
CASPER: Context-Aware Anomaly Detection
System for Industrial Robotic Arms

Hakan Kayan
Department of Computer Science and Informatics

Cardiff University
Cardiff, United Kingdom

kayanh@cardiff.ac.uk

Omer Rana
Department of Computer Science and Informatics

Cardiff University
Cardiff, United Kingdom

ranaof@cardiff.ac.uk

Pete Burnap
Department of Computer Science and Informatics

Cardiff University
Cardiff, United Kingdom

burnapp@cardiff.ac.uk

Charith Perera
Department of Computer Science and Informatics

Cardiff University
Cardiff, United Kingdom

pererac@cardiff.ac.uk

Abstract—With the arrival of industry 4.0, industrial control
systems are converted into “smart” industrial cyber-physical
systems that depend on high interconnectivity enabled by ubiq-
uitous applications. As these applications can significantly reduce
maintenance and supervision costs, the integration of these ap-
plications is done with the “cost” being the focus overlooking the
security aspect that suffers from the vulnerabilities that occurred
due to increased attack surface. The adversaries aim to create
physical alterations by exploiting these cyber vulnerabilities via
so-called “cyber-physical” attacks. In this work, we introduce
CASPER, a context-aware ubiquitous machine learning-based
anomaly detection infrastructure that utilizes ubiquitous comput-
ing to detect anomalies of an industrial robotic arm. CASPER
monitors the robotic arm’s movements to ensure the arm follows
a predetermined trajectory. The CASPER can reach an accuracy
and F1 score of 97% which is promising for an industrial domain.
We modify the joint velocity of an industrial robotic arm to create
anomalies which we detect via CASPER.(Demo Video)

Index Terms—anomaly detection, predictive maintenance,
ubiquitous computing

I. INTRODUCTION

The legacy industrial control systems (ICS) are being con-
verted into industrial cyber-physical systems (ICPS) adopting a
highly interconnected infrastructure enabled by the utilization
of disciplines such as the Internet of Things (IoT), cyber-
physical systems (CPS), and cloud computing. The increased
attack surface is the main con of this increased automation,
digitalization, and networking. The recent industrial cyber
incidents [1] show that the adversaries targeting industrial
systems cause physical impact by exploiting vulnerabilities
occurring due to the integration of information technology
(IT) systems into operational technology (OT) systems. The
network-only cybersecurity mechanisms fail to detect physical
alterations as the physical data generated on the edge can be
spoofed by adversaries to misguide the monitoring systems.

The physicality of ICPS is examined under two mutually
inclusive main disciplines: fault diagnosis, and predictive
maintenance. The traditional methods apply statistical analysis
to signals [2] generated by industrial equipment (e.g., current,
and voltage). These methods have two big disadvantages: i)
they require a deep knowledge about the system which is
hard to obtain as current ICPS are heterogeneous, ii) they are
not scalable as a change in the system requires redesigning
the whole solution due to parameters being dependent. Data-
driven approaches [3] are getting popular as they offer a
solution to these problems by being dependent only on the data
characteristics. In this work, we apply a data-driven approach
to inertial measurement unit (IMU) data that we gather from
an industrial robotic arm to detect movement-related anomalies
via the open-source machine learning (ML) pipeline [4].

We make the following contributions: i) we propose an
open-source1 end-to-end context-aware anomaly detection sys-
tem that includes edge (Nicla Sense ME), fog (human-machine
interface (HMI) based on Raspberry Pi 4B (Pi-HMI)), and
central nodes (local PC/cloud) (Fig. 1), ii) we introduce the
CASPER dataset, iii) we test the proposed system on Universal
Robots UR3e which is an industrial robotic arm.

II. SYSTEM ARCHITECTURE

We detect movement-based anomalies of an industrial
robotic arm via a low-cost anomaly detection system (that
we call CASPER) that utilizes Bluetooth Low Energy (BLE)
to transmit the data from edge to fog. We attach an edge
development board which can generate IMU data via built-
in accelerometer, gyroscope, and magnetometer sensors. We
teach the normal movement of an arm to a neural network
model which utilizes 1D convolutional neural network (1D-
CNN) layers by feeding non-anomalous IMU data during

1https://github.com/hkayann/CASPER-PerCom

https://iotgarage.net/projects/demos/HakanPerCom2023Demo


(a) UR3e (b) Pi-HMI (c) Nicla Sense ME

Fig. 1: The main system components.

training. We utilize Tensorflow (tensorflow.org) for this par-
ticular work.

