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Abstract: The study of environmental sound classification (ESC) has become popular over the
years due to the intricate nature of environmental sounds and the evolution of deep learning (DL)
techniques. Forest ESC is one use case of ESC, which has been widely experimented with recently to
identify illegal activities inside a forest. However, at present, there is a limitation of public datasets
specific to all the possible sounds in a forest environment. Most of the existing experiments have
been done using generic environment sound datasets such as ESC-50, USK, and FSD50K. Importantly,
in DL-based sound classification, the lack of quality data can cause misguided information, and the
predictions obtained remain questionable. Hence, there is a requirement for a well-defined benchmark
forest environment sound dataset. This paper proposes FSC22, which fills the gap of a benchmark
dataset for forest environmental sound classification. It includes 2025 sound clips under 27 acoustic
classes, which contain possible sounds in a forest environment. We discuss the procedure of dataset
preparation and validate it through different baseline sound classification models. Additionally, it
provides an analysis of the new dataset compared to other available datasets. Therefore, this dataset
can be used by researchers and developers who are working on forest observatory tasks.

Keywords: forest acoustic dataset; environment sound classification; machine learning; freesound;

deep learning

1. Introduction

Environmental sound recognition is a widely used technique when identifying various
sound events for surveillance or monitoring systems based on the acoustic environment.
Several investigations have been carried out with different techniques in the context of
a forest monitoring system, to protect forest reserves. For example, prior studies have
experimented with different sound classification approaches for the recognition of various
species and possible forest threats like illegal logging, poaching, and wildfire [1-5]. In such
systems, environmental sounds are captured, processed using a modelling algorithm, and
classified into different sound classes.

With the technical advancement, sound classification approaches evolved from Ma-
chine Learning (ML) models such as K-Nearest Neighbor (KNN) [3,6,7], XGBoost [8,9],
Gaussian Mixture Modelling (GMM) [5,10], and Support Vector Machine (SVM) [6,11,12]
to Deep Learning. Deep neural networks (DNNs) such as Convolutional Neural networks
(CNN) and Recurrent Neural Networks (RNN) require a large amount of labelled data
compared to ML for a promising result. Hence, when using DL-based approaches, a well-
biased and rich dataset with relatively high data size is essential as the performance keeps
increasing with a quality dataset.

Although several studies have been carried out in the forest acoustic monitoring con-
text, still, a standard benchmark dataset specific to forest sounds is unavailable. Therefore
most of the existing studies have utilized publicly available environmental sound datasets
like ESC-50 [4,13-17], UrbanSound8K (U8k) [14,18-21], FSD50K [22,23] and SONYC-UST
[24,25]. These datasets contain a large amount of audio data categorized into several groups
covering a broad area of sound events. However, a limited number of classes can be used
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for forest environment sound classification, and most data are irrelevant for such a domain.
Since a significant number of resources need to be utilized to extract data from datasets
and to annotate the data points according to a suitable taxonomy, the use of public datasets
directly for the classification model is impotent.

Additionally, some studies have utilized datasets such as BIRDZ [26,27] and Xeno-
canto Archive [28-30], which contain only bird sounds. Xeno-canto Archive is an open
audio collection dedicated to sharing bird sounds, and BIRDZ is a control audio dataset
originating from the Xeno-canto Archive, which contains a subset of 11 bird species. As
it contains audio data specific to one class, several such datasets need to be used in the
forest sound classification system. Moreover, several researchers have experimented with
private datasets due to the unavailability of forest-specific sound datasets. For instance,
in such studies, they have deployed sound sensors in a forest environment and recorded
the sound events to create a dataset according to their requirements [6,31,32]. In contrast,
some studies have created datasets using audio clips collected from online sound data
repositories like free sound [3,5,11]. With a closer look at the literature, it can be identified
that the forest acoustic monitoring domain suffers from certain shortcomings including
the lack of a standard taxonomy and the unavailability of a public benchmark dataset.
These limitations motivated us to introduce a new dataset for the domain. Accordingly, the
novelty of this paper is to present a standard dataset for forest sound classification and to
provide a comprehensive overview of the procedure for creating and validating the dataset.
Addressing the current research gaps we introduce FSC22 [33], a novel benchmark dataset
for the acoustic-based forest monitoring domain. It contains 5 seconds long 2025 audio clips
originating from an online audio database FreeSound. All sound events are categorized
into 6 major classes, which are further divided into 34 subclasses. For the initial phase of
dataset composition, 27 subclasses were picked, and 75 audio samples were collected per
class. Each audio clip was manually annotated and verified to ensure the quality of the
dataset. The key contributions of this paper can be summarized as follows.

¢ Introduces a novel public benchmark dataset consisting of forest environmental
sounds, which can be utilized for acoustic-based forest monitoring.

*  Presents a comprehensive description of the methodology used for dataset creation,
including data acquisition from FreeSound, filtering, and validation to normalization.

e Explains the baseline models used for the sound classification and the selection criteria
for those models.

*  Provides a detailed evaluation of the dataset using human classification, ML-based
and DL-based classification.

*  Presents a comprehensive discussion of the results obtained with the proposed FSC22
dataset and compares them with the publicly available datasets.

We have created the FSC22 dataset and made it freely available to support and moti-
vate future researchers in this domain [33]. We expect that this dataset will help research
communities to better understand forest acoustic surveillance and experiment with the do-
main. The rest of the paper is structured as follows. Section 2 explores the related datasets
used in previous research. Section 3 provides an overview of the taxonomy of the proposed
dataset. Section 4 introduces the FSC22 dataset, including the data collection methodology
and its importance to the acoustic domain. Section 5 provides a comprehensive description
of the baseline model-based dataset evaluation approach. Section 6 describes the experi-
ments conducted on the dataset namely human classification and baseline model-based
classification, with the results and observations. Finally, Section 7 concludes the paper.

