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Abstract: Elephant sound identification is crucial in wildlife conservation and ecological

research. The identification of elephant vocalizations provides insights into the behavior,

social dynamics, and emotional expressions, leading to elephant conservation. This study

addresses elephant sound classification utilizing raw audio processing. Our focus lies on

exploring lightweight models suitable for deployment on resource-costrained edge devices,

including MobileNet, YAMNET, and RawNet, alongside introducing a novel model termed

ElephantCallerNet. Notably, our investigation reveals that the proposed ElephantCallerNet

achieves an impressive accuracy of 89% in classifying raw audio directly without converting

it to spectrograms. Leveraging Bayesian optimization techniques, we fine-tuned crucial

parameters such as learning rate, dropout, and kernel size, thereby enhancing the model’s

performance. Moreover, we scrutinized the efficacy of spectrogram-based training, a

prevalent approach in animal sound classification. Through comparative analysis, the raw

audio processing outperforms spectrogram-based methods. In contrast to other models

in the literature that primarily focus on a single caller type or binary classification that

identifies whether a sound is an elephant voice or not, our solution is designed to classify

three distinct caller-types namely roar, rumble, and trumpet.

Keywords: artificial intelligence; audio processing; deep learning; elephant vocalization;

optimization; resource constrained

1. Introduction

Elephant sound classification plays a crucial role in forest observatory research, par-

ticularly in understanding elephant behavior, communication efforts, and their ecological

impact [1,2]. Elephant vocalizations indicate the presence of specific species within a forest

ecosystem. By classifying these sounds, researchers can track elephant populations and

their movements, which is essential for understanding biodiversity dynamics in forest

habitats. Elephants utilize a complex vocalization that includes low-frequency rumbles

and other sounds to communicate over long distances [3]. Different caller types such as

chirps, roars, trumpets, and rumbles reflect various behaviors such as emotional states,

mating calls or alarm signals [4]. Analyzing these vocalizations helps in understanding

social structures and interactions within elephant herds. In addition, the real-time elephant

behavior monitoring by distinguishing sounds associated with conflict or group defense

can help prevent human–elephant conflicts and poaching incidents. Thus, monitoring the

changes in vocal patterns through sound classification can inform conservation strategies,

habitat management, and restoration practices [2,5].

Recent advancements in deep learning techniques have improved the performance of

environment sound classification focusing on the health of forest ecosystems [6]. For in-
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stance, using Convolutional Neural Networks (CNNs) allows for the effective extraction

of relevant features from elephant vocalizations, enhancing the reliability of monitoring

systems [7]. The development of comprehensive datasets [8], and optimized techniques to

deploy the solutions in resource-constrained environments [9–11], are critical for develop-

ing robust monitoring tools that can be deployed in real-world scenarios.

Elephant vocalizations have been investigated for their functional significance and

production mechanisms, as the basis for developing automated acoustic detection methods.

Most of the traditional approaches target the analysis of specific call types, which were pre-

segmented manually. Generally, the classification algorithms primarily rely on extracted

sound features, that consume computational complexity. Some of the feature extraction

techniques include Mel-frequency Cepstral Coefficients (MFCC) [7,12–14], Spectral Sub-

band Centroids (SSC), Linear Predictive Coding (LPC), and Filter Bank Energies (FBE) [15].

However, deploying such models onto lightweight edge devices often poses challenges

due to the additional time and computational resources required for preprocessing. Hence,

our objective is to explore the feasibility of training machine learning models directly on

raw audio data, aiming to ascertain whether comparable accuracy levels can be achieved

without the need for traditional feature extraction methods.

The synergy between edge computing and AI significantly enhances elephant sound

classification efforts in forest observatory. By enabling monitoring, improving data ef-

ficiency, and offering scalable solutions, this technology is pivotal in advancing conser-

vation strategies aimed at protecting elephants from threats like poaching, habitat loss,

and observing behaviors [16,17]. This approach leverages real-time data processing at

the source locally [9], which is essential for effective conservation strategies with quick

decision-making, providing insights into the health and well-being of elephants. Modern

AI solutions encompass various models to process raw audio data directly without a feature

extraction process [11], and classify sounds with model optimization techniques [9,10].

Thus, with the advancement of bioacoustics processing, leveraging raw audio data directly

could lead to effective species identification in wildlife monitoring. This approach elimi-

nates the need for converting audio into spectrogram-like representations or handcrafted

features, allowing algorithms to autonomously identify pertinent components within the

audio waveform [18]. However, the process of selecting appropriate features for analysis is

intricate and lacks a universally optimal solution, due to the inherent complexity of raw

audio data [19].

In the domain of elephant vocalization analysis, there has been limited exploration

into the direct processing of raw audio data. Predominantly, various feature extraction

techniques have been employed before training machine learning algorithms. In our in-

vestigation, we aim to bypass preprocessing stages and directly input raw audio data into

machine learning models to assess the feasibility and efficacy of training on unprocessed

audio signals. Our research study presents a novel approach centered on raw audio process-

ing in the domain of elephant sound classification focusing on reducing the computational

complexity and improving scalability; thereby paving the way for the development of more

efficient and effective solutions in this domain. The main contributions of this paper are

as follows:

• Explore deep learning techniques to process elephant caller types.

• Assess the impact of augmentation levels in elephant sound classification.

• Design and develop a lightweight solution optimized for elephant sound identification.

• Conduct a comparative analysis of direct raw audio classification and spectrogram-

based elephant sound classification.

• Evaluate the impact of raw audio processing, demonstrating that it can achieve accu-

racy and inference times comparable to existing methods.
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The rest of the paper is organized as follows: the related work is discussed in Section 2.

The proposed model design and methodology are detailed in Section 3, and the results

of the evaluations are presented in Section 4. The study contributions, comparison with

the existing studies, limitations, and future extensions are discussed in Section 5. Finally,

Section 6 concludes the paper.

2. Related Work

Elephant vocalizations are complex and context-dependent, reflecting emotional states

and social dynamics. Understanding these calls enhances the analysis of elephant commu-

nication and behavior in their natural habitats. The classification of elephant vocalizations

encompassed an expansive spectrum of call types that spanned over distinct categories,

including growl, squeak, long roar-rumble, long roar, rumble, bark, trumpet, roar-rumble,

roar, squeal, croak rumble, chirp-rumble, and musth cry-rumble [20]. Among them, rum-

bles are more common and heard during relaxed social interactions and long-distance

communication. Chirps are mainly associated with Asian elephants and are used during

supportive communications and group assembling. Trumpeting is often associated with

excitement, distress, or aggression. Similarly, roaring is typically used during high distress

or aggression situations and also occurs during joyful reunions, indicating a complex

emotional range [3,21]. Thus, the identification of different elephant caller types helps to

understand animal behaviour and the decision-making process in forest observatory.

In the literature on sound classification, feature extraction plays a significant role by

enabling the derivation of key audio characteristics such as short-time energy, bandwidth,

and zero-crossing rate. This process effectively reduces the dimensionality of the audio

input vector while preserving essential discriminative features. The feature extraction

process for elephant sounds differs primarily in terms of the frequency range, temporal pat-

terns, complexity, environmental considerations, and biological context. Different feature

extraction techniques have been used to transform audio data into visual representations,

which are fed to machine learning models for classification. Among several techniques such

as Gammatone Frequency Cepstral Coefficient, Mel-frequency cepstral coefficients (MFCC),

linear prediction cepstral coefficients (LPCC), or Linear Predictive Coding (LPC) [4,7],

and MFCC has emerged as a widely used feature extraction technique [22]. For instance,

Leonid et al. [7], applied data preprocessing on the Elephant Voice Dataset using Min-Max

scalar and standard scalar feature extraction techniques. Moreover, robust models were

proposed to accurately classify forest observatory sound data by combining several feature

extraction techniques [10]. The choice of the feature extraction technique depended on the

particular specifications of the sound analysis undertaking and their characteristics [23].

In practice, machine learning algorithms such as Neural Networks, Support Vector

Machine (SVM) [24], Hidden Markov Models [4], and Gaussian Mixture Models were

commonly used in species recognition tasks [25]. With the development of deep learning

and machine learning models, CNN algorithms and ensemble approaches have garnered

greater popularity [26], despite slightly lower accuracy rates reported in the sound clas-

sification domain. Table 1 gives a summary of related studies. Although most of the

literature focuses on binary classification tasks by Geldenhuys et al. [27], it delved into

identifying different caller types. They performed a comparative study to assess several

models including Logistic Regression, SVM, XGBoost, MLP, AlexNet, and ResNet, and the

Audio Spectrogram Transformer (AST) in one-to-one sequence configuration over Asian

and African elephant vocalization. They utilized dimensionality reduction and feature

extraction techniques, such as MFCC and Mel-spectral configurations, to optimize perfor-

mance. Their work addressed both binary classification for frame-wise call detection and

multi-class classification for five vocalization types. The highest performance is shown by
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the transformer-based AST model, with a precision of 73% for the Asian elephant dataset

from Sri Lanka. This model handles complex multi-class and sub-call classifications and

achieves state-of-the-art performance.

