoning, also

referred to as inferencing, derives a new phenomenon from a given dataset based on named axioms,

applicable rules, and de�nitions in the data model. Reasoning rules are declarative and represent

proven knowledge or concepts modelled by experts. Rule-based inferring uses conditional IF-Then

entailment rules. The logical consequences in the IF clause are inferred in the statement of Then.

For example, outdoor activities are busier than usual on sunny days. Reasoning can reshape and

align data, creating new views of data and connections. More importantly, it validates domain
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Data Source 1
(Docking Sta�ons)

Original 
Data 

Sources

Adaptor Layer:
NGSI-LD to IoT

Data Marketplace
Ontology

Data Source 2
(Air Quality)

Data Source 3
(Noise Level)

Data Source 4
(Parking Status)

Data Source 5
(Museums)

Data Source 6
(Beaches)

Evaluation
Strategy

Evaluation 1 (Benchmark):
All the data store in a single
data repository within single

triple store graph DB

Evaluation 2: Each dataset
store in seperate repositories
within single triple store graph

DB [Internal SPARQL federation]

This approach is not practical as the IoT data
marketplace aims to be federated. However, this
evaluation allows us to create a benchmark which
can be used to  compare against performances
issues that arise in federated querying

Evaluation 3: Each dataset store
in seperate repositories within

seperate triple store graph DBs
[Internal SPARQL federation]

This would be the most practical
scenario in IoT Data Market places

Fig. 9. Experimental Setup

Data Model 1K 10K 100K

Air Quality 90 903 9023

Beaches 108 859 8580

Docking Stations 119 1188 11877

Museums 153 1215 12141

Noise Level 135 1347 13471

Parking Status 99 918 9180

Table 3. Data Model RDF

Graph Size (KB)

Fig. 10. Comparison between Data Model Sizes(KB)

modeling and detects violations. One of the features is the reasoning at query time. Besides the

excellent performance, it allows users to specify the type and pay only for its reasoning usage.

Reasoning can be enabled or disabled via a simple boolean command. When enabled, rules or

axioms are triggered, and reasoning executes according to its value in the database. In this case

study, we created a rule that assumes low rental bike availability during sunny days. We sketched

this assumption to prove a concept that may not re�ect objective reality. As discussed in the coming
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sections, the sunny days rule is injected into our database and used to evaluate its performance in

three di�erent scenarios.

4.2 Evaluation One

The �rst experiment loaded all six datasets and our ontology (UDEO) into a single database. We

executed the SPARQL query scripts at Code Snippet 3 and 4 a hundred times consecutively and

respectively. The queries yield vacant car parking spots and available bikes near a geographical

location.We recorded the time taken by each script inmilliseconds (ms).We repeated the experiment

after inserting SWRL, which could infer a sunny day. The SPARQL queries were executed 100 times

before and after reasoning (i.e., inserting SWRL). Figure 11 shows the query responses for each

query type (i.e., No-rule and SWRl) and the histograms in Figure 14 unveil the data distribution.

The obtained p-values from Shapiro-Wilk, Kruskal-Wallis and Mann Whitney, as listed in Table 26,

were far below the signi�cance level of 0.05. Therefore, we reject the null hypothesis and conclude

that SWRL does not reduce response time in this query setup.

Listing 1: SunnyDays Rule

Pre�x rule: <tag:stardog:api:rule:>

[] a rule:SPARQLRule ;

rule:content """

PREFIX �ware:

<https://uri.�ware.org/ns/data−models#>

IF

{?id a �ware:BikeHireDockingStation;

�ware:AvailableBikeNumber;

?AvialableBikeNumber;

BIND(xsd:integer(AvialableBikeNumber) <5

AS ?SunnyDays)}

THEN

{?id �ware:SunnyDays ?SunnyDays}""".

Listing 2: PREFIXES for"Where can I park my

car and ride a bicycle?"

PREFIX �ware://<https://uri.�ware.org/ns/data−models#>

PREFIX ngsi: <https://uri.etsi.org/ngsi−ld/>

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>

PREFIX schema: <https://schema.org/>

PREFIX sosa: <http://www.w3.org/ns/sosa/>

PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX geof:<http://www.opengis.net/def/function/geosparql>

PREFIX unit: <http://qudt.org/vocab/unit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Listing 3: Evaluation One

NoRule Result Response

Time = 237 ms

Select ∗

{?id a �ware:ParkingSpot;

�ware:category ?category;

�ware:dataProvider ?dataProvider;

ngsi:status ?status;

ngsi:location ?location;

ngsi:ParkingPoint ?ParkingPoint.

?id2 a �ware:BikeHireDockingStation;

�ware:availableBikeNumber ?availableBikeNumber;

schema:address ?address;

ngsi:status ?Bikestatus.

sosa:PointID a pos:Point;

pos:SOSAPoint ?SOSAPoint.

BIND (geof:distance

(?ParkingPoint, ?SOSAPoint, unit:Kilometer)

as ?Distance).

FILTER(xsd:integer(?Distance < 500))

FILTER(REGEX(?Bikestatus, "free"))

FILTER(REGEX(?availableBikeNumber, "1"))

FILTER(REGEX(?category, "o�street")).}}

LIMIT 1

Listing 4: Evaluation One-SWRL-

Result Response Time= 571 ms

Select ∗

{?id a �ware:ParkingSpot;

�ware:category ?category;

�ware:dataProvider ?dataProvider;

ngsi:status ?status;

ngsi:location ?location;

ngsi:ParkingPoint ?ParkingPoint.

?id2 a �ware:BikeHireDockingStation;

�ware:availableBikeNumber ?availableBikeNumber;

schema:address ?address;

ngsi:status ?Bikestatus;

�ware:SunnyDays ?SunnyDays.

sosa:PointID a pos:Point;

pos:SOSAPoint ?SOSAPoint.

BIND (geof:distance

(?ParkingPoint, ?SOSAPoint, unit:Kilometer)

as ?Distance).

FILTER(xsd:integer(?Distance < 500))

FILTER(REGEX(?Bikestatus, "free"))

FILTER(REGEX(?availableBikeNumber, "1"))

FILTER(REGEX(?category, "o�street")).}}

LIMIT 1
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Fig. 11. Evaluation 1 visualisation Fig. 12. Evaluation 1 boxplot

Fig. 13. Evaluation 1 No-Rule distribution plot Fig. 14. Evaluation 1 SWRL distribution plot

Listing 5: Evaluation Two NoRule Re-

sult Response Time= 32 ms

SELECT ∗

{SERVICE <db://BikeHireDockingStation100k>

{?id a �ware:BikeHireDockingStation;

�ware:availableBikeNumber ?availableBikeNumber;

schema:address ?address;

ngsi:status ?Bikestatus.}

{SERVICE <db://Parking>

{?id2 a �ware:ParkingSpot;

�ware:category ?category;

�ware:dataProvider ?dataProvider;

ngsi:status ?status;

ngsi:location ?location;

ngsi:ParkingPoint ?ParkingPoint.

sosa:PointID a pos:Point;

pos:SOSAPoint ?SOSAPoint.

BIND (geof:distance

(?SOSAPoint,?ParkingPoint, unit:Kilometer)

as ?Distance).

