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Abstract

In this study, we demonstrate how we can quantify environmental implications of

large-scale events and traffic (e.g., human movement) in public spaces, and identify

specific regions of a city that are impacted. We develop an innovative data fusion frame-

work that synthesises the state-of-the-art techniques in extracting pollution episodes

and detecting events from citizen-contributed, city-specific messages on social media

platforms (Twitter). We further design a fusion pipeline for this cross-domain, mul-

timodal data, which assesses the spatio-temporal impact of the extracted events on

pollution levels within a city. Results of the analytics have great potential to benefit

citizens and in particular, city authorities, who strive to optimise resources for better

urban planning and traffic management.
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1 Introduction

With increasing migration of people to urban areas (55% of the global population lives

in urban areas in 2018, expected to rise to 68% by 2050 [1]), sustainable urbanization

has been identified as key to successful development [2]. This necessitates a successful

management of urban growth, which largely depends on three dimensions: economic,

social and environmental [2]. An insight into the interplay of these dimensions, e.g., by

using urban computing techniques, can contribute to an understanding of the evolving

needs for limited urban resources (e.g. roads, public transport and other shared public

spaces). Existing initiatives in this regard, comprising mainly the environmental and/or

economic dimensions, focus on the impact of citizens economic activities (manifest

through human mobility and traffic) on the environment. Some representative studies

include data-driven machine learning (ML)-based approaches for air quality charac-

terization of cities [13,19,20,41,45], derivation of human mobility patterns based on

activities [23,28,30] and prediction of carbon emissions from city transport [27].

Social events in cities, such as sports, cultural or staged demonstrations, involve

much more large-scale human and traffic movement than rural areas [3]. The environ-

mental cost (manifested through impact on pollution levels) of such events is largely

unexplored, which can partially be attributed to the lack of real-time data sources. In

recent years, online social networks (OSNs) have been flourishing and contain rich

information about such events [21,42]. This is driven by the growing ubiquitous use of

smartphones enabled with GPS tracking capabilities and recent progress in commu-

nication networks, which has led to the rise of people sharing city-related messages

and mobility updates on OSNs such as Twitter and Foursquare [42]. Citizen sens-

ing has been widely recognized as a complementary and corroborative information

source for understanding a citys dynamics [42], with the massive amount of data gen-

erated at high frequency, which is representative of the natural, unconstrained human

behaviour at very large scales [21]. There has been research on the use of open data

from OSNs to detect city-specific events, e.g., large-scale people and traffic move-

ments [21,23,30,42], traffic incidents [4,5] and natural disasters [7,10,11].

This work aims to address the question of evaluating the environmental impact of

large city-wide social events, which usually involve lots of people and traffic move-

ment. It combines social event detection and sensor data processing in order to analyse

and quantify such impact. To meet this aim, we analyze spatio-temporal big urban data,

i.e. datasets containing spatial, temporal and category information (s, t, c) [12,45]

of cross-domain and multimodal nature, by exploiting social sources such as Twit-

ter (for city events) and open sensor observations’ datasets for pollutants. Existing

approaches addressing fusion of sensor observations with OSN data, fall mainly into

two categories: (1) terms mined from OSN messages are used as ‘subjective context

descriptors’ for anomalies or trends observed in the physical sensor data (e.g. traffic

or air quality patterns) [6,34,40], and (2) those that correlate OSN and physical sensor

streams, where both are in the same modality, i.e. numerical [22,25,33,36]. Hence, the

existing state of the art does not address fusion of multimodal data streams, i.e. OSN

text messages and air pollutant numerical data.
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1.1 Motivating scenario

To understand the needs and challenges behind the work, we present a motivating

scenario. Consider that there is a football World Cup match planned to be held in

a stadium located at the outskirts of the city in a couple of days’ time. With prior

experience of the environmental impact of sporting events at such scale, the city

authorities could schedule an appropriate number of extra public transport means

along the main transport routes. With fans arriving in the city a few days in advance

of the match, there is suddenly a flash mob of thousands of people congregating at

the city centre. The city authorities become aware of this in real-time from messages

posted on Twitter, receiving also an approximation of the number of people involved.