Table 1. Related Studies in Elephant Sounds Classification.

Study Dataset Class Labels Feature Extractor Classifier Performance

Geldenhuys et al.
(2024) [27]

Asian Elephant
vocalization dataset
and African Elephant
voices

5 classes:
rumble, trumpet,
roar, bark,
squelch

MFCC and
mel-spectral
feature

AST 1-to-1
sequence
classifier

Precision: 73%
Recall: 43.5%
Specificity: 98.7%

Ranasinghe et al.
(2023) [28]

Asian Elephant
vocalization dataset
(Rumble recordings) +
AudioSet

Elephant sound
or not

STFT
spectrograms

Transfer learning
with YAMNet

Accuracy: 97.7%

Silva et al. (2023) [29]
Asian Elephant
vocalization dataset
(Rumble recordings)

Elephant rumble
or not

Wavelet signal
decomposition,
chroma_cqt,
chroma_cens,
melspectrogram,
MFCC, spectral
contrast

SVM
Precision: 84%
Recall: 84%

Leonid et al. (2022) [7]

ElephantVoices.org,
AnimalSounds.org,
and other public
internet resources

Elephant sound
or not

MFCC, LPC, SSC Parallel CNN
Accuracy: 96.2%,
Precision: 89.2%

Bjorck et al. (2019) [25]
African Elephant
sounds (Private)

Elephant sound
or not

MFCC CNN-LSTM
Precision: 90.8%,
Recall: 96.4%

Zeppelzauer and
Stoeger (2015) [24]

South Africa Elephant
Sounds (Private)

Identify rumbles
Greenwood
cepstrum features

SVM
Recall: 88.2%,
False discovery
rate: 86.3%

Clemins, Johnson et al.
(2005) [4]

African Elephant
sounds (Private)

5-classes (croak,
rumble, rev,
snort, trumpet)

12 MFCC
coefficients and
log energy

HMM Accuracy: 79.7%

Advancements in deep learning, such as CNN-LSTM architectures, improved tempo-

ral modeling, yielding better recall rates and precision. The introduction of spectrogram-

based methods, such as STFT and Mel-spectrograms, marked a significant shift toward

the use of richer audio features, as seen in models like YAMNet [28]. In another study by

Silva et al. (2023) [29], they utilized the publicly available Asian Elephant Vocalization

Dataset, focusing exclusively on rumbles. They applied wavelet-based signal decompo-

sition and reconstruction techniques before extracting features from combinations such

as chroma CQT, chroma CENS, Mel spectrogram, MFCC, and spectral contrast. Using an

SVM classifier, they achieved a precision and recall of 84% for elephant rumble detection.

Moreover, Leonid et al. [7] proposed a parallel CNN model to classify African elephant

sounds. The approach utilizes vocal feature sets, including MFCC, LPC, and FBE, passed

through multi-input layers connected to parallel convolution layers. This study showed

a high accuracy of 96.2%, with a computation time of 11.89 s. Similarly, Bjorck et al. [25],

proposed a solution that combines automatic detection of African elephant vocalizations

with data compression to enable efficient, large-scale acoustic monitoring. They used

spectrograms to visually represent sound frequencies over time, focusing on low-frequency

calls, to differentiate elephant calls from background noise. They have integrated audio

compression algorithms with their CNN-LSTM to reduce the model size without lowering

the accuracy.
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Audio signals were represented in the time domain as waveforms, depicting changes

in amplitude over time. The direct processing of raw audio, bypassing the need for prepro-

cessing or feature extraction, using neural networks have garnered significant attention

in forest observatory sounds classification [9,11]. Subsequently, researchers aimed to un-

lock new insights and applications in raw audio processing in resource-constrained edge

devices, paving the way for efficient and accurate sound classification systems.

In another point of view, several deep learning solutions have been developed to

address environmental sound classification by processing raw audio directly [9,11,30].

Among them, YAMNet, Yet Another Mobile Network, is a neural network for sound classi-

fication, that utilizes the MobileNetV1 architecture, which is optimized for performance

and efficiency, making it suitable for various applications in environmental sound recogni-

tion [30]. It takes raw audio data as input, making it versatile and suitable for classification

process. ACDNet, Deep Acoustic Networks on Extremely Resource-Constrained Devices,

is another model [9], for raw sound classification. ACDNet relies on convolutional layers

to directly extract features from raw audio signals, bypassing the conventional reliance on

spectrogram-based preprocessing. This streamlined approach simplifies the model archi-

tecture by facilitating efficient utilization of computational resources, making it particularly

well-suited for deployment on resource-constrained devices. ESC-NAS, Environment

Sound Classification with Neural Architecture Search [11], is another hardware-aware NAS

approach. They have proposed a cell-based search space to design and develop deep con-

volutional neural network architectures, specifically tailored to handling raw audio inputs

for environmental sound classification applications under limited computational resources.

Accordingly, training deep learning models requires substantial computational power

and memory, which may not always be accessible in field settings. This limitation can

hinder real-time processing capabilities that are crucial for immediate conservation decision-

making. This study mainly considers the direct processing of raw elephant sound data,

without any intermediate preprocessing steps. This approach was tailored to cater to the

necessities of real-time elephant caller-type identification applications. Notably, the existing

landscape of research lacks models specifically trained for identifying elephant voices from

raw audio data. Hence, our investigation delves into four models capable of raw audio

processing. These models were meticulously customized to accommodate our training

datasets, without relying on pre-trained weights and pre-processing steps.

3. System Design and Methodology

The proposed elephant sound classification pipeline consists of two main modules as

shown in Figure 1. First, the elephant caller type classification with raw audio, which is the

main emphasis of this study. Secondly, the elephant caller type classification with feature

extraction utilizing spectrogram processing for comparison purposes of the proposed

model, as shown in Figure 1. This section describes the workflow with the scientific

contribution in detail.
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Figure 1. Working Flow of Research Implementation.

3.1. Data Materials

In general, there is a limited availability of publicly accessible elephant vocalization

datasets that encompass all call types. Analytically, extremely low-frequency call types

pose significant challenges in analysis. Therefore, we focused on rumble, trumpet, and roar

caller types in this study. The selected caller types covering a wide range of behaviors are

described as follows [3,4,21]:

• Rumble: Elephant communication often relies on low-frequency vibrations called

“rumbles”, produced through vocal cord vibration and altered by resonance within

an elephant’s head or trunk structure. Rumbles play multiple functions such as

maintaining social cohesion among group movements as well as conveying emotions

like excitement distress or arousal.

• Trumpet: This is a trumpet-like calls produced by forcing air through an elephant’s

trunk to produce loud, resonant noises that resonate loudly and frequently. Elephants

use trumpets for various reasons such as alarm calls to warn potential threats or show

dominance during social interactions and long-distance communication; their distinct

nature adds much excitement for researchers and wildlife enthusiasts.

• Roar: Elephant roars are low-frequency vocalizations made during intense social

interactions such as mating rituals or hostile encounters that serve to intimidate rivals,

establish dominance, or attract potential mates.

Elephant vocalizations exhibit significant variability across different regions, genders,

and ages. In this study, we focus on elephants from the Asian region and limit our dataset

to adult elephants. We collected 235 elephant sound recordings from various repositories

to create the dataset, including the Asian Elephant Vocalizations Dataset [31], and Ele-

phantVoices Dataset [32]. Main portion of the elephant dataset was extracted from the

Asian Elephant Vocalizations Dataset which contains 57.5 h of audio recordings collected
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over 18 months at Uda Walawe National Park in Sri Lanka, featuring 14 distinct call types.

The ElephantVoices Dataset encompasses 23 call-type contexts associated with specific

elephant behaviors and constellations. Other data sources include YouTube, and Sound-

Cloud [33].

Subsequently, we assembled a dataset comprising 77, 63, and 95 audio clips for the

caller types of roar, trumpet, and rumble, respectively. We extracted 6 s duration audio clips

to ensure uniformity, eliminating silent intervals and extraneous audio segments devoid

of elephant vocalizations. This duration is sufficient to capture significant portions of the

vocalizations across all categories, retaining essential acoustic features that characterize

different caller types. Additionally, a 6 s duration balances computational efficiency with

sufficient content representation, as processing longer segments would require more re-

sources and time. Techniques such as audio padding, truncation, time stretching, and audio

repetition are undertaken for a balanced distribution of data. By padding shorter samples,

we ensure no loss of original audio information, while trimming longer samples to 6 s

retains the most relevant segment, maximizing feature representation.

Subsequently, the dataset was stratified into distinct classes, comprising train, vali-

dation, and test sets, distributed in a ratio of 80:10:10, respectively, before augmentation.

