
1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3133625, IEEE

Transactions on Industrial Informatics

1

On The Private Data Synthesis Through Deep
Generative Models for Data Scarcity of Industrial

Internet of Things

Abstract—Due to the data-driven intelligence from the recent
deep learning (DL)-based approaches, the huge amount of data
collected from various kinds of sensors from industrial devices
have the potential to revolutionize the current technologies used
in the industry. To improve the efficiency and quality of machines,
the machine manufacturer needs to acquire the history of the
machine operation process. However, due to the business secrecy,
the factories are not willing to do so. One promising solution to
the above difficulty is the synthetic dataset and an informatic
network structure, both through deep generative models such
as differentially private GANs (DP-GANs). Hence, this paper
initiates the study of the utility difference between the above
two kinds. We carry out an empirical study and find that the
classifier generated by private informatic network structure is
more accurate than the classifier generated by private synthetic
data, with approximately 0.31% ∼ 7.66%.

Index Terms—Industrial Internet of Things, Deep Generative
Model, Generative Adversarial Network, Data Synthesis, Differ-
ential Privacy

I. INTRODUCTION

A. Industrial Internet of Things (IIoT)

Thanks to the rapid rise of the Internet of Things (IoT),
there are increasing demands and novel user scenarios for
human life. Smart appliances [1], autonomous driving [2],
intelligent robots [3] are exemplar applications with a consid-
erable number of devices connected to each other. For industry,
wireless communications and artificial intelligence (AI) jointly
promote the development of industrial IoT (IIoT) [4], [5]. In
particular, IIoT has been witnessed to significantly improve
manufacturing efficiency, reduce product cost, and upgrade
the manufacturing process by integrating various sensors and
controllers with intelligent analysis. While the intelligence in
IIoT is the core component that leads to the above benefits, a
critical part behind the scene is the abundance of the data.

B. Data Issue in IIoT

Due to the data-driven intelligence from the recent deep
learning (DL)-based approaches, the massive amount of data
collected from various sensors from industrial devices has
already become the primarily productive force. They have the
potential to revolutionize the current technologies used in the
industry. For example, one can feed the data collected from
IIoT into a productive decision-making model to achieve data-
driven smart manufacturing. However, as current data-driven
AI models widely used in IIoT (e.g., deep neural networks,
DNN) require a considerable amount of high-quality data to
achieve intelligence, data incompleteness, low data quality, and
insufficient quantity have become the pain points. For example,
for image classification that often sees industrial applications
such as defect detection, a rule of thumb is at least 1000
images per class in DL. More specifically, first, possibly due to
the malfunctioning of sensors, the IIoT data may have missing
values, which may frustrate the training process. Second, the

factors such as vibration and high-frequency interference in the
factory may affect the sensors, leading to the low quality and
uncertainty of IIoT data. Such IIoT data mostly compromise
overall decision-making performance. Third, an insufficient
amount of IIoT, due to scarcity of the events of interest, may
easily make the DNN underfitting. Fourth, the valuable data
lead to the owner’s unwillingness to share the data. Despite the
effort in using techniques such as federated learning to help
data collection [6], [7], [8], only parts of the above problems
can be handled.

The availability of large datasets has been a crucial factor in
the success of DL-based classification and detection methods.
While datasets for everyday objects can easily be collected,
datasets for specific industrial use-cases (e.g., automated in-
spection and defect detection ) can hardly be collected. In this
paper, we mainly focus on the scarcity of image datasets in
IIoT.

C. Key Challenges in Data Synthesis Through Deep Genera-
tive Models (DGM)

To handle the data scarcity and facilitate DL techniques
in industrial applications, before fed into model training al-
gorithm, the dataset needs to be either created from scratch
or enhanced from a small-size initial dataset. In essence, to
accomplish the above task, deep generative models (DGM),
such as generative adversarial networks (GAN) [9], could
be a promising solution for generating realistic ”real” data
in an unsupervised manner. Despite its powerful generative
capability, GAN has limitations such as limited expressive
power, poor interpretability, and weak discriminative ability.
However, a fundamental problem for the data synthesis in IIoT
data synthesis is that most models ”memorize” the training
data due to the potential overfitting issue. The synthetic data
generated from such a model also leak information about the
original sensitive data.

D. Motivating Example and Problem Statement

Motivating Example. Consider a motivating example as
follows. There are many factories, each of which runs a
machine of the same type (e.g., grinding machines and metal
processing machine tools). The machine manufacturer wants
to collect the history of the machine operation process from
factories to perform the AI-based analysis to improve their
future design’s quality and efficiency. However, in operating
the machine, trade secrets such as different combinations of
parameters will be crafted and stored in the machine. The
history of the machine operation process may reflect or leak
the factory’s trade secrets. As a consequence, each factory is
unwilling to share the machine operation process.