A. System Components

Edge node. We use a Nicla Sense ME as an edge devel-
opment board. It has a 64 MHz Arm Cortex microcontroller,
built-in IMU (accelerometer, gyroscope, and magnetometer),
gas, pressure, temperature, and humidity sensors, and a BLE
chip. It is relatively small (22,86 x 22,86 in mm), micro USB-
powered and programmable, operates in low power (15 mAh
during the test). It also has a memory built-in but in this demo,
as we transmit the IMU data over BLE we do not store any
data on the edge. We run an Arduino sketch that generates
and transmits IMU data from Nicla to fog node where we use
Node-RED to receive such data. Fog node.We build an HMI
based on a Pi (Pi-HMI). It displays the IMU data from the
Nicla Sense ME and forwards it to a local PC (a data science
workstation) where we store the data. Central node. The local
PC that we use for training and testing has an NVIDIA RTX
A6000 48GB GDDR6 GPU.

B. The Testbed and Use Case Scenario

We have two industrial robotic arms manufactured by
Universal Robots (UR3e). While these arms are introduced
as cobots they are capable of completing tasks standalone as
well. These arms can perform many tasks [5] ranging from
pick and place, and screw-driving to surgical operations. For
this particular demo, we design a pick and place task as it
is one of the most common processes seen in manufacturing
systems. The task we implement is repetitive, continuous, has a
certain frequency, and does not require any human interaction.
Fig. 2 demonstrates the use case scenario.

III. ANOMALY DETECTION SYSTEM

This section demonstrates the proposed solution. The
anomaly detection system we build depends on an ML model
which is based on 1D-CNN layers. Usually, the Recurrent
Neural Network (RNN) layers are applied to time series data
as they have a “memory” [6]. However, the computational
complexity of RNNs makes their usage questionable for
resource-constrained environments. 1D-CNNs are also known
to be effective against time series data thanks to strong 1D

III

IV

VIV III

Fig. 2: I) The arm picks the ball, II) drops it to an inclined
platform, III) the ball rolls down over the platform until it hits
to a stopper, IV) then it is picked by other arm and so on.

temporally correlated structure [7]. For this particular demo,
we utilize 1D-CNN as our future work aims to bring anomaly
detection to the resource-constrained edge environment.

A. The Input Data Structure and the Dataset

The choice of an ML algorithm depends on the input
data characteristics. In this work, we have 3 data sources
where each of which is 3-dimensional as the accelerometer,
gyroscope and magnetometer are 3-axis (x, y, z) sensors.
Thus, in total, we have 9 individual inputs combined into one
multivariate input. As we try to minimize the computational
complexity, we do multivariate analysis [8]. We apply min-
max normalization with the range of 0 to 1 to avoid the dom-
ination of higher-scale inputs. While applying normalization,
min/max values are computed via train set only. The whole
train set is non-anomalous while the validation and test sets
include 50% of anomalous data. The test is 24 hours and the
data frequency is around 20Hz.

B. The Machine Learning Model

CASPER utilizes 1D-CNN layers with ReLU activation
function to extract exclusive features that occur thanks to
high temporal correlation. We stack two 1D-CNN layers to
access deeper features. They are followed by pooling layers
to prevent overfitting while reducing the computational cost
as our model is prone to overfitting due to input data being
periodic while having a train set with zero anomalies. Then, we
pass the output of pooling to flatten layer to convert the multi-
dimensional output to two-dimensional. Finally, we output 9
predictions per given input. Fig. 3 demonstrates the structure
of the model with given hyperparameters.

C. Creating Realistic Anomalies

The desired way of creating anomalies is to simulate a real
cyberattack. However, due to the possibility of damaging high-
cost equipment we choose to create controlled anomalies by
changing the joint velocity of the arms. The arm consists of
6 joints in total. The arm moves its joints in synchronization
via applying forward kinematics per a given “pose” parameter
which includes the tool center point (TCP) and the joint angles.

tensorflow.org


{Sample Feature 
Dimensions
(9, 755*N)

Input Dimensions (B, T, 9)

Kernel Dimensions (9, K)

Fla
en

Fully C
onnected

{
Filters (F)

C
onv-1D

 (R
eLU

)
C

onv-1D
 (R

eLU
)

M
ax Pooling - 1D

 (9, M
)

C
onv-1D
(R

eLU
)

C
onv-1D
(R

eLU
)

M
ax Pooling - 1D

B: Batch Size = 256

F: Number of Filters: [8, 32, 64]T: Timesteps = 1 M: Max Pooling Kernel Size = [2, 3]

K: Convolution Kernel Size = [5, 50]N: Sample Length Multiplier = [1 , 5]

pAccX

pAccZ

pAccY

pGyroX

pGyroY

pMagX

pGyroZ

pMagY

pMagZ

Predictions (1, 9)

Fig. 3: The structure and the hyperparameters of model.

The anomalies we create range from 10% to 100% increase
and 5% to 50% decrease in joint velocity where the default
joint velocity is 1.04 rad/s (≈ 60 deg/s).