Simultaneously, air pollution peaks are observed at a number of monitoring sites

around the city, showing appreciable correlations at the locations people are tweeting

from. As a result, the pollution and congestion alerts in the city dashboard are updated

and reflected in screens around the city: bus stops, car parks, shopping centres etc.

High pollution alerts, together with locations affected, are pushed to the city apps

that the citizens have installed on their smartphones. The coordinated public transport

and emergency services are also prepared effectively and efficiently to respond to the

situation.

Realization of the above scenario presents some needs: (1) to identify the relation

between large social activities and environment impact at a more fine-grained level;

(2) to better inform citizens about the environment to enable them to make better

decisions for plans and activities; (3) to inform the city authorities about the possi-

ble problems and causes for better transportation and infrastructure planning. This

scenario also introduces a number of challenges since it involves real-time analysis

of textual and numerical data in conjunction, in order to derive meaningful infor-

mation. The system needs to derive pollution anomalies in an unsupervised manner

since different urban regions may have different spatio-temporal baselines (i.e. sea-

sonal and locality variances) for pollution levels. This scenario can also be extended

to include sensor networks providing a diversity of data types, i.e. multimedia and

scalar types. Scalar data can be textual or numerical and multimedia data can contain

audio, video, or image segments (e.g. from surveillance cameras, audio sensors). The

system also needs to consider these heterogeneous data types which suffer from their

own specific challenges, i.e. requiring handling of inconsistencies from, e.g. sensor

anomalies/breakdowns, data transmission issues. Thus, there are at least two main

challenges relevant to any enabling system, those resulting from a sensor network

perspective and those related to converting textual OSN data into a form suitable for

fusion analysis with sensor data.

1.2 Contributions and outline

The proposed novel cross-domain data fusion method combines both textual OSN data

and environment pollution data to detect and identify correlations between events and

pollution in public spaces. The contributions can be summarised as follows:
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1. fusion technique for cross-domain data in different modalities (numeric and text)

and scales of measure (nominal and ratio).

2. unsupervised pollution episode (anomaly) detection method that does not require

an offline mining step and is location-agnostic (thus, being applicable to different

urban regions).

3. quantification of the social impact of the events, through the region of influence

that identifies specific areas of the city most affected in terms of the identified

pollution episodes.

The rest of the paper is organised as follows: Sect. 2 reviews the state of the art in

data-centric urban computing approaches that analyze physical and social network data

together. Section 3 presents the study and the statistics of the collected data; followed by

Sect. 4 which presents the architecture of the developed data fusion system. Section 5

explains the method of extracting events from tweets, together with an estimation of

the involved population and location tagging. Section 6 presents the data analytics

methods for detecting pollution episodes from the environmental data, followed by

the data fusion methods for correlating environmental episodes with events. Section 7

evaluates the findings in terms of a well-known effect size analysis metric. Section 8

concludes the paper and discusses the planning implications of the findings for future

urban development.

2 Literature review

There has been great interest in applying urban computing techniques to identify

patterns from urban big data and infer unknown knowledge. While there exist many

studies that have explored OSN data as alternative data sources of urban data [29], only

the research works that perform analysis of observation data from physical sensors

(as numeric or time series data) in conjunction with data generated by citizens on

social networking platforms (as numeric or text data streams) to build models for data

analytics, are relevant to this work, and are reviewed in the sub-sections below.

2.1 Social network data as context descriptor for sensor observations

Early research in fusing physical sensor observations with OSN data has primarily

focused on statistical analysis of the sensor data in isolation and then using the social

data to provide a semantic context descriptor to the patterns derived from sensor

data. Examples of this class of methods include the traffic anomaly detection work

in [34,40] that use GPS traces from sensors mounted in taxis. The detected traffic

anomaly is then described by mining terms from social media. These works fusing

OSN data with sensor measurements are similar to our approach. However, in contrast

to the approach in [34] that requires an offline mining step for anomaly detection (the

offline mining derives the normal behavior as a pre-cursor to detecting anomalies),

our fusion framework proposes an unsupervised anomaly detection method that infers

the normal data pattern as part of the online anomaly processing. A recent citywide

deployment proposal [6] takes a similar approach to the existing state of the art,
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where OSN data trends/analytics, citizen questionnaires and mobile phone sensor

crowdsourcing methods are proposed to provide a subjective perception from citizens,

as a complementary sensing method to the distributed static and mobile air quality and

noise sensor deployments. The daily frequency and negative sentiment expressed in

OSN messages is also employed as an indicator of public satisfaction with perceived

air quality in [38]. The authors in this study also found that there is a marked association

between a higher AQI in a city and the frequency of OSN messages discussing air

pollution topics in that city.

