
Context-aware Dynamic Discovery and
Configuration of ‘Things’ in Smart
Environments

Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Peter Christen, and
Dimitrios Georgakopoulos

Abstract The Internet of Things (IoT) is a dynamic global information network
consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well
as other instruments and smart appliances that are becoming an integral component
of the future Internet. Currently, such Internet-connected objects or ‘things’ out-
number both people and computers connected to the Internet and their population is
expected to grow to 50 billion in the next 5 to 10 years. To be able to develop IoT
applications, such ‘things’ must become dynamically integrated into emerging in-
formation networks supported by architecturally scalable and economically feasible
Internet service delivery models, such as cloud computing. Achieving such integra-
tion through discovery and configuration of ‘things’ is a challenging task. Towards
this end, we propose a Context-Aware Dynamic Discovery of Things (CADDOT)
model. We have developed a tool SmartLink, that is capable of discovering sensors
deployed in a particular location despite their heterogeneity. SmartLink helps to
establish the direct communication between sensor hardware and cloud-based IoT
middleware platforms. We address the challenge of heterogeneity using a plug in
architecture. Our prototype tool is developed on an Android platform. Further, we
employ the Global Sensor Network (GSN) as the IoT middleware for the proof of
concept validation. The significance of the proposed solution is validated using a
test-bed that comprises 52 Arduino-based Libelium sensors.

Key words: Internet of Things, Sensing as a service, Configuration tool, Context
awareness, Dynamic discovery, Plug and play, Sensor devices, Middleware

Charith Perera, Prem Jayaraman, Arkady Zaslavsky, Dimitrios Georgakopoulos
CSIRO Computational Informatics, Canberra, ACT 2601, Australia, e-mail: firstname.lastname@
csiro.au

Charith Perera, Peter Christen
Research School of Computer Science, The Australian National University, Canberra, ACT 0200,
Australia, e-mail: firstname.lastname@anu.edu.au

1

CharithMini
Text Box
Charith Perera, Prem Jayaraman, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos, Context-aware Dynamic Discovery and Configuration of `Things' in Smart Environments, In Book Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence book series, Springer Berlin Heidelberg, Volume 546, Pages 215-241 (27) More: www.charithperera.net

2 Perera et al.

1 Introduction

The Internet of Things (IoT) [4] rfirst received attention in the late 20th century.
The term was firstly coined by Kevin Ashton [3] in 1999. “The Internet of Things
allows people and things1 to be connected Anytime, Anyplace, with Anything and
Anyone, ideally using Any path/ network and Any service” [18]. As highlighted in
the above definition, connectivity among devices is a critical functionality that is
required to fulfil the vision of IoT. The following statistics highlight the magnitude
of the challenge we need to address. Due to the increasing popularity of mobile
devices over the past decade, it is estimated that there are about 1.5 billion Internet-
enabled PCs and over 1 billion Internet-enabled mobile devices today. The number
of ’things’ connected to the Internet exceeded the number of people on earth in 2008
[23]. By 2020, there will be 50 to 100 billion devices connected to the Internet [45].
Similarly, according to BCC Research, the global market for sensors was around
$56.3 billion in 2010. In 2011, it was around $62.8 billion, and it is expected to
increase to $91.5 billion by 2016, at a compound annual growth rate (CAGR) of
7.8% [5].

The above statistics allow us to conclude that the growth rate of sensors being
deployed around us is increasing over time and will keep its pace over the coming
decade. Over the last few years, we have witnessed many IoT solutions making
their way into the market [40]. The IoT market has already been fragmented, with
many parties competing with a variety of different solutions. Broadly, these IoT
solutions can be divided into two segments: sensor hardware-based solutions [27]
and cloud-based software solutions [14, 17, 31]. Some products specifically address
one segment, while others address both. In this chapter, we propose a Context-Aware
Dynamic Discovery of Things (CADDOT) model in order to support the integration
of ‘things’ into cloud-based IoT solutions via dynamic discovery and configuration
by also addressing the challenge of heterogeneity. We reduce the complexity of the
‘things’ configuration process and make it more user friendly and easier to use.
One major objective is to support non-technical users by allowing them to configure
smart environments without technical assistance.

This chapter makes the following contributions. We propose a model, CADDOT,
that can be used to configure sensors autonomously without human intervention
in highly dynamic smart environments in the Internet of things paradigm. To sup-
port this model, we developed a tool called SmartLink. SmartLink is enriched with
context-aware capabilities so it can detect sensors using different protocols such as
TCP, UDP, Bluetooth and ZigBee. CADDOT is designed to deal with highly dy-
namic smart environments where sensors are appearing and disappearing at a high
frequency. This chapter also presents the results of experimental evaluations per-
formed using 52 sensors measuring different types of phenomenon and using differ-
ent communication sequences.

1 We use both terms, ‘objects’ and ‘things’ interchangeably to give the same meaning as they are
frequently used in IoT related documentation. Some other terms used by the research community
are ‘smart objects’, ‘devices’, ‘nodes’. Each ‘thing’ may have one or more sensors attached to it.

Configuration of ‘Things’ in Smart Environments 3

We explain how our model can be used to enrich the existing solutions proposed
in the research field. The chapter is organized as follows. We present background
information and motivation in Section 2. In Section 3, we discuss the functional re-
quirements of an ideal IoT configuration process. We discuss related work in Section
4. The proposed CADDOT model is introduced in Section 5. The design decisions
we made are justified and compared with alternative options in Section 6. Imple-
mentation details and evaluations are presented in Section 7 and Section 8 respec-
tively. The lessons learnt are discussed in Section 9. Open challenges are presented
in Section 10 and we conclude the chapter in Section 11 with indications for future
work.

2 Background and Motivation

This section briefly highlights the background details of the challenge we address
in this chapter. Firstly, we explain the challenges in the smart environment from
the perspective of dynamic discovery and configuration of ’things’ . Secondly, we
discuss the concept of sensing as a service and its impact on the IoT. At the end, we
present the importance of the configuration of ’things’ in the big data domain.

2.1 Smart Environment

A smart environment can be defined as “a physical world that is richly and in-
visibly interwoven with sensors, actuators, displays, and computational elements,
embedded seamlessly in the everyday objects of our lives, and connected through a
continuous network” [46]. Smart environments may be embedded with a variety of
smart devices of different types including tags, sensors and controllers, and have dif-
ferent form factors ranging from nano to micro to macro sized. As also highlighted
by Cook and Das [13], device communication using middleware and wireless com-
munication is a significant part of forming a connected environment. Forming smart
environments needs several activities to be performed, such as discovery (i.e. explor-
ing and finding devices at a given location), identification (i.e. retrieving informa-
tion about devices and recognizing them), connection establishment (i.e. initiating
communication using a protocol that the device can understand), and configuration.
Further, users may combine sensors and services to configure smart environments
where actuators are automatically triggered based on conditions [25]. In smart home
environments, Radio Frequency for Consumer Electronics (RF4CE) has been used
to perform atuomated configuration of consumer devices [43]. However, such tech-
niques cannot be used to configure low-level smart ‘things’.

4 Perera et al.

2.2 Sensing as a service

The sensing-as-a-service model [37] provides sensing capabilities as a service simi-
lar to other models such as infrastructure-as-a-service (IaaS), platform-as-a-service
(PaaS), and software-as-a-service (SaaS). Mobile devices are widely used to collect
data from inbuilt or external sensors [42].

It envisions that sensor descriptions and capabilities are posted on the Internet so
the interested consumer can get access to the corresponding sensors by paying a fee
[37]. The sensing as a service model is expected to drive the IoT from the business
point of view by creating a whole new set of opportunities and values. It has been
predicted that individuals as well as, private and public organizations will deploy
sensors to achieve their primary objectives [8, 37]. Additionally, they will share
their sensors with others so a collectively value-added solution can be built around
them. Such sensor deployments and data collection allows the creation of real-time
solutions to address tough challenges in Smart Cities [29, 37]. In order to support
sensor deployments, easy-to-use ’things’ discovery and configuration tools need to
be developed. Such a set of tools will stimulate the growth of sensor deployments in
the IoT. They will help the non-technical community to become involved in building
smart environments efficiently and effectively.