Problem Statement. A promising solution to the above
difficulty is that each factory privately constructs a synthetic
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dataset according to the machine operation process. A differ-
entially private GAN (DP-GAN) could be the best choice to
build a synthetic dataset because it strikes a balance between
data privacy and data utility. After that, one can have two
possible approaches for the factory to “share” the data with
the machine manufacturer.
• (A1) Each factory individually constructs the synthetic
dataset through DP-GAN according to the machine operation
process and then shares the synthetic dataset with the machine
manufacturer. Here, from the machine manufacturer’s view-
point, it receives a dataset. So the machine manufacturer can
perform arbitrary analysis on the received dataset, hoping that
the corresponding analytical conclusion is consistent with the
one made from the original history of the machine operation
process.
• (A2) With the assumption that the machine manufacturer
has announced to factories the analytical algorithms such as
convolutionary neural network (CNN) that will be used, each
factory instead sends the differentially private trained model
(e.g., differentially private convolutionary neural network, DP-
CNN [10]) to the machine manufacturer. In this scenario,
the machine manufacturer does not have the flexibility of
adaptively choosing analytical algorithms, compared to (A1).

As the machines in some areas such as the car and semi-
conductor industry may cost up to billions of dollars, the
improvement of machines may profoundly impact the business
of both the machine manufacturer and the factories that use
machines. Thus, one may raise a research question that which
one ((A1) or (A2)) will lead to a better data utility, given the
same level of privacy.

E. Contribution

Our technical contribution can be summarized as follows.
• While there is no research effort devoted to investigating the
utility difference between the above two options, this paper
initiates the study of the utility difference between the above
two kinds of private information-sharing mechanisms.
• After carrying out an extensive set of experiments, we
find that (A2) is superior to (A1) in terms of data utility,
at the cost of the flexibility in choosing arbitrary analytical
algorithms. In particular, the classification accuracy by directly
using differentially private models (e.g., DP-CNN) is more
accurate than the classifier generated by differentially private
synthetic data from DP-GAN, with approximately 0.31% ∼
7.66%.

An implication in IIoT is that when the machine manufac-
turer has already determined the analysis tool (e.g., CNN), it
would be preferred to ask the factories to return the differen-
tially private models. In such a case, the machine manufacturer
can have more accurate analysis results for future machine
improvement. Nevertheless, when the machine manufacturer
wants to keep the freedom of choosing arbitrary analysis tools,
the machine manufacturer needs to trade the analysis accuracy
for flexibility.

II. RELATED WORK

A. Differential Privacy (DP)

In this paper, we use differential privacy to both generate
synthetic data and train the privacy model. Differential privacy
[11], [12], [13] comprises strong privacy guarantees for algo-
rithms on aggregate databases. Two databases differ on a single
record called neighboring databases, so the results of querying
them are extremely similar. Base on this setting, if you cannot

distinguish the result queried from which databases, the single
record, the only difference between the two databases, will
not leak the information. The strict definition of DP (ǫ-DP)
is that a statistical release cannot compromise a member’s
privacy if their data are not in the database. Consequently, the
statistical functions run on the database should not excessively
rely on any individual’s data. Dwork et al. [14] proposed a
loose definition of DP named (ǫ, δ)-DP which allows for the
probability that ǫ-DP is failed with probability δ and we show
it as the following:
Definition 1. (ǫ, δ)–differential privacy. A randomized algo-
rithm M takes a database as input. M satisfies (ǫ, δ)–DP if,
for neighboring databases D1, D2 that all S ⊆ Range(M):

Pr[M(D1) ∈ S] ≤ exp(ǫ) · Pr[M(D2) ∈ S] + δ, (1)

where ǫ is a privacy budget that represents the degree of
privacy protection and δ ∈ [0,1] is a probability of not
satisfying differential privacy. The degree of privacy protection
is higher when ǫ is smaller, that is, the utility of databases is
lower. When δ = 0, M satisfies ǫ-DP. Given a deterministic
function f : D → R and differential privacy protection is
achieved by adding noise to the output of f . The magnitude
of noise influences on both the privacy degree and the utility
of databases. Adding the quite small magnitude of noise
does not provide sufficient protection. However, the excessive
magnitude of noise tremendously reduces the utility of results.
Therefore, f ′s sensitivity ∆f = maxd1,d2

‖ f (d1) –f (d2) ‖ is
the key parameter to determine how much noise to be added,
where ∆f represents the maximum impact of each record on
the f ′s output, and d1 and d2 are adjacent inputs. Laplace and
Gussain noises are used to be added to achieve DP guarantees
and we show their mechanisms as the following:
Definition 2. Laplace mechanism. Given any function f :
D → R, the Laplace mechanism is ML(D) = f(D) +
(Y1, · · · , Yn), where the Yi is independently identical distribu-

tion random noise drawn from Laplace distribution Lap(
△f

ǫ
).