FILTER(xsd:integer(?Distance < 290))

FILTER(REGEX(?Bikestatus, "free"))

FILTER(REGEX(?availableBikeNumber, "1"))

FILTER(REGEX(?category, "o�street")).}}}

LIMIT 1

Listing 6: Evaluation Two-SWRL Re-

sult Response Time= 47 ms

SELECT ∗

{SERVICE <db://Parking>

{?id2 a �ware:ParkingSpot;

�ware:category ?category;

�ware:dataProvider ?dataProvider;

ngsi:status ?status;

ngsi:location ?location.}

# ngsi:ParkingPoint ?ParkingPoint.

{?id a �ware:BikeHireDockingStation;

�ware:availableBikeNumber ?availableBikeNumber;

�ware:AvailableBikeNumber ?AvialableBikeNumbe;

schema:address ?address;

ngsi:status ?Bikestatus;

�ware:SunnyDays ?SunnyDays.

sosa:PointID a pos:Point;

pos:SOSAPoint ?SOSAPoint.

# BIND (geof:distance

#?SOSAPoint, ?ParkingPoint, unit:Kilometer)

#as ?Distance).}

# FILTER(xsd:integer(?Distance < 290))

FILTER(REGEX(?Bikestatus, "free"))

FILTER(REGEX(?availableBikeNumber, "1")}}

LIMIT 1

4.3 Evaluation Two

The second experiment stored each dataset with the UDEO locally but in separate databases using

the same Stardog instance. Here, the SPARQL federation answered the competency question. For
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Fig. 15. Evaluation 2 visualisation Fig. 16. Evaluation 2 boxplot

Fig. 17. Evaluation 2 No-Rule distribution plot Fig. 18. Evaluation 2 SWRL distribution plot

instance, the query targeted the data source internally by using the SERVICE keyword with the

URI typed as db://database instead of the SPARQL endpoint URL. For further analysis, we executed

the SPARQL queries shown in the Code Snippet 5 and 6 hundred times, with and without SWRL-

recording observations. In the same manner, the line plots 15 compared the two variables, while the

histograms in 17 suggest that the observations do not follow the normal distribution. Noticeably,

this setup (locally separated databases) has a quicker response time than the uni�ed database in

evaluation one. Similar to evaluation one 4.2, the p-values from Shapiro-Wilk, Kruskal-Wallis and

Mann-Whitney, as listed in Table 26, were less than the signi�cance level of 0.05. Once again, we

reject the null hypothesis and recommend that injecting SWRL into the internally distributed

databases does not accelerate response time.

4.4 Evaluation Three

In the last experiment, we stored each database on a separate computer node under di�erent

Stardog instances. Every machine acted as an independent data provider. We executed federated

SPARQL queries, as illustrated in Code Snippet 7 and 8 to answer our competency question from

the desired database without moving or copying data. This time, the query targeted a SPARQL

endpoint on a remote machine. Therefore, an IP address was required along with the port number

to reference the SERVICE Keyword. Nevertheless, HTTP authentication was also necessary to

access the reference SPARQL endpoint. It can be achieved by disabling Stardog security on startup

or storing password credentials in the Stardog directory. The same query for all other evaluations

was executed concurrently, in the same manner, with and without SWRL. Thus, response times

were recorded for analysis (i.e., Table 26) and comparison (i.e., Table 20) purposes. Astonishingly,
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Fig. 19. Evaluation Three Setup, A to E represent the di�erent data providers’ machines. Data providers may

store their data on edge using mini pcs or dedicated computers. Here, the user/developer places a request. It

gets verified by the validation engine and passed to the meta organizer that knows the data provider that has

the requested information.

the average response time with SWRL was faster than no-rule. Accordingly, we retain the null

hypothesis and conclude that SWRL reduces the query response time in the decentralized data

storage manner.

Listing 7: Evaluation Three NoRule

Result Response Time = 99 ms

SELECT ∗

{SERVICE <http://192.168.0.128:5820/Parking/query>

{?id2 a �ware:ParkingSpot;

�ware:category ?category;

�ware:dataProvider ?dataProvider;

ngsi:status ?status;

ngsi:location ?location.}

{SERVICE <http://192.168.0.128:5820/Bike/query>

{?id a �ware:BikeHireDockingStation;

�ware:availableBikeNumber ?availableBikeNumber;

�ware:AvailableBikeNumber ?AvialableBikeNumber;

schema:address ?address;

ngsi:status ?Bikestatus;}}

LIMIT 1

Listing 8: Evaluation Three SWRL Re-

sult Response Time = 86 ms

SELECT ∗

{SERVICE <http://192.168.0.128:5820/Parking/query>

{?id2 a �ware:ParkingSpot;

�ware:category ?category;

�ware:dataProvider ?dataProvider;

ngsi:status ?status;

ngsi:location ?location.}

{?id a �ware:BikeHireDockingStation;

�ware:availableBikeNumber ?availableBikeNumber;

�ware:AvailableBikeNumber ?AvialableBikeNumber;

schema:address ?address;

ngsi:status ?Bikestatus;

�ware:SunnyDays ?SunnyDays.}}

LIMIT 1

4.5 Results

Data aggregated (n=100) for each evaluation was fed to a Python code for visualization, exploration,

and statistical testing. Figure 24 are line graphs that visualize the �ow of each trail. Querying the

database after inserting SWRL took more time than querying the database without a rule. We

performed a descriptive analysis to understand the data. Then, Shapiro-Wilk, Kruskal-Wallis, and

Mann-Whitney statistical tests were used to check the distribution of the samples and detect and

compare di�erences between the two independent samples (no-rule/SWRL) for each experiment,

respectively. Descriptive Analysis in Figures 25 explored the datasets to help understand the data

content and characteristics. For example, the line graphs for evaluation one indicated a considerable
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Fig. 20. Evaluation 3 visualisation Fig. 21. Evaluation 3 boxplot

Fig. 22. Evaluation 3 No-Rule distribution plot Fig. 23. Evaluation 3 SWRL distribution plot

di�erence between query time responses for the dataset with and without SWRL. Unlike evaluation

two, where the gap narrowed dramatically, it was surprising that querying with SWRL was slightly

faster in evaluation 3. This result could be due to the distribution of the datasets over disparate

nodes and the remote access, which distinguished evaluation three from the others. The mini-PC

nodes that hosted the datasets had relatively small disk spaces ranging from 32GB to 128 GB and no

less than 8GB of RAM. Noticeably, the number of observations was equal in all three experiments,

the mean �uctuated between approximately 34.45 and 519.13, and the standard deviation was at its

lowest point of 3.78 in evaluation two. To further discover the data distribution, the histograms and

Shapiro-Wilk decided the most appropriate statistical tests. It was clear from the histograms that the

data in the three evaluation datasets did not resemble bell curves. Shapiro-Wilk test con�rmed the

non-normality further through the p-values (<0.05). Therefore, we rejected H0 with a 95 percent

con�dence interval and concluded that all datasets do not follow the normal distribution. Kruskal-
Wallis test was the non-parametric test that suited our data distribution. It suggested that the two

samples (no-rule/SWRL) for each experiment came from di�erent distributions with p-values of

less than 0.05. Figure 26 explained in detail the hypotheses result of the evaluations based on their

p-values, and the �nal test,Mann-Whitney, was used to determine if the response time was di�erent

after inserting SWRL. The result also suggested a signi�cant di�erence between the samples of

each experiment (no-rule/SWRL).