However, these existing methods only utilise the mined social media terms to

describe the detected anomaly or explain the causes, whereas our approach goes

beyond this to convert the mined event topics into a numerical representation that

can be conveniently correlated with the detected anomalies.

There are also studies that process physical data of different types simultaneously

that is in the same scale of measure and mode, e.g., numerical data in the ratio scale.

Such studies mainly utilize location-based services, such as the work by Komninos et

al. [25] analyzing Foursquare check-in data and its correlation with diurnal pollutant

levels and traffic volume in Patras, Greece, and that by Jara et al. [22] to correlate

traffic behavior with temperature in the city of Santander. Similar location-based anal-

ysis is done in [33], where the authors mine machine-learning features from cellular

base station data and apply check-in patterns from the Foursquare OSN, as semantic

annotations for the areas near to base transceiver station (BTS) cells in terms of urban

activities such as park, travel, food, shop etc.

2.2 Urban informatics analyzing different sensor streams with open datasets

Considerable research has applied data mining and machine learning-based methods

to analyze sensor data from multiple sources together with open datasets pertaining

to cities to determine trends in city dynamics or to perform prediction and classifi-

cation analysis. For instance, the work in [27] combines taxi GPS data with datasets

describing the road network, points of interest (POI) and meteorological data to predict

transportation carbon emissions within different city grids in Zhuhai, China. The study

in [14] determines the correlation of transport density on the road network and weather

changes by analyzing sensor data of taxi trajectories and regional weather data, and

open datasets such as the road network data and regional information, which includes

social factors such as house age, number of neighbors, number and characteristics of

POIs etc.

Urban models to predict air quality in city districts without installed monitoring

stations have been proposed in [17,45], by considering a range of spatio-temporal urban

big data sources such as meteorology, vehicular traffic and POI. The authors in these

studies predict the causality between these urban sources and Air Quality Index (AQI)

and apply this to find the most influential data for air quality estimations. While the

authors in [45] use Granger causality measures to determine the causality associations

between AQI and urban sources, Ge et al. [17] construct a region similarity matrix

and construct a deep learning framework to fuse the air quality data with regional

spatial metadata. The research reported in [36] investigates environmental impacts on
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socio-economic development (measured via GDP) by applying a sophisticated multi-

criteria decision-making enhanced TOPSIS (Technique for Order of Preference by

Similarity to Ideal Solution) model to the following air pollutants: SO2, NO2, PM10,

AQI, as well as pH and dustfall. The authors calculate a joint indicator between air

pollution and GDP by determining the relative distance between sample points and the

optimal/worst sample. The results show that GDP has been rising steadily for the 20

years that the measurements have been considered (1996–2015), while air pollution

peaked in 2010 and then dropped. Bermudez-Edo et al. [8] propose a sliding time

window pipeline to detect correlations between two traffic streams over distinct road

segments. They employ both Pearson correlation and mutual information methods to

investigate their effectiveness at detecting spatio-temporal correlations, with one of

the findings being, that if the correlation displays a pattern, then a temporal series can

be used to analyze if certain data changes can predict other values over a period of

time.

Table 1 provides a comparison of the current state-of-the-art methods according

to a number of metrics that are illustrative of the characteristics of studies looking at

fusing physical sensors’ observations with OSN data. The metrics related to the data

sources, modality of data sources and fusion aspects, bring out the challenges relevant

to this work.

Our investigation of the literature work shows that data analytics from both social

media data and physical sensor data simultaneously remains a challenging problem

due to the large semantic gap among the different data types. Most of the existing

approaches mainly focus on correlating numerical physical and social sensing data,

or use text OSN data as a annotation element, whereas our proposed system is able

to leverage cross-space multimodal data (textual data from Twitter and numerical

time-series pollutant data).