2. Related Work

Seminal contributions have been made to the ESC context in recent years. Among
those, several instances of research carried out for forest acoustic monitoring can be identi-
fied. Forest acoustic monitoring is crucial as it provides a firm basis of evidence to arrive at
conclusions to conserve forest coverage and species. However, due to the unavailability
of a comprehensive forest-specific sound dataset, most of the previous research on forest
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monitoring was done using a common environmental sound dataset or a private dataset
according to the requirement. This section provides an overview of the publicly available
environmentally sound datasets and other datasets utilized by previous researchers in this
domain. However, to the best of our knowledge, there is no forest-specific sound dataset in
the literature.

Among the available datasets, ESC-50 [34] is a frequently used environmental sound
dataset for forest acoustic monitoring. For instance, Andreadis et al. [4], have utilized ESC-
50 to detect illegal tree-cutting and identify animal species. ESC-50 is a dataset consisting
of 2000 environmental audio clips under 50 classes of common sound events. It contains
5-second long 40 recording samples per class, extracted from FreeSound. Figure 1 shows a
section of the ESC-50 dataset taxonomy emphasizing forest-specific sounds. Moreover, USK
[35] is another popular dataset used in many types of research on audio-based monitoring
systems [18,36]. USK is a subset of the main Urban Sound dataset, which contains 8732
labelled sound clips of urban sounds from 10 classes. The classes of this dataset are
drawn from the urban sound taxonomy [37], and all the recordings are extracted from
Freesound. Figure 2 includes a part of the USK dataset taxonomy mostly relevant to the
forest environment sound domain. FSD50K [38] is an open dataset of human-labelled
sound events. It consists of over 51K audio clips totalling over 100h of audio manually
labelled using 200 classes. The classes of this dataset are drawn from AudioSet Ontology
[39]. All the above-mentioned 3 datasets were created using the audio extracted from the
Freesound project. It is an audio-based public dataset that contains more than 500 000
audio clips.

Sheep Thunderstorm Footsteps Helicopter
Rooster Rain Chainsaw
Pig Cracking fire Siren
Cow Chirping birds Car horn
Frog Waler drops Engine
Insects iflying) Wind Adrplane
Pouring water Fireworks

Hand saw

Figure 1. ESC-50 dataset

Gun shot J Engine idling Jack haramer

Figure 2. Urbansound8K dataset

Moreover, SONYC-UST [40] is another quality dataset, where data is grouped into 8
main classes and further divided into 23 fine-grained classes. This can be considered a more
realistic dataset as it was created using the audio data acquired using the acoustic sensors
deployed in New York City. Figure 3 shows a part of the SONYC-UST dataset taxonomy
highlighting the audio classes specific to forest monitoring and surveillance. AudioSet
[41] is another audio event dataset, including over 2M tracks from Youtube videos. Every
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10-second video is annotated using over 500 sound classes derived from AudioSet ontology
[39]. The main concern with AudioSet is it cannot be considered an open dataset due to the
copyright issues and Terms of Services constraint from Youtube. However, as the clips are
collected from Youtube, they may consist of clips with poor quality and can disappear after
a certain time due to privacy issues or copyright claims. Table 1 presents a summary of the
existing environmental sound datasets.
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Figure 3. SONYC-UST-V2 dataset

Table 1. Summary of existing ESC datasets.

Dataset Source Total clips Clip length Classes
ESC-50 [34] Free-sound 2000 5s 50
Urban-Sound8K [35] Free-sound 8732 More than 4s 10
AudioSet [41] Youtube 2M 10s 527
FSD50K [42] Free-sound 51197 0.3s to 30s 200
SONYC- UST-v2 [40] SONYC acoustic 18510 10s 23

Additionally, several other domain-specific dataset usages were reported in prior
studies on environment sound observatory systems. For bird sound identification studies,
xeno-canto-archive [43], which is a bird sound-sharing portal, was used to acquire the
audio data essential for the experiment [28,30,44]. BIRDZ dataset, which is a real-world
audio dataset made using the xeno-canto archive was also used in the related literature
[45,46]. Similarly, the usage of the Bird CLEF dataset was identified in the prior studies,
which consists of 62902 audio files and is publicly available on Kaggle [47]. As all these
datasets are specific to a certain sound class, a combination of several such datasets is
required when developing a complete forest monitoring system.

Many researchers have experimented with a private dataset they have created ac-
cording to their requirements, due to the scarcity of forest-specific sound datasets. Such
datasets were generated using the audio data acquired from online sound repositories or
audio recorded by acoustic sensors or as a combination of both. Mporas et al. [3], have
created a chainsaw sound dataset, including the background noises such as rain and wind,
using the sounds acquired from freely available sound repositories. Ying et al. [11], have
experimented with an animal sound recognition system, and the required animal sounds
are acquired from Freesound. In contrast, Assoukpou et al. [6], combined the chainsaw
sounds recorded from acoustic sensors deployed in three different forest areas and other
sounds acquired from online websites to create a dataset to identify chainsaw sounds.

Accordingly, many environmental-sound classification studies have utilized the datasets
mentioned above with different sound classification approaches. In most of the studies,
CNN models were widely adopted as a firm basis for prominent audio classification mod-
els [20,36,48]. Besides, there are instances where ML algorithms were utilized for audio
classification [49]. One of the key distinctions when choosing between DL and ML was the
availability of well-labelled and high volumes of data. DL algorithms scale with the data
while increasing the performance, whereas ML plateaus at a certain level of performance
when adding more data. Table 2 shows an overview of DL and ML approaches deployed
for sound classification using the ESC-50 and U8K datasets.
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Table 2. Related studies on sound classification using ESC-50 and UrbanSound 8k Dataset.

Study ML/DL ESC-50 UrbanSound-8K
Model Accuracy Model Accuracy
[20] DL(CNN) DenseNet 98.50% DenseNet 97.10%
AlexNet 88.10% AlexNet 93%
ResNet 96.80% ResNet 99.20%
[36] DL(CNN) DenseNet 97.57% DenseNet 99.20%
ResNet 96.80% ResNet 99.49%
[48] DL(CNN) DenseNet 92.80% DenseNet 87.40%
[50] ML SVM 71%

3. FSC22 Taxonomy

Prominent research efforts carried out in the forest acoustic classification domain have
been based on a subset of an already established public dataset like ESC50, U8K, or on small
self-made datasets. Thus, the requirement for a well-defined dataset dedicated to forest
acoustics can be identified. As the first step of creating a benchmark dataset, a standard
taxonomy that can showcase and capture all the different acoustic scenarios present in
forest ecosystems needs to be established.