2010 2015

Automotive

Utilities

Travel and
logistics

Security

Health care

Energy

Industries
Retail

15–45

28–83

4–12

8–23

6–18

5–14

2–6
2–6

2–5

2–6
1–3

10–30

5–14

72–215

17–50

 1–2

Big
Data

Social Media
Data

Sensor
Data

Scientific
Data

Enterprise
data

Public
 data

Transaction
Data

(a) (b)

Fig. 1: (a) Big Data comprises six categories of data (b) Data generated from the
IoT will grow exponentially as the number of connected nodes increases. Estimated
numbers of connected nodes based on different sectors are presented in millions
[28].

Configuration of ‘Things’ in Smart Environments 5

2.3 Big Data Challenge

Big Data [6] mainly comprises six categories of data, as illustrated in Figure1(a)
transaction data, scientific data, sensor data, social media data, enterprise data, and
public data. The sensor data category is expected to be generated by the growing
number of sensors deployed in different domains, as illustrated in Figure 1. The
data streams coming from ’things’ will challenge the traditional approaches to data
management and contribute to the emerging paradigm of big data. Collecting sensor
data on a massive scale, which creates big data, requires easy-to-use sensor discov-
ery and configuration tools that help to integrate the ’things’ into cloud-based IoT
middleware platforms. Big data has been identified as a secondary phase of the IoT,
where new sensors are cropping up and organizations are now starting to analyse
data, that in some cases, they have been collecting for years.

This work is also motivated by our previous work which focused on utilising
mobile phones and similar capacity devices to collect sensor data. In DAM4GSN
[38], we proposed an application that can be used to collect data from sensors built
into mobile phones. Later, we proposed MoSHub [33] that allows a variety of dif-
ferent external sensors to be connected to a mobile phone using an extensible plugin
architecture. MoSHub also configures the cloud middleware accordingly. Later in
MOSDEN [34], we developed a complete middleware for resource-constrained mo-
bile devices. MOSDEN is capable of collecting data from both internal and external
sensors. It can also apply SQL-based fusing on data streams in real time. As we
mentioned earlier, in order to collect data from sensors, first we need to discover
and configure the sensors in such a way that the cloud can communicate with them.
In our previous efforts, discovery and configuration steps were performed manually.
In this chapter, we propose an approach that can be used to discover and configure
sensors autonomously.

3 Functional Requirements

The ’things’ configuration process detects, identifies, and configures sensor hard-
ware and cloud-based IoT platforms in such a way that software platforms can re-
trieve data from sensors when required. In this section, we identify the importance,
major challenges, and factors that need to be considered during a configuration pro-
cess. The process of sensor configuration in IoT is important for two main reasons.
Firstly, it establishes the connectivity between sensor hardware and software sys-
tems wich makes it possible to retrieve data from the deployed sensor. Secondly, it
allows us to optimize the sensing and data communication by considering several
factors as discussed below. Let us discuss the following research problem: Why is
sensor configuration challenging in the IoT environment?. The major factors that
make sensor configuration challenging are 1) the number of sensors, 2) heterogene-
ity, 3) scheduling, sampling rate, communication frequency, 4) data acquisition, 5)
dynamicity, and 6) context [36].

6 Perera et al.

Table 1: Heterogeneity in term of Wireless Communication Technology

ZigBee GPRS-GSM WiFi Bluetooth
Standard 802.15.4 802.11b 802.15.1
System Resources 4-32KB 16MB+ 1MB+ 250KM+
Batterylife (days) 100-1000+ 1-7 0.5-5 1-7
Network Size (nodes) 264 1 32 7
Bandwidth (KB/s) 20-250 64-128+ 11000 720
TransmissionRange (meters) 1-100+ 1000 1-100 1-10+
Success Metrics Reliability,

power, cost
Reach, quality flexibility,

Speed
Convenience,
cost

1) Number of Sensors: When the number of sensors that need to be config-
ured is limited, we can use manual or semi-autonomous techniques. However, when
the numbers grow rapidly towards millions and billions, as illustrated in Figure
1(b), such methods become extremely inefficient, expensive, labour-intensive, and
in most situations impossible. Therefore, large numbers have made sensor config-
uration challenging. An ideal sensor configuration approach should be able to con-
figure sensors autonomously as well as within a very short time period.

2) Heterogeneity: This factor can be interpreted in different perspectives. (1)
Heterogeneity in terms of the communication technologies used by the sensors,
as presented in Table 1. (2) Heterogeneity in terms of measurement capabilities,
as presented in Figure 2 (e.g. temperature, humidity, motion, pressure). (3) The
types of data (e.g. numerical (small in size), audio, video (large in size)) gen-
erated by the sensors are also heterogeneous. (4) The communication sequences
and security mechanisms used by different sensors are also heterogeneous (e.g. ex-
act messages/commands and the sequence that needs to be followed to success-
fully communicate with a given sensor). As illustrated in Figure 3, some sensors
may need only a few command passes and others may require more. Further, the
messages/commands understood by each sensor may also vary. These differences
make the sensor configuration process challenging. An ideal sensor configuration
approach that is designed for the IoT paradigm should be able to handle such het-
erogeneity. It should also be scalable and should provide support for new sensors as
they come to the market.

Gas Sensor Node Event Sensor Node

• Carbon Monoxide – CO
• Carbon Dioxide – CO2
• Oxygen – O2
• Methane – CH4
• Hydrogen – H2
• Ammonia – NH3
• Isobutane – C4H10
• Ethanol – CH3CH2OH
• Toluene – C6H5CH3
• Hydrogen Sulfide – H2S
• Nitrogen Dioxide – NO2
• Ozone – O3
• Hydrocarbons – VOC

• Pressure/Weight
• Bend
• Vibration
• Impact
• Hall Effect
• Tilt
• Temperature (+/-)
• Liquid Presence
• Liquid Level
• Luminosity
• Presence (PIR)
• Stretch

Fig. 2: Heterogeneity in term of sensing/measurement capabilities of sensor nodes

Configuration of ‘Things’ in Smart Environments 7

Hello!1

Who!1

Hi!2

Type: SmartCity_Node;
Manufacturer: Libelium

2

3 Get_Identification

4 Type: Gas_Node;
Manufacturer: Libelium

Fig. 3: Heterogeneity in term of communication and message/command passing
sequences. Some sensors may need only a few message/command passes and others
may require more. The messages/commands understood by each sensor may also
vary.

3) Scheduling, Sampling Rate, and Network Communication: The sampling
rate defines the frequency with which sensors need to generate data (i.e. sense the
phenomenon) (e.g. sense temperature every 10 seconds). Deciding the ideal (e.g.
balance between user requirement and energy consumption) sampling rate can be
a very complex task and has a strong relationship with 6) Context (see below).
The schedule defines the timetable for sensing and data transmission (e.g. sense the
temperature only between 8am and 5pm on weekdays). Network communication
defines the frequency of data transmission (e.g. send data to the cloud-based IoT
platform every 60 seconds). Designing efficient sampling and scheduling strategies
and configuring the sensors accordingly is challenging. Specifically, standards need
to be developed in order to define schedules that can be used across different types
of sensor devices.

4) Data Acquisition: Such methods can be divided into two categories: based
on responsibility and based on frequency [36]. There are two methods that can be
used to acquire data from a sensor based on responsibility: push (e.g. the cloud
requests data from a sensor and the sensor responds with data) and pull (e.g. the
sensor pushes data to the cloud without continuous explicit cloud requests). Further,
based on frequency, there are two data acquisition methods: instant (e.g. send data
to the cloud when a predefined event occurs) and interval (e.g. send data to the
cloud periodically). Pros, cons, and applicabilities of these different approaches are
discussed in [36]. Using the appropriate data acquisition method based on context
information is essential to ensure efficiency.

5) Dynamicity: This means the frequency of changing positions / appearing /
disappearing of the sensors at a given location. IoT envisions that most of the objects
we use in everyday lives will have sensors attached to them in the future. Ideally,
we need to connect and configure these sensors to software platforms in order to
analyse the data they generate and so understand the environment better. We have
observed several domains and broadly identified different levels of dynamicity based

8 Perera et al.

Cloud IoT Platform

Sensor Node Sensor Node

Data Request

2
1

2
1

2
1

2
2
2
2

1 2 Response with data

Pull Push

Fig. 4: Data can be retrieved from a sensor using both push (right side) and pull (left
side) communication methods. Each method has its own advantages and disadvan-
tages which make them suitable for different situations.

on mobility2. Sensors that move/ appear/ disappear at a higher frequency (e.g. RFID
and other low-level, low-quality, less reliable, cheap sensors that will be attached to
consumables such as stationery, food packaging, etc.) can be classified as highly
dynamic. Sensors embedded and fitted into permanent structures (such as buildings
and air conditioning systems) can be classified as less dynamic. An ideal sensor
configuration platform should be able to efficiently and continuously discover and
re-configure sensors in order to cope with high dynamicity.