3 Case study and dataset characteristics

This work uses the 2012 London Olympics as a validating use-case. Taking this large-

scale event as a case study mitigates the risk of the data sparsity challenge [44], where

in addition to missing values for the relevant pollution sensor measurements, there

may be no pollutant measurements available for the same spatial and temporal range

as the events detected from the Twitter social platform.

3.1 Air quality monitoring sites

As the NO2, pollutant is highly related and sensitive to traffic and mobility of urban

residents, we chose it as the target pollutant. The dataset used in this work was recorded

by retrieving data from LondonAir [26], the London Air Quality Network (LAQN)

website, which provides the data from the large-scale deployment of air pollution mon-

itoring sites across London. It contains data for the duration of the Olympic Games

(26 July 12 August 2012). NO2, concentrations were retrieved at 15-min intervals.

The monitoring sites were carefully chosen, including those situated in the vicinity of
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the main Olympic stadiums, and also in central London to capture the main transport

directions towards the stadiums. By focusing on this subset of monitoring sites, our

work aims to detect local pollution episodes that occur for a limited temporal dura-

tion and may be distinct from larger episodes attributed to weather phenomena or

seasonal variations. To capture the effects of events on pollution, Roadside (situated

2–10m away from the road) and Urban Background (>10m away from main roads and

>30m from busy roads) sites were chosen to account for both pollutant generation and

dispersal. Table 2 shows the sites information, including the site type and site code.

Figure 1 maps the monitoring site locations, together with that of the Queen Elizabeth

(QE) Olympic Stadium.

3.2 Twitter data

The tweets corresponding to the time span of the validating use case [using time

constraints: since: 26-07-2012 until: 13-08-2012 (excluded)] and with place keywords

(i.e. London) were retrieved from the Twitter search API. A total number of 1,625,508

tweets were collected. Figure 2 shows the distribution of tweets retrieved over the

event time span, with two major peaks in tweet activity corresponding to the opening

(27 July) and closing (12 August) ceremonies of the London Olympics Games, during

which 234,912 and 164,194 tweets were collected, respectively. The numbers of tweets

on other days vary from 20,000 to 100,000.

4 System overview

Figure 3 shows the system architecture for data fusion and analytics, which consists

of three parts: event detection, pollution episode extraction and data fusion.

Event Detection: as a precursor to analyzing the pollution data, messages from social

media, i.e., the tweets, are retrieved using the time span of the chosen scenario and

tagged with the broad location name (e.g. city or city region). Following pre-processing

with tokenization and stop-word removal, events are determined from the cleaned

tweets by extracting latent topics by using the Twitter-LDA method. More precise

event location is also determined by deriving the location terms contained in the

tweets.

Pollution episode extraction: as shown in the middle of Fig. 3, the pollution episode

extraction step takes in the pollutant data from the various monitoring sites of a city.

A pollution episode represents points of inflection at which the sensed data may

show sharp and sudden changes. Pollution episodes reported by the majority of the

monitoring sites covering the entire or large regions of a city may be attributed to

weather phenomena or seasonal variations. To capture the effects of events on pollution

episodes manifested through increased human and traffic flows, our work focuses

on local anomalies that are detected only by a subset of monitoring sites located

close to each other for a limited temporal duration. The collected datasets can be in

different data formats (e.g., CSV or JSON) and scale; in the pre-processing step, the
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Fig. 1 Pollution monitoring sites and event (QE Olympic Park) locations

Fig. 2 Distribution of tweets

during the 2012 London

Olympics duration

raw data needs to be cleaned and then integrated. Finally, the Kolmogorov Complexity

(KC) [24] score analysis is applied to generate the anomalous graphs.

Data fusion: the steps depicted in the right column of Fig. 3 aim to analyze and explain

the pollution episodes in order to derive knowledge about the relations between the

episodes and events. This is achieved by finding the presence of significant correlations

between the anomalous graphs and the representative event topics. The analysis also

includes determining the scale and impact of the event on the deviation of the pollutant

levels.