Table 2 provides an overview of the dataset post-cleaning and preprocessing stages, delin-

eating the number of audio files retained after pre-processing.

Table 2. Train and Evaluation Data Split Before Data Augmentation.

Caller Type Raw Audio Count After Pre-Processing
Split Data (80:10:10)

Train Validation Test

Roar 77 61 8 8

Rumble 95 76 10 9

Trumpet 63 50 7 6

3.2. Data Augmentation

Augmentation techniques including time stretching and pitch shifting were then

applied to the audio files, ensuring balanced representation across all classes and expand-

ing the dataset to gain exposure to additional variations that help generalization and

performance on unseen data sets.

Subsequently, two augmentation scenarios are utilized to assess the impact of augmen-

tation on model performance. First, a minimum set of data augmentations is applied to the

training set to generate a moderately expanded dataset for class balancing. For the second

approach we applied several augmentation methods to significantly increase the dataset’s

size and diversity. Here, our secondary objective was to compare the model performance

that is trained on datasets with different levels of augmentation. It is important to note

that excessive augmentation can adversely affect the quality and integrity of the dataset.

Therefore, our focus was to evaluate how augmentation validates the audio processing,

ensuring that it enhances the dataset without compromising its reliability.

Table 3 summarizes data distribution among train, validation, and test sets after data

augmentation with both approaches. Here, the first approach focuses on class balancing,

applying time stretch and pitch shift. The second approach focuses on increasing the dataset.

Here, each audio file in the training and validation datasets was augmented four times

using time stretching, pitch shifting, a combination of both methods and Gaussian noise.
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Table 3. Data Split for Training and Evaluation After Augmentation.

Caller Type
Approach 1 Approach 2

Total Train Validation Test Total Train Validation Test

Roar 104 80 16 8 378 305 65 8

Rumble 109 80 20 9 419 370 40 9

Trumpet 104 80 14 10 285 230 45 10

Total dataset 317 240 50 27 1082 905 150 27

3.3. Solution Design

As shown in Figure 2, we present a comprehensive methodology for recognizing

different types of elephant calls, specifically focusing on roar, rumble, and trumpet caller

types. The datasets, pre-processing and augmentation modules were described in the

previous section. For the main methodology, we followed two pipelines, where (1) the first

approach performs the classification on raw audio and (2) second the approach trains the

models on the spectrograms obtained after the feature extraction process.

Figure 2. System Workflow.

The first approach, raw audio processing involved models like MobileNetV2, YAMNet,

RawNet, and the proposed ACDNet-based model named ElephantCallerNet. Notably,

the existing models have not specifically designed for raw elephant audio data in the

literature. Only MobileNetV2 utilized pre-trained weights; all other models were trained

from scratch on the audio data. Consequently, we experimented with different hyperpa-

rameter tunings and weight initializations to achieve optimal accuracy for some models.

For instance, He Initialization is designed for layers that use ReLU activations. It ensures the

consistency of activation variances is maintained stable across layers, which is crucial for

training deep networks effectively. He Initialization helps maintain a proper variance of acti-

vations, which keeps gradients at a manageable scale. Bayesian optimization was employed

for hyper-parameter tuning for a few models to obtain higher accuracy. The justification

for the selection of the classification models is described as follows:

• MobileNet-v2 based Classification: MobileNetV2 is designed to be computationally

efficient, making it well-suited for resource-constrained environments such as mobile

devices or edge computing devices. This efficiency allows it to process raw audio

data with reduced computational overhead, enabling real-time or near-real-time

applications, as it utilizes depth-wise separable convolutions consisting of two layers.

The layers of the MobileNet architecture can be modified to extract features from

raw audio signals. Its depth-wise separable convolutions are effective in capturing
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relevant patterns and characteristics present in the audio waveform, enabling accurate

classification or analysis of audio data.

• YAMNet-based Classification: YAMNet model can process raw audio data directly,

enabling efficient feature extraction and classification. This architecture comprises

several layers of 1D convolutions, batch normalization layers, and activation functions,

culminating in a linear classifier for feature extraction and classification. Notably,

the YAMNet model employs depth-wise separable convolutions, which enhance

computational efficiency while preserving representational capacity.

• RawNet-based Classification: RawNet model incorporates various components, in-

cluding residual blocks and convolutional layers, to effectively process raw audio

data and extract meaningful features for classification. The Residual blocks enable the

model to learn residual mappings, which can help prevent the gradients from dimin-

ishing as they propagate through the network. Each residual block consists of two

convolutional layers with batch normalization and LeakyReLU activation functions.

These blocks facilitate the extraction of hierarchical features from the input audio data

while preserving important information.

The direct use of raw audio features captures the intricate temporal and spectral

details present in elephant vocalizations. However, the inclusion of additional features,

such as energy, entropy, spectral bandwidth, zero-crossing rate (ZCR), and fast Fourier

transform (FFT)-based descriptors, can certainly enhance the analysis and offer complemen-

tary insights. In this study, we prioritized raw waveform analysis to eliminate potential

biases introduced by feature extraction processes and to fully leverage the power of deep

learning architectures. While feature extraction methods like wavelet transform or quantile

transform are powerful for emphasizing specific signal attributes, they often introduce

biases or fail to capture the full complexity of bioacoustic signals, particularly when ap-

plied to variable and context-rich elephant vocalizations. Raw audio inputs allow models

to learn discriminative representations directly from the data, often resulting in better

generalization to unseen contexts.

The second approach, audio spectrogram-based processing leverages feature extrac-

tion methods, including Mel-Frequency Cepstral Coefficients (MFCC) and Chroma Constant-

Q Transform (CQT), and models such as MobileNetV2, YAMNet, SVM, and ResNet18. By ex-

tracting these relevant features, our dataset was meticulously prepared for subsequent

model development and evaluation. We conducted a detailed performance evaluation

for caller-type classification for both approaches, followed by a comparative analysis to

determine the efficacy of raw audio processing versus audio spectrogram processing.

3.4. Proposed ElephantCallerNet for Raw Audio Classification

The ACDNet theory, or Acoustic Complexity Descriptor (ACD), is a method used

for analyzing the acoustic complexity of envoronment sound signals [9]. The proposed

ElephantCallerNet model, inspired by the ACDNet architecture, incorporates similar design

principles and techniques to facilitate elephant call-type classification. Figure 3 illustrates

a design of the ElephantCllerNet model. Initially, the model extracts static and dynamic

features from raw audio data, utilizing spatial feature extraction block (SFEB) and temporal

feature extraction block (TFEB), respectively.

First, the SFEB focuses on extracting spatial features from individual frames. They are

designed to enhance the model’s ability to recognize patterns within a spatial context. It

utilizes convolutional operations together with pooling layers to reduce dimensionality

while retaining essential spatial information. Also, it incorporates dropout regularization to

prevent overfitting. It is important to use SFEB before TFEB, as SFEB extracts fine-grained

frequency details, that can be merged during TFEB otherwise, which leads to performance



Sensors 2025, 25, 352 10 of 25

degradation. Thus, this strategy discourages the network from becoming overly reliant on

certain features, promoting the learning of more resilient representations.

Figure 3. Architecture of ElephantCallerNet Model.

Then, the TFEB is designed to capture temporal dependencies in sound data such as

variations over time and rhythmic patterns. It utilizes attention mechanisms to focus on

relevant parts of the input sequence, facilitating the extraction of meaningful features over

time. TFEB is implemented as a sequence of convolutional layers, batch normalization,

and ReLU activation functions within the ElephantCallerNet architecture. This module uses

both MaxPooling and AveragePooling layers to downsample the feature maps, allowing the

network to focus on the important information while reducing computational complexity

and over-fitting.

Since SFEB and TFEB produce feature tensors with different dimensions, the features

are permuted to ensure compatibility by rearranging the dimensions. Once the feature ten-

sors are aligned, they are concatenated along the channel dimension. After concatenation,

the combined feature tensor contains all the extracted features. The feature integration

and classification process is handled by incorporating convolutional layers along with

batch normalization and ReLU activation functions. Max pooling operations are applied to

aggregate spatial information across feature maps, while an optional dropout layer helps

prevent over-fitting during training randomly removing units from the neural network.

At the final stage, the feature representation obtained from the convolutional layers under-

goes processing via a fully connected layer, that performs linear transformations to align

the features with the respective output classes. Subsequently, the output layer utilizes a

softmax activation function for the classification of different types of elephant calls.

We have implemented the models using PyTorch 2.3.0+cu121, with some auxiliary

Keras libraries utilized in the process. All models were developed within the PyTorch

framework. The experimentation and training were conducted on a Lambda Cloud GPU 1×

A6000 server, with the CUDA Version 12.2 environment. The server hardware specifications

include an Intel(R) Xeon(R) Platinum 8480+ processor.