In the parent level of the proposed taxonomy, all the acoustic scenarios are classified
into six classes: mechanical sounds, animal sounds, environmental Sounds, vehicle Sounds,
forest threat sounds, and human sounds. Further, each class is divided into subclasses that
capture specific sounds which fall under the main category. For example, under the main
class, mechanical sounds, four subclasses can be identified, namely axe, chainsaw, handsaw,
and generator. This subdivision aims to introduce specific class labels to prevent the usage
of generalized labels like tree cutting, animal roar, etc. Figure 4. presents the complete forest
sound taxonomy developed to base the creation of the FSC22 dataset. Further, it showcases
the complete subdivision of the main six classes into 34 sub-classes. We have selected only
27 subclasses for the FSC22 dataset ignoring 7 subclasses shown in blue colour, due to the
unavailability of a sufficient number of sound clips in Freesound. Though all the left-out
classes have more than 200 search results in the Freesound platform, most of the audio
clips were artificially generated or included unnecessary noise making them unsuitable to
be included in the FSC22 dataset.

Forest Threats

5 Environmental
Mechanical Sounds. Animal Sounds Vehicla Sounds. Human Sounds.
1. Tervastrial Antmals 1 Thunderstotmn 1 Ielicopter 1 Firevrark 1 Whistling
- Squdrel 2 Raln 2. Vehicle Engine 2 Gunshot 2. Clapping
- Monikey
. Fig 3, Warer drope 3, Wood Chopping 3 Footeteps
» Bephans 4. Wind 4, General Spasln
+ Lian posting
. Tip= 5. Silerce
+ Dear i FiTe

+ Wiclf

7. Tran Ealling

2. Hirds
« Chiry

Figure 4. FSC22 Taxonomy

The proposed taxonomy is aimed at covering two main objectives. The first objective
is to completely cover fundamental acoustic scenarios such as chainsaw sounds, tree
felling, and wildfire, which are extensively used for research works. The second objective
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is to provide high-quality, normalized audio under unambiguous class labels. We have 17
extensively analyzed related literature, which has utilized forest acoustics and has identified  1s0
the most essential and frequent types of acoustic phenomenon that should be available ina  1s
benchmark dataset to fulfil the first objective, as explained in Section 4. It should be noted  1s2
that the proposed taxonomy is not fixed and with time, more related acoustic classes under s
forest acoustics need to be added while refining the taxonomy to achieve saturation. 184

4. FSC22 Dataset 185

The proposed FSC22 dataset [33] in this paper is a public benchmark dataset containing  se
2025 audio samples normalized to 44100 Hz sample rate, 16-bit depth, and stereo channel e
configuration. All the audio samples are distributed between six major parent-level classes. 1ss
Each audio is further divided into scenario-specific low-level classes, which capture the s
context of the considered audio sample as described in Section 3. The FSC22 dataset serves 1e0
two major objectives, the first one being the requirement to provide sufficient audio samples 101
for widely researched forest-related acoustic classes. The second objective is to present e
high-quality normalized audio samples under event-specific class labels. This section 1es
describes the procedure which was followed to develop the FSC22 dataset while ensuring  1es
the objectives. Figure 5 shows the overall procedure of creating the FSC22 dataset and each 105

sub-process is described in this section. 106
f i )
%ﬁeesaurd ; Data acquisition E Dati::;:':iliand

| Data lizatic | Data processing and
and labeling ] J | validation

75 audio clips

55, 14100H, sterea) |

Figure 5. Overall Procedure

4.1. Dataset Preparation 107
4.1.1. Data acquisition 108

The development of major datasets governing the acoustic classification domain is s
mainly based on online audio collection portals such as YouTube, BBC Sound Effects zo0
Library, and FreeSound Org. The usage of such sources presents unique advantages 2o
and disadvantages. Therefore, it was initially required to select the source that FSC22 202
is based upon, to develop a high-quality benchmark dataset. Although both YouTube 2o
and BBC Sound Effects Library are rich when some acoustic labels are considered, they 2o
publicly present copyright issues when publishing the final dataset. FreeSound, available 20s
at https:/ /freesound.org/, is a free, public, online platform where thousands of audio data 206
are published, and it was identified that by basing the content of FSC22 on the FreeSound 207
platform, we could easily navigate the publishing issue. Further, the API endpoints zos
available in the FreeSound Platform allowed users to write python scripts to search for 200
different audio scenarios and download the metadata and the corresponding audio files 210
without manually searching and downloading the audio. 211

As the first step of data acquisition, we selected 27 classes from the FSC22 taxonomy 212
to complete in the first phase of the FSC22 dataset. For each of the selected class labels, we 21
queried for audio samples, which contain the considered label in the title or the description, =1s
using the API endpoint for text search. The querying process was completed through 25
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a python script. After all the matching audio samples were identified, their metadata
was class-wise written to spreadsheet files to be fed to the filtering and validation stage.
We selected 47832 audios and sent them for the filtering and validation step. Figure 6
showcases the number of audio samples identified via the data-acquiring step for each
selected 27 classes

10000
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Figure 6. The number of audio per class

4.1.2. Data filtering and validation phase

After spreadsheet files were completed for all the selected classes, all the sheets were
traversed to remove non-suitable query results which were present in the sheets due to the
noise associated with the API endpoint. After the filtering of suitable audio was completed,
each selected audio sample was manually checked by listening to them and downloaded
for further processing to begin. All the unclear or unsuitable audios for further processing
were removed to refine the dataset quality. Figure 7 shows the number of audio samples
selected from each class to be further processed to complete the FSC22 dataset.