5 City event detection from Twitter

This section applies the method from our previous work on event extraction from

Twitter [42] and briefly explains the Twitter-LDA and Gibbs sampling algorithms for

topic selection and classification.

123



S. De et al.

Fig. 3 System architecture

5.1 Tweets pre-processing

The place names and temporal information (date parameters di ) are used as input to

retrieve relevant tweets from the Twitter search API. All the tweets posted on a day are

considered as a document, which is subjected to tokenisation, stop words and noisy

words removal (expressions such as ya and ha). URL links and unreadable codes are

also removed. Given the nature of the tweets and lack of unlabeled data, we adopt

an unsupervised approach to infer topics discussed in tweets as well as their relevant

keywords and distributions of topics over a day. To better interpret the meanings of

these inferred, unlabeled topics, we map them to the broad event categories developed

by Ritter et al. in [35]. The categories identified include: [Traffic | Culture | Sports |

Air Quality | Weather | Disaster | Non-event].

5.2 Twitter-LDA analysis

The Twitter-LDA model [39] is a customisation of the original Latent Dirichlet Allo-

cation (LDA) model, which is suitable for processing short text such as tweets. It

assumes that a tweet only discusses one topic and contains a small number of back-

ground words that do not contribute to any topic. For more technical detail about the

generative process of Twitter-LDA, readers are referred to [39].

Gibbs Sampling is used to infer the latent topic and keyword distributions in the

Twitter-LDA model and is described in Algorithm 1. In the beginning, topics are ran-

domly assigned to each word. The words are also attached with a decision of whether

it is a topical or background word. The algorithm then iteratively samples a topic

for the document and makes a decision over each word on whether it is background

or topical, through the posterior distribution calculated from the previous iterations.
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Algorithm 1: Gibbs sampling on Twitter-LDA

Input: Preprocessed Tweets collection on several dates d1, d2, d3 . . .

Output: Distribution of Topics over dates, Distribution

1 Initialise topics matrix T, background/topic decision matrix Bt

2 for iteration i = 1,2,3… do

3 for each dates tweets collection d j =tw1, tw2, tw3… do

4 for each tweet twk = w1, w2, w3… do

5 T [ j][k] = Sample_T () // Sample a topic for the tweet

6 for each word wl do

7 Bt[ j][k][l] = Sample_Bt() // Sample a decision for the word

/* Generate distribution of topics over each day */

8 Distribution = compute_distribution();

9 return Distribution

The distribution is then updated accordingly. After a certain number of iterations, the

distribution of topics over each day starts to converge. The output of the inference

includes the topics with the list of top related keywords and the number of tweets for

each topic. Since Twitter-LDA is an unsupervised method, the extracted topics are

unlabeled. To better understand the meanings of the latent topics, they can be linked

to type of events as defined in [35]. Each specified event type defines a list of related

keywords, which are used to match to the top keywords for each latent topic inferred

from Twitter-LDA. A topic will be classified as an event type if most of its top key-

words match the keyword collection of the corresponding event type. If a topic cannot

match any keywords, it will be classified as a non-event.

5.3 Event scale estimation and location tagging

The scale of a detected event is defined as the size of the population involved in

that event. It can be estimated based on the frequency of the tweets relating to the

event and the population of a city. As can be seen shortly, the estimated values are

fairly close to the true values. The final step is to determine the precise location of

the events detected from the tweets. An aggregation and rank-based location entity

detection approach is developed which extracts the location entities in the relevant

tweets using location named entity recognition model based on OpenNLP [16]. The

detected location entities are aggregated and ranked by their occurrences, with the two

ranked at the top considered representative of the event location. The associated geo-

location coordinate information is determined by formulating a query to the Google

Maps Geocoding API [18].

Table 3 introduces the top 10 detected topics, their determined category, and their

top 5 related keywords. Topic T49 (london back love day london!) is matched to a

Culture event according to its keywords. T52 (2012 medal olympic olympics gold),

T63 (2012 olympics london olympic games), T12 (2012 gold bolt olympics usain), and

T78 (2012 basketball team men’s olympics) indicate particular Olympics sport events.