3.5. Web Application Development

We developed a web application based on the proposed ElephantCallerNet model and

deployed in https://huggingface.co/spaces/HiruniUdarika/esi (accessed on 1 December

2024). As shown in Figure 4, we introduced a portal hosted on a Lambda server, enabling

users to upload audio files for caller-type classification. This implementation is a pivotal

step towards the real-time application of our research findings.

https://huggingface.co/spaces/HiruniUdarika/esi
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Figure 4. Elephant Monitoring System Web Application.

In Figure 4, the edge device is the component that runs the trained model, minimizing

computational demands on the device. A cloud server is a component that facilitates

communication between the edge device and the database, enabling model updates and

facilitating data storage and processing. User Interface (UI) serves as the primary point

of interaction for users, providing a platform to upload and analyze audio recordings of

elephant calls. The flow of data and operations is depicted as follows:

• Raw audio input: Users submit audio recordings of elephant calls through the UI.

• Prediction: The edge device, equipped with the trained model, analyzes the uploaded

audio, generates predictions, and transmits them to the cloud server.

• Response: The cloud server integrates with a database to provide additional informa-

tion and context for the predicted call types. This information is then relayed back to

the user through the UI.

This architecture demonstrates the system’s ability to perform real-time elephant

call classification on edge devices, offering a user-friendly interface and leveraging the

power of cloud computing for enhanced capabilities. This is a simple example Application

demonstration that needs to be enhanced further.

4. Results

This section presents the results with a comparative evaluation among the models

considered in this study, covering a wide range of combinations.

4.1. Assessment of Model Performance with Different Augmentation Levels

Initially, we assessed the accuracy of different models in direct raw audio processing,

to identify the use of the augmentation levels. Figure 5 shows the comparative performance

of models when trained on a larger, highly augmented dataset (1082 samples) versus a

smaller, minimally augmented dataset (317 samples). This analysis aims to understand

the impact of the size and diversity of the training data for the accuracy and robustness of

elephant caller-type classification. It can be observed that the smaller dataset with fewer
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augmentations performed reasonably well, the larger dataset with extensive augmentations

using time stretching and pitch shifting have not yielded a significant improvement in

accuracy. This suggests that the proposed ElephantCallerNet model performs well with less

data, addressing the scarcity of elephant caller-type data. The analysis reveals that while

data augmentation is a useful technique, it must be applied wisely to avoid degrading the

quality of the dataset. The presence of artifacts from excessive augmentation can lead to

lower performance metrics.

Figure 5. Comparative analysis of accuracy for direct raw audio processing in different augmenta-

tion levels.

Similarly, we assessed the performance of the second pipeline, that utilized feature

extraction followed by classification. As shown in Table 4, the larger dataset with high

augmentation levels has shown averagely improved performance compared to the smaller

dataset with less augmentation. However, ResNet18 has shown the highest accuracy of

78% for the smaller dataset. Here, YAMNet has the shortest inference time, making it the

most efficient model in speed, while SVM has the longest inference time.

Table 4. Comparative Analysis of Performance with Audio-Visual Training for Different Augmenta-

tion Levels.

Model Inference Time (s) (Smaller Dataset) Accuracy (Smaller Dataset) Accuracy (Larger Dataset)

MobileNet V2 5.85 0.44 0.55

YAMNet 3.31 0.62 0.55

ResNet18 6.40 0.78 0.70

SVM 8.76 0.59 0.70

Accordingly, it can be observed that dataset augmentation has not significantly im-

proved the performance for raw audio-based classification. As a result, the evaluation

continued with smaller datasets to demonstrate the model’s effectiveness with limited data

with the proposed ElephantCallerNet model. Nonetheless, the model also performed well

on larger datasets. For comparison, the results from the smaller dataset were used for

spectrogram-based/audio-visual classification as well.

4.2. Results Analysis of Direct Raw Audio Classification Using a Smaller Dataset

4.2.1. Comparison of Configuration Setting with Performance in Direct Raw
Audio Classification

The proposed solution in this study addresses multi-classification, considering com-

monly used three distinct elephant call types, namely roar, rumble, and trumpet, increasing

experimental complexity, unlike the related studies, which often focused on binary or

single-caller classification.

Table 5 outlines experimental setups and hyper-parameter configurations, ranking

models by test accuracy, learning rate, and parameter count. The classification accuracy of
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roar caller-type is lower for the existing models, where the proposed model classified it ac-

curately. Thus, extensive analysis revealed that the ElephantCallerNet model outperformed

other models in terms of accuracy in distinguishing elephant calls for smaller datasets.

Table 5. Model Configuration and Performance for Direct Raw Audio-based Classification.

Metric YAMNet RawNet MobileNet v2 Elephant CallerNet

Overall Accuracy 0.63 0.70 0.74 0.89

Accuracy (Roar) 0.25 0.5 0.5 1.0

Accuracy (Rumble) 0.55 0.66 0.77 0.77

Accuracy (Trumpet) 1.0 0.9 0.9 0.9

Learning Rate 0.0002 0.00590 0.000552 0.0005

Training Batch Size 32 32 32 32

Validation Batch Size 8 8 8 8

Number of Parameters 3,351,427 6,703,619 2,227,139 4,708,682

Model Size in MB 3.2 6.39 2.12 4.49

Inference Time (seconds) 1.76 1.72 0.20 0.76

GFLOPS per audio 38.13 16.84 1.79 2.35

GFLOPS per 32 batch audios 1220.40 538.96 57.57 75.21

Additionally, MobileNetV2 has the shortest inference time at 0.20 s, making it ideal

for real-time applications. ElephantCallerNet follows with an inference time of 0.76 s,

providing a good balance between speed and performance for applications where moderate

latency is acceptable. In contrast, YAMNet (1.76 s) and RawNet (1.72 s) exhibit significantly

longer inference times, limiting their usability in time-sensitive contexts. Models with

more parameters typically have longer inference times, affecting their usability in real-time

applications. Thus, the choice of model should align with the application requirements.

When deploying such an application as an embedded system, it is vital to analyze the

computational cost and complexity of the models. Here, FLOPS (Floating Point Operations

Per Second) or GFLOPS (Giga Floating Point Operations Per Second) measures the number

of mathematical calculations a model can perform in a second, especially in deep learning

contexts. It includes operations like addition, subtraction, multiplication, and division

involving numbers with decimals. FLOPS helps evaluate the computational performance

of hardware or models and determines whether a model is suitable for specific hardware,

such as mobile devices or edge computing platforms.

We showed the results for two scenarios, a single audio input and a batch of

32 audio inputs, reflecting both individual and batch processing efficiency. YAMNet and

RawNet prioritize richer feature extraction capabilities, resulting in higher GFLOPs, which

may be better suited for high-performance computing systems. MobileNetV2 and Ele-

phantCallerNet, being lightweight, are optimized for real-time or edge applications where

computational resources are limited. Although MobileNet V2 has the lowest GFLOPS

requirement, making it ideal for resource-constrained environments such as mobile devices

or real-time systems, accuracy is often the primary criterion for model selection, particu-

larly in tasks like elephant sound classification, where precision is critical for real-world

applications such as conservation and monitoring. ElephantCallerNet, with its compara-

tively low GFLOPS requirement and high accuracy, strikes an excellent balance between

computational efficiency and performance, making it the most suitable choice for this task.
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4.2.2. Individual Model Performance in Direct Raw Audio Classification

Figures 6 and 7 show the values of the confusion matrix and the learning curves,

respectively, for direct raw audio processing using small datasets, utilizing the four models

(a) YAMNet, (b) RawNet, (c) MobielNetv2, and (d) the proposed ElephantCallerNet. Con-

sidering Figure 6, it can be seen that, except for the proposed ElephantCallerNet, the other

models have misclassified several caller types; for instance, the roar sound is predicted as

trumpet caller types. Thus, compared to other models, ElephantCallerNet has classified the

caller types with high accuracy.

Figure 6. Confusion Matrix for Direct Raw Audio Processing using Small Dataset.

Figure 7. Learning Curves for Direct Raw Audio Processing using Small Dataset.