6) Context: Context information plays a critical role in sensor configuration in
the IoT. The objective of collecting sensor data is to understand the environment bet-
ter by fusing and reasoning them. In order to accomplish this task, sensor data needs
to be collected in a timely and location-sensitive manner. Each sensor needs to be
configured by considering context information. Let us consider a scenario related to
smart agriculture to understand why context matters in sensor configuration. Severe
frosts and heat events can have a devastating effect on crops. Flowering time is crit-
ical for cereal crops and a frost event could damage the flowering mechanism of the
plant. However, the ideal sampling rate could vary depending on both the season
of the year and the time of day. For example, a higher sampling rate is necessary
during the winter and the night. In contrast, lower sampling would be sufficient
during summer and daytime. On the other hand, some reasoning approaches may
require multiple sensor data readings. For example, a frost event can be detected
by fusing air temperature, soil temperature, and humidity data. However, if the air
temperature sensor stops sensing due to a malfunction, there is no value in sensing
humidity, because frost events cannot be detected without temperature. In such cir-
cumstances, configuring the humidity sensor to sleep is ideal until the temperature
sensor is replaced and starts sensing again. Such intelligent (re-)configuration can
save energy by eliminating ineffectual sensing and network communication.

2 It is important to note that the same object can be classified at different levels depending on the
context. Further, there is no clear definition to classify objects into different levels of dynamicity.
However, our categorization allows us to understand the differences in dynamicity.

Configuration of ‘Things’ in Smart Environments 9

4 Related Work

In this section, we review some of the state-of-the-art solutions developed by the
research community, as well as commercial business entities. Our review covers
both mature and immature solutions proposed by start-up initiatives as well as large-
scale projects. Our proposed CADDOT model as well as the SmartLink tool help to
overcome some of the weaknesses in the existing solutions.

There are commercial solutions available in the market that have been developed
by start-up IoT companies [40] and the research divisions of leading corporations.
These solutions are either still under development or have completed only limited
deployments in specialized environments (e.g. demos). We discuss some of the se-
lected solutions based on their popularity. Ninja Blocks (ninjablocks.com), Smart-
Things (smartthings.com), and Twine (supermechanical.com) are commercial prod-
ucts that aim at building smart environments [40]. They use their own standards and
protocols (open or closed) to communicate between their own software systems and
sensor hardware components. The hardware sensors they use in their solutions can
only be discovered by their own software systems. In contrast, our pluggable ar-
chitecture can accommodate virtually any sensor. Further, our proposed model can
facilitate different domains (e.g. indoor, outdoor) using different communication
protocols and sequences.

In addition, the CADDOT model can facilitate very high dynamicity and mobil-
ity. HomeOS [15] is a home automation operating system that simplifies the pro-
cess of connecting devices together. Similar to our plugin architecture, HomeOS
is based on applications and drivers which are expected to be distributed via an
on-line store called HomeStore in the future. However, HomeOS does not perform
additional configuration tasks (e.g. scheduling, sampling rate, communication fre-
quency) depending on the user requirements and context information. Further, our
objective is to develop a model that can accommodate a wider range of domains by
providing multiple alternative mechanisms, as discussed in Section 6. Hu et al. [21]
have proposed a sensor configuration mechanism that uses the information store in
TEDS [22] and SensorML [7] specifications. Due to the unavailability and unpop-
ularity of TEDS among sensor manufacturers, we simulate TEDS using standard
communication message formats, as explained in Section 6.

Actinium [26] is a RESTful runtime container that provides Web-like scripting
for low-end devices through a cloud. It encapsulates a given sensor device using a
container that handles the communication between the sensor device and the soft-
ware system by offering a set of standard interfaces for sensor configuration and
life-cycle management. The Constrained Application Protocol (CoAP),a software
protocol intended to be used in very simple electronics devices that allows them
to communicate interactively over the Internet, has been used for communication.
Pereira et al. [32] have also used CoAP and it provides a request/response inter-
action model between application end-points. It also supports built-in discovery of
services and resources. However, for discovery to work, both the client (e.g. a sen-
sor) and the server (e.g. the IoT platform) should support CoAP. However, most of
the sensor manufacturers do not provide native support for such protocols. Dynamix

10 Perera et al.

[9] is a plug-and-play context framework for Android. Dynamix automatically dis-
covers, downloads, and installs the plugins needed for a given context sensing task.
Dynamix is a stand-alone application and it tries to understand new environments
using pluggable context discovery and reasoning mechanisms. Context discovery is
the main functionality in Dynamix. In contrast, our solution is focused on dynamic
discovery and configuration of ’things’ in order to support a sensing as a service
model in the IoT domain. We employ a pluggable architecture which is similar to
the approach used in Dynamix, in order to increase the scalability and rapid exten-
sion development by third party developers. The Electronic Product Code (EPC)
[16] is designed as a universal identifier that provides a unique identity for every
physical object anywhere in the world. EPC is supported by the CADDOT model
as one way of identifying a given sensor. Sensor integration using IPv6 in building
automation systems is discussed in [24]. Cubo et al. [12] have used a Device Profile
for Web Services3 (DPWS) to encapsulate both devices and services. DPWS defines
a minimal set of implementation constraints to enable secure web service messag-
ing, discovery, description, and eventing on resource-constrained devices. However,
discovery is only possible if both ends (client and server) are DPWS-enabled.

5 Overview of the CADDOT Model

Previously, we identified several major factors that need to be considered when de-
veloping an ideal sensor configuration model for the IoT. This section presents a
detailed explanation of our proposed solution: Context-aware Dynamic Discovery
of Things (CADDOT). Figure 5 illustrates the main phases of the proposed model.

Phases in CADDOT model: The proposed model consists of eight phases: de-
tect, extract, identify, find, retrieve, register, reason, and configure. Some of the tasks
mentioned in the model are performed by the SmartLink tool and other tasks are
performed by the cloud middleware. Some tasks are performed collectively by both
SmartLink and the cloud.

1) Detect: Sensors are configured to actively seek open wireless access points
(WiFi or Bluetooth) to which they can be connected without any authorization,
because in this phase sensors do not have any authentication details. Sensors will
receive the authentication details in phase phase 8). As a result, in this phase sen-
sors are unable to connect to an available secured network. The mobile device that
SmartLink is installed in becomes an open wireless access point (hotspot) so the
sensors can connect to it. However, it is important to note that there are different
application strategies that SmartLink can use to execute the CADDOT model, as
discussed in Section 6.

2) Extract: In this phase, SmartLink extracts information from the sensor de-
tected in the previous phase. Each sensor may be designed to respond to differ-
ent message-passing sequences, as illustrated in Figure 3, depending on the sensor

3 http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

Configuration of ‘Things’ in Smart Environments 11

Scan the
environment
and detect

sensors

Detect

Identify

Find

Retrieve

Register

Extract

Reason

Configure

Use different protocols
and try to communicate

with the detected sensors
and retrieve minimum
details that will help to

identify the sensor

Fuse data collected from
multiple sources and

create a profile about the
detected sensor. Identify
the sensor by using the

profile

Find the appropriate
plugin that knows

how to
communicate with

the identified sensor

Using the correct
plugin, retrieve all

possible information
(Sensor Calender,
location, battery

level, etc)

Register the sensor
using all the collected

information in a central
repository

Configure the
sensor(s)

according to
the sensing

strategy

Process information related to
all the registered/currently

active sensors and
dynamically design the most
efficient sensing strategy by

also considering user
requirements

Fig. 5: Context-aware Dynamic Discovery of Things (CADDOT) model for config-
uration of things in the IoT paradigm consists of eight phases.

manufacturer and the sensor program developer. Even though the sensors and the
SmartLink may use the same communication technology/ protocol (e.g. TCP, UDP,
Bluetooth), the exact communication sequence can vary from one sensor to another.
Therefore, it is hard to find the specific message-passing sequence that each sen-
sor follows. To address this challenge, we propose that every sensor will respond
to a common message during the communication initiation process. Alternatively,
CADDOT can support multiple initiation messages (extraction mechanisms). How-
ever, such alternative approaches will increase the time taken to extract a minimum
set of information from a given sensor due to multiple communication attempts that
need to be carried out until a sensor successfully responds. For example, SmartLink
broadcasts a message [WHO], as illustrated in (C1) in Figure 10, where the sen-
sors are expected to respond by providing a minimum amount of information about
themselves, such as a sensor’s unique identification number, model number / name,
and manufacturer. This is similar to the TEDS mechanism discussed in [21]. It is
important to note that we propose this [WHO] constraint only for minimum infor-
mation extraction. Once the sensor is identified, subsequent communications and
heterogeneity of message-passing sequences are handled by matching plugins.