T77 (lol lauren love im girl) is matched to a non-event topic. T69 (london, fashion

august show tickets) is a culture event about a show and performance in London. T36
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Table 3 Top-5 keywords for the top-10 frequent topics

Rank Topic Event type Top-5 keywords

1 T49 Culture London back love day london!

2 T52 Sport 2012 medal olympic olympics gold

3 T63 Sport 2012 olympics london olympic games

4 T77 Non-event Lol lauren love im girl

5 T69 Culture London, fashion august show tickets

6 T12 Sport 2012 gold bolt olympics usain

7 T36 Culture Opening ceremony 2012 olympics Olympic

8 T78 Sport 2012 basketball team men’s Olympics

9 T47 Culture 2012 closing olympics london ceremony

10 T97 Non-event United #job #jobs london, kingdom

Fig. 4 Distribution of the top-10 frequent topics

(opening ceremony 2012 olympics olympic) and T47 (2012 closing olympics london

ceremony) indicate the opening and closing ceremonies of the London Olympics

Games. They are classified as culture events, since they are celebratory ceremonies.

Figure 4 gives the distributions of the top 10 frequent topics. Two obvious spikes in the

figure indicate topics discussing the opening ceremony (27 July—T36) and closing

ceremony (12 Aug—T47). T97 (united #job #jobs london, kingdom) indicates a non-

event topic for jobs.

The event scale estimation provides a figure of 70,317 members of the population

being involved in the Olympics event, which is close to the 80,000 capacity of the

Olympics stadium.
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6 Composite effects of detected events on pollutant levels

6.1 Pollution episode extraction

As the collected sensor data might contain duplicates, missing or incorrect values

due to noise, equipment maintenance, recalibration or communication faults [17,44],

pre-processing for such data is also needed. It consists of 2 steps: in the data clean-

ing step, the sensor observation data is collected and stored; then, each data point

is checked and all negative values (below 0) are marked as invalid and removed; in

the data formatting step, the cleaned data is formatted into time series by applying

JSON or CSV scripts depending upon the retrieved data. Pollution episodes, where

the data exhibits a pronounced departure from the normal behavior are extracted by

calculating the information theoretic Kolmogorov Complexity (KC) [24] score, which

is computed through the Kolmogorov-Smirnov test [15]. For each data point, it com-

putes the Euclidean distance to all other data points in a random sampled sequence;

this forms a sequence A. Next, a new sequence is sampled randomly: for the data

points in this new sequence, their distances to data points of the first random sampled

sequence are computed and form new distance sequences B1, B2 . . . Bn , where n is

the number of sampled data points. The Kolmogorov-Smirnov test is applied to A and

each of B. The mean value of Kolmogorov-Smirnov test values is the KC score.

6.2 Correlation analysis and region of influence

Based on the geographical and the temporal constraints, the associations between

detected pollution episodes and the events can be derived. In particular, the impact

of the events extracted from social media on the pollution (e.g., the identified NO2,

patterns as well as the pollution episodes) is derived through correlation analysis.

To calculate the correlations, both anomalies in pollution and events need to be

quantified as arrays of numbers. Also, the spatial and temporal information of the

pollution and events should match, i.e., locations and time of the sensing data and

events are close to each other. The pollutant representations consist of arrays of KC-

score values of the sensing data across a number of different days, while events are

represented by the ratio of tweets involved in the particular event topics to the total

number of collected tweets on a day.

Since the impact of the events could involve a broader geographic scope than the

exact event location, e.g., through traffic flows, the pollutant data from the nearby

sensing locations is also considered in the impact analysis. The relevant monitoring

sites are selected based on proximity (within a defined radius of the monitoring site

where the pollution episode is detected and also the event location), using the geospatial

search algorithm proposed in [43]. The search algorithm implements a distance query

by taking as inputs the Geohash representations of the event location and returns the

names of the monitoring sites within the required radius. The resultant sites are a

subset of those presented in Table 1 and include the following 11: CT6, HK6, IS2,

NM2, RB4, TH2, TH4, NM3, TH1, TH5 and CT3.
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Fig. 5 Monitoring site pollutant detected event correlation