Additionally, Figure 7 confirms the high performance of the proposed model. For ex-

ample, considering the deviation between the training and validation accuracy curves,

YAMNet and MobileNetv2 show more overfitting, where the model performs well on

training data but poorly on unseen validation data. Although, RawNet indicates low over-

fitting, it does not show high prediction accuracy. In ElephantCallerNet, the training and

validation accuracy start low, but trend upward, reaching approximately 0.9 by epoch 60,

indicating high performance. Moreover, the close alignment of training and validation

metrics suggests effective generalization to unseen data, while minimal deviation indicates

low overfitting. Thus, the proposed ElephantCallerNet shows efficacy and generalization

capabilities in classifying call-types from raw audio data by integrating static and temporal

features, achieving better performance than baseline methods.
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4.2.3. Comparison of Model Performance in Direct Raw Audio Classification

A radar chart effectively highlights the performance aspects of each model, underscor-

ing the need to align model selection with specific application requirements, and balancing

overall accuracy with class-specific metrics. Figure 8 presents a radar chart visualizing

performance metrics (accuracy, precision, recall, and F1 score), for the four models (Mo-

bileNetV2, YAMNet, RawNet, and ElephantCallerNet), across different caller-type classes

(roar, rumble, and trumpet). This visualization effectively highlights each model’s strengths

and weaknesses, aiding in selecting the most suitable model for specific applications. Ele-

phantCallerNet consistently excels, achieving high precision and near-perfect recall and F1

scores for rumble and trumpet classes, demonstrating its effectiveness in these areas.

In contrast, MobileNetV2 exhibits balanced performance across all classes, with an

overall accuracy of 0.74 and strong F1 scores for rumble, indicating its reliability for appli-

cations needing stable performance across categories. YAMNet struggles with accurately

classifying the roar category, as indicated by its lower precision (0.45) and F1-score (0.53).

However, it excels in detecting the rumble class, suggesting potential optimization for

certain sound types such as roar caller type. Moreover, RawNet does not consistently

outperform other models. It achieves moderate accuracy (0.70), with precision and recall

varying by class; notably, it has good precision for trumpet (0.75), but a lower recall for

rumble (0.67). This suggests that RawNet requires optimization to enhance its overall relia-

bility. Accordingly, ElephantCallerNet excelled overall, while MobileNetV2 and YAMNet

performed well in specific areas.

Figure 8. Performance Comparison for Direct Raw Audio Classification.

4.2.4. Comparison of Model Size, Complexity, and Accuracy in Direct Raw
Audio Classification

In the context of performance optimization, resource management, and model de-

ployment, it is important to compare the model size, parameter count, and accuracy as

shown in Figure 9. Model size is the overall memory acquired by the model, which is

influenced by its architecture and its number of parameters. Parameter Count indicates

the complexity of the model together with the capability of learning intricate patterns.

Generally, larger models with more parameters require more computational resources and

may achieve higher accuracy, while smaller models are more efficient but might yield lower

accuracy. However, the increase in the parameter count may lead to overfitting and high

consumption of computational resources and time. Accordingly, achieving high accuracy

with fewer parameters can indicate a well-optimized model. Thus, a balance must be

reached between model complexity and performance. Smaller models are easier to deploy

and require less bandwidth for transmission when deploying in edge devices.

The proposed ElephantCallerNet showed the highest accuracy of 89%. In this com-

parative study, there is no clear correlation between model size and accuracy. Despite
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RawNet having the largest size (6.39 million parameters), its accuracy is lower than that of

ElephantCallerNet, which has a smaller size (4.49 million parameters). This indicates that

model size alone may not determine accuracy in this scenario. Despite having the least pa-

rameters, MobileNetv2 shows good accuracy, indicating effective optimization. In contrast,

RawNet, which has the largest parameter count, does not outperform ElephantCallerNet,

emphasizing that increased parameters do not guarantee better performance. Thus, effi-

cient parameter usage and architectural design are essential, as evidenced by RawNet’s

lower accuracy despite its size. These findings indicate that the ElephantCallerNet model

outperforms other raw audio analysis models, emerging as a compact and lightweight

alternative in terms of size and parameter count.

Figure 9. Analysis of Model Accuracy, Parameter Count, and Size across in Raw Audio Classification.

4.3. Results Analysis of Spectrogram-Based Classification Using Smaller Dataset

This section shows the results obtained by the process of feature extraction followed

by the classification. We generated audio-visual representation for selected models, namely

MobileNet, YAMNet, ResNet18 and SVM classifier. As mentioned in Section 4.1, al-

though spectrogram-based models performed well with larger datasets, here we focus on

smaller datasets for consistency of the comparison purpose, as the larger augmentation did

not significantly improve accuracy. As mentioned in the methodology, we used MFCC and

Chroma CQT features during feature extraction.

As shown in Figure 10, the confusion matrixes reveal that ResNet18 has shown the

best performance by identifying more correct predictions compared to other models. Mo-

bileNetV2 has not performed well with the roar class, achieving only one correct prediction

while classifying the rumble caller-type accurately. YAMNet also showed average perfor-

mance, while SVM has generated low performance for roar and trumpet classes. Moreover,

Figure 11 shows the validation accuracy, validation loss, training accuracy, and training

loss for the models MobileNetv2, ResNet18, and YAMNet. All three models showed an

average accuracy.

Figure 10. Confusion Matrix for Spectrogram Analysis using MobileNetv2, ResNet18, YAMNet,

and SVM.
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Figure 11. Learning curves for spectrogram-based classification using ResNet18, MobilnetV2,

and YAMNet.

Furthermore, Table 6 states a comparison of the spectrogram-based classification

with the related studies with different elephant sound datasets. The experiments con-

ducted in this study utilized the public datasets from Asian Elephant Vocalizations Dataset

(Sri Lanka) [31], ElephantVoices Dataset [32], and SoundCloud [33], considering only roar,

rumble, and trumpet caller types. Most of the related studies have not explicitly speci-

fied the used datasets, and have used private datasets that contains vocalization from Sri

Lankan [28], Asian, and African elephants [29], covering all the elephant sounds. It can be

seen that elephant sound classification accuracy varies based on the considered dataset and

the used techniques, and YAMNet and SVM showed better results.

Table 6. Comparative Analysis of Model Accuracy with Audio-Visual Training.

Model Extracted Features Accuracy %

This Study

MobileNet v2 MFCC, Chroma_cqt 44

YAMNet MFCC, Chroma_cqt 62

ResNet18 MFCC, Chroma_cqt 78

SVM MFCC, Chroma_cqt 59

From Related Literature Review

YAMNet [28] Mel spectrogram 97.7

SVM [29]
Wavelet-based signal reconstruction, Quantile Trans-
former, chroma_cqt and chroma_cens, Mel spectro-
gram and MFCC, spectral_contrast

82

Linear SVM [24] Short-time spectral features 85.7

Parallel CNN [7] MFCC, LPC, SSC, MBE 91.1
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4.4. Raw Audio vs. Spectrogram-Based Classification

In order to compare the performance of raw audio processing methods with state-

of-the-art spectrogram-based approaches and feature-extraction models combined with

machine learning classifiers, additional experiments were conducted. The comparative

study presented in this study revealed the performance of different elephant sound classifi-

cation techniques and augmentation levels. Direct raw audio-based classification and the

spectrogram-based classification offered unique advantages and can be evaluated based on

accuracy and effectiveness. For the spectrogram representation followed by the classifica-

tion approach, we extracted Chroma CQT and MFCC features and trained models using

MobileNetV2, SVM, ResNet18, and YAMNet. The characteristics of the audio signals and

the selection of the model architecture is important to obtain the optimal solutions.

Figure 12 illustrates accuracy comparisons of the model considered in the two ap-

proaches. The proposed ElephantCallerNet achieved the highest accuracy of 89%, with a

model size of 4.49 MB and an inference time of 0.76 s. Notably, the inference time for

audio-visual processing is significantly higher than for raw audio processing due to the

additional feature extraction step, where raw audio processing feeds the waveform directly

into the neural network, allowing the model to learn relevant features during training.

Additionally, our results suggest that while accuracy varies across models and feature

combinations, raw audio processing with models like MobileNet V2 and RestNet18 also

showed good results.

Figure 12. Comparison of Direct Raw Audio Classification vs. Spectrogram-based Classification.

Moreover, considering computational complexity and performance as given in Table 5,

the proposed ElephantCallerNet model shows the suitability for edge deployment with

constrained settings. Further, Table 7, states the comparison of the performance of various

models on the same datasets. The performance of raw audio-based methods, such as Ele-

phantCallerNet, is significantly better than spectrogram-based methods like MobileNetv2

and ResNet18, which achieved accuracies of 44% and 78%, respectively, but required larger

model sizes and longer inference times. Traditional classifiers like SVM, using MFCCs and

chroma features, demonstrated lower performance with an accuracy of 59%, a model size

of 47 MB, and an inference time of 8.76 s. It can be concluded that the models trained on

raw audio can directly learn from temporal and spectral patterns in waveforms, leading

to superior performance and reduced computational overhead. While spectrogram-based

methods and traditional classifiers remain viable for some applications, their reliance on

preprocessing and higher resource requirements make them less suitable for real-time or

resource-constrained environments.
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Table 7. Comparison of the Proposed Study Results with Related Studies.