3) Identify: SmartLink sends all the information extracted from the newly de-
tected sensor to the cloud. Cloud-based IoT middleware queries its data stores using
the extracted information and identifies the complete profile of the sensor. The de-
scriptions of the sensors are modelled in an ontology4.

4) Find: Once the cloud identifies the sensor uniquely, this information is used
to find a matching plugin (also called drivers) which knows how to communicate

4 This is an extended version of an SSN ontology (www.w3.org/2005/Incubator/ssn/ssnx/ssn). The
detailed description of our extended ontology is out of the scope of this chapter.

12 Perera et al.

with a compatible sensor at full capacity. The IoT middleware pushes the plugin to
SmartLink where it is installed5.

5) Retrieve: Now, SmartLink knows how to communicate with the detected sen-
sor at full capacity with the help of the newly downloaded plugin. Next, SmartLink
retrieves the complete set of information that the sensor can provide (e.g. configu-
ration details such as schedules, sampling rates, data structures /types generated by
the sensor, etc.). Further, SmartLink may communicate with other available sources
(e.g. databases, web services) to retrieve additional information related to the sensor.

6) Register: Once all the information about a given sensor has been collected,
registration takes place in the cloud. The sensor descriptions are modelled accord-
ing to the semantic sensor network ontology (SSNO) [12]. This allows semantic
querying and reasoning at a later stage to perform operations such as sensor search
[35]. Some of the performance evaluation related to the SSN ontology and semantic
querying is presented in [39].

7) Reason: This phase plays a significant role in the sensor configuration pro-
cess. It designs an efficient sensing strategy. Reasoning takes place in a distributed
manner. The cloud IoT middleware retrieves data from a large number of sensors
and identifies their availabilities and capabilities. Further, it considers context in-
formation in order to design an optimized strategy. Context-aware reasoning is per-
formed by IoT middleware on the cloud. However, the technical details related to
this reasoning process are out of the scope of this chapter. At the end of this phase,
a comprehensive plan (i.e. sensing schedule) for each individual sensor is designed.

8) Configure: Sensors as well as cloud-based IoT software systems are config-
ured based on the strategy designed in the previous phase. Schedules, communi-
cation frequency, and sampling rates that are custom-designed for each sensor are
pushed into the individual sensors. The connections between sensors and the cloud-
based IoT software system are established through direct wireless communication
or through intermediate devices such as MOSDEN [34] so the cloud can retrieve
data from sensors. The configuration details (e.g. IP address, port, authentication)
required to accomplish the above task are also provided to the sensor.

6 Design Decisions and Applications

We made a number of design decisions during the development of the CADDOT
model. These decisions address the challenges we highlighted in earlier sections.

Security Concerns and Application Strategies: There are different ways to
employ our proposed model CADDOT as well as the tool SmartLink in real world
deployments. Figure 6 illustrates two different application strategies. It is important
to note that neither our model nor the software tool is limited to a specific device or
platform. In this paper, we conduct the experimentations on an Android-based mo-
bile phone, as detailed in Section 7. In strategy (a), a Raspberry Pi (raspberrypi.org)

5 In practice, the IoT middleware sends a request to the application store (e.g. Google Play). The
application store pushes the plugin to the SmartLink autonomously via the Internet.

Configuration of ‘Things’ in Smart Environments 13

Sensor Node

Sensor
Node

(a) Raspberry Pi (as SmartLink) (b) Mobile Phone
 (as SmartLink)

Human Robot

Communication Related to Configuration
Sensor Data Transmission

Fig. 6: Application strategies of CADDOT model and SmartLink tool. (a) usage of
static SmartLink (b) usage of mobile SmartLink.

is acting as the SmartLink tool. This strategy is mostly suitable for smart home and
office environments where WiFi is available. Raspberry Pi continuously performs
the discovery and configuration process, as explained in Section 5. Finally, Rasp-
berry Pi provides the authentication details to the sensor which is connected to the
secure home/office WiFi network. The sensor is expected to send data to the pro-
cessing server (local or on cloud) directly over the secured WiFi network. In this
strategy, SmartLink is in static mode. Therefore, several SmartLink installed Rasp-
berry Pi devices may be required to cover a building. However, this strategy can
handle a high level of dynamicity.

The strategy (b) is more suitable for situations where WiFi is not available or
less dynamic. Smart agriculture can be considered as an example. In this scenario,
sensors are deployed over a large geographical area (e.g. Phenonet [11]). Mobile
robots6 (tractors or similar vehicles) with a SmartLink tool attached to them can
be used to discover and configure sensors. SmartLink can then help to establish
the communication between sensors and sinks. The permanent sinks used in the
agricultural fields are usually low-level sinks (such as Messhablium [27]). Such
sinks cannot perform sensor discovery or configuration in comparison to SmartLink.
Such sinks are designed to collect data from sensors and upload to the cloud via 3G.

Many more different strategies can be built by incorporating the different charac-
teristics pointed out in the above two strategies. This shows the extensibility of our
solution. For example, Raspberry Pi, which we suggested for use as a SmartLink in
strategy a), can be replaced by corporate mobile phones. So, without bothering the
owner, corporate mobile phones can silently perform the work of a SmartLink.

System Architecture: The CADDOT model consists of three main components:
sensors, a mobile device (i.e. SmartLink), and the cloud middleware. All three com-
ponents need to work collectively in order to perform sensor discovery and config-
uration successfully. Figure 7 illustrates the interactions between the three compo-
nents. The phases we explained earlier relating to the CADDOT model in Figure 5
can be seen in Figure 7 as well. As we mentioned before, SmartLink is based on
a plugin architecture. The core SmartLink application cannot directly communicate
with a given sensor. A plugin needs to act as a mediator between the sensor and the
SmartLink core application, as illustrated in Figure 7. The task of the mediator is

6 In small agricultural fields, farmers themselves can carry the SmartLink over the field.

14 Perera et al.

S1

S2

S7

S3

S4

S5

S6

Plugin 1

Plugin 2

A
p

p
lic

a
tio

n
 P

ro
gr

a
m

m
in

g
In

te
rf

a
ce

 (
A

P
I)

Sensors Device

Plugin 3

S
m
ar
tL
in
k

IoT Middleware

1

Sends information extracted
from a sensor in order to

identify the matching plugin

Queries its data
sources to find
the plugin that

matches the
sensor

GSN push the plugin to
SmartLink via Google Play

2
3

4

Send the complete profile of
the sensor to the cloud

Cloud Middleware develops an
optimise sensing strategy. Sensing

strategy is pushed to the sensor
through SmartLink

5

Fig. 7: System architecture of the CADDOT model which consists of three main
components: sensors, SmartLink tool, and the cloud middleware. Interactions are
numbered in order.

to translate the commands back and forth. This means that in order to configure a
specific sensor, the SmartLink core application needs to employ a plugin that is com-
patible with both the SmartLink application itself and the given sensor. We discuss
this matter in the programming perspective later in this section.

Sensor-level Program Design: One of the most important components in the
CADDOT model is the sensor. Sensors can be programmed in different ways. In
this chapter, we propose a program design that supports all the functional require-
ments identified in Section 3. The program we propose may not be the only way
to support these requirements. Further, we do not intend to restrict developers to
one single sensor-level program design. Instead, our objective is to demonstrate one
successful way to program a sensor in such a way that it allows sensors to be re-
configured at runtime (i.e. after deployment) depending on the requirements that
arise later. Developers are encouraged to explore more efficient program designs.
However, in order to allow SmartLink to communicate with a sensor which runs
different program designs, developers need to develop a plugin that performs the
command translations. We explain the translation process using both sensor-level
program code as well as plugin code later in this section. First, we illustrate the sim-
plest sensor-level program that can be designed to perform the task of sensing and
transmitting data to the cloud in Figure 8. We refer to this program design as SPD
(Simple Program Design) hereafter. The basic structure of a sensor-level program is
explained in [27].