Bl 7575 TE g 7 75 g
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Figure 7. The number of selected audios per class

4.1.3. Data processing and Validation

In order to generate 75 audio clips for each audio class, downloaded audio was
processed based on the duration of the original file. Audacity software was used for this
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procedure, which is an open-source application for audio editing and tagging. Downloaded
audio files were uploaded to the Audacity application and trimmed to 5 seconds. Selected
audios with longer duration were spliced into multiple recordings of 5 seconds. This step
was necessary for some classes due to the lack of suitable audio samples to complete the
considered audio sample limit per class. This process was repeated for all the sound classes,
and 75 audio recordings were validated and finalized at the end.

4.1.4. Data normalization and labelling

After the filtering and validation process was completed, all 27 classes, which were
selected for the first phase were finalized with 75 audio recordings. As the first step of
normalization, the sampling frequency was set to 44100 Hz, the bit depth was set to 16, and
the channel setting was configured to stereo for all the selected audio recordings, using the
load function of Librosa. In the audio extraction step, from the original audios in the earlier
phase, audios with nearly 5 seconds of duration were extracted. Hence as the second step
of normalization, the duration of all the selected audio was set to 5 seconds by trimming
excess parts or by padding with silence accordingly.

At the end of the normalization process, all the original audio samples were renamed
accordingly. In this step, the source file name was mapped into the dataset file name in the
format of UniqueClassIndex_UniqueAudiolD.wav. The first part of the label indicates the
class related to the audio sample and is followed by a unique audio ID. Proper labelling of
the audio files will make it easier to navigate through the dataset. Once the audio files were
labelled, the corresponding metadata was entered into the base metadata file to complete
the development of the FSC22 dataset.

4.2. Content Description

FSC22 is a public benchmark dataset that can be utilized in research work governing
forest acoustic monitoring and classification. The dataset is developed according to the
taxonomy proposed in section 3. Out of the thirty-four subclasses listed in the taxonomy, 27
subclasses were completed for the first phase of the FSC22 dataset. Each subclass contains
75 selected audio samples, which have been manually checked for any inconsistencies.
Overall, the dataset contains 2025 audio samples, each with a duration of 5 seconds,
resulting in 2.81 hours of forest acoustics under the specified class labels. All the required
information about the audio samples available in the dataset is listed under the metadata
file located in the FSC22 master folder. The FSC22 master folder contains two subfolders,
audio wise V1.0 which includes the 2025 audio samples, and the Metadata folder which
holds the Metadata.csv file.

Readers of this study and the users of the FSC22 dataset should note that each audio
sample was renamed according to the following convention to better support the usage of
the new dataset.

- UniqueClassIndex_UniqueAudiolD.wav eg: 1_10101.wav

Table 3 provides a snapshot of the Metadata.csv file for the convenience of the readers.
As shown for each audio file, the Metadata file provides:

e Source File Name - ID of the original audio sample, used to extract the corresponding
audio.

e  Dataset File Name - ID of the audio, in the context of FSC22

*  C(lass ID - Class Identification index (An integer from the range 1 to 27)

*  (Class Name - Class Name in which the audio is classified.
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Table 3. Sample of meta-data of the FSC22 Dataset.

Source File Name Dataset File Name Class ID Class Name
17548 __A.wav 1_10101.wav 1 Fire
17548__B.wav 1_10102.wav 1 Fire
17548__C.wav 1_10103.wav 1 Fire
4.3. Importance of FSC22 to the Forest Acoustics Domain
Analyzing the research contributions made towards the forest acoustic domain, it
becomes evident that a publicly available forest-specific sound dataset is unattainable.
Due to the scarcity of a standard dataset for forest sounds, the research community has
experimented with different approaches for data acquisition. Few can be identified as
obtaining sound recordings by employing sound sensors, collecting sound clips available
in online sound repositories and extracting the sounds from YouTube videos. Table 4
summarizes the sound acquisition approaches used in previous forest acoustic domain
research for a better overview.
Table 4. Sound acquisition approaches in related studies.
Study Domain Source Dataset acquiring approach

[3]

[11]

Illegal logging detection

Animal sound
recognition

Tree cutting detection
Animal sound

recognition

Bird species detection

Illegal Tree Cutting

Chainsaw sound
identification

Chainsaw and vehicle
sound detection

Illegal Logging Detection

Freely available online sound data
repositories

Freesound

Sensor recordings from an urban
environment

HU-ASA database
Xeno-Canto
ESC-50
Sensor recordings from a forest
environment and online sound

repositories

Sensor recordings from the forest
and urban environments

Sensor recordings from a forest
environment

Collected audio recordings of chainsaws and
environment background noises (rain, wind, birds)

Collected bird sounds, mammal sounds, and
insect sounds

Collected 18 chainsaw sounds, 27 vehicle sounds,
20 forest-specific sounds, 28 background sound
clips

Collected 1418 animal sound clips from the archive

Collected 2104 sound clips for 5 bird species
Selected specific 7 classes related to forest
environment (wind, chainsaw, rain, birds, etc.)

Collected 301 chainsaw sounds and 2964 other
sounds (bird, insects, animals, etc.)

Acquired 57 chainsaw recordings, 70
vehicle/engine sounds, 62 forest sounds, 28

general urban sounds

Collected 100 chainsaw sounds

Findings in Table 4 confirmed that in most of the early studies, authors have prepared
a separate dataset according to their requirements due to the unavailability of a proper
forest acoustic dataset. However, data collection is a complex and time-consuming task
which could be an overhead for research tasks. Hence, the requirement for a standard
dataset arises. Addressing the problem of the unavailability of a standard dataset, this
paper introduces FSC22, which includes forest-specific sounds under 27 classes. This
dataset covers most of the general acoustic classes identified in a forest environment. The
FSC22 dataset will be a great contribution to any further research performed under the
forest acoustic domain.
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5. Methods and Technical Implementation

For ESC, both ML and DL have been extensively used in related literature. Therefore,
we provide classification experiments covering both architectures. An Extreme Gradient
Boosting (XGBoost) based experiment is provided for the ML approach, while a CNN-
based experiment is provided for the DL approach. These models were used as the baseline
models.

