
MOSDEN: An Internet of Things Middleware for
Resource Constrained Mobile Devices

Charith Perera, Prem Prakash Jayaraman,
Arkady Zaslavsky, Dimitrios Georgakopoulos

CSIRO ICT Center, Canberra, ACT 2601, Australia
{charith.perera, prem.jayaraman, arkady.zaslavsky,

dimitrios.georgakopoulos}@csiro.au

Peter Christen
Research School of Computer Science,

The Australian National University,
Canberra, ACT 0200, Australia

peter.christen@anu.edu.au

Abstract—The Internet of Things (IoT) is part of Future
Internet and will comprise many billions of Internet Connected
Objects (ICO) or ‘things’ where things can sense, communicate,
compute and potentially actuate as well as have intelligence,
multi-modal interfaces, physical/ virtual identities and attributes.
Collecting data from these objects is an important task as it
allows software systems to understand the environment better.
Many different hardware devices may involve in the process of
collecting and uploading sensor data to the cloud where complex
processing can occur. Further, we cannot expect all these objects
to be connected to the computers due to technical and economical
reasons. Therefore, we should be able to utilize resource con-
strained devices to collect data from these ICOs. On the other
hand, it is critical to process the collected sensor data before
sending them to the cloud to make sure the sustainability of the
infrastructure due to energy constraints. This requires to move
the sensor data processing tasks towards the resource constrained
computational devices (e.g. mobile phones). In this paper, we
propose Mobile Sensor Data Processing Engine (MOSDEN), an
plug-in-based IoT middleware for mobile devices, that allows to
collect and process sensor data without programming efforts. Our
architecture also supports sensing as a service model. We present
the results of the evaluations that demonstrate its suitability
towards real world deployments. Our proposed middleware is
built on Android platform.

I. INTRODUCTION

Internet of Things (IoT) [4] is a part of future Internet
and ubiquitous computing. It envisions interactions between
things1 that consists of sensors and actuators. As the price
of sensors diminishes rapidly, we can soon expect to see
very large numbers of things. The vision of IoT is to allow
‘things’ to be connected anytime, anyplace, with anything
and anyone, ideally using any path, any network and any
service [20]. In order to realise this vision, we need a common
operating platform namely middleware that is scalable and
supports high level of interoperability. This platform enables
sensor data collection, processing, and analysis. Efficient and
feature rich IoT middeware platforms are key enablers of IoT
paradigm. We are currently observing an emerging trend in
middelware solutions that enable IoT [8]. However, most of
the solutions are designed and developed to be used in the
cloud environments where abundant resources are available.
We believe that middleware solutions designed specifically

1We use terms objects, things, smart objects, devices, nodes to give the
same meaning as they are frequently used in IoT related documentation
interchangeably.

for low powered resource constrained computation devices are
critical in order realise the vision on IoT.

In this paper, we propose an IoT middleware solution that
can work on resource constrained mobile devices allowing
them to collect and process data from sensors easily. To achieve
this, we extend existing middleware solution namely Global
Sensor Network (GSN) [1] as well as propose new strategies
that make our solution more scalable and user friendly. The
contribution of this paper can be summarised as follows:

• We present the design and implementation details
of our proposed middleware solution namely Mobile
Sensor Data Processing Engine (MOSDEN). MOS-
DEN is designed to support sensing as a service
model [15] natively. Further, MOSDEN is a true zero
programming middleware where users do not need to
write program code or any other specifications using
declarative languages. Our solution also supports both
push and pull data streaming mechanism as well as
centralised and decentralised (e.g. peer-to-peer) data
communication.

• We employ a plugin architecture, so developers can
develop plugins allowing MOSDEN to communicate
with for their sensor hardware. We also utilize the
application markets that are built around android plat-
form to efficiently share and distribute plugins.

• We designed and developed MOSDEN in such a
way that it is interoperable with other cloud-based
middleware solutions such as GSN. Our pluggable
architecture is scalable and promotes ease-of-use.

• We present results of evaluating the performance of
MOSDEN using devices with different capabilities
and resource constraints in order to validate MOS-
DEN’s scalability and suitability towards IoT domain.

The rest of this paper is structured as follows. Section
II presents the background and the motivation. We set the
background in two different perspectives: Internet of Things
architecture and sensing as a service model. In Section III,
we defines the research challenges that we have addressed in
this paper. Subsequently, Section IV discusses the architectural
design in details. Implementation details are presented in
Section V. Section VI presents the evaluation of our IoT
middleware using three mobile devices with different resource
limitations. We also discuss the results in detail followed by
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Fig. 1: Categorization of IoT devices based on their computational capabilities. The devices belong to each category has different
capabilities depending in term of processing, memory, and communication. They are also different in price where devices becomes
more expensive when move to left. The computational capabilities are also get increased when move to left.

an analysis of lessons learnt. Related literature is reviewed in
Section VII under three broad themes. Section VIII concludes
the paper by highlighting future work.

II. BACKGROUND AND MOTIVATION

In this section, we briefly discuss the background and
our motivation behind this work. The discussion is mainly
structured under two main areas. First, we explain the hardware
infrastructure that IoT is intended to use. Second, we explain
the sensing as a service model and how it can fuels the
adaptation of IoT. Our work is also stimulated and motivated
by the statistics and prediction related to Internet of Things.
Some of the details are discussed in [22].