The main problem in this program design is that there is no way to configure
(i.e. sampling rate, communication frequency, data acquisition method) the sensor
after deployment other than by re-programming (e.g. Over the Air Programming).
However, such re-programming approaches are complex, labour-intensive and time
consuming. In Figure 9, we designed a sensor-level program that supports a com-
prehensive set of configuration functionalities. We refer to this design as CPD (Con-

Configuration of ‘Things’ in Smart Environments 15

1. Include Libraries 2. Definitions 3. Global variables declaration

void setup()
{
 4. Modules initialisation [Communication]
}
void loop()
{
 5. Connect to an access point
 [IP address, Port number]
 6. Sense the phenomenon
 7. Send information to the cloud
 8. Sleep [Communication Frequency]
}

// This code only runs once

// This code runs continuously,
 forming an infinite loop.

Fig. 8: A simple sensor-level program design (SPD) that sends and transmits data to
the cloud. It does not support dynamic discovery and configuration.

figurable Program Design) hereafter. In order to standardize the communication, we
also defined a number of command formats. However, these messaging formats do
not need to be followed by the developers as long as they share common standard-
ised command formats between their own sensor-level program and the correspond-
ing plugin. Different command formats used to accomplish different tasks in our
approach are illustrated in Figure 10. In comparison to SPD, CPD provides more
configuration functionalities. With the help of the command formats illustrated in
Figure 10, SmartLink can configure a given sensor at any time.

Each command comprises several different segments, as depicted in Figure 10.
The first segment denotes whether the command is related to configuration or a
data request. In our approach, [CON] denotes configuration and [DAR] denotes a
data request. The CPD is designed to forward the command appropriately through
IF-ELSE branches. The CPD accepts five different types of commands under the
[CON] branch. Commands are classified based on the second segment. The follow-
ing list summarises these commands. The first segment of every command contains
only three letters which makes it easy to process. The commands can be sent using
frames7 or plain strings.

• C1: This command has only one segment. This segment always contains three
letters [WHO]. This command is sent by SmartLink to a sensor. To support CAD-
DOT, every sensor should be able to handle command C1. Then the sensor needs
to respond with message M1. This is the only constraint that the sensor-level
program developers are required to adhere to.

• M1: This message is sent by the sensor to SmartLink in response to C1. M1
contains information that helps to identify the sensor in key-value pair format.
The information contained in this message is sent to the cloud IoT platform, as
explained in phase (4) in the CADDOT model illustrated in Figure 5. Detailed
explanation of this message is out of the scope of this chapter.

7 http://www.libelium.com/uploads/2013/02/data frame guide.pdf

16 Perera et al.

 Include Libraries Definitions Global variables declaration

void setup()
{
 Read the parameters[SR, CF] from a file In SD card
 Modules initialisation [Communication]
}
void loop()
{
 while(isConnected()){
 // This method tries to discover an open access point. Next, it also
 attempts to establish a connection between the sensor and SmartLink.

 RequestType = ReadSegmentOne()
 // Listen to the communication channel (e.g. WiFi)

 IF (RequestType[segment 1] == DAR){

 IF (RequestType[segment 2] == PL){
 // Sense data and send back to the requester
 }ELSE IF (RequestType[segment 2] == PT){

 // Sense and send data back continuously but temporarily
 until the request expires. Request contains the information
 such as sampling rate, communication frequency, duration

 }ELSE IF (RequestType[segment 2] == PS){
 // Sense and send data back continuously according to the
 schedule specified. contains the information such as
 sampling rate, communication frequency, start time, end time
 }
 }ELSE IF(RequestType[segment 1] == CON){

 IF(RequestType[segment 2] == SMP){
 // Change the sampling rate as specified
 }ELSE IF(RequestType[segment 2] == DCF){
 // Change the data communication frequency as specified
 }ELSE IF(RequestType[segment 2] == SCH){

 // Download the schedule file from the given location
 }ELSE IF(RequestType[segment 2] == CPR){
 // Send the complete sensor profile information
 }ELSE IF(RequestType[segment 2] == NET){
 // Store network setting such as access point, authentication
 key, IP address and port numbers
 }ELSE{
 // Send back an error message

 }
 }ELSE IF (RequestType[segment 1] == WHO){
 // Send back the identification details (e.g. SensorID)
 }ELSE{
 // Send back an error message
 }
 }
}

Fig. 9: A configurable sensor-level program design (CPD) that supports dynamic
discovery and configuration after deployment at runtime.

• C2: This command consists of two segments. The first segment [DAR] denotes
that this is a data request. The second segment [PL] denotes that the command is
a pull request which the sensor is expected to respond to with sensors data once.

Configuration of ‘Things’ in Smart Environments 17

• C3: This command consists of five segments. The first segment [DAR] denotes
that this is a data request. The second segment [PS] denotes that the sensor is
expected to push data according to the information provided in the rest of the
segments. The third segment specifies the sample rate and the fourth segment
specifies the data communication frequency rate. The final segment specifies the
duration for which the sensor needs to push data to the cloud.

• C4: This command consists of two segments. The first segment [DAR] denotes
that this is a data request. The second segment [PS] denotes that the sensor is
expected to perform sensing and data transmitting tasks according to a sensing
schedule specified in the sensing schedule file. It is expected to push data to the
cloud.

• C5: This command consists of three segments. The first segment [CON] denotes
that this is a configuration command. The second segment [SMP] denotes that
this command configures the sampling rate. The third segment holds the actual
sampling rate value that the sensor needs to sense in the future.

• C6: This command consists of three segments. The first segment [CON] denotes
that this is a configuration command. The second segment [DCF] denotes that
this command configures the data communication frequency. The third segment
holds the actual data communication frequency rate value that the sensor needs
to transmit data to the cloud in the future.

• C7: This command consists of five segments. The first segment [CON] denotes
that this is a configuration command. The second segment [SCH] denotes that
this command configures the sensing schedule. The rest of the segments con-
tain information that is essential (i.e. FTP server path, user name, password) to
download a sensing schedule file from an FTP server, as depicted in Figure 10.

• C8: This command consists of seven segments. The first segment [CON] de-
notes that this is a configuration command. The second segment [NET] denotes
that this command configures the network settings. The rest of the segments con-
tain the information that is essential to connect to a secure network (i.e. access
point name, authentication key, IP address, remote port) so the sensor can directly
communicate with the cloud IoT platform.

• C9: This command stops the sensor completely and pushes it back to a state
where the sensor listens for the next command.

• C10: This command consists of two segments. The first segment [CON] denotes
that this is a configuration command. The second segment [CPR] denotes that
the sensor is expected to reply with the complete sensor profile.

Scalable and Extensible Architecture: As we mentioned earlier, the reason for
employing a plugin architecture is to support scalability and extensibility. Plugins
that are compatible with SmartLink can be developed by anyone as long as they
follow the basic design principles and techniques explained below. Such a plugin
architecture allows us to engage with developer communities and support a variety
of different sensors through community-based development. We expect to release
our software as free and open source software in the future. We provide the main
SmartLink application as well as the standard interfaces which developers can use
to start to develop their own plugins to support different sensors. We provide sample

18 Perera et al.

WHOC1 M1 SENSOR ID MAC ID MANUFACTURER
Any information that is helpful to identify the

sensor subsequently the matching plugin

C5 CON SMP 3000 C6 CON DCF 4000

C7 CON SCH FTP path

C8 CON NET IP Address Remote PortAccess Point AuthKey

DAR PLC2 DAR PT 3000 4000 60000C3 DAR PSC4

User Name Password

C9 0

C10 CON CPR

Fig. 10: Command formats used to perform sensor configuration.

plugin source code where developers only need to add their code according to the
guidelines provided. The plugin architecture will enable more number of sensors
to be supported by SmartLink over time. Applications stores (e.g. Google Play)
built around the Android ecosystem provide an easy way to share and distribute
plugins for SmartLink. The pluggable architecture dramatically reduces the sensor
configuration time.

Let us explain how third party developers can develop plugins in such a way that
their plugins are compatible with SmartLink so that SmartLink can use the plugins
to configure sensors at runtime when necessary. In plugin development, there are
three main components that need to be considered: (1) the plugin interface written
in the Android Interface Definition Language (AIDL), (2) the plugin class written in
Java, and (3) the plugin definition in the AndroidManifest file. Figure 11 shows the
plugin interface written in AIDL. IPlugin is an interface defined in AIDL. Plugin
developers should not make any changes in this file. Instead they can use this file
to understand how the SmartLink plugin architecture works. IPlugin is similar to
a Java interface. It defines all the methods that need to be implemented by all the
plugin classes.

package au.csiro.smartlink;

import au.csiro.smartlink.beans.SensorProfile;

interface IPlugin {
 boolean setSamplingRate(int rate);
 boolean setCommunicationFrequency(int frequency);
 boolean setSchedule(in Map ftpSettings);
 boolean setNetworkSettings(in Map netSettings);
 SensorProfile getSensorProfile();
}

Fig. 11: IPlugin written in AIDL (Android Interface Definition Language) that gov-
erns the plugin structure. It defines the essential methods that need to be imple-
mented in the plugin class.