Model Dataset Feature Extraction
Model Size
(MB)

Inference
Time (s)

Accuracy %

This Study

MobileNetv2 Roar, rumble, and trumpet Raw Audio 2.12 0.20 74

YAMNet Asian Elephant Vocalizations [31] 3.2 1.76 63

RawNet ElephantVoices Dataset [32] 6.39 1.72 70

Elephant CallerNet SoundCloud [33] 4.49 0.76 89

MobileNetv2 Roar, rumble, and trumpet MFCC, Chroma_cqt 8.67 5.85 44

YAMNet Asian Elephant Vocalizations [31] 12.83 3.31 62

RestNet18 ElephantVoices Dataset [32] 42.62 6.40 78

SVM SoundCloud [33] 47.00 8.76 59

From Related Studies

SVM [29] (2023)
Private dataset (Asian,
African)-Rumbles Class

Wavelet transf., MFCC,
spectral_contrast, quantile
transf., chroma_cqt,
chroma_cens, Mel spectrogram,

Not Mentioned Not Mentioned 82

Linear SVM [24]
(2015)

Private dataset (South
Africa)-Rumble Class

Short-time spectral features Not Mentioned Not Mentioned 85.7

Parallel CNN [7]
(2022)

Elephantvoices.Org,
AnimalSounds.Org,
Soundbible.Com

MFCC, LPC, SSC, MBE Not Mentioned 11.89 91.1

YAMNet [28] (2023) Private Dataset (Sri Lanka) Mel spectrogram Not Mentioned Not Mentioned 97.7

5. Discussion

5.1. Study Contributions

In our study, we evaluated various audio-processing architectures to determine their

effectiveness in recognizing elephant calls. A novel architecture, ElephantCallerNet is

proposed to classify elephant sounds directly without converting into a spectrogram-

based audio-visual representation, making it suitable to deploy in resource-constraint edge

devices with reduced model size and inference time. Additionally, we evaluated the results

obtained from the same dataset with different levels of augmentations, and found that

the models produce high results for certain augmentation levels including time stretching

and pitch shifting as shown in Figure 5. Subsequently, we have shown that the models

perform well with small datasets, supporting data scarcity. Importantly, we performed a

comparative study along two pipelines. The direct raw audio classification is compared

with MobileNetv2, YAMNet, and RawNet, which are lightweight architectures that are

suitable for edge deployment. The spectrogram-based (MFCC, Chroma_cqt) classification

is assessed using MobileNetv2, YAMNet, ResNet18, and SVM classifiers, which support

efficient feature extraction. While most literature focuses on single caller types or binary

classification, our models classify three distinct types namely roar, rumble, and trumpet.

Table 5 summarizes the experimental configurations and accuracies, demonstrating that

our proposed model excels in raw audio analysis. Notably, ElephantCallerNet is compact,

making it a lightweight alternative without sacrificing performance.

The ElephantCallerNet model is designed for elephant call classification, with features

such as custom pooling for flexible dimensionality reduction, dropout regularization to

address overfitting in smaller dataset, and optimized feature extraction. Its parameterized

TFEB module composition allows flexibility based on input characteristics, enhancing

the capture of elephant call nuances. The convolutional and batch normalization layers

improved its capability to learn complex audio features. Additionally, it utilized Kaiming

Normal initialization for ReLU activations for fast convergence, optimizing weights for
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faster convergence. The associated quantization techniques helped to reduce the model

size and increase the inference speed on edge devices. In output processing, the model

applied softmax to output logits, ensuring a meaningful probability distribution for more

reliable classification. These innovations collectively enhance the performance of the pro-

posed model in identifying elephant calls, making it a robust and generalized model.

The proposed ElephantCallerNet achieved a balance between performance and computa-

tional efficiency, attaining an accuracy of 89% with a compact model size of 4.49 MB and

4.7 million parameters. Additionally, a user-friendly web-based application was developed

to classify elephant caller types from uploaded audio files, facilitating real-time monitoring

and conservation efforts.

5.2. Comparison with Related Studies

Most studies in the literature primarily address binary classification, distinguishing

between elephant vocalizations and non-elephant sounds or focusing solely on a given

caller-type. In contrast, our experiments classified three distinct elephant call-types namely,

roar, rumble, and trumpet, adding complexity to our approach. Despite this, our results in-

dicated that raw audio processing can match or even exceed the performance of traditional

spectrogram-based classification models. This underscores the importance of raw audio in

the bioacoustics domain, providing a robust method for elephant call classification. Given

the scarcity of literature on elephant caller type classification, we compared our results

with those on elephant vocal identification.

Although, there are no direct related studies to compare with those that have used

the same datasets and caller types we have considered, we considered studies with ele-

phant sound classification with different datasets and caller types to provide an overview

of the comparison. Previous research in elephant caller-type identification has largely

focused on spectrogram-based models [7,24,28,29]. This study introduced a raw audio

classification model and the comparative analysis is shown in Table 7. The experiments con-

ducted in this study utilized the public datasets from Asian Elephant Vocalizations Dataset

(Sri Lanka) [31], ElephantVoices Dataset [32], and SoundCloud [33], considering only roar,

rumble, and trumpet caller types. Most of the related studies with spectrogram-based

classification have not explicitly specified the used datasets, and have used private datasets

that contain vocalization from Sri Lankan [28], Asian, and African elephants [29], covering

all the elephant sounds or only rumble caller type. It can be seen that elephant sound

classification accuracy varies based on the considered dataset and the used techniques,

and overall, YAMNet and SVM showed better results.

Our spectrogram-trained models have lower success rates compared to similar studies

such as YAMNet [28] that achieved the highest accuracy of 98%. Since, audio spectrogram

processing transforms raw signals into visual representations, such as MFCCs and Chroma

CQT, which help the model identify patterns, it may result in high accuracy levels. How-

ever, both processing approaches have merits. Raw audio processing, as evidenced by

ElephantCallerNet’s high accuracy, demonstrates that models can effectively learn from

raw waveforms. Meanwhile, spectrogram processing can achieve high accuracy with ad-

vanced models and feature extraction. However, it showed high model sizes. For example,

The SVM classifier consumed high model size due to the usage of the non-linear kernel,

which gives higher accuracy with complex spectrogram patterns compared to the linear

kernel. The choice between these methods depends on specific application requirements,

computational resources, and the desired balance between simplicity and performance.

It can be concluded that the raw audio models are notably lighter than other models,

highlighting the potential of raw audio processing to achieve comparable accuracy with

fewer trainable parameters. Thus, based on our findings, it can be concluded that the
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proposed ElephantCallerNet based direct raw audio classification achieved high perfor-

mance compared to spectrogram-based methods, and can be deployed in edge devices

with constrained resources.

5.3. Application of Research Findings

The proposed elephant caller type classification model can be facilitated in several

directions. This can be deployed in real environments supporting wildlife conservation

and management, particularly for preserving elephant populations and their habitats.

The accurate classification of elephant vocalizations into distinct caller types such as rumble,

roar, and trumpet offers insights into their behavior and communication. This information

enables conservation practitioners to monitor populations, track individuals, and assess

group health. Understanding vocalizations also helps address threats like poaching and

habitat loss. Additionally, this solution can be used to monitor elephant activity within their

habitats, providing valuable data for habitat management. Acoustic monitoring identifies

areas of high activity and migration routes, guiding land-use planning and evaluating

conservation interventions.

Moreover, real-time classification of vocalizations supports early warning systems for

human–elephant conflict mitigation, allowing stakeholders to anticipate and prevent poten-

tial issues. Identifying caller types linked to aggression or distress helps implement targeted

conflict reduction measures. Such systems could also be implemented in Zoos to enhance

visitor understanding of animal behaviors, enriching educational experiences. Additionally,

insights gained from vocalization patterns may offer pre-alarms for natural disasters, high-

lighting their broader applicability. In summary, our methodology enhances understanding

of elephant behavior and informs conservation decisions, promoting coexistence between

elephants and humans in shared landscapes.

5.4. Study Limitations and Challenges

This research on elephant caller-type classification presented notable advancements,

yet several limitations and avenues for future exploration merit attention. Firstly,

the datasets employed may not fully capture the variability in elephant calls, which could

hinder the model’s generalizability. While the initial dataset considered for this study

comprises 235 samples, we utilized advanced data augmentation techniques such as pitch

shifting, time stretching, and background noise addition. These methods effectively ex-

panded the dataset and introduced variability to improve the model’s robustness. Studies

have shown that carefully crafted data augmentation can mitigate the challenges of lim-

ited datasets, particularly for domain-specific tasks like wildlife sound classification [34].