A. Internet of Things Architecture

Even though IoT envisions billions of ‘things’ to be con-
nected to the Internet, it is not possible and practical to connect
all of them to the Internet directly. This is mainly due to
resource constraints (e.g. network communication capabilities
and energy limitations). Connecting directly to the internet is
expensive in term of computation, bandwidth usage, and hard-
ware cost point of view. Enabling persistent Internet access is
challenging and also negatively impacts on miniaturization and
energy consumption of the sensors. Due to such difficulties,
IoT solutions need to utilize different types of devices with
different resource limitations and capabilities. In Figure 1, we
broadly categorise these devices into 6 categories (also called
level or layer).

The computational and connectivity capabilities increase
as we move from right to left. Similarly, devices are also
getting expensive and larger in form-factor when moving to the
left. We believe that an ideal IoT middleware solution should
be able to take advantage and adapt to these different types
of devices in order to make the solution more efficient and
effective. One of the most critical decision that needs to be
taken in the domain of IoT is ‘where and ‘when’ to process
the collected data. It is clear that no single solution would
fit every situation. Though there are many factors need to
be considered, energy consumption for data processing and
network communication are among the most important factors.
If we denote the energy requirement for data processing as Eα

and energy requirement for data communication over network
as Eβ , the following rule can be used to determine whether
to process data in the current layer or send them to a higher
layer.

• IF (Eα < Eβ ) THEN process locally ELSE send to a node
with higher capability

Processing data in any device locally before sending them
to the higher layers is important in terms of saving energy.
However, the type of processing that needs to be performed at
the each device is a difficult choice. Expensive processing can
drain the battery quickly. In contrast, sending data frequently
can also drain the battery quickly due to usage of communi-
cation radio [16]. One of our motivations in this work is to
address this problem. MOSDEN performs data processing and
analytic before transmitting them over a network. More im-
portantly, our proposed middleware platform can be installed
on devices that belongs to lower level categories which have
resource limitations similar to mobile phones or Raspberry
Pi2. For prototype implementation and evaluation, we use
mobile phones. However, we believe, more cheaper devices
with similar resource limitations will be available in the market
overtime. MOSDEN can process sensor data based on SQL-
like queries such as average which reduces the network com-
munication due to sensor data fusion. The processing capabili-
ties are discussed further in upcoming sections. Fifty different
sensor application domains are explained in [3]. MOSDEN
can be used in all these applications to improve the long-
term sustainability of the IoT infrastructures by using available
energy optimally and reduce unnecessary data communication.
Specially, in outdoor sensing applications, it is troublesome
and labour intensive to recharge the batteries of the sensing
devices frequently.

B. Sensing as a service Model

This model provides sensors data to the users / consumer
(i.e. anyone need access to sensor data) on-demand [22].
Sensing as a service model does not collect sensor data
from all the available sensors at all times. IoT middleware
platforms that supports sensing as a service do keep track of the
individual sensors, their availability, and capabilities. However,
they do not collect sensor data unless a consumer makes a
request. Our solution, MOSDEN, supports sensing as a service
model. Specifically, MOSDEN provides easy way to retrieve
data from sensors. MOSDEN also collect information about
each sensor sends them to the cloud-based IoT middelware
(e.g. GSN [1]). Cloud IoT middleware maintains a registry

2The Raspberry Pi is a credit-card-sized single-board computer devel-
oped in the UK by the Raspberry Pi Foundation with the intention of
promoting the teaching of basic computer science in schools. It has max-
imum of 512MB memory, up to 1 GHz CPU. One unit cost around $25.
http://www.raspberrypi.org/
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Fig. 2: MOSDEN supports sensing as a service Model. Sensors
that do not have long-range network communication capabili-
ties connect to MOSDEN instances. Then, MOSDEN process
the data and transmit them to the cloud selectively,

of sensors which includes their availabilities and capabilities.
Cloud IoT middleware retrieves this information though mul-
tiple MOSDEN instances. Once the Cloud IoT middleware
receives a request from a consumer, it searches the required
sensors and composes a request query. It then registers the
request with the MOSDEN instance connected to the sensor.

Then, MOSDEN sends data to Cloud IoT middleware until
the request expires. Figure 2 illustrates the typical architecture
of a sensing as a service model and the role of MOSDEN
intends to play. More importantly, MOSDEN performs data
processing before send the data to the server. For example,
instead of sending data every 2 seconds, MOSDEN may
locally process, store the data and send the data to the cloud
once a minute by averaging values3. As another example,
MOSDEN may collect all sensor data for a minute and send
them to GSN at once. Such approach can save significant
amount of energy due to reduction of network operations
(e.g. opening and closing communication radios are energy
expensive operations).

Additionally, MOSDEN locally keeps track of the avail-
abilities and capabilities of the sensors attached to each in-
stance which makes it is easy and efficient for the cloud IoT
middleware to stay up to date. Further, different MOSDEN
instances connected to cloud IoT middleware are managed
using a publish / subscribe model [2].