Configuration of ‘Things’ in Smart Environments 19

Figure 12 presents the basic structure of a SmartLink plugin. Each plugin is de-
fined as an Android service. SmartLink plugin developers need to implement five
methods: setSamplingRate(int rate), setCommunicationFrequency(int frequency),
setSchedule(in Map ftpSettings), setNetworkSettings(in Map netSettings) and get-
SensorProfile(). The methods are briefly explained below.

• setSamplingRate(int rate): This method needs to send a command specifying
the required sampling rate. For example, in our approach, we defined such a
command, C5, in Figure 10.

• setCommunicationFrequency(int frequency): This method needs to send a com-
mand specifying the required communication frequency. For example, in our ap-
proach, we defined such a command as C6 in Figure 10.

• setSchedule(in Map ftpSettings): This method needs to send a command speci-
fying details (e.g. user-name, password, FTP path) that are required to connect
to an FTP server and download the schedule. For example, in our approach, we
defined such a command as, C7, in Figure 10.

• setNetworkSettings(in Map netSettings):This method sends a command specify-
ing the details that are required to connect to a secure network so that direct
communication between the sensor and the cloud IoT platform can be estab-
lished. For example, in our approach, we defined such a command, C8, in Figure
10.

• getSensorProfile(): This method sends a command to the sensor by asking for
profile information. The sensor is expected to reply by providing information
such as the data structure it produces, measurement units, and so on. Details of
the sensor profiling are out of the scope of this chapter.

Figure 13 shows how the plugins need to be defined in the AndroidManifest
so that the SmartLink application can automatically query and identify them. The
Android plugin must have an intent filter which has action name au.csiro.smartlink
.intent.action.PICKPLUGIN. Developers can provide any category name.

Support and Utilize Existing Solutions: Our model utilizes a few existing so-
lutions. We employed Global Sensor Network [1] as the cloud IoT middleware. In
CADDOT, GSN performs phases 3, 4, and 7. GSN is a widely used platform in the
sensor data processing domain and is used in several European projects, including
OpenIoT [31]. MOSDEN [34] is middleware that collects sensor data. MOSDEN
is ideal for the application strategies we discussed in Section 6 (Figure 6) for use
in conjunction with SmartLink. SmartLink only performs the configuration. Sensor
data collection needs to be performed by either cloud IoT middleware or solutions
like MOSDEN. The proposed CADDOT model as well as the SmartLink tool com-
plement the other solutions proposed by us as well as other researchers. Together,
these solutions enable smooth data flow from sensors to the cloud autonomously.

20 Perera et al.

public class [Class] extends Service implements [Any Interface]{
 public int onStartCommand(Intent intent, int flags, int
 startId) {...}
 public void onDestroy() {...}

 public IBinder onBind(Intent intent) {...}

 private final IFunction.Stub mulBinder = new IPlugin.Stub(){
public boolean setSamplingRate(int rate) throws
RemoteException {...}

public boolean setCommunicationFrequency(int frequency)
 throws RemoteException {…}

 public boolean setSchedule(Map ftpSettings) throws
 RemoteException {}

 public setNetworkSettings(Map netSettings) throws
RemoteException {…}

 public SensorProfile getSensorProfile() throws
 RemoteException {}
 }
}

Fig. 12: SmartLink plugin is an Android service. This is the basic structure of a
SmartLink plugin. The body of each method needs to be added by the developer
based on the sensor-level program design.

<service
 android:name=[Plugin name]
 android:exported="true" >
 <intent-filter>
 <action android:name="au.csiro.smartlink.intent.action.PICK_PLUGIN"/>
 <category android:name="au.csiro.smartlink.intent.category.[PLUGIN_NAME]"/>
 </intent-filter>
</service>

Fig. 13: Code snippet of the plugin’s AndroidManifest file.

7 Implementation and Experiment Testbed

We deployed the SmartLink application in a Google Nexus 4 mobile phone (Qual-
comm Snapdragon S4 Pro CPU and 2 GB RAM), which runs the Android platform
4.2.2 (Jelly Bean). We deployed 52 sensors on the third floor of the CSIT building
(#108) at the Australian National University. All sensors we employed in our exper-
iment are manufactured by Libelium [27]. The sensors we used sense a wide variety
of environmental phenomena, such as temperature, proximity & presence, stretch,
humidity and so on [27]. SmartLink supports sensor discovery and configuration
using both WiFi and Bluetooth. Other communication technologies such as ZigBee
and RFID are supported through Libelium Expansion Radio Boards [27]. In order
to simulate the heterogeneity of the sensors (in terms of communication sequence),
we programmed each sensor to behave and respond differently. As a result, each
sensor can only communicate with a plugin that supports the same communication
sequence.

Configuration of ‘Things’ in Smart Environments 21

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0.1

1

10
WiFi (TCP) WiFi (UDP) Bluetooth

T
im

e
 in

 s
e

co
nd

s
(L

o
g

a
ri

th
m

ic
)

Fig. 14: Time taken (y-axis) to discover and configure a sensor step-by-step (x-axis).
The experiments were conducted using three protocols: TCP, UDP, and Bluetooth.

8 Evaluation of the Prototype

In this section, we explain how we evaluate the proposed CADDOT model and
SmartLink tool using prototype implementations. We identified ten steps performed
in the dynamic discovery and sensor configuration process. We measured the av-
erage amount of time taken by each of these steps (average of 30 sensor config-
urations). Figure 14 illustrates the results and the following steps are considered:
Time taken to (1) set up the sensor, (2) initiate connection between the sensor and
SmartLink, (3) initiate communication between sensor and SmartLink, (4) extract
sensor identification information, (5) retrieve the complete profile of the sensor, (6)
configure the sampling rate, (7) configure the communication frequency, (8) config-
ure the sensing schedule, (9) configure the network and authentication details (so
the sensor can directly connect to the cloud), and (10) connect to the secure network
using the provided authentication details.

Results: According to the results, the actual configuration tasks take less that
one second. There is a slight variation in completion time in configuration step (4)
- (9). This is due to storage access and differences in processing of configuration
commands. Sensors takes comparatively longer time to connect to a network as
well as to discover and connect to SmartLink. Especially, Bluetooth takes much
longer to scan for devices in a given environment before it discovers and connects to
SmartLink. Configuration is slightly faster when using TCP in comparison to UDP
and Bluetooth. This is mainly due to reliability. However, the time differences are
negligible. FTP is used to retrieve a scheduling file from a file server. This can take
15-25 seconds depending on the network availability, traffic, and file size. If a sensor
cannot access a server via the Internet, a file can be transferred from SmartLink to
the sensor as typical commands. Sensors generate the scheduling file using the data
it receives from SmartLink. When using WiFi, a sensor may takes up to 4.5 seconds
to connect to a secure network (e.g. WPA2). In contrast, sensors can connect to

22 Perera et al.

SmartLink’s open access point in less than four seconds. Despite the protocol we
use, sensors take 5 to 15 seconds to boot and setup themselves. The setup stage
consists of activities such as reading default configuration from files, and switching
necessary modules and components (communication modules, real-time clock, SD
card, sensor broads and so on).

9 Discussion and Lessons Learned

In what follows, we discuss major lessons we learned along with limitations. Ac-
cording to our results, it is evident that a single sensor can be configured in less than
12 seconds (i.e. assuming sensors are already booted, which takes an additional
5 to 15 seconds depending on the communication protocol). This is a significant
improvement over a manual labour intensive sensor configuration approach. Addi-
tionally, SmartLink can engage with number of sensor configuration processes at a
given time in parallel. The proposed CPD has not made any negative impact towards
the sensing functionality though it supports advance configuration capabilities. The
IF-ELSE structure used in CPD makes sure that each request gets to the destination
with minimum execution of lines (e.g. ‘PL’ request passes through only two IF con-
ditions). Such execution reduced the impact on sensing tasks while configuration
tasks are also supported efficiently. Even though a detailed discussion on data ac-
quisition methods is out of scope, it is important to note that pull, temporary push,
and schedule based push add a significant amount of flexibility where each of the
techniques is suitable to be used in different circumstances [36]. The cloud server
has the authority to decide which method to be used based on the context informa-
tion. This increases the efficiency and application scenario where the sensors can be
used in sustainable (i.e. in term of energy) manner. Once the initial discovery and
configuration of smart things are done, further configuration can be done in more
user friendly manner by using techniques such as augmented reality [19].