4.6 Cost of Adapting Linked Data

The feasibility of linking distant, semantically modeled data sources and reasoning over them

using SWRL has been established. It facilitates quick access to diverse data sources. Therefore,

data owners can retain and manage their data while sharing only their metadata with the IoT data
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(a) (b) (c)

Fig. 24. Compare the three evaluations of query response time (ms), with and without reasoning rules inserted.

(a) Evaluation One (all datasets and the ontology are stored in a single database). (b) Evaluation Two (each

dataset and ontology are stored locally in separate databases). (c) Evaluation Three (each dataset and ontology

stored remotely with autonomous data providers)

(a) (b) (c)

Fig. 25. Descriptive analysis for the three evaluations of query response time (ms)—with andwithout reasoning

rules inserted. Tables explore the datasets’ nature and summarize their contents.

No Rule Result SWRL Result No Rule /SWRL Result No Rule /SWRL Result

One 4.70508E-08 Reject H0 5.02E-06 Reject H0 0.000 Reject H0 0.000 Reject H0

Two 3.52513E-08 Reject H0 0.0006118 Reject H0 0.000 Reject H0 0.000 Reject H0

Three 4.14385E-05 Reject H0 4.94E-07 Reject H0 0.000 Reject H0 0.000 Reject H0

P-value = 0.05

Ev
alu

at
ion

s Shapiro-Wilk                                                                                                               
H0 : Data follow a normal distribution.

H1 : Data do not follow a normal distribution.

Kruskal-Wallis                                                                        
H0  :Two samples are related

   H1 :Two samples are not related

Mann Whitney                                                           
H0 : Sample distributions are equal

   H1 :Sample distributions are not equal

Fig. 26. Evaluation Statistical Analysis

marketplace. The results indicate that semantic data sources e�ciently send small packets through

the communication network. For instance, when reasoning is performed, the query response time

decreases. However, the information overhead and implementation cost must be evaluated before

system deployment.

• Typically, information overhead stems from the data structure, runtime, and data exchange. In

our methodology, the semantic data sources are database engines whose data are represented
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No Rule SWRL
One 107.4 519.13 411.73 383 ↑
Two 34.45 45 10.55 31 ↑

Three 130.04 105.68 -24.36 -19 ↓

Average Query Time (ms) 
 SPARQL Query

Difference %
Evaluatio

ns

Fig. 27. Evaluations query average time comparison

in RDF and queried via their SPARQL endpoints. The most signi�cant expense is the creation

of an ontology for each data source, as query resolution necessitates a complete merging

ontology. Here, ontologies are created by a large consortium of academics and industry

professionals [17, 24]. Occasionally, di�erent consortiums may have di�ering views on the

data type, making it di�cult to model the data in a single format. Simultaneously, Semantic

Web technologies enable the merging and reasoning over ontologies, allowing di�erent

classes, for instance, to be de�ned as equivalent.

• Costs associated with the system implementation may be related to the need for dedicated

computers for data storage and retrieval. As depicted in Figure 19, These computers had

between 8GB and 16GB of RAM, and the smallest solid-state disc (SSD) capable of storing

the relevant data source was 60GB in size. Table 3 illustrates how much RDF-formatted data

can be stored on a single storage disc. For example, an air quality sensor that generates one

observation per minute would require approximately one KB of storage space on a disc for

90 observations. Thus, the data provider can determine the amount of information stored on

a 60GB SSD. As mentioned, calculating the overhead could determine the total cost before

implementation. Although using inexpensive computing devices contributes to the e�ciency

of this system, the cost may be increased by the labour time of human resources.

4.7 Use Cases

Our proposed on-demand data model is applicable in various industries. It o�ers practical and

cost-e�ective solutions for SMEs. Businesses can build various innovative services enriched with

machine learning and AI that respond to end-users personally. In comparison, legacy data trading

constrained businesses to acquire bulky datasets that may incur more charges and require high

maintenance. (i.e., �ltering to process relevant data records). This study’s hypothetical use cases

concern the tourism and housing industries. The former is a small company that enables consumers

to browse and book trips to local attractions, promoting sustainable travel. The latter is a state

agency recommending properties with considerably clean air features (i.e., properties in less polluted

and quiet areas).

4.7.1 Use Case 1. TripRecomender is a small business that enables end-users to plan green

trips to local attractions. It predominantly aims for high-rated customer satisfaction by leveraging

AI’s self-learning competencies. The company adopted the online chat application, called bots or

chatbots. An intelligent program relies on actual data to carry out a speci�c task. Here, TripRe-

commender is planning to train its chatbot to search for and suggest local tourist destinations

and sustainable travel solutions, increasing customer satisfaction and boosting the company’s

revenue. Well-trained bots can reduce the time and e�ort spent on monotonous trip planning.

TripRecommender considers users’ requests and suggests tailored options based on previously

known information. The company’s chatbot requires su�cient relevant data to analyze and turn

into meaningful information to accomplish this task. Relevant data records may exist in separate
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data sources, making aggregating challenging. With our on-demand data model, TripRecommender

can query and retrieve granular data records that are �t to train the bot. (e.g., ten years of data

for either the local beaches occupation rate or the availability of rental bikes on weekends at the

local docking stations). Subsequently, it recommends customized o�ers and infers new events.

For example, the SPARQL query in Code Snippet 9 expresses how our model retrieves certain

weekend information about (i) a local beach’s name, services, and occupancy rate, (ii) a museum’s

opening hours, and (iii) an available rental bike location.

Listing 9: Use Case 1 - TripRecommender

PREFIX : <http://api.stardog.com/>

PREFIX stardog: <tag:stardog:api:>

PREFIX schema: <https://schema.org/>

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>

PREFIX ngsi−ld:<https://uri.etsi.org/ngsi−ld/default−context/>

PREFIX �ware:<https://uri.�ware.org/ns/data−models#>

PREFIX ngsi: <https://uri.etsi.org/ngsi−ld/>

SELECT ∗

{?id a �ware:Beach;

ngsi:name ?Name;

�ware:facilities ?Facilities;

�ware:occupationRate ?OccupationRate;

�ware:Weekends ?Weekends.

{SERVICE <http://192.168.0.78:5820/Museum/query>

{?id2 a �ware:Museum;

�ware:openingHoursSpeci�cation ?OpeningHours.

{SERVICE <http://192.168.0.128:5820/Bike/query>

{?id3 a �ware:BikeHireDockingStation;

�ware:availableBikeNumber ?availableBikeNumber;

schema:address ?address;

ngsi:status ?Bikestatus. }}}}}

4.7.2 Use Case 2. CleanAir Housing is a medium-sized business that sells and rents out residen-

tial properties. Recently, the company noticed a staleness and price drop for properties in highly

polluted areas based on its sales records. Conversely, homes in quiet and less polluted areas will

most likely sell in a year. Air pollution could negatively impact health. It happens when particular

gases and liquid particles are released into the atmosphere, forming PM2.5 and PM10 particles and

elevating levels of carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants above the clean air

legal limit. Sources of these toxic gases include vehicle exhaust, factories, and domestic combustion.

Measuring the Air Quality Index (AQI) can assess the air quality in areas of interest. As a result,

CleanAir Housing decided to integrate AI-powered services to (i) predict sales forecasts based on

historical data and air pollution levels, (ii) recommend the optimal price to match the expected

value, and (iii) hunt for local fast-selling homes. Several environmental data records are needed

to calculate air quality and noise levels. Traditional ways to acquire such data are by deploying

thousands of sensors or purchasing bulky ecological datasets. Both options demand time and funds.