The implementation has been done using Matlab and Java, and is available as a

Docker image hosted on the Docker hub repository,1 together with a description of

commands for pulling down the Docker images and their execution. The implemented

component takes as input Twitter tweets and environmental pollution data, and com-

putes the Pearson correlation between city events impacting people and/or traffic flows

(identified from the tweets) with the measured pollution levels. It uses as input two

files, one containing the measured pollution, e.g. NO2, levels at a given place for a

day, and the other collected tweets for the same time period and place. The pollution

measurements file is a csv file that contains sensing data collected from different sens-

ing sites, with the measurement dateTime (dd/mm/yyyy hh:mm) in the first column

and the NO2, values for the different sensing sites in the following columns. A default

data.csv file is provided which contains pollution values from different sites in Lon-

don. The second input file is a text file that stores the text of collected tweets for each

day, with one tweet in each row. A default tweetslist.txt file is included with tweets

from London for the Olympic event days.

Figure 5 shows the Pearson correlation results between the sensed NO2, data and

the detected event topics. As a complement of correlation analysis, p values, as shown

in Table 4, are also calculated to determine whether it can reject the null hypothesis of

no correlation between anomalies and events. A p value of < 0.05 denotes significant

correlation, showing that a strong impact of events on pollution level reasonably exists.

In Fig. 5, roadside sites such as Newham-Cam road (NM2), Tower Hamlets Mile

End (TH2) and Blackwall (TH4) show a strong correlation with T36 (opening cere-

mony 2012 olympics olympic), in terms of KC-scores. The Pearson correlation values

are 0.70, 0.51 and 0.62, respectively. High values are also observed with the overall

Games topic (T63: 2012 olympics london olympic games). As shown in Table 4, the

corresponding p values (0.0, 0.03 and 0.01) for T36 confirm the strong relationship

between the opening ceremony event and the detected anomaly in the pollution pattern

at these sites. The sites of NM2 and TH2 display similar association with the overall

1 https://hub.docker.com/r/ikaas/anomaly-detection.
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Table 4 p values for event-pollutant episode correlation

Site code T49 T36 T52 T47 T63 T77 T69 T12 T97 T78

CT6 0.95 0.77 0.52 0.75 0.84 0.67 0.46 0.85 0.64 0.96

HK6 0.72 0.87 0.69 0.35 0.36 0.27 0.40 0.65 0.46 0.69

IS2 0.85 0.79 0.91 0.64 0.72 0.59 0.32 0.75 0.39 0.58

NM2 0.01 0.00 0.46 0.57 0.02 0.12 0.13 0.62 0.05 0.39

RB4 0.88 0.18 0.10 0.25 0.94 0.09 0.28 0.66 0.29 0.09

TH2 0.07 0.03 0.64 0.41 0.02 0.45 0.14 0.59 0.06 0.53

TH4 0.01 0.01 0.96 0.70 0.08 0.08 0.14 0.99 0.06 0.59

CT3 0.13 0.08 0.56 0.55 0.03 0.49 0.13 0.50 0.09 0.72

NM3 0.10 0.10 0.68 0.98 0.18 0.13 0.14 0.68 0.08 0.97

TH1 0.07 0.07 0.76 0.65 0.10 0.16 0.07 0.78 0.04 0.95

TH5 0.37 0.53 0.84 0.98 0.23 0.38 0.14 0.94 0.12 0.82

Games topic T63, with identical p values of 0.02. The results are in fact coinciding

with what is anticipated. As these sites are roadside monitoring stations, the corre-

sponding sensed pollution data is highly influenced by the traffic through the roads. In

addition, the selected measurement, NO2, is largely impacted by traffic. As shown in

Fig. 1, Mile End Road (TH2) and Newham-Cam Road (NM2) are on a major naviga-

tion route from central London to the Olympic Park site (along the A11 primary road).