5.1. Feature Engineering

Feature engineering is a principal requirement for a successful ML pipeline. Studies
focusing on the audio classification domain properly emphasize the requirement of ad-
vanced feature engineering techniques like the usage of spectrograms to represent audios
in the time and frequency domains [4,6,10,17,52], and the audio augmentation techniques
to prevent overfitting of the prediction algorithm [13,14,46,53,54], to obtain state-of-the-art
classification performances. This section provides an overview of the feature engineering
techniques followed in the proposed experiments as shown in Figure 8.

Audio Sample

Extract a new audio with positive pitch shift
e

]

'3

[ Extract a new audic with negative pitch shiﬂ]

¥
o

hL ’_,-/" Ry oL
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I 5 ) I ~
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! i _
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o [n, m)
T (128, 216) a ] G Shape
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{128, 218)
e
n n n
” | |
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mean b
¥
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| | | | n. m fn.m, 3
J (128, } (128, 216, 3]
mean of n
abrcde

Figure 8. Feature preparation methodology

5.1.1. Considered Datasets

As described in subsection 4.3 quality audio data is scarce under the forest acoustics
domain, thus a benchmark dataset that could be used to compare the quality of the pro-
posed FSC22 dataset cannot be identified in the related literature. ESC50 dataset, which is a
benchmark dataset used under the ESC domain is therefore used to compare the perfor-
mance of the FSC22 dataset. For the study 2000 audio recordings, each of 5-second duration
distributed into 50 unique classes from the ESC50 dataset, and 2025 audio recordings
each of 5-second duration distributed into 27 unique classes from the FSC22 dataset were
subjected.

5.1.2. Data Augmentation Technique

Data augmentation is an important step in the feature engineering phase to artifi-
cially expand the available data samples for training and testing ML and DL algorithms.

320
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Especially when it comes to DL approaches, models suffer from overfitting when the 22
amount of training data available is considerably less [55]. For the proposed experiments, 322
Positive pitch shifting and negative pitch shifting, where the pitch of audio recordings is  s2s
increased and decreased by two steps respectively, are utilised [56]. The pitch shifting was 24
implemented with the pitch_shift function provided by Librosa.effects library for python. sz

As a result of a single audio sample, two new augmented audios were created increas- 26
ing the amount of data available. In summary, due to the augmentation with pitch shift, se7
the number of audio samples from ESC50 was increased to 6000, while the FSC22 dataset 2.
increased to 6025 audio samples. For both datasets, 80% of the audio samples were used 2o
for training the model, while 20% were used for validating the performance of the trained ss0
model, by following the Pareto Principle as in most of the general cases, 80% of effects s
come from 20% of causes. 332

5.1.3. Feature Extraction 333

Under the audio classification domain, the general practice is using spectrograms, sz
representing an audio signal in both time and frequency domains, as the feature extraction sss
mechanism. The Mel Spectrogram (MEL) [20,57] and the Mel Frequency Cepstral Coeffi- 36
cients (MFCC) [3,10], which can be identified as the two most utilized spectrograms, are s
used to extract the features for this study. In order to extract the spectrograms from the = sss
raw audio data, the Mel spectrogram and MFCC are provided by the librosa.feature library = sse
was used. Using both functions, each audio file gets sampled into overlapping frames, s
and for each frame model coefficient or Mel frequency, cepstral coefficients are calculated. s
Thus, calculated coefficients are returned as a 2-dimensional array of shapes (number of a2
coefficients x number of samples). As a further improvement, for the Mel spectrograms s
obtained, all the coefficients were converted to the decibel scale from the power scale. o

As shown in Figure 8, ML based classifications generally utilize 1-dimensional fea- sss
tures. Therefore, it is required to reduce the dimensionality of the created spectrograms, s
before they were used with the XGBoost model. This was achieved by aggregating the sar
1-dimensional feature vectors extracted for each overlapping frame into a single vector s
by taking their mean value. For DL based classification, an image-like representation of s
the features according to the RGB mode is required. Hence for each audio sample, three s
spectrograms were created by changing the length of the window used for framing. Cre- s
ated spectrograms were of windowing length of 93 milliseconds, 46 milliseconds, and 23  ss2
milliseconds and this was achieved by keeping the sample rate parameter at 22050 Hz and ~ sss
the n_fft parameter in 2048, 1024, and 512, respectively. 354

5.2. Machine Learning based Classification 355

Related literature that explores the automated classification of acoustic phenomena sse
that is abundant in forest ecosystems has utilized different ML algorithms to carry out s
the classification task. Among such efforts, ML algorithms like KNN, SVM, and Random  sss
forests can commonly be identified. Due to the superiority of the Extreme Gradient sse
Boosting (XGBoost) algorithm against such traditional ML algorithms, this study explores  se0
the usability of XGBoost to properly classify forest acoustics. 361

XGboost is capable of handling non-linear relationships in the features. Handling e
non-linear relationships are important in sound classification as there are many non-linear e
relationships between the sound features and the class labels. Moreover, it has the ability e
of XGBoost to learn from the errors made by previous trees. Additionally, XGBoost use L1  ses
and L2 regularization which is important to reduce overfittings. 366

The XGBoost library available for python was used to conduct the tests and the model e
parameters were used to fine-tune the performance of the implemented model. As the ses
final set of parameters, num_class was set to 27, the multiclass classification error rate was seo
used as the eval_metric, subsample, colsample_bytree and min_child_weight was setto 1, 7
max_depth of 6, learning_rate of 0.3 and 100 n_estimators were used. Further, to improve sn
the memory efficiency and the training speed of the XGBoost model, both the training 7
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and validation datasets were converted to the internal data structure (DMatrix) used by
the model which is optimized for both memory efficiency and training speed. Then the
configured model was trained with 80% of the considered dataset, and the evaluation was
completed with the remaining 20% of the data using the trained XGBoost model.