Hence, further data mining, processing, and analysis are required to extract valuable insights.

Integrating our on-demand data model enables the �ltering and extraction of the needed metrics

from multiple datasets, forming search data that are �t to train the company’s AI. For instance,

the SPARQL query script in Code Snippet 10 combined metrics from air quality and noise level

datasets to �lter out the addresses in areas with low noise levels and good AQI.
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Listing 10: Use Case 2 - CleanAir Housing

SELECT∗

{SERVICE <http://192.168.0.128:5820/AirQuality/query>;

{?id a �ware:AirQualityObserved;

schema:address ?address;

�ware:dateObserved ?date;

�ware:Precipitation ?Precipitation;

�ware:Reliability ?Reliability;

�ware:WindDirection?WindDirection;

�ware:AirQualityIndex ?AirQualityIndex;

ngsi−ld:Co ?Co;

ngsi−ld:CO_Level ?CO_Level;

ngsi−ld:No?No;

ngsi−ld:Nox ?Nox;

ngsi−ld:No2 ?No2;

ngsi−ld:So2 ?So2.

{SERVICE <http://192.168.0.78:5820/Noise/query>

?id2 a �ware:NoiseLevelObserved;

�ware:DateObservedFrom ?DateObservedFrom;

�ware:DateObservedTo ?DateObservedTo;

�ware:frequencies ?frequencies;

�ware:DataProvider ?DataProvider;

ngsi:location ?location;

ngsi−ld:lAeq_d ?lAeq_d;

ngsi−ld:lAmax ?lAmax.

FILTER(xsd:�oat(?lAmax) > 0.72)

FILTER(REGEX(?address, "A"))

FILTER(REGEX(?CO_Level,"Low"))

FILTER(xsd:integer(?AirQualityIndex) < 100)

FILTER(xsd:integer(?Nox) < 100)}}}

Limit10

5 RELATED WORK

5.1 Data Trading and Marketplaces

The IoT data trading �eld has seen signi�cant attention in recent years. Researchers have focused

on the challenges and opportunities associated with buying and selling datasets online. Liang et al.

highlighted the value of appropriately sharing IoT data between data owners and consumers [25].

Schomm et al. discussed the trend of monetizing data sharing through data marketplaces [26]. These

marketplaces have the potential to streamline the process of accessing desired data and contribute

to the development of more e�cient city services [27]. However, data trading has its challenges.

The granularity of data availability, market awareness, and privacy concerns have discouraged

data traders [28–30]. Data consumers often face the issue of having to purchase entire datasets

even if they only need a small portion of the data, leading to unnecessary costs and computational

burden [31]. Liu et al. pointed out that there is a need for alternative options for purchasing

data, and slow-changing datasets are signi�cant drawbacks of existing data marketplaces [32].

To address these challenges, they proposed a collaborative environment that aims to maximize

fairness in data trading through the computation of data costs using a bespoke algorithm. Similarly,

Patrizi et al. focused on optimizing data gain and rewards between data providers and consumers

through contractual agreements [33]. Several related studies have explored di�erent aspects of

data trading in the IoT context. Ren et al. developed an architecture called Datum, which focuses

on minimizing the total cost of IoT data through e�cient buying and deployment decisions [34].

Jung et al. introduced PRIVATA, a private environment that enables users to place data orders with

intended prices and negotiate ceilings [35]. While these approaches address speci�c aspects of
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data trading, they provide a di�erent level of integration of disparate data sources and �exibility

than the proposed customized data ordering mechanism. Anthony [36] put forward a design for an

ecosystem that combines Distributed Ledger Technology (DLT) and the MQTT protocol to simplify

the process of exchanging and trading data in smart cities. By implementing this ecosystem, the

study aimed to create a more e�cient and seamless data marketplace that supports the development

of smarter cities. While these approaches o�er valuable insights into data trading, they need to fully

address the integration of disparate data sources and the �exibility needed for cost-e�ective data

retrieval. Our study takes a di�erent approach by proposing a customized data ordering mechanism.

Rather than purchasing entire datasets, data consumers can retrieve speci�c data from diverse

datasets and negotiate costs based on their needs. This approach aims to reduce unnecessary data

acquisition, lower costs, and enhance the e�ciency of data trading.

5.2 Smart City Data Modeling

Sensor datasets are often aggregated and showcased in online data marketplaces using various

methods. Data models [37] and other initiatives such as in [38] emphasized the openness to

innovation in FIWARE, speci�cally in semantic data integration. NYAYA introduced by De Virgilio

et al., focused on managing large volumes of semantically modeled datasets, o�ering scalable

storage and powerful querying capabilities [39]. Fernandez et al. developed a system explicitly

addressing data discovery, integration, and sharing challenges within isolated environments [30].

Our study, as such, employed semantic data modeling. Our datasets which followed FIWARE model

were converted into RDF format, enabling remote querying through SPARQL endpoints. Notably,

our study demonstrates faster response times compared to NYAYA [39]. One of the challenges in

accessing semantically integrated information lies in connecting to remotely distributed systems

and obtaining accurate and timely responses to user queries. To tackle this, Le-Phuoc et al. [40]

proposed using Linked Stream Middleware, which leveraged Semantic Web technologies and

SPARQL queries to achieve system interoperability and simplify the integration of time-sensitive

information with relevant linked data.

In our study, access to semantically curated data is provided in their original sources, eliminating

the need for data duplication or movement. Evaluating semantically modeled data often involves

competency questions formulated as SPARQL queries. Lopez et al. focused on evaluating the

competency of answers obtained through SPARQL queries and reasoning engines, with a particular

emphasis on transforming user questions expressed in natural language into accurate and prompt

semantic queries [41]. In contrast, our study tackles the challenge of constructing complex SPARQL

queries that incorporate reasoning rules to respond to user inquiries e�ectively.

The e�ciency of this approach is evaluated by considering the response time of complex queries

that retrieve and reason over data from diverse sources. Middleware solutions have also been

explored in the literature. Fisteus et al. developed Ztreamy, a scalable and high-speed middleware

that includes data sharing and semantic �ltering services, enabling e�cient publishing of real-time

information to many clients [42]. Platforms like SPUD have been developed to incrementally

discover, model, and link dynamic and static data, with a particular focus on real-time tra�c

information processing [43]. Lécué et al. studied STAR-CITY, a semantic tra�c system deployed

in multiple cities, emphasizing its scalability and ability to be replicated in other locations [44].

Le-Phuoc et al. introduced the Graph of Things (GoT) system, which ingests massive streams

of heterogeneous data and allows access and querying through a SPARQL endpoint [45]. Ali

et al. developed a semantically enriched system for event detection and data analytics using

distributed and heterogeneous data streams from IoT-enabled communication systems [46]. Cirillo

et al. [47] examined three real-world use cases (global IoT market, smart city analytics, and IoT

augmented autonomous driving) to showcase how the FIWARE platform addresses their speci�c
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requirements. The study also emphasized FIWARE’s commitment to innovation, particularly in

the areas of semantics and privacy. Lujic [48] addresses the challenges of near real-time edge

analytics and proposes a framework called SEA-LEAP that improves data replication and placement

for on-demand analytics. The experiments demonstrate its e�ectiveness in reducing latency and

optimizing decision-making processes in edge environments. On the other hand, our study focuses

on enhancing the SynchroniCity data marketplace by using Semantic Web technologies. It allows

consumers to pay for speci�c sensor information instead of purchasing entire datasets. The study

also highlights the bene�ts of semantic modeling and reasoning, interoperability through SPARQL,

and the advantages of edge computing.