Definition 3. Gaussian mechanism. Given any function
f : D → R, the Gaussian mechanism is MG(D) = f(D) +
(Y1, · · · , Yn), where the Yi is independently identical distri-
bution random noise drawn from the Gaussian distribution
N (0, σ2) with the zero-mean and the scale showing as below:

σ ≥

√

2ln(
1.25

δ
)
△f

ǫ
(2)

Because Gaussian mechanism can accept a more powerful
composition property, both “Clean features with sloppy train”
and DP-GAN use Gaussian mechanism to randomize f ′s
output and define as M(d1) = f (d1) + N (0, (∆fσ)2I), where
N (0, (∆fσ)2I) is a Gaussian distribution with zero mean and
standard deviation (∆fσ)2I , where σ is the noise parameter
and I is the identity matrix. An inherent assumption behind
DP is that data records are independent. As the data generated
and collected from IIoT devices might be correlated, the DP
on correlated data is also developed [15].

B. Private Aggregation of Teacher Ensembles (PATE)

As shown in Fig. 1, PATE [16] partitions sensitive data
into n disjoint subsets and each teacher model trains on the
received data separately. After that, we get n classifiers fi
called teachers and the aggregate teacher gathers all teachers to
predict the label based on the student’s query. The ensemble of
teachers counts the predictions for each teacher and generates
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Fig. 1. The flowchart of PATE. First, we get the ensemble of teachers trained on disjoint subsets of sensitive data. Then, we train a student model with public
data labeled by the ensemble.

the statistical result. The privacy guarantee is derived from
aggregation so that it needs to add noise to the statistical result
and return the prediction corresponding to the highest noisy
vote to the student model:

fen(x̄) = argmax
c

{

nc(x̄) + Lap (
1

γ
)
}

, (3)

where fen(·) is the ensemble of teachers and x̄ is an input
which is the number of teachers classifying input x̄ as class
c: nc(x̄) = |{i: i ∈ [n], fi(x̄) = c}|. Lap(a) is the Laplace
distribution with location 0 and scale a. The privacy parameter
γ affects the privacy guarantee. Instinctively, a large γ brings
about a strong privacy guarantee but decreases the accuracy of
the labels. Because of the additive noise on statistical results
generated by teachers, the student model has privacy protection
in the process of training.

When the number of teachers is small, the difference
between the most votes and the second-highest number of
votes is small. If the noise is arbitrarily selected, it will be
hard to maintain the most votes’ consistency after adding
noise. Considering the utility of the student model, the noise
must be strictly selected. However, this will result in the rapid
consumption of privacy costs and decrease student queries.
Eventually, the lack of training data with labels will cause low
accuracy because of the reduction in the number of student
queries. On the other hand, when the number of teachers is
too large, each teacher has only a small amount of training
data that makes their performance poor and finally causes the
student learning badly.

C. Differentially Private SGD

Stochastic gradient descent (SGD) is an optimizer used to
train the neural network. It computes the gradient of the loss
function L w.r.t the model’s parameters θ and updates θ for
each training sample xi and training label yi:

θ = θ − η · ∇θL (θ; xi; yi), (4)

where η is the learning rate. It can converge faster than batch
training. However, it may have information leakage via gradi-
ents. One of the “Clean features with sloppy training” achieves
the privacy protection by using differentially private stochastic
gradient descent (DP-SGD) [10] during optimization. Com-
pared to the normal SGD, DP-SGD adds Gaussian noise on
the gradients to achieve the privacy guarantees. To avoid the
overflow occurring, it must clip the gradient before adding
noise. Doing so can also prevent the exploding gradient [17]

that happens when the gradient increases dramatically during
training. It clips the ℓ2 norm of each gradient in the same
layer by a threshold C. Threshold C can limit the influence of
individual data on the overall data and compute the sensitivity
conveniently. After that, we compute the average gradients to
update the parameters, which is the same as normal SGD.
Finally, we use the privacy accountant to track the cumulative
privacy loss. These processes iterate until it converges or the
privacy budget runs out.

D. Differentially Private GAN (DP-GAN)

Goodfellow et al. [18] proposed a neural network architec-
ture named generative adversarial network (GAN) shown in
Fig. 3 composed of two neural networks, the generator G and
the discriminator D, respectively. The generator G is in charge
of generating the new synthetic data similar to the training
data. The discriminator D tries to distinguish between the real
data and the synthetic data generated by G. The competition
between G and D, G can learn the latent distribution Pz well
so that the synthetic data has similar statistical properties to
the training data.