III. RESEARCH PROBLEM

We address several research problems in this work. Our fo-
cus areas are energy efficient and effective data processing and
network communication, cost efficient infrastructure support
for large scale IoT deployment, and usability in connecting
/ configuring sensors. In the earlier section, we highlighted
the importance of addressing the above mentioned research
challenges: (1) the importance of processing data locally before
transmitting to the cloud, (2) the importance of utilizing
devices with different computational capabilities and price
tags, and (3) the importance of providing efficient and easy
way to connect sensors to low level computational devices
(devices belongs to category 3 and 4 in Figure 1).

3The sampling rate and the data processing operation that may exactly use
in each situation depends on the user requirement

There are several commercial solutions4 that have been
proposed in order to address some of the above mentioned
challenges. However, these solution have several weakness.
The following brief analysis helps to identify those weaknesses
as well as to identify the ideal design requirements of an IoT
middleware that needs to be installed on resource constrained
devices. Though some of the hardware components are open
sourced, software systems remain closed source which makes
it hard to extend and interoperate. Further, these solutions
have their own hardware devices that performs tasks similar
to MOSDEN. However, these devices are custom built. We
believe, utilizing commonly available devices such as mobile
phones, makes it easy to adopt due to the fact the most of
the people are familiar with mobile phones and know how
to operate them in comparison to custom build proprietary
devices. Another major drawback is inability for devices to
interoperate with solutions provided by different vendors. For
example, a sensor designed to be used by one solution cannot
be connected to the software system of another solution..
Hence, our proposed middleware aims to be vendor agnostic.

IV. MOSDEN: ARCHITECTURAL DESIGN

In this section, we explain the design decisions in details.
First, we present the reasons behind introducing a plugin
architecture. Secondly, we explain the complete MOSDEN
architecture. Thirdly, we explain how MOSDEN interacts with
its peers as well as cloud companions. Finally, we explain
how distributed processing performed collectively by cloud
companions (i.e. GSN instances) and MOSDEN instances.

A. Plugin Architecture

In MOSDEN, we employed a plugin architecture [9] in
order to support three main requirements: scalability, usability,
and community based development. A plugin is a independent
software component that adds a specific feature to an existing
software application. In MOSDEN, each plugin translates
generic communication messages to sensor specific commands
in order to enable communication between MOSDEN and
a specific sensor. When an application supports plugins, it
enables customization. Further, MOSDEN plugins can be
installed and configured at run time.

Scalability: Due to plugin approach, MOSDEN can vir-
tually support any sensor in the world. Anyone can develop
plugins that allow MOSDEN to communicate with given sen-
sors. Further, plugins consumes very small amount of storage
space (e.g. 25KB). Therefore, large number of plugins can be
stored even in a resource limited mobile device. Furthermore,
MOSDEN automatically removes unused plugins when the
memory is running low. New plugins can be downloaded
through application stores such as Google Play or directly
as .apk files. Separation of plugins from the main MOSDEN
application, helps to reduce the size of the application and
also promotes plug-n-play. Practically, at a given point of time,
only small number of plugins need to be installed in order to
facilitate sensor communication though thousands of plugins
would be available on applications stores. Finally, the plugin
architecture allows us to improve MOSDEN in the future,

4TWINE (supermechanical.com), Ninja Blocks (ninjablocks.com), and
Smart Things (smartthings.com)
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Fig. 3: The architectural design of the MOSDEN. Legend: Sensor (S), Plugin (P), Wrapper (W), Virtual Sensor (VS). Plugins
communicates with the sensors and retrieve data. Each plugin should be compatible with the sensor it wants to communicates
with. Plugins compatible with different sensors can be downloaded from Google Play

specially in the directions of automated sensor discovery and
plugin installation based on context information.

Usability: MOSDEN is convenient to use as it allows
to collect data from sensors without programming efforts.
Users are only required to download the matching plugin
from an application store. Due to standardise plugin structure,
MOSDEN knows how to communicate with each plugin. For
the user, all the technical complexities and details are hidden
and happen autonomously behind the scene.

Community-based Development: Plugin architecture al-
lows us to engage with developer communities and support
variety of different sensors through community-based devel-
opment. Our software are expected to release as free and
open source software in the future. We provide the main
MOSDEN application as well as the standard interfaces where
developers can use to start develop their own plugins to support
different sensors. We provide a sample plugin source code
where developers only need to add their code according to
the guidelines provided. Plugin model support to increasingly
enable the number of sensors supported by MOSDEN. Plugins
for MOSDEN can be downloaded via applications stores such
as Google play.

B. General Architecture

The architecture of MOSDEN is presented in Figure 3.
MOSDEN architecture is based on the GSN architecture [1].
Additionally, we made several changes to the architecture in
order to improve the efficiency as well as scalability. The major
change is that we added a plugin manager and a plugin layer
to support and manipulate plugins. GSN requires different
wrappers to connect to different sensors. We eliminate this
requirement and instead developed a single generic wrapper
to handle the communication. In MOSDEN, wrappers do not
directly communicate with sensors. Instead, the generic wrap-
per communicates with plugins and plugin communicates with
the sensors (i.e. wrapper→ plugins (Pi)→ Sensor (Si)). Due to
the introduction of a generic wrapper, manual re-compilation
of MOSDEN is not required when new sensors are added.
Our newly added plugin manager component communicates
with the cloud based GSN instances as well as MOSDEN
peer instances and share the information about the sensors

connected to them. All the other architectural components
behave as same as in the GSN middleware [1].