10 Open Challenges

In this section, we briefly introduce some of the major open research challenges in
the domain that are closely related to this work. We identify four main challenges
that provide different research directions.

Sensing strategy optimization: We briefly highlighted the importance of opti-
mizing sensing schedules based on context information in Section 3. Sensing strat-
egy development encapsulates a broad set of actions such as deciding the sensing
schedule, sampling rate, and network communication frequency for each sensor.
Such a development process needs to consider two main factors: user requirements
and availability of sensors. In IoT, there is no single point of control or authority.
As a result, different parties are involved in sensor deployments. Such disorganized

Configuration of ‘Things’ in Smart Environments 23

and uncoordinated deployments can lead to redundant sensor deployment. In order
to use the sensor hardware in an optimized manner, sensing strategies need to be
developed by considering factors such as sensor capabilities, sensor redundancies
(e.g. availability of multiple sensors that are capable of providing similar data), and
energy availability. Energy conservation is a key in sustainable IoT infrastructure
because the resources constrained nature of the sensors. We provided such an ex-
ample in Section 3 related to the agricultural domain. We believe that sensing as a
service is a major business model that could drive IoT in the future. In such circum-
stances, collecting data from all the available sensors has no value. Instead, sensor
data should be collected and processed only in response to consumer demand [37].

Context discovery: This is an important task where discovered information will
be used during a reasoning process (e.g.sensing strategy development). “Context
is any information that can be used to characterise the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction be-
tween a user and an application, including the user and applications themselves”
[2]. Further discussion on context information and its importance for the IoT is sur-
veyed in [36]. Context-based reasoning can be used to improve the efficiency of
the CADDOT model where a matching plugin can be discovered faster, especially
in situations where a perfect match cannot be found. For example, the location of
a given sensor8, sensors nearby, details of the sensors configured recently, historic
data related to sensor availability in a given location, etc. can be fused and reasoned
using probabilistic techniques in order to find a matching plugin in an efficient man-
ner. After integrating sensors into cloud-based IoT, the next phase is collecting data
from the sensors. Annotating context information to retrieve sensor data plays a
significant role in querying and reasoning them in later stages. Especially, in the
sensing as a service model, sensor data consumers may demand such annotation so
that they can feed data easily into their own data processing applications for further
reasoning and visualization tasks. Some context information can be easily discov-
ered at sensor-level (e.g. battery level, location) and others can be discovered at the
cloud-level by fusing multiple raw data items (e.g. activity detection). Such context
annotated data help to perform more accurate fusing and reasoning at the cloud level
[30].

Utilization of heterogeneous computational devices: Even though the IoT en-
visions billions of ’things’ to be connected to the Internet, it is not possible and prac-
tical to connect all of them to the Internet directly. This is mainly due to resource
constraints (e.g. network communication capabilities and energy limitations). Con-
necting directly to the Internet is expensive in terms of computation, bandwidth use,
and hardware costs. Enabling persistent Internet access is challenging and also has
a negative impact on miniaturization and energy consumption of the sensors. Due to
such difficulties, IoT solutions need to utilize different types of devices with differ-
ent resource limitations and capabilities. In Figure 15, we broadly categorise these
devices into six categories (also called levels or layers). Devices on the right side

8 Location can be represented in many ways: GPS coordinate (e.g. -35.280325, 149.113166), name
of a building (e.g. CSIT building at ANU), name of a city (e.g. Canberra), part of a building (e.g.
living room), floor of a building (e.g. 2nd floor), specific part of a room (e.g. kitchen-top).

24 Perera et al.

may use low-energy short distance wireless communication protocols to transmit
the collected sensor data to the devices on the left. Devices on the left can use long
distance communication protocols to transmit the data to the cloud for further pro-
cessing. However, the more devices we use in smart environments, the more difficult
it becomes to detect faults where an entire system could fail [44]. Providing a unified
middleware support across heterogeneity of devices with wider rage of capabilities
is an open challenge [10, 20].

Cloud (Internet)
Sensor Nodes/Networks (SN)

High-end Computational
Devices

Low-end
Computational

Devices
Sink Nodes

(e.g. Raspberry Pi)

Category 5 Category 4 Category 3 Category 2Category 6 Category 1

Low-end
(e.g. Waspmote)

High-end
(e.g. Meshlium)

H
ig

h
er

 C
at

eg
o

rie
s

Lo
w

er
 C

at
eg

or
ie

s

Fig. 15: Categorization of IoT devices based on their computational capabilities.
The devices belonging to each category have different capabilities in terms of pro-
cessing, memory, and communication. They are also different in price, with devices
becoming more expensive towards the left. The computational capabilities also in-
crease towards the left.

Security and privacy: In this work, we considered some degree of security as
briefly discussed in Section 6. However, research on security in the IoT is largely
unexplored. Security and privacy need to be provided at both sensor-level and cloud-
level. It is critical to develop a security model to protect the sensor configuration
process, considering questions such as (1) when to allow reconfiguration of a sensor,
(2) who has the authority to configure a sensor at a given time, (3) how to change
ownership of a sensor, (4) how to detect sensors with harmful programs installed
on them that may cause security threats to a network. Security and privacy concerns
related to the IoT are presented in [41]. Additionally, security challenges unique to
the sensing as a service model are discussed in [37].

11 Conclusions and Outlook

In this chapter, we addressed the challenge of integrating sensors into cloud-based
IoT platforms through context-aware dynamic discovery and configuration. Tra-
ditionally, integration of ’things’ to software solutions is considered a labour-
intensive, expensive and time-consuming task that needs to be carried out by tech-
nical experts. Such challenges hinders the non-technical users from adopting IoT
to build smart environments. To address this problem, we presented the CADDOT
model, an approach that automates the sensor discovery and configuration process in
smart environments efficiently and effortlessly by handling key challenges such as
a higher number of sensors available, heterogeneity, on-demand sensing schedules,
sampling rate, data acquisition methods, and dynamicity. It also encourages non-

Configuration of ‘Things’ in Smart Environments 25

technical users to adopt IoT solutions with ease by promoting automatic discovery
and configuration IoT devices.

In this work, we supported and evaluated different types of communication tech-
nologies (i.e. WiFi and Bluetooth), application strategies, and sensor-level program
designs, each of which has their own strengths and weaknesses. We validate the
CADDOT model by deploying it in an office environment. As CADDOT required
minimum user involvement and technical expertise, it significantly reduces the time
and cost involved in sensor discovery and configuration. In the future, we expect
to address the open challenges discussed in Section 10. In addition, we expect to
integrate our solution with other existing solutions such as MOSDEN [34] and Ope-
nIoT [31]. The functionality provided by CADDOT can improve these solutions in
a major way.

Acknowledgements Authors acknowledge support from SSN TCP, CSIRO, Australia and ICT
Project, which is co-funded by the European Commission under seventh framework program, con-
tract number FP7-ICT-2011-7-287305-OpenIoT. The Author(s) also acknowledge help and contri-
butions from The Australian National University.

References

1. K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for data processing in large-scale
interconnected sensor networks. In International Conference on Mobile Data Management,
pages 198–205, May 2007.

2. G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles. Towards a
better understanding of context and context-awareness. In Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, HUC ’99, pages 304–307, London, UK,
1999. Springer-Verlag.

3. K. Ashton. That ’internet of things’ thing in the real world, things matter more than ideas.
RFID Journal, June 2009. http://www.rfidjournal.com/article/print/4986 [Accessed on: 2012-
07-30].

4. L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Comput. Netw.,
54(15):2787–2805, Oct. 2010.

5. BCC Research. Sensors: Technologies and global markets. Market fore-
casting, BCC Research, March 2011. http://www.bccresearch.com/report/
sensors-technologies-markets-ias006d.html [Accessed on: 2012-01-05].

6. C. Bizer, P. Boncz, M. L. Brodie, and O. Erling. The meaningful use of big data: four per-
spectives – four challenges. SIGMOD Rec., 40(4):56–60, Jan. 2012.

7. M. Botts and A. Robin. Opengis sensor model language (sensorml) implemen-
tation specification. Technical report, Open Geospatial Consortium Inc, 2007.
https://portal.opengeospatial.org/modules/admin/license agreement.php?suppressHeaders=
0&access license id=3&target=http://portal.opengeospatial.org/files/%3fartifact id=12606
[Accessed on: 2011-12-15].