In comparison to these works, our study focuses on leveraging semantic modeling and the

capabilities of FIWARE to facilitate the trade of sensor data in smart cities, mainly targeting

semantic data developers, including small and medium enterprises (SMEs).

5.3 Semantic Web and Linked Data Applications

The Semantic Web, which uses standards like RDF, OWL, and SKOS, facilitates the integration

of data from various sources. Researchers have explored the use of Semantic Web technologies

in di�erent domains [37, 38], highlighting their bene�ts and addressing various challenges [49–

51]. Hitzler argued that these technologies provide a cost-e�ective approach to data discovery,

publishing, and reuse [52]. Stephan et al. emphasized their e�ciency in achieving transparency

[53], while Shadbolt et al. suggested that semantically integrating heterogeneous data using RDF

can enhance their usefulness [54]. Mahmud et al. implemented a semantic model that converts

CSV data into RDF with rich semantics, adhering to Linked Open Data principles [55]. Fabian et al.

extended the RDF model to address challenges in open data publication, including API limitations,

search and browsing, information quality, security, and licensing standards [56].

In the �eld of education, Wu et al. [57] and Bashir et al. [58] applied Semantic Web technologies.

Stephan and Tchouanguem Djuedja [53, 59] have explored their use in the environmental domain,

while Moreno et al. [60] and Margan et al. [61] have applied them in the context of transportation.

The health sector has also witnessed the bene�ts of Semantic Web technologies. Dragoni et al.

developed PerkApp, a platform for monitoring citizens’ lifestyles in real-time and promoting healthy

living [62]. Linked open data has been successfully used in the development of context-aware

recommender systems, as demonstrated by Fogli et al. [63].

Furthermore, Semantic Web technologies have made an impact in industry, particularly in cloud

environments. Xie et al. [64] and Petersen et al. [65] have used these technologies to model, unify,

and share heterogeneous resources. Turning to IoT data marketplaces, Serrano et al. discussed

the FIESTA project, which focused on providing tools and techniques for data access, testbed

integration, and authentication and authorization services [66]. On the other hand, our study

extends the SynchroniCity data marketplace by incorporating Semantic Web technologies. Our

emphasis is on enabling consumers to selectively pay for speci�c sensor information rather than

purchasing entire datasets. We proposed a semantic model, conducted experiments, and evaluated

the e�ectiveness of semantic modeling and reasoning using SPARQL queries. Ourwork also explored

interoperability through SPARQL endpoints and highlighted the advantages of edge computing for

distributed RDF datasets. These studies collectively demonstrated the potential of Semantic Web

technologies in improving data marketplaces. They o�ered advantages such as data integration,

customization, transparency, and e�cient data access.

6 DISCUSSION, LIMITATIONS AND FUTURE RECOMMENDATIONS

SynchroniCity data marketplace sells sensor data in bulk. Consumers interested in speci�c obser-

vations from di�erent sensors (e.g., air quality and noise level) must purchase each sensor’s dataset

ACM Trans. Internet Things, Vol. 9, No. 9, Article 99. Publication date: September 9999.



99:26 Hamed et al.

separately. Such a practice may incur more charges and cause a high-latency network. Our study

extended SynchroniCity data marketplace with Semantic Web technologies to allow consumers

to pay for the sensor’s information they need - instead of buying the entire dataset. Consumers

can acquire multiple observations from various data providers to ful�ll their orders. For example,

�nding nearby parking spaces and museum opening hours on a particular date and time.

Our end-product consists of a user-friendly interface [67] with an interactive map and a seman-

tic data model. More speci�cally, we (i) built a novel semantic model. It encompassed an Urban

Data Exchange Ontology (UDEO) and FIWARE synthetic datasets for six di�erent providers. (ii)

conducted three di�erent experiments, as shown in 19 to determine the most practical modeling

and storage solutions for the IoT data marketplaces. (iii) evaluated the experiments to demonstrate

the e�ectiveness of the semantic modeling and SWRL - using di�erent SPARQL queries to answer

related competency questions. The evaluation results support the hypothesis that reasoning over

distributed data sources could be the ideal architecture for the IoT data marketplace. Evidently, in

evaluation one 4.2, querying after inserting rules took a long time, and the time-lapse between

queries with and without rules is relatively slow. In evaluation two 4.3, the query time response

was dramatically reduced compared to evaluation one. It is worth mentioning that to make SWRL

rules work, we got to insert the rule independently in each database, unlike the evaluation one,

where we dealt with a single database. Even when we inserted SWRL in each database, it did not

activate with the SERVICE keyword. The query line had to be executed within the rules inserted in

the database. Query line targeting rules and reasoning responded when calling the database inter-

nally in the Stardog Studio workspace. In evaluation three 4.4, the requested data can be obtained

remotely via HTTP, using the host’s IP address, port, and database name. The user query breaks

into triple patterns that interrogate data sources SPARQL endpoints for results. Figure 27 compared

the average evaluation time between querying databases with and without SWRL. Evaluation One

showed the highest di�erence in query response time among the evaluations. Unexpectedly, the

average response time on SWRL databases was lower than without rules. Therefore, we can draw

valuable insights from our semantic model results as follows:

Semantic modelling and reasoning: Extracting explicit information from IoT SynchroniCity

datasets was challenging since these data lacked formal de�nitions for widely shared standards.

Our semantic model transformed them into queriable triplestores. The adapter (code) mapped the

data to RDF while referencing the UDEO. We inserted abstract rules into the databases to trigger

reasoning such as Sunnydays and weekends. Sunny days rule sets available rental bikes level low,

assuming higher demand on such days. While the weekends’ rule deduced high occupancy rates

on local attractions such as beaches and museums. Reasoning quickened query response time in

experiment three by reducing the search space while �ltering out information adhering to the

rules. SPARQL queries retrieved granular and semantically enriched and reasoned information

from di�erent datasets, stored locally and remotely. As a result, customized data requests can be

achieved at low costs.

Interoperability: We suggest that experiment three’s approach is interoperable. SPARQL allowed

remote access through its endpoints, achieving seamless data sharing between di�erent RDF

databases stored on heterogeneous machines.

Edge computing: In experiment three, we distributed the RDF datasets on separate computers

operating independently. Executing data on these edge computers satis�ed the horizontal scaling

property, provided storage capacity, allowed computational �exibility (i.e., semantic modelling),

and maintained low network latency (i.e., transmitting query results instead of the whole dataset).