C. Interaction with the Cloud and Peers

MOSDEN is design to be used as part of the sensing as a
service model. On the other hand, due to that fact that our code
is based on GSN middleware, MOSDEN is 100% compatible
with GSN. This means communication between GSN instances
and MOSDEN instance can be performed natively without
any additional effort. Further, MOSDEN is a part of our
overall vision of providing middleware support across different
categories of devices as depicted in Figure 1. The typical inter-
actions between GSN cloud instance and MOSDEN instances
are illustrated in Figure 4. There are three main interaction that
are frequently performed between MOSDEN instances and a
GSN cloud instance. During our work, we also extended the
cloud GSN architecture in order to support these interactions.
When MOSDEN instance detect a new sensor connected to
it through a plugin, it retrieves additional context information
about the sensor (e.g. type of the sensor, unit measurements,
manufacturer) from the sensor itself. Then, MOSDEN registers
the newly detected sensor in the cloud GSN instance. Different
MOSDEN instances register their own sensors independently
ni the cloud GSN instance. Cloud GSN combines all the
information and model the data using the Semantic Sensor
network ontology (www.w3.org/2005/Incubator/ssn/ssnx/ssn).
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When the cloud GSN instance receives a request from a
user, it queries the sensor description registry in order to find
out the relevant sensors that matches the user requirements.
Then, it finds the MOSDEN instances that are capable of
fulfilling the user request (i.e. whether the given MOSDEN
is capable of collecting data from a sensor which is required
by the user). Subsequently, GSN instance sends the requests
to MOSDEN instances. Then, each MOSDEN registers the
request. Finally, MOSDEN starts streaming the requested data
to the cloud GSN instance. The cloud GSN instance can make
the requests in both pull and push mechanisms. In the pull
method, GSN makes the request every time it wants data from
MOSDEN. In push method, cloud GSN sends the request and
MOSDEN sends the data back until the request expires.

D. Distributed Processing

Our proposed IoT middleware platform capable of running
on different resource constrained mobile devices supports
distribute processing. Even though in this paper, we do not
discuss distributed processing in detail, it is important to
note that, processing data locally saves substantial amount
of network communication cost. Additionally, peer to peer
data communication and processing is also important. For
example, multiple MOSDEN instance can interact in peer to
peer communication mode without having central controller
such as cloud MOSDEN. All the processes discussed earlier
is also valid in such scenarios.

V. IMPLEMENTATION

In this section, we describe the implementation details of
MOSDEN. First, we present an overview of the development
platforms, tools and technologies we used to develop the
proposed solution. Further, we illustrate some of user interfaces
provided in MOSDEN. We also discuss how we implemented
the plugin architecture and the steps and guidelines that need
to be followed in order to develop new plugins that are
compatible with MOSDEN.

Our middleware is written in Java and runs on Android
based devices. We used Java to develop our middleware in
order to make sure the compatibility with its cloud based
companion, GSN middleware [1]. Further, we selected An-
droid platform due to its availability and the popularity5.
Another important factor is the portability of the Android
platform. Android is not intended to be a platform only for
mobile phones. The leading developer of the Andorid platform,
Google Inc., intends to use if for many other smart devices
such as automobiles, refrigerators, televisions, and so on. This
vision supports our objectives we discussed earlier in Section
II. Therefore, the objective of developing MOSDEN is not only
to support mobile phone platforms but also to support devices
such as Raspberry Pi (raspberrypi.org). Currently, android
for Raspberry Pi is under development. MOSDEN runs on
Android 2.3 (and up), and it has 9935 (+ 768 logging lines
in debugging version) lines of Java code. It consists of 115
class distributed across 14 packages. MOSDEN is based on
popular middleware called Global Sensor Networks (GSN) [1].
MOSDEN source code will be available to downloaded freely
in the future. As we mentioned earlier, our goal is not only to

5http://www.gartner.com/newsroom/id/2335616

(a) (b)

Fig. 5: MOSDEN screenshots: (a) List of sensors connected
the MOSDEN; (b) List of virtual sensors currently running on
the MOSDEN and their details

support mobile phones but also to support devices with similar
resources limitations. These devices may or may not have
screens. We decided to develop two different versions of our
middleware based on the same underline code-base where one
version provides fully-fledged user interface to support direct
user interaction with the MOSDEN as illustrated in Figure 5.
The other version provides a simple user interface that only
allows to start the middleware6. Figure 6 illustrates the user
interface of the cloud GSN.

6It is important to note that graphical user interface version requires Android
4.0 or higher as we have utilized latest user interface components in order to
provide rich experience to the users. Limited user interface version is suitable
for devices such as Raspberry Pi which reduces the additional overhead caused
by the user interfaces.

Fig. 6: Screenshot of a cloud GSN instance showing three
different MOSDEN instances registration



All the features available in GSN are also available in
MOSDEN including data processing and REST-base peer-
to-peer communication over HTTP. In comparison to GSN,
we changed the wrapper structure and developed a generic
wrapper. Further, we introduced the notion of plugins and
added a plugin layer as well as a plugin manager. We also
replaced the web-based user interface with an native Android
application.