The increased traffic on the opening day of the Olympics does impact the pollution

levels. Similarly, T36 has a significant correlation with data from the sensing site at

Blackwall (TH4), which is on a road (primary road A12) from the south of London

to the Olympic Park. These results indicate the most preferred route taken by people

travelling to the Olympic Games stadium from central London. The results show that

the NO2, pollution levels, mainly caused by traffic, are indeed highly influenced by

the opening ceremony hosted in the Olympic Park. In contrast, urban background

sites show a low correlation with the relevant Games topics, even for sites such as

TH5, which is located close to the event venue. The closing ceremony of the London

Olympics Games (topic T47) does not have such an evident relationship according

to the calculated correlation results; since it was on the 12th Aug (Fig. 4), while the

detected pollution data anomaly from the Mile End Road sensing site according to its

calculated KC-score is on 10th Aug. Taken together, these results point to the region

of influence of the Olympic Games event as well as the specific sub-event, e.g. the

opening ceremony, on distinct geographical regions in terms of the recorded pollution

anomalies.

7 Evaluation

Inspired by effect size quantification in education theory [9], causality measures are

proposed in this section, in order to evaluate by how much the events statistically

influence the pollutant anomaly values. This forms a key-factor analysis of the envi-
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ronmental impact of the events through statistical causality measures such as ANOVA

η2 [32] for effect size quantification. The η2 measure estimates the magnitude of

the effect of the independent variable (detected event in our case) and has quantified

measures to categorize effect size (e.g., low, moderate or high). It is calculated as:

η2
= SSA/SST (1)

where SST is the total sum of squares component, which can be partitioned into

between-group sum of squares (SSA) and the within-group or the error sum of squares

(SSs/A), representing the variation due to the independent variable and variation due

to individual differences in the score, respectively:

SST = SSA + SSs/A (2)

The sum of squares between groups (SSA) examines the differences among the group

means by calculating the variation of each mean (Ȳ. j ) around the grand mean (Ȳ..), as

shown in (3) below:

SSA = n
∑

j

(Ȳ. j − Ȳ..)
2 (3)

where n is the number of observations in each group, Ȳ.. is the mean of the full sample

and is calculated across all individuals and all groups.

A single score is represented by Yi j , indicating the score is for an individual i ,

within a particular group, j . The “.” refers to computing across that element, either

individuals or groups. Then, Ȳ. j is the mean of a particular group, j ; the “.” is used in

place of the i because the mean is calculated using all the ‘i’s for a particular group.

SSs/A is the variation of individual scores around each group mean and is calculated

by (4):

SSA =
∑

j

∑

i

(Yi j − Ȳ. j )
2 (4)

To show the effect size of the independent variable, the sites are separated according

to the site type (roadside and urban background) and η2 values are calculated for all of

the days (event and non-event days). Doing this enables us to determine the effect over

the short period of the detected event in comparison to a long period when other events

may affect the results. The resulting values show that the days without the events have

smaller values than the period including the event days, for the roadside sites NM2,

TH2 and TH4; other sites do not show any statistically significant effect. Moreover,

the calculated values show a moderate effect for NM2 (0.06) and a lower effect for

TH2 and TH4 (0.027 and 0.0068, respectively), according to the general rule of thumb

for η2 given by Miles and Shelvin [31].

These results corroborate the correlation analysis performed in the previous section,

with the same monitoring sites showing statistically significant causality of the events

on the monitored pollutant levels. With the events showing a statistical significant

influence on the same monitoring sites as derived in the previous section, this also

supports the region of influence inference as well.
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8 Conclusions

This work attempts to quantify the environmental impact of social and cultural events

which involve large-scale traffic and human movement in public spaces within a city.

The developed novel cross-domain data fusion techniques combine social network

data with environmental sensor data to detect and identify correlations between events

and pollution levels. The results have great potential to contribute to an increased

understanding for public space management and pollution (or air quality), which could

improve the quality of life for citizens. The correlation of air quality with city events,

which is ultimately influenced by mobility of people and vehicles, has important social

implications for a connected city, e.g., for planning of public spaces and infrastructures

such as hospitals and schools. This insight allows to adopt a data-enabled collaborative

approach to plan and build responsive urban areas that helps inform peoples decision

making and enables urban authorities to plan for the best possible use of limited city

resources. This is in line with the observations from the pioneering urbanist William

Whyte, who stressed on careful observation and collection of data to answer questions

on building psychologically healthy urban spaces [37].
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