Limitations: Despite that, our semantic model slashed data price, reduced network latency,

and cut down information overload in the SynchroniCity data marketplace- yet this approach has
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some drawbacks. In particular, the pricing structure, data platform security, data quality, and safe
dissemination. The pricing structure of our model allows consumers to pay for desired information

instead of an entire dataset. Although it costs less, working out the total price of an order could be a

complex task. We deal with di�erent data providers with di�erent data tari�s, broker fees, and taxes,

if any. Each of these has independent calculations and may change over time. Therefore, o�ering

�xed and competitive charges is an open challenge.We recommend adding a self-con�guring pricing

model that standardizes and price-marks data records across independent stores. For example,

set one reasonable price for each data record- automatically updating to match the data market’s

supply and demand, then adjust the broker fees to be a fair percentage of the total bill. Regarding

security, accessing and querying data stored in remote machines via HTTP pose risks. Stardog

o�ers security options such as authentication and password encryption; so far, its default security

settings are considered minimal for network communications. Therefore, we recommend using the

Secure Sockets Layer (SSL) encryption when deploying Stardog in production mode. Concerning

data quality, Synthetic data used in this study are consistent with good quality, while real sensors

data may have errors and missing values. Hence, data quality should be carefully addressed to

replicate our real-life study. We recommend using accurate machine learning algorithms and

arti�cial intelligence to detect and automatically correct errors. The information retrieved to ful�l

consumers’ requests creates new datasets. These datasets have diverse sources collected by sensors

owned by di�erent stakeholders. Thus, publishing them may raise data ownership and privacy

concerns. A remedy could be building a tool that (i) traces the data lineage and accurately identi�es

the owner. (ii) applies a GDPR-compliant privacy policy agreed upon by all parties (data buyer,

seller/owner and broker).

7 CONCLUSIONS

Data marketplaces are a new category of online marketplaces. Therefore, they are not well-

researchedwithin the academic community orwell-implementedwithin the industry. SynchroniCity

represents the �rst attempt to deliver a Single Digital City Market for Europe by piloting its foun-

dations at scale in 11 reference zones - 8 European cities and 3 more worldwide cities - connecting

34 partners from 11 countries across 4 continents. The primary goal is to meet the data needs

of consumers. Data marketplaces also emphasize vital challenges around data acquisition. Data

marketplaces incentivize owners to share the gathered data and recover part of the acquisition

costs. A fundamental issue of syntactic data marketplaces such as SynchroniCity is that they do

not selectively provide a mechanism to buy data. It means data consumers have to buy the entire

datasets that data owners o�er. We demonstrated the utility of annotating IoT data with semantics

through experiments, allowing highly selective data querying. As a result, we converted the IoT data

marketplace into a queryable data store. Moreover, we reduced data prices by allowing consumers

to request less data selectively—only the relevant data they needed to achieve the task at hand.

We used Semantic Web technologies to address the critical challenges in IoT data marketplaces

without signi�cantly burdening the compute infrastructure.
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A APPENDIX

B ONTOLOGY REQUIREMENTS SPECIFICATION DOCUMENT(ORSD)

B.1 Purpose

The Urban Data Exchange Ontology (UDEO) aims to describe sensor data in IoT marketplaces.

B.2 Scope

Internet of Things (IoT).

B.3 Implementation Language

The Web Ontology Language (OWL2).

B.4 Intended End-Users

• Small to Medium Enterprise (SME).
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• Data Scientists.

• Computer Scientists.

B.5 Intended Uses

• To build a linked data that o�ers data on-demand (i.e., granular data retrieval from disparate sources).

• For reasoning about the data of interest.

• Build Arti�cial Intelligence (AI) models.

B.6 Ontology Requirements

B.6.1 Non-Functional Requirements.

• UDEO must include IoT concepts such as sensor.

• UDEO must include relationships between IoT concepts and features of interest in space and time.

B.6.2 Functional Requirements.

• Nineteen Competency Questions (CQs) formulated as SPARQL queries.

CQ1:What is the temperature of the room on a given date and time?

SELECT (AVG(?result) as ?averageHeartRate)

{GRAPH <http://smarthome> {

?s rdf:type sosa:Observation;

sosa:hasFeatureOfInterest ?fi;

sosa:madeBySensor :BpmCore;

sosa:observedProperty :heartRate;

sosa:resultTime ?dt;

sosa:hasResult [

rdf:type qudt-1-1:QuantityValue ;

qudt-1-1:numericValue ?result ;

qudt-1-1:unit qudt-unit-1-1:HeartBeatsPerMinute ].

?fi bot:hasStorey :Level1.

:Level1 bot:hasSpace :Kitchen, :LivingRoom.

{

SELECT ?building (COUNT(?storey) as ?storeyCount)

{

?building a bot:Building ;

bot:hasStorey ?storey.}

GROUPBY ?building}

FILTER(?fi = ?building && ?storeyCount = 3)

BIND(SUBSTR(str(?dt), 0, 11) as ?date)}}

Listing 11. SPARQL�ery for Scenario 1

CQ 2: What are the air quality data in certain addresses at given date and time?

INSERT {?id a fiware:AirQualityObserved;

fiware:AirQualityIndex ?AirQualityIndex;

fiware:Precipitation ?Precipitation;

fiware:Reliability ?Reliability;

fiware:WindDirection ?WindDirection;
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ngsi-ld:Co ?Co; ngsi-ld:No ?No;

ngsi-ld:Nox ?Nox; ngsi-ld:No2 ?No2;

ngsi-ld:So2 ?So2.}

Where {

SELECT *

{?id a fiware:AirQualityObserved;

fiware:airQualityIndex ?airQualityIndex;

fiware:precipitation ?precipitation;

fiware:reliability ?reliability;

fiware:windDirection ?windDirection;

fiware:airQualityLevel ?airQualityLevel;

fiware:dateObserved ?date;

ngsi-ld:CO ?CO; ngsi-ld:CO_Level ?CO_Level;

ngsi-ld:NO ?NO; ngsi-ld:NOx ?NOx;

ngsi-ld:NO2 ?NO2; ngsi-ld:SO2 ?SO2.

BIND(STRAFTER(str(?airQualityIndex), ":") as ?Index)

BIND(STRBEFORE(str(?Index), ",") as ?AirQualityIndex)

BIND(STRAFTER(str(?precipitation), ":") as ?prec)

BIND(STRBEFORE(str(?prec), ",") as ?Precipitation)

BIND(STRAFTER(str(?reliability), ":") as ?rel) BIND(STRBEFORE(str(?rel), ",") as ?Reliability)

BIND(STRAFTER(str(?windDirection), ":") as ?win) BIND(STRBEFORE(str(?win), ",") as ?WindDirection)

BIND(STRAFTER(str(?CO), ":") as ?carbon) BIND(STRBEFORE(str(?carbon), ",") as ?Co)

BIND(STRAFTER(str(?NO), ":") as ?nitrogen) BIND(STRBEFORE(str(?nitrogen), ",") as ?No)

BIND(STRAFTER(str(?NOx), ":") as ?nitOx) BIND(STRBEFORE(str(?nitOx), ",") as ?Nox)

BIND(STRAFTER(str(?NO2), ":") as ?nitdi) BIND(STRBEFORE(str(?nitdi), ",") as ?No2)

BIND(STRAFTER(str(?SO2), ":") as ?sulpher) BIND(STRBEFORE(str(?sulpher), ",") as ?So2)}}

**************************************************

SELECT *

{?id a fiware:AirQualityObserved;

schema:address ?address;

fiware:dateObserved ?date;

fiware:Precipitation ?Precipitation;

fiware:Reliability ?Reliability;

fiware:WindDirection ?WindDirection;

fiware:AirQualityIndex ?AirQualityIndex;

ngsi-ld:Co ?Co; ngsi-ld:CO_Level ?CO_Level;

ngsi-ld:No ?No; ngsi-ld:Nox ?Nox;

ngsi-ld:No2 ?No2; ngsi-ld:So2 ?So2.