A. Plugin Development

This section explains how third party developers can de-
velop plugins in such a way that their plugins are compatible
with MOSDEN so MOSDEN can use them to communicate
with external sensors. In plugin development, there are three
main components that needs to be considered: (1) Plugin
interface written in Android Interface Definition Language
(AIDL)7, (2) Plugin class written in Java, and (3) Plugin
definition in AndroidManifest file. Figure 7 shows the plugin
interface written in AIDL. IPlugin is an interface defined in
AIDL. Plugin developers should not make any changes in
this file. Instead they can use this file to understand how
MOSDEN plugin architecture works. IPlugin is similar to the
Java interfaces. It defines all the methods that need to be
implemented by all the plugins despite their functionalities.
Related to MOSDEN, we defined three methods to support
the communication between main application and third party
plugins8. Figure 8 present the basic structure of a MOS-
DEN plugin. Each plugin is defined as an Android service.
MOSDEN plugin developers need to implement these two
methods: getdataStructure() and getReadings(). There is a third
method, void setConfiguration(in Map config), that developers
can use to retrieve data from MOSDEN at runtime, specially
information unknown to them at the development time (e.g.
ip address, port number and other information related to
configuration). This method accepts a Map9 data structure as
input and does not return any output.

In high-level, getdataStructure() returns a data type called
DataField4Plugins[]. This returning data structure describes
what kind of data items that MOSDEN should expect from
the plugin. So MOSDEN can prepare its internal data struc-
tures as necessary. At the initialization phase, MOSDEN calls
the getdataStructure() method so MOSDEN knows to expect

7http://developer.android.com/guide/components/aidl.html
8We expect to add more methods in order to support sophisticate function-

alities and features in the future.
9A Java Data structure

package au.csiro.mosden;

import au.csiro.mosden.beans.DataField4Plugins;
import au.csiro.mosden.beans.StreamElement4Plugins;

interface IPlugin {
  DataField4Plugins[] getDataStructure();
  StreamElement4Plugins[] getReadings();
  void setConfigurationInfo(in Map info);
}

Fig. 7: IPlugin written in AIDL (Android Interface Definition
Language) that governs the structure of the Plugins. It defines
the essential items in the plugin.

public class [Class] extends Service implements [Any Interface]{
   public int onStartCommand(Intent intent, int flags, int   
   startId) {...}
   public void onDestroy() {...}
   
   public IBinder onBind(Intent intent) {...}

   private final IFunction.Stub mulBinder = new IPlugin.Stub(){
public DataField4Plugins[] getDataStructure() throws 
RemoteException {...}

public StreamElement4Plugins[] getReadings() throws 
RemoteException {…}

        
        public void setConfiguration(Map config) throws
        RemoteException {}
   }
}

Fig. 8: MOSDEN plugin is an Android service

before real data comes in. Once the initialization is done,
MOSDEN calls getReadings() repeatedly depending on the
frequency specified by the cloud GSN. The method getRead-
ings() returns a data raw (that comprise data items) that is
organized as specified in the DataField4Plugins[]. The return
data type is StreamElement4Plugins[]. Plugin developers are
allowed to perform any operation within this method as long
as it produces and returns the data types as specified by
the guidelines10. Figure 9 shows how the plugins need to
be defined in the AndroidManifest so MOSDEN application
can automatically queried and identified them. The Android
plugin must have an intent filter and the action name must
be ‘au.csiro.mosden.intent.action.PICK PLUGIN’. Developers
can provide any category name based on their preferences.

<service
  android:name=[Plugin name]
  android:exported="true" >
  <intent-filter>
    <action android:name="au.csiro.mosden.intent.action.PICK_PLUGIN"/>
    <category android:name="au.csiro.mosden.intent.category.[PLUGIN_NAME]"/>
  </intent-filter>
</service>

Fig. 9: Code snippet of the plugins AndroidManifest file

In order to support much user friendly and scalable plugin
architecture, we extended the typical GSN Virtual Sensor Defi-
nition (VSD). The essential details that are required to connect
a specific sensor to MOSDEN (e.g. IP address, port number)
can be passed into the plugin via the VSD as illustrated in
Figure 10. These details are important special, in scenarios
where multiple sensors need to use the same plugin (e.g.
connecting 2 sensors that are similar)

<stream name="input1">
  <source alias="source1" sampling-rate="1" storage-size="1">
     <address wrapper="pluginwrapper">
        <predicate key="plugin">     
             au.csiro.sensmalite.mainapp.intent.category. 
             LIBELIUM_SMART_CITY_SENSOR
        </predicate>
        <predicate key="ip-address">130.56.73.110</predicate>
        <predicate key="port">20143</predicate>      
     </address>
     <query>SELECT * FROM wrapper</query>
  </source>
  <query>SELECT * FROM source1</query>
</stream>

Fig. 10: Code snippet of a virtual sensors definition
10We expect to release a developer guide that explains how third party

plugins can be developed in the future



VI. EVALUATION

In this section, we present the details of the test-beds and
evaluation methodology. We also discuss the lessons learnt
from experimental evaluations.