The DP-GAN proposed by Zhang et al. [19] is based on
the improved WGAN [20] framework. There are various DP-
GANs [21], [22]. According to Fig. 3, it shows that only
D can directly access the original data, so DP-GAN adds
noise on the gradients of D to achieve the privacy guarantees.
However, G is still protected by differential privacy. Because
any computation on the output of a differentially private
mechanism does not increase the privacy leakage under the
post-processing of differential privacy. Therefore, updating the
parameters of G through D does not increase the privacy loss.
Training G is also protected by differential privacy, and the
releasing data are also secure. The process of DP-GAN is
almost the same as DP-SGD. The slight difference between
them is that DP-GAN also needs to update the generator G.

Recalling the process of DP-SGD, it needs to clip ℓ2-
norm of each gradient with the threshold C and then add
Gaussian noise on gradients that DP-GAN conducts them too.
These operations influence the training bringing about the low
synthetic data quality generated by the generator. For instance,
if C is too small, it will lead to excessive truncation of the
gradient and slow polymerization. If C is too large, however,
more noise will be added to the gradients. To enhance the
performance of DP-GAN, Zhang et al. also propose some
strategies for the setting of clipping bound C, and we show
them below:
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Fig. 2. The neural network architecture of the classifier for labeling synthetic data.

Fig. 3. The structure of generative adversarial networks (GAN). It consists of
two neural networks, the generator and the discriminator. The generator takes
the random noise as the input and generates the data resembling the training
data. Discriminator compares synthetically generated data with the real data.

Basic. It sets the gradient clipping threshold of each layer to
be the same.
Weight-Bias Separation. From f(x) = wx + b, we can
intuitively observe that the weights w have a large influence
on the input x, so the setting of C should be set separately
for weights w and biases b.
Adaptive Clipping. Although the setting of C has been
divided from the overall parameters into weights and biases,
it is still set manually in each layer. Therefore, it still has
a significant difference from the optimal C. To achieve the
optimal C, the magnitudes of the gradients are monitored
before and during training and finally set C according to
the average magnitudes. We partition the training data into
the private data Dpri and the public data Dpub. During each
training step, a batch of samples is randomly selected from
Dpub and set the clipping bound as the average gradient
norm w.r.t this batch of Dpri. Because the clipping bound
is computed from Dpub instead of being set manually. It is
closer to the optimal C, but each iteration’s progress direction
is correct. Accordingly, this strategy accelerates the training
convergence rate and has a higher data utility.
Weight Clustering. Since the weights of each layer vary
greatly, the clipping bound should be different for overall
weights. Therefore, Zhang et al. [19] proposed this strategy,
as sketched in Algorithm 1 (see in Appendix A). First, we
receive a set of gradients {cgi}i and each gradient forms its
own group {(gi, cgi)}i. Then, we sort each group from small

to large and recursively find two groups Ĝi, ˆGi+1 with the
most similar clipping bounds and combine into a new group.
Because we clip the ℓ2 norm for C, the clipping bound of the

new group is computed as
√

c2
Ĝi

+ c2
ˆGi+1

using the ℓ2 norm.

Warm-Start. Since DP-GAN adds a lot of noise during train-

ing, the convergence rate is slower than GAN. To improve the
convergence rate and the utility, we extract a small proportion
of Dpub (e.g., 2% of Dpub in [19]) to train several iterations
without DP. After that, based on the model trained in the above
non-private manner, we use Dpri to train the model in an
DP manner. In essence, this strategy can find a better weight
initialization for the model training from the perspectives of
the training efficiency and model utility budget by sacrificing
the privacy of those data records used in the pre-training 1.

III. OUR APPROACH

To avoid leaking sensitive data in machine learning, it in
common uses the “Clean feature with sloppy training” ap-
proach to attain this goal. However, this method only releases
a model of the fixed type, and third parties can not generate
the corresponding model according to their needs. In recent
years, Zhang et al. [19] has proposed a method with the same
degree of privacy guarantees that can train the expected model
according to their requirements. Suppose the accuracy of the
model generated by the synthetic data is close to or higher than
the model released by “Clean feature with sloppy training”.
In that case, we can use synthetic data extensively for various
analyses and the model generated by these synthetic data with
the same degree of privacy guarantees. In Section IV, we will
show the performance of classifiers trained on the original data
with the DP-SGD optimizer and trained on the synthetic data
generated by DP-GAN normal SGD optimizer.