?id2 a fiware:NoiseLevelObserved;

fiware:DateObservedFrom ?DateObservedFrom;

fiware:DateObservedTo ?DateObservedTo;

fiware:frequencies ?frequencies;

fiware:DataProvider ?DataProvider;

ngsi:location ?location;

ngsi-ld:lAeq_d ?lAeq_d;

ngsi-ld:lAmax ?lAmax.

FILTER(xsd:float(?lAmax) > 0.72) FILTER(REGEX(?address, "A"))

FILTER(REGEX(?CO_Level, "Low")) FILTER(xsd:integer(?AirQualityIndex) < 100)

FILTER(xsd:integer(?Nox) < 100)} Limit 10

Listing 12. SPARQL�ery for Scenario 2
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CQ 3: Help me plan a day out!

Select DISTINCT ?Type ?Facilities ?Days

?ParkingName ?Category ?Temperature ?Distance ?PlacesNearby

{GRAPH <urn:ngsi-ld:Museum:121513>

{?id ns1:museumType ?type.

?type ngsi-ld:hasValue ?Type.

?id ns1:facilities ?facilities.

?facilities ngsi-ld:hasValue ?Facilities.

?openingHours ngsi-ld:hasValue ?OpeningHours.

?OpeningHours :dayOfWeek ?Days;

:opens ?Opens;

:closes ?closes.}

GRAPH <urn:ngsi-ld:ParkingSpot:123456>

{ ?id2 ngsi-ld:name ?name.

?name ngsi-ld:hasValue ?ParkingName.

?id3 ns1:category ?catergory.

?catergory ngsi-ld:hasValue ?Category.}

sosa:Temperature sosa:hasResult ?Temperature.

{ ?MuseumPoint ns4:long ?long;

ns4:lat ?lat.

?PlacesNearby geof:nearby (?MuseumPoint 10 unit:Kilometer);

ns4:long ?p_long;

ns4:lat ?p_lat;

BIND (geof:distance(sosa:MuseumPoint, ?PlacesNearby, unit:Kilometer) as ?Distance)}}

Listing 13. SPARQL�ery for Scenario 3

CQ 4: Where can I park and ride near a certain GPS location?

SELECT *

{?id a fiware:ParkingSpot;

fiware:category ?category;

fiware:dataProvider ?dataProvider;

ngsi:status ?status;

ngsi:location ?location;

ngsi:ParkingPoint ?ParkingPoint.

?id2 a fiware:BikeHireDockingStation;

fiware:availableBikeNumber ?availableBikeNumber;

fiware:AvailableBikeNumber ?AvialableBikeNumber;

fiware:SunnyDays ?SunnyDays;

schema:address ?address;

ngsi:status ?Bikestatus.

sosa:PointID a pos:Point;

pos:SOSAPoint ?SOSAPoint.

BIND (geof:distance(?ParkingPoint, ?SOSAPoint, unit:Kilometer) as ?Distance)

FILTER(xsd:integer(?Distance < 500))
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FILTER(REGEX(?Bikestatus, "free"))

FILTER(REGEX(?availableBikeNumber, "1"))

FILTER(REGEX(?category, "offstreet")).}

Listing 14. SPARQL�ery for Scenario 4

CQ 5: WeekDays Rule

prefix rule: <tag:stardog:api:rule:>

[] a rule:SPARQLRule ;

rule:content

IF {

?id a fiware:AirQualityObserved;

fiware:AirQualityIndex ?AirQualityIndex;

BIND (?AirQualityIndex > 100 AS ?LowAirQuality)}

THEN {

Weekdays fiware:LowAirQuality ?LowAirQuality}.

Listing 15. SPARQL�ery for Scenario 5

CQ 6: we cycle everywhere! if the local beach is busy this weekend, we will head to the museum?

SELECT *

{ ?id a fiware:Beach;

ngsi:name ?Name;

fiware:facilities ?Facilities;

fiware:occupationRate ?OccupationRate;

fiware:Weekends ?Weekends.

{SERVICE <db://museum100k>

{?id2 a fiware:Museum;

fiware:openingHoursSpecification ?OpeningHours.

{SERVICE <db://BikeHireDockingStation100k>

{?id3 a fiware:BikeHireDockingStation;

fiware:availableBikeNumber ?availableBikeNumber;

schema:address ?address;

ngsi:status ?Bikestatus.}}}}}

Listing 16. SPARQL�ery for Scenario 6

CQ 7: Where are the locations of available bikes?

PREFIX ns1: <https://uri.fiware.org/ns/data-models#>

PREFIX ns2: <https://uri.etsi.org/ngsi-ld/>

PREFIX ns3: <https://schema.org/>
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SELECT *

{ ?BikeAvailable ns1:freeSlotNumber ?availabenumber;

ns1:freeSlotNumber ?value.

?s ns2:location ?loc}

Listing 17. SPARQL�ery for Scenario 7

CQ 8: Where are the geographical information for available bikes near me?

SELECT ?Result

{udeo:availableBikeNumber sosa:hasResult ?AvailabeBikeNumber.

udeo:freeSlotNumber sosa:hasResult ?FreeSlotNumber.

?location a ngsi-ld:GeoProperty.

?address :streetAddress ?StreetAddress;

:addressLocality ?AddressLocality;

:adressCountry ?Country .

?coordinate_node ns4:lat ?Lat;

ns4:long ?Long.

BIND(CONCAT(STR(?StreetAddress),",", STR(?AddressLocality),",",STR(?Country)) AS ?Address).

BIND(CONCAT("POINT(",STR(?Long),"", STR(?Lat),")") AS ?Coordinates).

BIND(CONCAT("Available_Bike_No.","", STR(?AvailabeBikeNumber),"",

"Slot:", STR(?FreeSlotNumber),"Located_at","","Address:",

STR(?Address),",", "coordinates :", STR(?Coordinates)) AS ?Result)}

Listing 18. SPARQL�ery for Scenario 8

CQ 9: What is Barry Island beach pro�le and how can I get there?

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX ns4: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

PREFIX udeo: <http://www.w3id.org/udeo/>

SELECT ?BeachInfo ?Result

{udeo:availableBikeNumber sosa:hasResult ?AvailabeBikeNumber.

udeo:freeSlotNumber sosa:hasResult ?FreeSlotNumber.

?location a ngsi-ld:GeoProperty.

?address :streetAddress ?StreetAddress;

:addressLocality ?AddressLocality;

:adressCountry ?Country.

?coordinate_node pos:lat ?Lat;

pos:long ?Long.

udeo:accesssType (sosa:hasResult|ngsi-ld:hasValue) ?accessType.

udeo:beachType (sosa:hasResult|ngsi-ld:hasValue) ?beachType.

udeo:facilities (sosa:hasResult|ngsi-ld:hasValue) ?facilities.

udeo:occupationRate (sosa:hasResult|ngsi-ld:hasValue) ?occupationRate .

udeo:name (sosa:hasResult|ngsi-ld:hasValue) ?name.

udeo:width sosa:hasResult ?w.

udeo:length sosa:hasResult ?l.
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BIND(CONCAT(STR(?beachType),",", STR(?accessType)

,",", STR(?facilities),",", STR(?occupationRate)) AS ?BeachInfo).

BIND(?w * ?l AS ?area).

FILTER (?area >1000).

FILTER REGEX (?name ,"(Barry)").

FILTER REGEX (?BeachInfo, "(lifeGuard)").