A. Test-beds

We evaluated the proposed middleware solution, MOSDEN
using several different parameters such as CPU consumption,
scalability, memory requirements, latency and so on. For
the evaluation, we used three devices with different resource
limitations. From here onwards we refer them as D1, D2, and
D3. The technical specifications of the devices are as follows.

• Device 1 (D1): Google Nexus 4 mobile phone, Qual-
comm Snapdragon S4 Pro CPU, 2 GB RAM, 16GB
storage, Android 4.2.2 (Jelly Bean)

• Device 2 (D2): Google Nexus 7 tablet, NVIDIA Tegra
3 quad-core processor, 1 GB RAM, 16GB storage,
Android 4.2.2 (Jelly Bean)

• Device 3 (D3): Samsung I9000 Galaxy S, 1 GHz
Cortex-A8 CPU, 512 MB RAM, 16GB storage, An-
droid 2.3.6 (Gingerbread)

We used a computer with Intel(R) Core i5-2557M 1.70GHz
CPU and 4GB RAM to host the cloud GSN during the eval-
uations. For our evaluations, we employed sensors built into
the above devices (e.g. Motion sensors: accelerometer, gravity,
gyroscope, liner acceleration, rotation vector; Environmental
sensors: ambient temperature, light, pressure, relative humid-
ity; Position sensors: magnetic fields, orientation, proximity.).
Further, we used sensors manufactured by Libelium [11] as ex-
ternal sensors with different combination of hardware sensors
plugged into them such as temperature sensor, humidity sensor,
LDR sensor, air pressure sensor, leaf wetness sensor, noise
sensor, dust sensor, force and pressure sensor, flex-bend sensor,
flexible stretch sensor, hall-effect sensor, differnt gas sensors
(e.g. O2, CO2) and so on. Resource constrained computational
devices we used in this work as well as some of the sensors
used in this experiments are shown in Figure 11.

B. Methodology

This section explains the evaluation methodology, exper-
imental conditions and objectives of the Figures 12a to 13.
All the evaluations are done using three different resource
constrained mobile devices as explained in the section above.
In all the evaluations, CPU usage (consumption) is measured
in units of jiffies11. At this point, MOSDEN supports only Wi-
Fi communications12. We keep the sampling rate as 1 second
during the course of evaluations.

In Figure 12a, we examine how CPU usage changes when
the number of sensors involved increases. Figure 12b shows
how memory consumption changes when number of sensors
involved increases. Figure 12c measures how energy consump-
tion changes when number of sensors involved increases. In

11In computing, a jiffy is the duration of one tick of the system timer
interrupt. It is not an absolute time interval unit, since its duration depends
on the clock interrupt frequency of the particular hardware platform.

12We expect to support Zigbee and Bluetooth in the future. However, such
improvements will not change the overall architecture.
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Fig. 11: Some of the hardware devices used in the experimen-
tation: (a) Google Nexus 7 tablet, (b) Google Nexus 4 mobile
phone, (c) Samsung I9000 Galaxy S, (d) Smart cities board
(with batteries), (e) Smart cities board (without batteries), (f)
Smart metering board, (g) Agriculture board, (h) Gas board, (i)
Flex bend sensor, (j) Events board, (k) Ultra sound sensor ,(l)
Air pressure sensor,(m) Air contaminant sensors, (o) Presence
sensor,(p) Humidity sensor,(q) Temperature sensors, (r) Leaf
wetness sensor, (s) Wi-Fi broad / Antenna, (t) Vibration sensors

Figures 12a, 12b and 12c, MOSDEN only uses inbuilt sensors
to collect data and store them in the local storage space.
No network communication is performed. In Figure 12d, we
evaluate how CPU usage changes when the number of queries
processed by the MOSDEN changes (step 2 and 3 in Figure
4). Figure 12e shows how memory consumption changes when
the number of queries changes. Additionally, Figure 12f shows
how energy consumption changes when the number of queries
changes. In Figures 12d, 12e, and 12f, MOSDEN uses inbuilt
sensors to collect data and send them to the cloud GSN over
a WiFi network.

In Figure 13, we examine the time MOSDEN takes (i.e.
latency) to process and transmit the data. We measure the time
taken for the following two operations. (1) We start measuring
the time taken by the plugin to retrieve data from a sensor, pass
it to a wrapper and subsequently store it in a local database.
(2) Time taken for MOSDEN to respond to incoming query
request from the cloud GSN.

C. Results

According to Figure 12a, it is evident that CPU usage
increases when the number of sensors increase. It is important
to highlight that, D3 consumes more CPU time compared
to other devices when it needs to handle 10+ sensors. One
reason for this is the lack of main memory (RAM) which
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Fig. 12: Experimentation and Evaluation Results. (Note: MOSDEN application and plugins use CPU, memory, and energy
independently where plugins are treated as individual service by Android platform. All the calculations are accumulated values
of MOSDEN application and plugin services)

puts additional overheads on the CPU. Similar pattern is
revealed in Figure 12b as well as in term of memory usage.
Devices that have larger memory capacity can afford to allo-
cate more memory to MOSDEN which increases the overall
performance of MODSEN. Further, comparatively resource
rich devices consumes more energy due to usage of powerful
CPUs and sensing hardware. This is observed in the 12c
where difference in energy consumption for D1 and D3 is
much higher compared to difference in memory usage. When
not performing any network communication tasks, MOSDEN
takes only 38MB (D1) / 30MB (D3) to collect, process and
store data from 13 different sensors13. MOSDEN consumes
around 35J (D1) / 10J (D3) to process, and store data from
13 sensors. It is important to note that, Android manages the
memory allocated to application. Depending on the memory
availability at a given point of time, Android could restrict
an application from consuming large amount of memory to
facilitate smooth running of other essential applications and
services. We also note, during this evaluation, only system
processes and services, MOSDEN and our power monitor
application were running on the phone.