D. Detecting Anomalies

Training: We train the model with non-anomalous data
while applying grid search to hyperparameters to figure out the
most efficient model. The initial hyperparameter to analyze is
the input sample length. Due to high-frequency data, we utilize
input windows rather than single data point inputs.

We apply autocorrelation to find an input window length
with highest Pearson correlation coefficient (indicates pe-
riodicity). For the other hyperparameters (e.g., convolution
kernel size, number of filters), we use the commonly accepted
parameters. We decide the efficiency of the model by looking
at train, validation, and test losses calculated via mean squared
error (MSE). Fig. 4 presents the loss graph, Table I presents
the best performing hyperparameters.

0 20 40 60 80 100

0.0010

0.0015

0.0020

0.0025

0.0030
Training Loss
Validation Loss

Fig. 4: The loss graph.

TABLE I: The Best Performing Hyperparameters

Number of Filters Max Pooling Kernel Size Convolution Kernel Size Sample Window Length Batch Size
32 3 5 755 256

Non-ML Baseline: We compare the model to a non-ML
baseline to justify implementing an ML-based approach. We
calculate the overall mean absolute error (MAE) of the sample
windows shifted by the correlation coefficient. We see that
the ML model beats the common-sense approach with a high
margin.

Detecting Anomalies: To convert anomaly labels into
anomalous windows, we count their number per window. We

consider such a window as anomalous if more than half of it
is formed from anomalous points. Then, we calculate absolute
residuals per sample window. We decide the threshold via
applying a grid search that maximizes the F1-score as our work
is in an industrial domain where “false” conditions matter.
Anything above the threshold is accepted as anomalous. We
can see from the confusion matrix (see Fig 5) that the proposed
model has around 99% accuracy and F1-score thus justifying
the use of CNN for periodic time series data.

0 1

0
1

True Neg.
167462

0.49

False Pos.
4585
0.013

False Neg.
4208
0.012

True Pos.
167838

0.49
50000

100000

150000

Fig. 5: The confusion matrix.

IV. CONCLUSION

Ubiquitous computing is revolutionizing many domains
including ICPS as wireless communication technologies are
becoming reliable. Anomaly detection is crucial for applying
predictive maintenance. Thus the development of ubiquitous
anomaly detection systems that can efficiently work in the
resource-constrained environment is significant to build more
secure ICPS. In this demo, we demonstrate CASPER which
is a ubiquitous context-aware anomaly detection system that
utilizes 1D-CNN layers. CASPER can detect movement-based
anomalies with more than 97% accuracy. The future work
includes adding edge anomaly detection capability.

REFERENCES

[1] H. Kayan, M. Nunes, O. Rana, P. Burnap, and C. Perera, ‘Cybersecurity
of Industrial Cyber-Physical Systems: A Review’, ACM Comput. Surv.,
vol. 54, no. 11s, pp. 1–35, Jan. 2022.

[2] Z. Gao, C. Cecati, and S. X. Ding, ‘A Survey of Fault Diagnosis and
Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based
and Signal-Based Approaches’, IEEE Trans. Ind. Electron., vol. 62, no.
6, pp. 3757–3767, Jun. 2015.

[3] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, ‘A comparison
study of basic data-driven fault diagnosis and process monitoring meth-
ods on the benchmark Tennessee Eastman process’, Journal of Process
Control, vol. 22, no. 9, pp. 1567–1581, Oct. 2012.

[4] H. Kayan, Y. Majib, W. Alsafery, M. Barhamgi, and C. Perera, ‘AnoML-
IoT: An end to end re-configurable multi-protocol anomaly detection
pipeline for Internet of Things’, Internet of Things, vol. 16, p. 100437,
Dec. 2021.

[5] M. E. Moran, ‘Evolution of robotic arms’, J Robotic Surg, vol. 1, no.
2, pp. 103–111, Jun. 2007, doi: 10.1007/s11701-006-0002-x.

[6] A. Sherstinsky, ‘Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) network’, Physica D:
Nonlinear Phenomena, vol. 404, p. 132306, Mar. 2020, doi:
10.1016/j.physd.2019.132306.

[7] Y. LeCun, Y. Bengio, and T. B. Laboratories, ‘Convolutional Networks
for Images, Speech, and Time-Series’, p. 14.

[8] R. Wan, S. Mei, J. Wang, M. Liu, and F. Yang, ‘Multivariate Temporal
Convolutional Network: Deep Neural Networks Approach Multivariate
Time Series Forecasting’, Electronics, vol. 8, no. 8, p. 876, Aug. 2019.


	Introduction
	System Architecture
	System Components
	The Testbed and Use Case Scenario

	Anomaly Detection System
	The Input Data Structure and the Dataset
	The Machine Learning Model
	Creating Realistic Anomalies
	Detecting Anomalies

	Conclusion
	References