BIND(CONCAT(STR(?StreetAddress),",", STR(?AddressLocality)

,"," , STR(?Country)) AS ?Address).

BIND(CONCAT(STR(?Long),":", STR(?Lat)) AS ?Coordinates).

BIND(CONCAT("Available_Bike_No.","", STR(?AvailabeBikeNumber),"",

"Slot:", STR(?FreeSlotNumber),"Locatedat","","Address:", STR(?Address)

,",", "atacoordinates :", STR(?Coordinates)) AS ?Result )}

Listing 19. SPARQL�ery for Scenario 9

CQ 10:What is the hunmanby Gap beach pro�le? (e.g., type, accessibility, facilities, occupation rate and area)

Prefix ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

Prefix def: <https://smart-data-models.github.io/data-models/terms.jsonld#/definitions/>

SELECT ?name ?BeachInfo ?area {

?Access def:accessType ?AccessType.

?AccessType ngsi-ld:hasValue ?accessType.

?Beach def:beachType ?BeachType.

?BeachType ngsi-ld:hasValue ?beachType .

?BeachFacilities def:facilities ?Facilities.

?Facilities ngsi-ld:hasValue ?facilities.

?Occupation def:occupationRate ?OccupationRate.

?OccupationRate ngsi-ld:hasValue ?occupationRate.

?BeachName ngsi-ld:name ?Name.

?Name ngsi-ld:hasValue ?name.

?BeachWidth def:width ?width.

?width ngsi-ld:hasValue ?w .

?BeachLength def:length ?length.

?length ngsi-ld:hasValue ?l .

BIND(CONCAT(STR(?beachType), ",", STR(?accessType),

", ", STR(?facilities), ",", STR(?occupationRate)) AS ?BeachInfo).

BIND(?w * ?l AS ?area) .

FILTER REGEX (?name , "(a)").}

Listing 20. SPARQL�ery for Scenario 10

CQ 11: Provide me with a parking name, status, location and the service provider from this knowledge base.

Prefix ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

Prefix ns1: <https://uri.fiware.org/ns/data-models#>

SELECT ?name ?ParkingInfo ?coord{

?ParkingName ngsi-ld:name "A-01"^^xsd:string.

?Name ngsi-ld:hasValue ?name.
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?ParkingStatus ngsi-ld:status ?Status.

?Status ngsi-ld:hasValue ?status .

?ParkingLocation ngsi-ld:location ?Location.

?Location ngsi-ld:hasValue ?location.

?location ngsi-ld:coordinates ?coord.

?ParkingProvider ns1:dataProvider ?Provider.

?Provider ngsi-ld:hasValue ?dataProvider.

?ParkingRef ns1:refParkingSite ?RefParkingSite.

?RefParkingSite ?p ?refParkingSite .

BIND(CONCAT(STR(?status), ",", STR(?coord),

", ", STR(?dataProvider), ",", STR(?refParkingSite)) AS ?ParkingInfo).}

Listing 21. SPARQL�ery for Scenario 11

CQ 12:What are the air quality levels at Digital Cataplut?

Prefix : <https://uri.etsi.org/ngsi-ld/default-context/>

Prefix ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

Prefix ns1: <https://uri.fiware.org/ns/data-models#>

Prefix ns2: <https://schema.org/>

SELECT *

{?id a ns1:AirQualityObserved ;

ns2:address [ a ngsi-ld:Property ;

ngsi-ld:hasValue [ :addressLocality ?City ;

:adressCountry ?Country ;

:streetAddress "Digital Catapult" ] ] ;

:CO [ a ngsi-ld:Property ;

ngsi-ld:hasValue ?CO ;

ngsi-ld:unitCode ?COCode ] ;

:CO_Level [ a ngsi-ld:Property ;

ngsi-ld:hasValue ?CO_Level ] ;

:NO [ a ngsi-ld:Property ;

ngsi-ld:hasValue ?NO ;

ngsi-ld:unitCode ?NOCode ] ;

:NO2 [ a ngsi-ld:Property ;

ngsi-ld:hasValue ?NO2 ;

ngsi-ld:unitCode ?NO2Code ] ;

:NOx [ a ngsi-ld:Property ;

ngsi-ld:hasValue ?NOx ;

ngsi-ld:unitCode ?NOxCode ] ;

:SO2 [ a ngsi-ld:Property ;

ngsi-ld:hasValue ?SO2 ;

ngsi-ld:unitCode ?SO2Code ]

BIND(CONCAT( " ", STR(?City), " ", STR(?Country)) AS ?Address)}

Listing 22. SPARQL�ery for Scenario 12

CQ 13:When does V&A South Kensington open and close on Sunday?
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PREFIX : <https://uri.etsi.org/ngsi-ld/default-context/>

PREFIX ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

PREFIX ns1: <https://uri.fiware.org/ns/data-models#>

SELECT ?Opens ?Closes {

?Museum ngsi-ld:name ?name.

?name ngsi-ld:hasValue "V&A South Kensington".

?Museum ns1:openingHoursSpecification ?value.

?value ?p ?OpeningHours.

?OpeningHours :dayOfWeek "Sun";

:opens ?Opens;

:closes ?Closes.}

Listing 23. SPARQL�ery for Scenario 13

CQ 14:What is the distance between the museum and nearby parking spot/docking station?

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX ns4: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

PREFIX udeo: <http://www.w3id.org/udeo/>

SELECT DISTINCT * {

udeo:MuseumPoint ns4:long ?long;

ns4:lat ?lat .

?PlacesNearby

geof:nearby (udeo:MuseumPoint 10 unit:Kilometer);

ns4:long ?p_long;

ns4:lat ?p_lat;

BIND (geof:distance( udeo:MuseumPoint, ?PlacesNearby, unit:Kilometer) as ?Distance). }}

Listing 24. SPARQL�ery for Scenario 14

CQ 15: How many bikes available within 250 km from my location (51.52586 -0.123331)?

PREFIX: ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

PREFIX: ns2: <https://schema.org/>

PREFIX: ns4: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT ?AvailabeBikes ?Distance{

?BikeAvailable ns2:availableBikeNumber ?availabenumber.

?availabenumber ngsi-ld:hasValue ?AvailabeBikes.

?s ns4:long ?long ;

ns4:lat ?lat ;

geof:nearby (51.52586 -0.123331 250 unit:Kilometer ) .

? s1 geof:nearby (?s 250 unit:Kilometer);
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ns4:lat ?poi_lat;

ns4:long ?poi_long.

BIND (geof:distance(?s, ?s1, unit:Kilometer) as ?Distance). }

Listing 25. SPARQL�ery for Scenario 15

CQ 16:Where has the air quality been observed?

PREFIX : <https://uri.etsi.org/ngsi-ld/default-context/>

PREFIX ngsi-ld: <https://uri.etsi.org/ngsi-ld/>

PREFIX ns1: <https://uri.fiware.org/ns/data-models#>

PREFIX ns2: <https://schema.org/>

SELECT ?Address

{?id a ns1:AirQualityObserved ;

ns2:address [ a ngsi-ld:Property ;

ngsi-ld:hasValue [ :addressLocality ?City ;

:adressCountry ?Country ;

:streetAddress ?Street ] ] ;

BIND(CONCAT(STR(?Street), " ", STR(?City), " ", STR(?Country)) AS ?Address)}

Listing 26. SPARQL�ery for Scenario 16
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