Most important fact is that D3 could not handle more than
20 parallel queries from the cloud GSN14. This is mainly due
to lack of available memory as compared to other devices.
Additionally, D3 is based on Android 2.3.6 (Gingerbread) OS
and does not support multi core operations. Further, Android
2.3.6 does not provide efficient multi tasking support15. As
we mentioned earlier related to Figure 12a, Figure 12d also
reveals that D3 uses significantly more CPU compared to
other devices due to the overhead created by lack of memory.

13All the devices do not have all 13 sensors though the Android platform
supports them

14When running more than 20 queries in D3, MOSDEN becomes unstable.
Sometimes, D3 was able to handle 20+ queries for a very short period of time
before it crashed

15http://socialcompare.com/en/comparison/android-versions-comparison

Comparatively, D1 and D2 use less CPU and as observed
from the results, the CPU consumption is gradually increasing
but not significant when MOSDEN processes more than 10
queries. One reason for this is that, Android OS restricts
MOSDEN from consuming too much CPU resource after a
certain level as it needs to facilitate other essential Android
applications and services.

Figure 12e clearly shows that D3 suffers from lack of
memory as it is not allocated more than 150MB of memory.
In contrast, both D1 and D2 have abundant memory available
to be utilized so memory usage increase up to 620MB (D1)
/ 580MB (D2). Energy consumption graph with and without
network communication looks similar in pattern. However,
energy consumption has significantly increased across all three
devices (50J (D1) / 40J (D2) when processing 30 queries).
When there is no network communication, MOSDEN takes
22 seconds to collect data from a sensor plugin, process
and store it locally. However, when the cloud GSN starts
sending queries Android allocates more CPU and memory to
MOSDEN. Hence, the data collection/processing and query
processing operations are performed much faster which helps
to reduce the overall latency from 22 seconds to 0.2 seconds.
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As the number of query request increases, from the results, we
observe that, latency16 also increases. When MOSDEN pro-
cesses 30 queries, latency increases to 10 seconds. However,
significant potion of the total processing time is taken to fuse
the data and send them to the cloud17.

D. Lessons Learnt and Potential Applications

Lessons Learnt: Our experimental evaluations validate
the energy and performance efficient of our the proposed
plugin-based MOSDEN platform. The middleware functioned
without any issues during our experiments. Additionally, the
plugin-based architecture increases the usability of MOSDEN
by allowing users to download and install plugins from
Google market place with zero effort programming and no
modifications to MOSDEN. Further, modern mobile devices
can process significant amount of requests with the limited
resources they have. It is evident that the memory is more
important than CPU in situation where data needs to be
processed under small sampling rates. In our previous work
[16], we learnt that reduced sampling rate can save energy and
resource consumption significantly. In such scenarios, MOS-
DEN will be able to process much more queries efficiently
than it did in the evaluations. We look forward to perform
more experiments to examine the impact of sampling rate on
MOSDEN’s performance.

Potential Applications: The MOSDEN platform can
greatly fosters the development of new and innovative mobile
data services that depend on IoT devices as the source of
data. One such example is a crowd-sourcing application where
sensor data (e.g. noise level in outdoor environment) can be
collected from users’ mobile device running MOSDEN. The
collected data can be used by applications in the cloud in their
decision making process (e.g. determine the noise pollution
level at an intersection in the city by fusing data from multiple
MOSDEN instances). Another example is to determine real-
time traffic conditions using data acquired from MOSDEN
running on user mobile devices.

VII. RELATED WORK

In this section, we review the literature under three cat-
egories of research where our proposed solution lies at the
intersection: IoT middleware, mobile Sensor middleware, and
data processing in resource constrained devices.

IoT Middleware: Bandyopadhyay et al. [5] have done a
survey on IoT middleware solutions. We discussed the GSN
middleware in detail before as we selected it to build our so-
lution on top of it. Microsoft SensorMap [12] (sensormap.org)
is a data sharing and visualization framework. It is also a peer
produced sensor network that consists of sensors deployed by
contributors around the world. SensorMap mashes up sensor
data on a map interface. Then, it allows to selectively query
sensors and visualize data. SensorMap is designed to run
on server computers. Linked Sensor Middleware (LSM) [17]
(lsm.deri.ie) is a platform that provides wrappers for real time
data collection and publishing. It also provides a web interface
for sensor search, linked stream data query, data annotation and
visualisation. LSM mainly focuses on linked data publishing.