5.3. CNN-based classification

Although it can be identified that a substantial number of studies have used ML-based
algorithms to classify unstructured data like audio and images, DL based models can
outperform the traditional ML models with considerable margins, due to their ability to
extract features from raw data [58]. For the study, a Convolutional Neural Network [14,59]
based model consisting of 9 layers has been utilized, based on the work of the authors of
[36].

Similarly, as in the ML-based approach, 80% of the data were used to train and fine-
tune the CNN model, while the remaining 20% was used for the validation procedure. The
model was configured to run for 50 epochs; however, an early stopping callback function
was used to stop the model from overfitting to the training data. Implementation of the
model was completed using the Keras library provided by TensorFlow [60]. Figure 9
presents the architecture of the model accompanied by the parameters used to implement
the model using the Keras library.
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Figure 9. The CNN based architecture of the model

6. Dataset Evaluation

In order to analyze the performance and characteristics of the FSC22 dataset, three
major classification experiments were performed. As the first phase, a human classification
experiment was conducted to identify a baseline classification accuracy for the FSC22
dataset. An ML and DL based classification of the FSC22 dataset was conducted as the
second phase, to generate comparable performance scores respective to related studies.
Finally, the same ML and DL models were tested with the ESC50 dataset to present the
general performance of the developed models. This section describes each experiment and
the results obtained.
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6.1. Human Classification Result of FSC22

Hearing and identifying sound through the human auditory system depend on a
series of complex steps. Scientists have discovered that a form of auditory learning occurs
in daily life to help us identify and memorize sound patterns. Hence, when a certain
sound pattern differs from a small factor like noisy background, humans find it difficult to
recognize the exact sound type. Humans’ identification of sound types comes with a high
level of uncertainty, which may differ from machine classification. In order to identify this
difference in human decisions, a human classification experiment was carried out for the
created dataset. For this experiment, 25 participants in age groups 20-30 were selected. The
survey includes audio-based questions where the participants were instructed to select the
correct label after listening to the sound clips [61]. For the creation of the survey Free Online
Survey Software and Tools | The QuestionPro® platform [62] was used. The questionnaire
contains two randomly selected audio clips from each class and altogether 54 questions
were included for the 27 classes. For each question, 4 choices of labels were given.

After the completion of the survey, an overall accuracy of 91% was observed for the
selected audio samples. These survey responses were used to calculate the class-level
recognition accuracies. It was identified that the human candidates achieved a maximum
classification accuracy of 98% for the classes, Wolf, General Speaking, and Rain, while
the two classes, Squirrel and Fire, achieved the lowest accuracies, showing the hardness
to identify such sounds by the human auditory system. Figure 10 shows the human
classification accuracies obtained for all the classes of the FSC22 dataset.
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Figure 10. Class accuracies obtained in human classification

6.2. Baseline Model-based classification results of FSC22

As the second approach for dataset evaluation, a baseline classification analysis was
performed using XGBoost and CNN based models. Section 5 provides a detailed overview
of the baseline model selection and classification procedure. With the desired target
accuracy results obtained through human classification in subsection 6.1, the next goal is to

investigate the level of performance that can be achieved on a baseline model classification.

The baseline XGBoost and CNN based models were evaluated on the FSC22 dataset
using the evaluation metrics accuracy, Fl-score, precision, and recall. Accuracy is the
most intuitive performance measure, and it provides the ratio of the correctly predicted
samples to the total samples. While precision provides the ratio of correctly predicted
positive samples to the total predicted positive samples and recall gives the ratio of correctly
predicted positive samples to all samples in the actual class. The F1-Score is the weighted
average of Precision and Recall. The metrics module of the Scikit-learn (Sklearn) library
was used to calculate all the metrics, for the precision, recall, and F1-score, averaging was
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done using the unweighted mean as all the classes were balanced for both datasets. Table
5 and Table 6 provide the summary of results obtained by evaluating the FSC22 dataset
against the baseline models XGBoost and CNN-based, respectively.

6.2.1. Results of ML-based Classification

As shown in Table 5, the FSC22 dataset had an average classification accuracy ranging
from 48.14% to 62.17% for the selected XGBoost ML model. The highest classification accu-
racy of 62.71% was reported for the model with the MFCC feature extraction mechanism.
In order to better analyze the results, the confusion matrix of the highest accuracy reported
approach is displayed in Figure 11. A confusion matrix visualizes and summarizes the
performance of a classification algorithm. According to the matrix, it can be identified that
the Silence and Bird chirping classes obtained the highest-class level accuracy of 99.58%
and 98.84%, respectively. Moreover, the Axe class and Generator class have shown the
lowest accuracies among the 27 classes.

Table 5. Results of ML based classification of the FSC22 dataset.

Feature . Augmentation Accuracy F1 - Score Precision Recall
Representation

MEFCC Applied 62.71% 0.62 0.63 0.62

MEFCC Not Applied 55.06% 0.54 0.55 0.55
Mel Spectrogram Applied 56.04% 0.56 0.57 0.56
Mel Spectrogram Not Applied 48.14% 0.47 0.48 0.48

Confusion Matrix
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Figure 11. Confusion Matrix for Xgboost based Classification with MFCC for augmented data

6.2.2. Results of CNN-based Classification

When compared with the ML-based classification approach, CNN based classification
has shown a significant performance with the FSC22 dataset. As reported in Table 6, the
dataset had an average classification accuracy ranging from 53.08% to 92.59% for the CNN
model. Out of the four classification accuracies, 92.59% is shown as the highest which is
obtained for the CNN model with the MEL feature extraction mechanism. The confusion
matrix given in Figure 12 for the approach which has the highest overall accuracy can
be used to evaluate the class-level accuracy of the dataset. According to the matrix, it is
apparent that almost all the classes have a very high accuracy level, while Generator and
Rain classes obtained the lowest among them.
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Table 6. Results of CNN based classification of the FSC22 dataset.