8. A. B. Brush, E. Filippov, D. Huang, J. Jung, R. Mahajan, F. Martinez, K. Mazhar, A. Phan-
ishayee, A. Samuel, J. Scott, and R. P. Singh. Lab of things: a platform for conducting studies
with connected devices in multiple homes. In Proceedings of the 2013 ACM conference on
Pervasive and ubiquitous computing adjunct publication, UbiComp ’13 Adjunct, pages 35–
38, New York, NY, USA, 2013. ACM.

9. D. Carlson and A. Schrader. Dynamix: An open plug-and-play context framework for android.
In Internet of Things (IOT), 2012 3rd International Conference on the, pages 151–158, 2012.

26 Perera et al.

10. M. Chaqfeh and N. Mohamed. Challenges in middleware solutions for the internet of things.
In Collaboration Technologies and Systems (CTS), 2012 International Conference on, pages
21–26, 2012.

11. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. Phe-
nonet: Distributed sensor network for phenomics supported by high resolution plant phe-
nomics centre, csiro ict centre, and csiro sensor and sensor networks tcp., 2011. http:
//phenonet.com [Accessed on: 2012-04-20].

12. M. Compton, P. Barnaghi, L. Bermudez, R. Garca-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. L. Phuoc,
L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Tay-
lor. The ssn ontology of the w3c semantic sensor network incubator group. Web Semantics:
Science, Services and Agents on the World Wide Web, 17(0):25 – 32, 2012.

13. D. Cook and S. Das. Smart Environments: Technology, Protocols and Applications (Wiley
Series on Parallel and Distributed Computing). Wiley-Interscience, 2004.

14. Cosm. Cosm platform, 2007. https://cosm.com/ [Accessed on: 2012-08-05].
15. C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and V. Bahl. An operat-

ing system for the home. In Symposium on Networked Systems Design and Implementation
(NSDI), USENIX, April 2012.

16. EPCglobal. Epc tag data standard version 1.5. Standard specification, EPCglobal, August
2010. http://www.gs1.org/gsmp/kc/epcglobal/tds/tds 1 5-standard-20100818.pdf [Accessed
on: 2011-08-16].

17. GSN Team. Global sensor networks project, 2011. http://sourceforge.net/apps/trac/gsn/ [Ac-
cessed on: 2011-12-16].

18. P. Guillemin and P. Friess. Internet of things strategic research roadmap. Techni-
cal report, The Cluster of European Research Projects, September 2009. http://www.
internet-of-things-research.eu/pdf/IoT Cluster Strategic Research Agenda 2009.pdf.

19. V. Heun, S. Kasahara, and P. Maes. Smarter objects: using ar technology to program physical
objects and their interactions. In CHI ’13 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’13, pages 961–966, New York, NY, USA, 2013. ACM.

20. Y. Hong. A resource-oriented middleware framework for heterogeneous internet of things. In
Cloud and Service Computing (CSC), 2012 International Conference on, pages 12–16, 2012.

21. P. Hu, J. Indulska, and R. Robinson. An autonomic context management system for pervasive
computing. In Pervasive Computing and Communications, 2008. PerCom 2008. Sixth Annual
IEEE International Conference on, pages 213 –223, march 2008.

22. IEEE Instrumentation and Measurement Society. Ieee standard for a smart transducer interface
for sensors and actuators wireless communication protocols and transducer electronic data
sheet (teds) formats. IEEE Std 1451.5-2007, pages C1 –236, 5 2007.

23. International Data Corporation (IDC) Corporate USA. Worldwide smart connected device
shipments, March 2012. http://www.idc.com/getdoc.jsp?containerId=prUS23398412 [Ac-
cessed on: 2012-08-01].

24. M. Jung, C. Reinisch, and W. Kastner. Integrating building automation systems and ipv6 in
the internet of things. In Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2012 Sixth International Conference on, pages 683–688, 2012.

25. J. Kiljander, J. Takalo-Mattila, M. Etelapera, J.-P. Soininen, and K. Keinanen. Enabling
end-users to configure smart environments. In Applications and the Internet (SAINT), 2011
IEEE/IPSJ 11th International Symposium on, pages 303–308, 2011.

26. M. Kovatsch, M. Lanter, and S. Duquennoy. Actinium: A restful runtime container for script-
able internet of things applications. In Internet of Things (IOT), 2012 3rd International Con-
ference on the, pages 135–142, 2012.

27. Libelium Comunicaciones Distribuidas. libelium, 2006. http://www.libelium.com/ [Accessed
on: 2012-011-28].

28. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data:
The next frontier for innovation, competition, and productivity. Technical report, McKinsey
Global Institute, May 2011. http://www.mckinsey.com/Insights/MGI/Research/Technology
and Innovation/Big data The next frontier for innovation [Accessed on: 2012-06-08].

Configuration of ‘Things’ in Smart Environments 27

29. M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris. Smarter cities and their
innovation challenges. Computer, 44(6):32–39, 2011.

30. Y. Oh, J. Han, and W. Woo. A context management architecture for large-scale smart environ-
ments. Communications Magazine, IEEE, 48(3):118–126, 2010.

31. OpenIoT Consortium. Open source solution for the internet of things into the cloud, January
2012. http://www.openiot.eu [Accessed on: 2012-04-08].

32. P. Pereira, J. Eliasson, R. Kyusakov, J. Delsing, A. Raayatinezhad, and M. Johansson. En-
abling cloud connectivity for mobile internet of things applications. In Service Oriented Sys-
tem Engineering (SOSE), 2013 IEEE 7th International Symposium on, pages 518–526, 2013.

33. C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Dynamic con-
figuration of sensors using mobile sensor hub in internet of things paradigm. In IEEE 8th
International Conference on Intelligent Sensors, Sensor Networks, and Information Process-
ing (ISSNIP), pages 473–478, Melbourne, Australia, April 2013.

34. C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Mosden: An
internet of things middleware for resource constrained mobile devices. In Proceedings of the
47th Hawaii International Conference on System Sciences (HICSS), Hawaii, USA, January
2014.

35. C. Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopoulos. Context-aware
sensor search, selection and ranking model for internet of things middleware. In IEEE 14th
International Conference on Mobile Data Management (MDM), Milan, Italy, June 2013.

36. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context aware computing for
the internet of things: A survey. Communications Surveys Tutorials, IEEE, 2013. (in press).

37. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Sensing as a service model for
smart cities supported by internet of things. Transactions on Emerging Telecommunications
Technologies (ETT), 2014. (in press).

38. C. Perera, A. Zaslavsky, P. Christen, A. Salehi, and D. Georgakopoulos. Capturing sensor data
from mobile phones using global sensor network middleware. In IEEE 23rd International
Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pages 24–29,
Sydney, Australia, September 2012.

39. C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos. Sensor
search techniques for sensing as a service architecture for the internet of things. IEEE Sensors
Journal, 2014. (in press).

40. Postscapes.com. A showcase of the year’s best Internet of Things projects, 2012. http://
postscapes.com/awards/winners [Accessed on: 2013-01-10].

41. R. Roman, P. Najera, and J. Lopez. Securing the internet of things. Computer, 44(9):51–58,
2011.

42. X. Sheng, J. Tang, X. Xiao, and G. Xue. Sensing as a service: Challenges, solutions and future
directions. Sensors Journal, IEEE, 13(10):3733–3741, 2013.

43. T. Shon and Y. Park. Implementation of rf4ce-based wireless auto configuration architecture
for ubiquitous smart home. In Complex, Intelligent and Software Intensive Systems (CISIS),
2010 International Conference on, pages 779–783, 2010.

44. J.-Y. Son, J.-H. Lee, J.-Y. Kim, J.-H. Park, and Y.-H. Lee. Rafd: Resource-aware fault diag-
nosis system for home environment with smart devices. Consumer Electronics, IEEE Trans-
actions on, 58(4):1185–1193, 2012.

45. H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelffle. Vision and challenges for realising the
internet of things. Technical report, European Commission Information Society and Media,
March 2010. http://www.internet-of-things-research.eu/pdf/IoT Clusterbook March 2010.
pdf [Accessed on: 2011-10-10].

46. M. Weiser, R. Gold, and J. S. Brown. The origins of ubiquitous computing research at parc in
the late 1980s. IBM SYSTEMS JOURNAL, 38(4):693–696, 1999.