16Time takes to fulfil all the requests made by the cloud GSN
17Time that the data takes to travel over the network is not counted

This platform is also focused on server-based deployment.
Cosm (formerly Pachube) (cosm.com) is a platform for Internet
of Things devices. Cosm allows different data sources to be
connected to it. Then, it provides functionalities such as event
triggering and data filtering. Cosm is also a server level middle-
ware that is not suitable for resource constraint devices. There
are several other commercial solutions available: TWINE
(supermechanical.com), Ninja Blocks (ninjablocks.com), and
Smart Things (smartthings.com). All these solutions focus on
event detection using IF-THEN rules in smart environments.
They use their own proprietary software systems installed on
small resource constrained computational devices. Their own
sensors can communicate with these devices. MoSHub [13] is
an mobile application that collects data from both internal and
external sensors and push them to the cloud IoT middleware.
However, it does not provide data processing capabilities. This
means all the sensor data collected are uploaded to the cloud
then and there which makes this approach inefficient in term
of energy consumption.

Mobile Sensor Middleware: These category of solutions
aim to turn smart phones into mobile sensors so data on user
behaviour and the surrounding environment can be captured
and analysed. Mobile phone based sensing algorithms, ap-
proaches, and applications are discussed in [10]. Pogo [6]
is a middleware for mobile phone sensing that focuses on
building large scale mobile phone sensing test beds. They have
developed a server-based counterpart as well as the middelware
for Android. The objective of pogo is to sense the behaviour of
the applications. In contrast, MOSDEN focuses on collecting
and processing sensor data from both internal and external
sensors. DAM4GSN [16] is also an approach based on GSN.
It provides an application that is capable of collecting data
from internal sensors of a mobile phone and send to the GSN
middleware. No processing capabilities are provided at the
mobile phone end. Therefore, all the information sensed are
sent to the server. This approach is inefficient due to continuous
usage of communication radio of the mobile phone specially
when the sampling rate is small (< 1 min) [16].

Data Processing in Resource Constrained Devices: Dy-
namix [7] is a plug-and-play context framework for Android.
Dynamix automatically discovers, downloads and installs the
plug-ins needed for a given context sensing task. Dynamix is
a stand alone application and it tries to understand new envi-
ronments by using pluggable context discovery and reasoning
mechanisms. It does not provide server-level solution. Context
discovery is the main functionality in Dynamix. In contrast, our
solution is focused on allowing easy way to connect sensors to
applications in order to support sensing as a service model in
IoT domain. We employee a pluggable architecture which is
similar to the approach used in Dynamix, in order to increase
the scalability and rapid extension development by 3rd party
developers. One of the most popular type of processing in
mobile is activity recognition. Yan et al. [21] have presented
an energy-efficient continuous activity recognition on mobile
phones. One of the most important data processing task that
need to be performed at the lower level devices (e.g. categories
2,3,4 in Figure 1) in IoT is validation, fusing, filtering, context
discovery, and annotation [14]. Data collected by lower level
devices needs to be validated in order to reduce the wastage
of network communication [19]. Further, data fusing and fil-
tering operations prevent redundant network communications.



Some of the context information such as location need to be
discovered at the lowest layers [18] which makes it impossible
to perform such operation at higher levels.

VIII. CONCLUSION AND FUTURE WORK

The number of mobile devices connected to the Internet is
growing at a rapid space. Significant portion of these devices
are mobile phones today. However, it is expected that billions
of different types of resource constrained computational device
will be connected to the Internet over the coming decade. On
the other hand, number of sensors deployed around us are
getting increased. It is an increasingly important task to collect
data from these sensors in order to analyse and act upon them.

In this paper, we presented an Internet of Things middle-
ware for resource constrained computational mobile devices
called MOSDEN. Our proposed middleware also supports
sensing as a service model. MOSDEN provides an easy and
convenient way to connect sensors to the mobile device with
zero programming effort. We introduced a scalable plugin
architecture where plugins are distributed through leading
mobile application stores such as Google Play. MOSDEN is
capable of collecting data from multiple different sensors and
process them together. MOSDEN is 100% compatible with
Global Sensor Network Middleware that runs on the cloud.
Further, MOSDEN can act as a peer to peer data processing
engine as well. We evaluated MOSDEN in different aspects
such as resource consumption, scalability, and usability. We
have demonstrated the feasibility and scalability towards using
MOSDEN on resource constrained devices to collect and
process sensors data. We also demonstrated that significant
amount of resources can be saved by processing the data
locally instead of transmitting all data to the remote server.
It is evident that such processing allows to run the IoT
infrastructure for longer time period.

We will release the source code of MOSDEN platform
to the public in future. In the future, we would like to add
automated sensor discovery and configuration functionalities
to the MOSDEN where it will be able to search and discover
any kind of sensors around a given location and automatically
install the required plugins. This will allows MOSDEN to
communicate and configure the sensors autonomously. Further,
we will develop a configuration model that can be used to
configure different devices (belongs to different categories)
in the IoT architecture presented in Figure 1. Configuration
details and sensing strategies such as scheduling, sampling
rate, data acquisition method, and protocols will be designed
for each individual sensor by the higher-level devices and will
be pushed towards the lower layers. Further, we will investigate
the impact of employing different data processing techniques
and sampling rates in order to find-out their the suitability
towards resource constraint devices considering the factors
such as energy consumption and network communication.
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