Feature

. Augmentation Accuracy F1 - Score Precision Recall
Representation
MEFCC Applied 89.30% 0.893 0.898 0.893
MEFCC Not Applied 53,82% 0.533 0.552 0.538
Mel Spectrogram Applied 92.59% 0.925 0.929 0.925
Mel Spectrogram Not Applied 53.08% 0.52 0.53 0.53
Confusion Matrix
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Figure 12. Confusion Matrix for CNN-based classification with Mel Spectrogram for the augmented
data
6.3. Model evaluation results of the ESC-50 dataset
All the trials conducted with the two feature extraction approaches, for the ML and
CNN-based classification of the FSC22 dataset were tested with the ESC50 dataset. All the
conducted experiments were evaluated based on the metrics presented in Section 6.2. Table
7 showcases the results obtained with the ML approach, while Table 8 presents the CNN-
based classification results. It can be identified that the trial which used data augmentation
and the MFCC feature extraction obtained the highest accuracy of 53.25% for the ML-based
approach. Moreover, the CNN-based approach which used Mel Spectrogram-based feature
extraction supported with data augmentation generated the highest classification accuracy
of 92.16%.
Table 7. Results of ML based classification of ESC50 dataset.
Feature . Augmentation Accuracy F1 - Score Precision Recall
Representation
MECC Applied 53.25% 0.525 0.529 0.532
MEFCC Not Applied 43.50% 0.431 0.455 0.435
Mel Spectrogram Applied 48.18% 0.478 0.493 0.481
Mel Spectrogram Not Applied 31.75% 0.309 0.325 0.317
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Table 8. Results of CNN based classification of ESC50 dataset .

Feature . Augmentation Accuracy F1 - Score Precision Recall
Representation
MEFCC Applied 85.41% 0.855 0.866 0.854
MFCC Not Applied 42.25% 0.408 0.443 0.422
Mel Spectrogram Applied 92.16% 0.921 0.925 0.921
Mel Spectrogram Not Applied 44.75% 0.429 0.448 0.447

7. Discussion
7.1. Lessons Learned

We have conducted eight performance comparisons over the FSC22 dataset, as shown
in Table 5 and Table 6. These experiments are listed as follows.

- E1: Accuracy of XGBoost model with MFCC and data augmentation

- E2: Accuracy of XGBoost model with MFCC and no data augmentation

- E3: Accuracy of XGBoost model with Mel Spectrogram and data augmentation

- E4: Accuracy of XGBoost model with Mel Spectrogram and no data augmentation)
- E5: Accuracy of CNN model with MFCC and data augmentation

- E6: Accuracy of CNN model with MFCC and no data augmentation

- E7: Accuracy of CNN model with Mel Spectrogram and data augmentation

- E8: Accuracy of CNN model with Mel Spectrogram and no data augmentation

The same experiments were conducted over the ESC50 dataset to further support the
observations as shown in Table 7 and Table 8. This section provides a discussion of the
observations made after the experiments were completed.

7.1.1. ML vs DL for environmental sound classification

ML and DL techniques have been extensively used in related literature for environ-
mental sound classification. To establish a performance comparison between ML and DL
architectures over the FSC22 and ESC50 datasets, eight comparisons were done based on
the above defined performance measures. For FSC22, the CNN model outperformed the
XGBoost model by a significant margin for all the comparisons, E1 vs E5, E2 vs E6, E3 vs
E7 and E4 vs E8. For the ESC50 dataset, CNN based approach outperformed the XGBoost
approach in comparisons E1 vs E5, E3 vs E7 and E4 vs E8. The XGBoost outperformed the
CNN model when MFCC was used for feature extraction of the non-augmented dataset
(E2 vs E6). Careful evaluation of results published under related literature provides similar
evidence, to identify that DL algorithms perform better when it comes to complex classifica-
tion tasks such as audio data tagging. It can be identified that this is due to reasons like the
ability of DL algorithms to extract inherent features from the raw data avoiding selective in-
variance [55], the ability of DL algorithms to learn from large volumes of data [36], and less
requirement of feature engineering before the training of the model. Although DL presents
high accuracies compared to ML, they need high resources for the training to complete and
the resulting models are complex and suffer from low interpretability and explainability
[63]. Thus, for proper real-world deployment of a DL-based sound classification system,
further research is required to understand and improve the underlying dynamics.

7.1.2. Importance of Data Augmentation techniques

A major requirement to develop proper artificial intelligence models is the availability
of large volumes of quality data. When the forest sound classification domain is considered,
the availability of well-defined, quality public data is limited. Although the proposed
FSC22 dataset provides 2025 audio recordings providing 2.81 hours of record time, the data
volume is not sufficient to properly train a CNN, RNN, or ML model to achieve state-of-the-
art results. Data augmentation techniques can be successfully used to expand the available
data points and to present the significance. As observable by the results of Table 7 and Table
8, the performance of the XGBoost and CNN-based models show a significant improvement
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in accuracy, when augmentation techniques were employed, compared to the performances
obtained without augmentation. The CNN model used with the FSC22 dataset shows
accuracy degradations of 40% and 43% for the MFCC-based and Mel Spectrogram-based
approaches, respectively when augmentations were not applied. Similarly the XGBoost
model shows decrements of 12% and 14% for the two feature extraction approaches MFCC
based and Mel Spectrogram, respectively. Accuracy reductions can be identified for the
tests conducted with the ESC50 dataset as well. This empirical evidence showcases the
importance of using data augmentation techniques when training artificial intelligence
algorithms. Although we have successfully implemented baseline data augmentation
techniques to increase model performance, further research is required to understand
novel techniques that can solve data insufficiency issues while preventing models from
overfitting.

7.1.3. Feature Representation Methodology

In the domain of audio classification, extracting feature embeddings that can accurately
represent the audio signal is of utmost importance. For the ML and DL models implemented
in this study, Mel Spectrograms and MFCC spectrograms were employed as discussed in
subsection 5.1.3. With the experiments conducted for both FSC22 and ESC50 datasets using
the ML-based approach, it can be identified that the usage of MFCC-based feature extraction
outperforms the tests conducted with Mel Spectrograms as the feature representation.
However, for the DL-based approach, Mel Spectrogram-based feature extraction provided
the highest accuracies, except for the test conducted without augmentation for the FSC22
dataset. Hence, in the context of this study, a clear separation cannot be drawn between the
two spectrogram methods, for the task of representing audio signals.