Elephant vocalizations can indeed vary based on individual characteristics such as age,

sex, and emotional state [35]. Our current dataset focuses on classifying three primary

call types (rumbles, trumpets, and roars) and does not yet account for these demographic

variations. Our collected dataset predominantly includes audio recordings of adult male

and female elephants, as they are the most observed and documented demographic groups

in field studies. While these recordings provide valuable insights into general vocalization

patterns, they do not encompass the full diversity of elephant vocalizations across age

groups. Additionally, we adopted lightweight neural network architectures tailored to

small datasets, ensuring the models avoid overfitting and generalize well. However, our

model is designed with scalability in mind, allowing for retraining with additional labels

for age and sex distinctions when such labeled data becomes available. Additionally, our

lightweight model architecture, ElephantCallerNet, is designed to be modular and can be

retrained on datasets with enriched metadata, making them suitable for deployment in

resource-constrained environments.
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Moreover, our comparison with literature data is limited due to the lack of specific

studies on three caller-type classifications, relying instead on general elephant sound iden-

tification research. The implementation of models like ElephantCallerNet offers room for

optimization tailored to the audio characteristics of elephant calls. Additionally, while

promising results were achieved, the model’s generalization across diverse environmental

conditions and elephant populations has not been explored and warrants future assess-

ment. Exploring alternative feature extraction techniques could enhance classification

performance, while addressing noise robustness is crucial for accurate identification amid

environmental interference. Moreover, incorporating the knowledge of bioacoustics experts

is essential for refining methodologies and ensuring that insights from the field are effec-

tively integrated into future research. Together, these areas represent critical opportunities

for further development in elephant vocalization analysis.

5.5. Future Possible Extensions

Several directions are possible with the extensions of the proposed model. Expand-

ing the dataset to include diverse elephant caller types enhances its comprehensiveness,

capturing a wider array of acoustic variations that improve the model’s generalizability.

The application of Mix-up techniques will enable the model to learn effectively across

sound variants, enhancing its robustness to variations in acoustic features. Moreover,

optimizing the model for deployment on edge devices is crucial due to their limited com-

putational resources [10,36]. This optimization involves techniques such as quantization,

which reduces the precision of model parameters, and pruning, which removes redundant

connections, maintaining performance while minimizing memory usage. Model compres-

sion methods, like distillation, transfer knowledge from larger models to smaller ones,

preserving predictive capabilities while reducing size. Additionally, leveraging specialized

hardware accelerators, or dedicated neural processing units can significantly enhance the

inference speed. By optimizing the model architecture and inference pipeline for specific

hardware, we can achieve greater efficiency in real-world applications. Together, these

strategies not only bolster the scientific robustness of the models but also enhance their

practical applicability in conservation efforts and monitoring of elephant vocalizations.

Moreover, the application deployment in real-time scenarios can be refined, wherein

elephant sounds detected by sensors or audio modules prompt immediate identification

amidst background noise. Upon detection, the system would swiftly generate alert mes-

sages to households or activate alarm buzzers as necessary. By transitioning from offline

file uploads to real-time detection and response mechanisms, our system could significantly

contribute to early warning and mitigation efforts in areas prone to human–elephant con-

flicts. The integration of such a real-time application aligns with the overarching goal of our

research, such that to bridge the gap between cutting-edge technology and on-the-ground

wildlife conservation and management practices. Through continued refinement and de-

ployment of real-time solutions, we can further enhance the effectiveness and efficiency of

elephant monitoring and conservation initiatives, ultimately fostering harmonious coexis-

tence between human communities and elephant populations. Furthermore, in a broader

perspective, the proposed method can be utilized in other audio classification contexts in

forest observatory [11]. The direct analysis of raw data instead of spectral data could enable

rapid, real-time optimization of complex photonic systems [37].

6. Conclusions

We presented a solution for elephant sound classification using deep learning tech-

niques. The research findings on elephant caller-type classification provide a significant

advancement in wildlife conservation and management efforts. This system leverages
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state-of-the-art technology and deep learning algorithms to address the challenges asso-

ciated with human–elephant conflicts and enhance elephant conservation strategies. In

this study, we evaluated several deep learning models for audio-processing to assess their

effectiveness in accurately identifying and classifying elephant calls. Our analysis included

established models such as MobileNet, YAMNet, and RawNet, known for their proficiency

in audio classification. We introduced our novel ElephantCallerNet model, designed to

leverage unique acoustic features of elephant vocalizations, achieving an overall accuracy

of 89%. We assessed the suitability of different augmentation techniques and classification

pipelines with several comparative evaluations to identify the optimal solution. Unlike

existing models that primarily focus on binary classification or single caller types, our

approach classifies three distinct types namely roar, rumble, and trumpet, introducing

a higher level of complexity. Overall, our study underscores the potential of machine

learning models trained on raw audio data for effective elephant call classification. These

findings suggest that similar methodologies could be applied to classify vocalizations from

other animal species, providing a streamlined solution for wildlife acoustic monitoring and

conservation efforts. This approach enhances the scalability and robustness of bioacoustic

methodologies, contributing to the broader understanding and conservation of biodiversity.

Author Contributions: Conceptualization, D.M. and C.P.; methodology, H.D. and D.M.; software,

H.D.; validation, H.D., D.M. and C.P.; investigation, H.D. and D.M.; data curation, H.D.; writing—

original draft preparation, H.D. and D.M.; writing—review and editing, D.M. and C.P.; visualization,

H.D. and D.M.; supervision, D.M. and C.P.; project administration, D.M. and C.P. All authors have

read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Asian Elephant Vocalizations Dataset https://catalog.ldc.upenn.edu/

LDC2010S05 (accessed on 6 March 2024). ElephantVoices Dataset https://www.elephantvoices.org

(accessed on 6 March 2024). SoundCloud https://www.elephantvoices.org (accessed on 6 March

2024). GitHub Repository: https://github.com/HiruDewmi/Audio_Classification_for_Elephant_

Voice (accessed on 10 May 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Oswald, J.N.; Erbe, C.; Gannon, W.L.; Madhusudhana, S.; Thomas, J.A. Detection and classification methods for animal sounds.

Explor. Anim. Behav. Through Sound 2022, 1, 269–317. [CrossRef]

2. Schoeman, R.P.; Erbe, C.; Pavan, G.; Righini, R.; Thomas, J.A. Analysis of soundscapes as an ecological tool. Explor. Anim. Behav.

Through Sound 2022, 1, 217–267. [CrossRef]

3. Stoeger, A.S.; Baotic, A.; Heilmann, G. Vocal creativity in elephant sound production. Biology 2021, 10, 750. [CrossRef]

4. Clemins, P.J.; Johnson, M.T.; Leong, K.M.; Savage, A. Automatic classification and speaker identification of African elephant

(Loxodonta africana) vocalizations. J. Acoust. Soc. Am. 2005, 117, 956–963. [CrossRef]

5. Xu, S.; Chen, Y. Sound classification with time-frequency features in forest environment. J. Phys. 2024, 2756, 012001. [CrossRef]

6. Meedeniya, D.; Ariyarathne, I.; Bandara, M.; Jayasundara, R.; Perera, C. A survey on deep learning based forest environment

sound classification at the edge. ACM Comput. Surv. 2023, 56, 1–36. [CrossRef]

7. Leonid, T.T.; Jayaparvathy, R. Classification of Elephant Sounds Using Parallel Convolutional Neural Network. Intell. Autom. Soft

Comput. 2022, 32, 1415–1426. [CrossRef]

8. Bandara, M.; Jayasundara, R.; Ariyarathne, I.; Meedeniya, D.; Perera, C. Forest sound classification dataset: Fsc22. Sensors 2023,

23, 2032. [CrossRef]

9. Mohaimenuzzaman, M.; Bergmeir, C.; West, I.; Meyer, B. Environmental Sound Classification on the Edge: A Pipeline for Deep

Acoustic Networks on Extremely Resource-Constrained Devices. Pattern Recognit. 2023, 133, 109025. [CrossRef]

https://catalog.ldc.upenn.edu/LDC2010S05
https://catalog.ldc.upenn.edu/LDC2010S05
https://www.elephantvoices.org
https://www.elephantvoices.org
https://github.com/HiruDewmi/Audio_Classification_for_Elephant_Voice
https://github.com/HiruDewmi/Audio_Classification_for_Elephant_Voice
http://doi.org/10.1007/978-3-030-97540-1_8
http://dx.doi.org/10.1007/978-3-030-97540-1_7
http://dx.doi.org/10.3390/biology10080750
http://dx.doi.org/10.1121/1.1847850
http://dx.doi.org/10.1088/1742-6596/2756/1/012001
http://dx.doi.org/10.1145/3618104
http://dx.doi.org/10.32604/iasc.2022.021939
http://dx.doi.org/10.3390/s23042032
http://dx.doi.org/10.1016/j.patcog.2022.109025


Sensors 2025, 25, 352 24 of 25

10. Paranayapa, T.; Ranasinghe, P.; Ranmal, D.; Meedeniya, D.; Perera, C. A Comparative Study of Preprocessing and Model Compression

Techniques in Deep Learning for Forest Sound Classification. Sensors 2024, 24, 1149. [CrossRef]

11. Ranmal, D.; Ranasinghe, P.; Paranayapa, T.; Meedeniya, D.; Perera, C. ESC-NAS: Environment Sound Classification Using

Hardware-Aware Neural Architecture Search for the Edge. Sensors 2024, 24, 3749. [CrossRef] [PubMed]

12. Duth, P.S.; Manohar, N.; Suresha, R.; Priyanka, M.; Jipeng, T. Wild Animal Recognition: A Vocal Analysis. In Proceedings of

the 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,

8 February–1 March 2024; pp. 1478–1484.

13. Brown, J.C.; Smaragdis, P. Hidden Markov and Gaussian mixture models for automatic call classification. J. Acoust. Soc. Am.