In this section, we show that how we train the classifier
with the DP-SGD optimizer. We also show how we generate
a classifier from synthetic data and evaluate its performance
for the DP-GAN.

For DP-SGD, we train the classifiers on MNIST and
FASHION-MNIST with the architecture: a 60-dimensional
PCA projection layer, a single 1000-unit ReLU hidden layer,
and a 10-unit output layer. Based on [10], PCA projection
needs to access the sensitive data, so we must add noise to
avoid the leakage of privacy. To maintain the overall privacy
budget, ǫ is split into ǫclip and ǫpca whose noise scales are σclip

and σpca, respectively.

We train the DP-GAN models with δ = 10−5 and various
privacy budgets in this paper for DP-GAN. The DP-GAN

1Warm-start is optional. In other words, if one cannot find any Dpub

available for the pre-training, one can skip warn-start. In fact, warm-start
can be seen as the transfer learning with full-model fine-tuning. Thus, even
if one cannot find Dpub that shares the same distribution with the sensitive
dataset and can only find Dpub that shares the somewhat similar distribution,
then warm-start can still increase the training efficiency and utility.
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model only generates differentially private synthetic data and
does not label them. Hence, our strategy is to generate a highly
accurate classifier at first and then use it to label the synthetic
data generated by the generator of the DP-GAN model. To get
a highly accurate classifier, we train the neural networks of
the architecture shown in Fig. 2 on MNIST and FASHION-
MNIST datasets whose accuracies are 99.16% and 92.58%,
respectively. Then, we randomly select the same number of
each class in the training data of “Clean features with sloppy
training” from the synthetic data. For the sake of fairness, we
train these synthetic data based on the neural network structure
of “Clean features with sloppy training”. We repeat to generate
synthetic data and train the classifier fifty times and finally take
the average accuracy.

IV. EXPERIMENTS

In this section, we mainly compare the performance between
the classifiers trained on the synthetic data and trained with
“Clean features with sloppy training”. Both methods are under
an equal degree of privacy protection.

A. Experiments Setup

We trained classifiers on MNIST and FASHION-MNIST
datasets. MNIST consists of 70,000 handwritten digital images
of size 28×28 and divides them into 60,000 training and 10,000
test samples. FASHION-MNIST consists of 70,000 images of
10 categories: t-shirt, trousers, pullover, dress, coat, sandal,
shirt, sneaker, bag, and ankle boot of size 28×28 divides them
into 60,000 training and 10,000 test samples. Both two datasets
are black and white images. All experiments are conducted
using an Intel Xeon E5-2620v4 CPU, 125 GB RAM, and an
NVIDIA TITAN Xp GPU with 12 GB RAM.

Each teacher and student model uses the same neural
network structure in PATE: two convolution layers with max-
pooling and one fully connected layer with ReLUs. The
teachers can access 60,000 samples totally, of which 5,000
are used for validation. The batch size is set to 128, and the
learning rate is initially set to 5. We found that when the
number of teachers is 100 and 80 for MNIST and FASHION-
MNIST, the student model has the highest accuracy shown in
Table I. We show more experiments on number of teachers
versus the student accuracy in Fig 10. (see in Appendix B).
Since the FASHION-MNIST dataset is more complex than
the MNIST dataset, each teacher model needs more training
data so that the student model can attain higher accuracy. The
amount of the training data for training the student model is a
critical factor for the accuracy shown in Fig 4. We use 5000
test data labeled by the ensemble teacher to train the student
model for all experiments.

In DP-SGD, the learning rate initially sets as 0.1, linearly
reduces to 0.052 in 10 epochs, and finally fixes at 0.052. To
limit the sensitivity, we found that the gradient clipping thresh-
old is set to 4 and 5 separately for MNIST and FASHION-
MNIST with the best utility demonstrated in Fig 5. Besides,
the total privacy budget ǫ is partitioned into ǫclip and ǫpca with
noise scales σclip and σpca mentioned in Section III. We set
(ǫ = 0.5, σclip = 8, σpca = 16), (ǫ = 2, σclip = 4, σpca = 7),
(ǫ = 4, σclip = 3, σpca = 5) and (ǫ = 8, σclip = 2, σpca = 4)
for both datasets.

In DP-GAN, we divide the training data into a publicly
available dataset Dpub and a private dataset Dpri with a ratio
of 2 : 98. We set the number of steps for updating the generator
in the single iteration to be 4. We train the DP-GAN by

Fig. 4. The accuracy generated by the different numbers of training data
under the student’s training structure.