7.2. Comparison with the Existing Sound Datasets

Due to the unavailability of a publicly available benchmark dataset to be used for forest
acoustic classification tasks, researchers have utilized different techniques to fulfil their
data requirements as explained in subsection 4.3. Table 9 provides a comparison between
the results of the existing studies and the highest-performing approach proposed in this
paper. Accordingly, it can be seen that this study has utilized the highest number of audio
recordings distributed in 27 unique forest acoustic classes while achieving state-of-the-art
classification accuracies for the forest sound classification-based studies. However, when
the model performances are compared to the state-of-the-art performances achieved for the
broader ESC domain, it can be identified that the results published in this paper require
further refinement. Therefore as future directions, applying transfer learning using the
ImageNet dataset [36,64,65], exploring different data augmentation techniques [32,46,66],
and feature representation methodologies [67,68] are suggested by the authors.
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Table 9. Comparison of existing datasets

Amount of

Paper Model data Types of data used Feature Metric Result
The total . .
[3] SVM duration of Chainsaw sounds.w1th background MEFCC accuracy 91.07%
. noise
around 5 min
Average accuracy
Random Bird sounds, Mammal sounds, Double rates in f:hfferent o
[11] 40 environ- 86.28%
forest Insect sounds from Freesound Features . .
ments(Rain, Wind,
Traffic, Average)
[51]  Cyclic HMM 1418 Animal sounds from HU-ASA MFCC accuracy 64%
database
. . Chainsaw sounds, Chirping birds,
Configuration Crackling fire, Crickets, Handsaw,
[4] based on a 280 ng ure, g ! MECC accuracy 85.37%
CNN Rain, and Wind extracted from
ESC50
[6] SVM with 3265 Chainsaw Sounds MFCC TPR 53.16%
Log Kernel
Feed Chainsaw sounds, Vehicle/Engine Fcz)l‘lffleir
[5] Forward 217 Sounds, Forest sounds, Urban p accuracy 79.50%
spectrum
Network sounds .
coefficients
[31] CNN 100 chainsaw Fourier accuracy 96%
Spectrogram
This . Mel o
Study CNN 2025 27 Unique classes Spectrogram accuracy 92.59%

7.3. Future research directions

This study introduces the FSC22 dataset and proposes a baseline architecture for
the classification of forest acoustics. As presented in section 7.2, the developed CNN
based classification model outperforms existing forest acoustics classifier systems. Authors
identify following directions for the reference of researchers working in the forest acoustics
domain.

7.3.1. Practical deployment of forest acoustic classification systems

Forest acoustic classification systems can provide valuable information to protect
forest reserves from natural and artificial phenomena. A practical implementation will
require the classification model to be deployed in a resource constrained edge device, which
will be challenging. The best performing CNN model proposed in this study contains
4.6 million parameters and to be deployed in an edge device, complexity needs to be
reduced substantially. Techniques like pruning, XNOR-NET and bottleneck layers can be
effectively used to reduce the model complexities, but will reduce the model performance
by a significant amount [41]. Hence future work is required to identify methodologies to
generate reduced complexity models for FSC while preserving the classification accuracy
on a reasonable scale.

7.3.2. Explainability and interpretability of FSC models

Explainability and the interpretability of machine learning models is an emerging
domain which presents interesting effects to the way that ML models are utilised. Ex-
plainability refers to the ability of a learning model to provide human-understandable
explanations for its predictions. Interpretability refers to the ability to understand the inter-
nal workings of a model and how it arrives at its predictions. Forest sound classification

569
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systems with the potential of being deployed in the forest ecosystems to help authorities,
can greatly benefit from a transparent classification model. Amount of studies covering
the explainability and the interpretability of ESC or FSC models is scarce. Thus authors
recommend future researchers working in this domain to contribute to develop more
explainable and interpretable audio classification models.

Apart from the above two major research directions, it can be identified that state of
the art ESC models have comparatively high performance measures with respective to iden-
tified FSC models including the CNN based model proposed in this study. State of the art
ESC models have utilised techniques like transfer learning from the Imagenet dataset, mul-
tiple aggregated feature representations, multiple data augmentation strategies to achieve
very high performance measures. Therefore the authors recommend future researchers un-
der FSC to explore such techniques and utilise them to improve the performance measures
of current FSC models to a comparable scale.

8. Conclusion

Environment sound classification (ESC) using artificial intelligence is a prominent
research area in audio recognition. Under ESC, forest sound classification (FSC), which
focuses on identifying artificial and natural phenomena observable in forest ecosystems,
receives a high research interest. Recognition of forest sounds generates highly valuable
use cases when scenarios like illegal logging, poaching, and wildfires are considered. FSC
suffers from the unavailability of a standard sound taxonomy and the unavailability of a
sufficiently large public benchmark dataset. With the intention of resolving both issues,
this study presents the FSC22 Taxonomy and the first version of the FSC22 dataset. The
first version of the FSC22 dataset consists of 2025 human-annotated, 5-second-long audio
recordings equally distributed into 27 unique classes. The authors intend to expand the
first version of the FSC22 dataset in the future, capturing more acoustic classes according
to the FSC22 taxonomy. Further, the study presents CNN-based and XGBoost-based
classification experiments using the FSC22 dataset. CNN-based approach achieved a
maximum classification accuracy of 92.59%, while the XGBoost model achieved a maximum
accuracy of 62.71%. A survey conducted with 25 human candidates to identify different
sounds from the classes listed in the FSC22 dataset was also conducted to establish a
baseline accuracy score. Finally, the authors believe that the proposed FSC22 taxonomy, the
created FSC22 V1.0 dataset, experiments conducted, and the discussions provided through
this study will support future research work governing the FSC domain.
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