2009, 125, EL221–EL224. [CrossRef] [PubMed]

14. Vithakshana, L.; Samankula, W. IoT based animal classification system using convolutional neural network. In Proceedings of the

2020 International Research Conference on Smart Computing and Systems Engineering (SCSE), Kelaniya, Sri Lanka, 16 September

2020; pp. 90–95.

15. Clemins, P.J.; Johnson, M.T. Automatic type classification and speaker identification of African elephant vocalizations. J. Acoust.

Soc. Am. 2002, 113, 1–3.

16. Brickson, L.; Zhang, L.; Vollrath, F.; Douglas-Hamilton, I.; Titus, A.J. Elephants and algorithms: A review of the current and

future role of AI in elephant monitoring. J. R. Soc. Interface 2023, 20, 20230367. [CrossRef]

17. Hamed, N.; Rana, O.; Orozco Ter Wengel, P.; Goossens, B.; Perera, C. Forest Observatory: A Resource of Integrated Wildlife Data,

Technical Report. 2022. https://orca.cardiff.ac.uk/id/eprint/153362/ (accessed on 1 December 2024).

18. Sanchez, F.J.B.; Hossain, M.R.; English, N.B.; Moore, S.T. Bioacoustic classification of avian calls from raw sound waveforms with

an open-source deep learning architecture. Sci. Rep. 2021, 11, 15733.

19. Xie, J.; Hu, K.; Zhu, M.; Guo, Y. Bioacoustic signal classification in continuous recordings: Syllable-segmentation vs sliding-

window. Expert Syst. Appl. 2020, 152, 113390. [CrossRef]

20. Nair, S.; Balakrishnan, R.; Seelamantula, C.S.; Sukumar, R. Vocalizations of wild Asian elephants (Elephas maximus): Structural

classification and social context. J. Acoust. Soc. Am. 2009, 126, 2768–2778. [CrossRef]

21. Yadav, S.; Rab, S.; Wan, M.; Yadav, D.; Singh, V. Sound Communication in Nature. In Handbook of Vibroacoustics, Noise and

Harshness; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–26.

22. Mutanu, L.; Gohil, J.; Gupta, K.; Wagio, P.; Kotonya, G. A review of Automated bioacoustics and general acoustics classification

research. Sensors 2022, 22, 8361. [CrossRef]

23. Kvsn, R.R.; Montgomery, J.; Garg, S.; Charleston, M. Bioacoustics data analysis–A taxonomy, survey and open challenges. IEEE

Access 2020, 8, 57684–57708.

24. Zeppelzauer, M.; Stoeger, A.S. Establishing the fundamentals for an elephant early warning and monitoring system. BMC Res.

Notes 2015, 8, 1–15. [CrossRef]

25. Bjorck, J.; Rappazzo, B.H.; Chen, D.; Bernstein, R.; Wrege, P.H.; Gomes, C.P. Automatic detection and compression for passive

acoustic monitoring of the african forest elephant. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver,

BC, Canada, 20–27 February 2024; Volume 33, pp. 476–484. [CrossRef]

26. Meedeniya, D. Deep Learning: A Beginners’ Guide; CRC Press LLC: Boca Raton, FL, USA, 2023. [CrossRef]

27. Geldenhuys, C.M.; Niesler, T.R. Learning to rumble: Automated elephant call classification, detection and endpointing using

deep architectures. arXiv 2024, arXiv:2410.12082.

28. Ranasinghe, U.; Abeyrathne, S.; Samaranayake, L.; Weerakoon, T.; Harischandra, N.; Dissanayake, G. Enhanced Frequency

Domain Analysis for Detecting Wild Elephants in Asia using Acoustics. In Proceedings of the 2023 IEEE 17th International

Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 25–26 August 2023; pp. 140–145.

29. Silva, C.; Piyathilake, V.; Keppitiyagama, C.; Sayakkara, A.; Kumarasinghe, P.; Jayasuriya, N.; Sampath, U. A Wavelet Transform-

based Feature Extraction Pipeline for Elephant Rumble Detection. Int. J. Adv. ICT Emerg. Reg. 2023, 16, 21-32. [CrossRef]

30. Bhat, K.; Bhandari, M.; Oh, C.; Kim, S.; Yoo, J. Transfer Learning Based Automatic Model Creation Tool For Resource Constraint

Devices. arXiv 2020, arXiv:2012.10056.

31. de Silva, S. Asian Elephant Vocalizations. 2010. Available online: https://catalog.ldc.upenn.edu/LDC2010S05 (accessed on

30 May 2024).

32. Voices, E. ElephantVoices Dataset. Available online: https://www.elephantvoices.org/multimedia-resources.html (accessed on

30 May 2024).

33. Welcome to ElephantVoices—Elephantvoices.org. Available online: https://www.elephantvoices.org (accessed on 30 May 2024).

34. Huq, S.; Xi, P.; Goubran, R.; Knoefel, F.; Green, J.R. Data Augmentation and Deep Learning in Audio Classification Problems:

Alignment Between Training and Test Environments. In Proceedings of the 2023 IEEE 23rd International Conference on

Bioinformatics and Bioengineering (BIBE), Dayton, OH, USA, 4–6 December 2023; pp. 140–146.

35. Stoeger, A.S.; Mietchen, D.; Oh, S.; de Silva, S.; Herbst, C.T.; Kwon, S.; Fitch, W.T. An Asian elephant imitates human speech.

Curr. Biol. 2012, 22, 2144–2148. [CrossRef]

http://dx.doi.org/10.3390/s24041149
http://dx.doi.org/10.3390/s24123749
http://www.ncbi.nlm.nih.gov/pubmed/38931532
http://dx.doi.org/10.1121/1.3124659
http://www.ncbi.nlm.nih.gov/pubmed/19507925
http://dx.doi.org/10.1098/rsif.2023.0367
https://orca.cardiff.ac.uk/id/eprint/153362/
http://dx.doi.org/10.1016/j.eswa.2020.113390
http://dx.doi.org/10.1121/1.3224717
http://dx.doi.org/10.3390/s22218361
http://dx.doi.org/10.1186/s13104-015-1370-y
http://dx.doi.org/10.1609/aaai.v33i01.3301476
http://dx.doi.org/10.1201/9781003390824
http://dx.doi.org/10.4038/icter.v16i3.7268
https://catalog.ldc.upenn.edu/LDC2010S05
https://www.elephantvoices.org/multimedia-resources.html
https://www.elephantvoices.org
http://dx.doi.org/10.1016/j.cub.2012.09.022


Sensors 2025, 25, 352 25 of 25

36. Ranasinghe, P.; Paranayapa, T.; Ranmal, D.; Meedeniya, D. Hardware-aware Neural Architecture Search for Sound Classification

in Constrained Environments. In Proceedings of the 2024 International Research Conference on Smart Computing and Systems

Engineering (SCSE), Colombo, Sri Lanka, 4 April 2024; Volume 7, pp. 1–6. [CrossRef]

37. Genty, G.; Salmela, L.; Dudley, J.M.; Brunner, D.; Kokhanovskiy, A.; Kobtsev, S.; Turitsyn, S.K. Machine learning and applications

in ultrafast photonics. Nat. Photonics 2021, 15, 91–101. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/SCSE61872.2024.10550556
http://dx.doi.org/10.1038/s41566-020-00716-4

	Introduction
	Related Work
	System Design and Methodology
	Data Materials
	Data Augmentation
	Solution Design
	Proposed ElephantCallerNet for Raw Audio Classification
	Web Application Development

	Results
	Assessment of Model Performance with Different Augmentation Levels 
	Results Analysis of Direct Raw Audio Classification Using a Smaller Dataset
	Comparison of Configuration Setting with Performance in Direct Raw Audio Classification
	 Individual Model Performance in Direct Raw Audio Classification
	Comparison of Model Performance in Direct Raw Audio Classification
	Comparison of Model Size, Complexity, and Accuracy in Direct Raw Audio Classification

	Results Analysis of Spectrogram-Based Classification Using Smaller Dataset
	Raw Audio vs. Spectrogram-Based Classification

	Discussion
	Study Contributions
	Comparison with Related Studies
	Application of Research Findings
	Study Limitations and Challenges
	Future Possible Extensions

	Conclusions
	References