(a) MNIST

(b) FASHION-MNIST

Fig. 5. The accuracies based on different gradient clipping thresholds C on
MNIST and FASHION-MNIST.

setting the number of steps for updating generator in the single
iteration= 4, batch size = 64, the initial learning rate= 0.0002,
the coefficient of gradient penalty λ = 10, and hyper-
parameters of Adam optimizer (α, β, γ) = (0.002, 0.5, 0.9).
Based on Section II-D, there are five strategies for finding the
optimal clipping bound C. The number of groups for weight
clustering is set to be 5. The number of iterations of warm-
start is set to 500. To limit the sensitivity, the settings of the
gradient clipping threshold C for different models show as
below:

1) Basic model: It is the traditional DP-GAN, we set the
overall parameters of C to be 4 and 5 on MNIST and
FASHION-MNIST, respectively.

2) Weight-Bias model: Because the initial parameters are
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TABLE I
TRAINING PATE WITH DIFFERENT NUMBER OF TEACHERS SATISFIED (2, 10−5)-DP INFLUENCES THE PERFORMANCE OF STUDENT MODELS.

Dataset Number of teachers Average Accuracy of Teachers Teacher Ensemble Accuracy Student Accuracy

MNIST
10 97.49% 97.6% 93.33%

100 90.27% 96.34% 97.47%
250 83.7% 91.72% 92.48%

FASHION-MNIST
10 86.47% 87.72% 82.8%
80 81.73% 85.76% 86.78%

250 73.68% 74.37% 76.03%

very messy, it should be set the larger C at the beginning.
As the training step increases, the model will tend to
converge. Therefore, the setting of C should gradually
become small.

3) Other strategies adopt adaptive clipping to set C through
Dpub.

B. Experimental Results

In this section, we show the performances on classifiers
trained with “Clean features with sloppy training” and DP-
GAN by varying privacy budgets ǫ on MNIST and FASHION-
MNIST. Both DP-SGD and PATE belong to “Clean features
with sloppy training”. Besides, we perform the visual compar-
ison of the synthetic data for five strategies of DP-GAN with
the same privacy budget ǫ.

1) Performance on MNIST dataset: We train with δ = 10−5

and four different privacy budgets ǫ = {0.5, 2, 4, 8}. The
degree of privacy protection increases when ǫ reduces. We
train eight classifiers: regular training, PATE, DP-SGD, and
combinations of 5 strategies of DP-GAN models. We show the
test accuracies of 8 classifiers in Fig 6. Original data meaning
regular training; of course, it can get the highest accuracy
which is more significant than 97%. Based on Equation 2.,
we know that the noise injection is related to the ǫ. If we add
more noise during training, it will interfere severely with the
parameters of the optimizer. When ǫ = 0.5, we added more
noise and the manual setting of the gradient clipping bound
C has a large fluctuation bringing about the lower accuracy.
When ǫ ≥ 2, the demand for noise is small. That is, it has a
slight effect on the gradients. Consequently, the accuracy will
become more stable and approach to the original data.

DP-SGD, it contains ǫpca and ǫclip so that the demand of the
additive noise is more causing the poor performance. The poor
performance of basic and weight-bias models demonstrates
the importance of the gradient clipping bound C. Among
all strategies of setting C, the adaptive clipping is closer
to the varying gradients caused by each input than others.
The adaptive clipping does not cause slow convergence and
excessive truncation due to the small gradients. Furthermore,
it does not add too much noise due to reducing the data utility
of the generated data eventually. In addition to using adaptive
clipping, the warm-start is also a good choice. Because it
uses a little original data to train in several epochs without
adding noise, the latent space learned by the generator is closer
to the original data. Compared to DP-GAN models without
warm-start, we show images generated by generators trained
with different steps shown in Fig 11 (see in Appendix C).
The Model with warm-start can learn the latent space of the
training data well in fewer steps than other models. The ability
of generators influences the utility of the synthetic data. We
visualize the synthetic data shown in Fig 7 and the qualities
of images generated by estimation and warm-start models are
better than others. Therefore, the performance of classifiers

trained by them is higher than other DP-GAN models in Fig 6.
In conclusion, training DP-GAN models with the combination
of adaptive clipping and warm-staring is the most suitable
method to train an accurate classifier.

Fig. 6. Comparison test accuracies of 8 types of classifiers on MNIST. The
auto-grouping model use strategies for the combination of adaptive clipping
and weight clustering. The warm-start model is composed of warm-start
and adaptive clipping. The estimation model consists of warm-start, adaptive
clipping and weight-bias. The performance of Estimation model is closed to
PATE when ǫ ≥ 2. However, DP-SGD belonging to “Clean features with
sloppy training” cannot perform well until ǫ = 8.

2) Performance on FASHION-MNIST dataset: We per-
formed the same setting as MNIST dataset with δ = 10−5 and
three different privacy budgets ǫ = {2, 4, 8} on FASHION-
MNIST. Obviously, under the same degree of privacy protec-
tion, there is a significant gap in the accuracy of FASHION-
MNIST compared to the MNIST. Because the FASHION-
MNIST dataset is more complex than the MNIST dataset, the
performance is arduously as good as MNIST. We overcome
this barrier by using adaptive clipping and its accuracy is
relatively high and stable. Since adaptive clipping constantly

(a) Original Images (b) Basic Model

(c) Weight-Bias Model (d) Auto-grouping Model

(e) Warm-Start Model (f) Estimation Model

Fig. 7. Visual Comparison of the synthetic data generated by basic, weight-
bias, auto-grouping, warm-start and estimation models trained by the same
iterations under the privacy budget ǫ = 0.5 and δ = 10−5 on MNIST.
Estimation and warm-start models can generate the synthetic data being more
similar with original images.
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monitors the magnitude of the gradients in Dpub before and
dynamically sets the clipping threshold C based on the average
during training. Hence, it guarantees the maximum protection
of the input sample to the gradients with minimal correlation
error.

Fig. 8. Comparison test accuracies of 8 types of classifiers on FASHION-
MNIST. The auto-grouping model use strategies for the combination of
adaptive clipping and weight clustering. The warm-start model is composed
of warm-start and adaptive clipping. The estimation model consists of warm-
start, adaptive clipping and weight-bias. The performance of warm-start model
shows that is closed to PATE when ǫ ≥ 2. It consistently shows that the utility
of the synthetic data is brilliant.

As mentioned above, the amount of noise affecting the
utility of data is connected to ǫ. When the privacy budget
ǫ growing, the accuracy of each model increases shown in Fig
8. DP-SGD consistently cannot get the brilliant performance
caused by partitions of ǫ for the gradient clipping and PCA
projection. As ǫ increases, performances of DP-GAN models
are closer to PATE and regular training. The reason for basic
and weight-bias models gaining low accuracy mentioned in
Section IV-B1 is that both do not use warm-start. We also
perform the synthetic images generated by different DP-GAn
models trained with and without warm-start with the privacy
budget ǫ = 2 and different steps shown in Fig 12 (see in
Appendix C). Consider the results on MNIST; warm-start
plays a vital role in the accuracy of classifiers trained on the
synthetic data. We also perform the synthetic data generated
by 5 DP-GAN models under the same privacy budget shown in
Fig 9. The images generated by auto-grouping and warm-start
models are closer to the original images.

To train the accurate classifier, the performance of both
“Clean features with sloppy training” and DP-GAN are almost
the same on both MNIST and FASHION-MNIST. However,
using DP-GAN to generate synthetic data with appropriate
strategies has widespread applications. For example, we can
do statistical analysis on synthetic data. “Clean features with
sloppy training” can only be used to predict the user’s data.
In practice, instead of releasing secure models, the synthetic
data can be applied in broad fields.

V. CONCLUSION

In our work, we use two types of Clean feature with sloppy
training” based on the location of noise injection and compare
it with the classifier generated by the synthetic data under the
same level of privacy protection. According to the experimen-
tal results, we can observe that the setting of the clipping
threshold has a considerable influence on accuracy. In DP-
SGD, it not only sets the clipping threshold manually but adds
more noise than other models during training, so its accuracy

(a) Original Images (b) Basic Model

(c) Weight-Bias Model (d) Auto-grouping Model

(e) Warm-Start Model (f) Estimation Model

Fig. 9. Visual Comparison of the synthetic data generated by basic, weight-
bias, auto-grouping, warm-start and estimation models trained by the same
iterations under the privacy budget ǫ = 2 and δ = 10−5 on FASHION-
MNIST.

is usually the lowest. However, in DP-GAN, we dynamically
adjust the value of the clipping threshold in each step by
using adaptive clipping. This strategy prevents the clipping
threshold from being too small, causing slow aggregation;
it also prevents it from being too large, adding more noise.
Therefore, when the noise is added to the gradients, the model
generated by differentially private synthetic data has higher
utility. Another Clean feature with sloppy training” adds noise
to the voting’s statistical results, so we focus on whether there
are enough correct labels. We increase the number of teachers
to ensure that the correct label has an overwhelming number
of votes. Therefore, the model generated by this method has
a higher utility than the model developed by differentially
private synthetic data.

On the other hand, due to the business secrecy, the factory
owners are not willing to share the data collected from IIoT
with the other one. However, from our empirical experiments,
one can know that a DP synthetic dataset learned from DP-
GANs or a DP deep neural network can be a surrogate for the
shared data. With the DP synthetic datasets or models available
for the public, the factory owners can also benefit from such
a data sharing (e.g., the external machine learning experts can
make an improvement to the production process when the
data about the production process is available) without com-
promising the data privacy and business secrecy. Moreover,
though DP-GANs has slightly worse utility than DP-CNNs,
the factory owner may still prefer DP-GANs because of the
high versatility.

APPENDIX A
THE ALGORITHM OF WEIGHTING CLUSTERING.

Algorithm 1. summarize that how did weight-clustering
group into k categories.

APPENDIX B
MORE SETS OF NUMBER OF TEACHERS VERSUS THE

ACCURACY OF STUDENT MODELS

In Fig 10, we conducted more experiments with different
number of teachers. The number of teaches significantly affect
on the accuracy. Fixed the total number of the training data,
each teacher needs more amount of the training data for the
complicated dataset.
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Algorithm 1 Weight-Clustering

Require: Number of groups: k, A set of gradients: {cgi}i
Ensure: Grouping of parameters, G

1: G¸{(gi, cgi)}i
2: while |G| > k do
3: // Sort G from small to large by cgi
4: Ĝ1, Ĝ2, · · · , ˆG|G|−1, ˆG|G|¸Sort(G)

5: Ĝi, ˆGi+1¸max

(c
Ĝ1

c
Ĝ2

,
c
Ĝ2

c
Ĝ3

, · · · ,
c ˆG|G|−1

c ˆG|G|

)

6: // Merge them and update the clipping threshold

7: merge Ĝi, ˆGi+1 with clipping bound as
√

c2
Ĝi

+ c2
ˆGi+1

8: end while
9: return G

Fig. 10. The accuracies of student models trained with different number of
teachers on MNIST and FASHION-MNIST. 100 and 80 teachers for MNIST
and FASHION-MNIST can attain the highest accuracy.

APPENDIX C
VISUAL COMPARISON OF SYNTHETIC IMAGES ON MNIST

AND FASHION-MNIST.

Fig 11. and Fig 12. showed that using warm-start in the
training learned more quickly than other models. Thus, the
performance of generators trained with warm-start is better
than others when we fixed the training iterations. As the result,
classifiers trained on the synthetic data associated with warm-
start gain higher accuracy.

APPENDIX D
NOTATION TABLE

Notation Description

ǫ, δ privacy parameters in DP
∆f global sensitivity

Lap(b) Laplace distribution with zero mean and scale b
N (a, b) Gaussian distribution with mean a and variance b

θ model parameter
L loss function
η learning rate in SGD and DP-SGD
C clipping threshold in DP-SGD
G generator in GAN and DP-GAN
D discriminator in GAN and DP-GAN

Ĝ group of similar gradients in Zhang et al. [19]

(a) 0 step of Estimation model (b) 360th step of Estimation
model

(c) 1460th step of Auto-grouping
model

(d) 2040th step of Weight-Bias
model

Fig. 11. Visual comparison of synthetic images generated by generators
trained with different steps, the privacy budget ǫ = 2, and disparate
combinations of strategies on MNIST. Only Estimation model uses warm-
start. It shows that the models trained without warm-start need more steps to
learn the features of the training data.
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(d) 2040th step of Weight-Bias model

Fig. 12. Visual comparison of synthetic images generated by generators
trained with different steps, the privacy budget ǫ = 2, and disparate
combinations of strategies on FASHION-MNIST. Only Estimation model uses
warm-start. It shows that the models trained without ting need more steps to
learn the features of the training data.

Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2006, pp. 486–503.

[15] T. Zhang, T. Zhu, P. Xiong, H. Huo, Z. Tari, and W. Zhou, “Correlated
differential privacy: Feature selection in machine learning,” in IEEE
Transactions on Industrial Informatics, 2020.

[16] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised knowledge transfer for deep learning from private
training data,” in International Conference on Learning Representations
(ICLR), 2016.

[17] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding
gradient problem.”

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[19] X. Zhang, S. Ji, and T. Wang, “Differentially private releasing via deep
generative model (technical report),” arXiv preprint arXiv:1801.01594,
2018.

[20] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning.
PMLR, 2017, pp. 214–223.

[21] U. Tantipongpipat, C. Waites, D. Boob, A. Ankit Siva, and R. Cum-
mings, “Differentially private mixed-type data generation for unsuper-
vised learning,” in arXiv:1912.03250, 2019.

[22] R. Torkzadehmahani, P. Kairouz, and B. Paten, “Differentially private
synthetic data and label generation,” in arxiv:2001.09700, 2020.

Authorized licensed use limited to: Cardiff University. Downloaded on December 12,2021 at 09:39:13 UTC from IEEE Xplore.  Restrictions apply. 


