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In recent years, Federated Learning (FL) and the Internet of Things (IoT) have enabled numerous Artificial
Intelligence (AI) applications. FL offers advantages over traditional Machine Learning (ML) and Deep Learning
(DL) by shifting model training to the edge. However, the dynamic nature of IoT environments often interferes
with FL’s ability to converge quickly and deliver consistent performance. Therefore, a self-adaptive approach
is necessary to react to context changes and maintain system performance. This paper provides a systematic
overview of current efforts to integrate self-adaptation in FL for IoT. We review key computing disciplines,
including Self-Adaptive Systems (SAS), Feedback Controls, IoT, and FL. Additionally, we present (i) a multidi-
mensional taxonomy to highlight the core characteristics of self-adaptive FL systems and (ii) a conceptual
architecture for self-adaptive FL in IoT, applied to Anomaly Detection (AD) in smart homes. Finally, we discuss
the motivations, implementations, applications, and challenges of self-adaptive FL systems in IoT contexts.
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1 INTRODUCTION
The Internet of Things (IoT) transforms cities, homes, and workplaces into interconnected, effi-
cient, and responsive environments [78]. By 2030, the IoT ecosystem is projected to encompass
125 billion devices [24]. This explosive growth has enabled numerous Artificial Intelligence (AI)
applications that leverage previously unavailable massive datasets [86]. However, data privacy
concerns prevent the direct use of this data for AI applications. As a result, Google introduced
Federated Learning (FL) to allow AI systems to learn from distributed data without compromising
privacy. FL has found applications across diverse domains. In healthcare, medical organisations can
collaborate on training Machine Learning (ML) diagnostic models while keeping patient records
secure. Manufacturing companies can jointly develop early fault detection systems through shared
model training. Even domestic users benefit from FL in preventing cyber-physical attacks on IoT
devices. This convergence of IoT and FL has led to a new paradigm called the Internet of Federated
Things (IoFT) [51]. IoFT enables devices to build intelligent analytics and models collaboratively
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while maintaining data stored locally. Additionally, IoFT offers multiple advantages beyond privacy
preservation, including cost-effectiveness, diversity, and reduced computational requirements. Nev-
ertheless, this new paradigm faces rising complexity due to unpredictable operating environments
(e.g., weather variations and service delivery uncertainties). As a result, the Self-adaptive System
(SAS) has appeared as a solution, enabling autonomous responses that maintain service quality
[40]. This paper examines how the research community has leveraged SAS properties to overcome
IoFT challenges. Table 1 provides a reference for all abbreviations used in this article.

1.1 Existing Surveys
Numerous studies have demonstrated the viability of SASs across various contexts. Table 2 sum-
marises the analysis of prior research on SASs and self-adaptive properties in IoFT systems. Interest
in SASs increased after IBM introduced the vision of autonomic computing in 2001 [40] that empha-
sised the need for systems capable of autonomous operation to manage complexity. Early reviews
of autonomic computing explored motivations, methodologies, and applications but did not include
detailed discussions on SAS evaluation [44]. Salehie and Tahvildari [96] provided a more extensive
analysis, using a question-based framework to examine self-adaptive properties. Building on this,
Krupitzer et al. [53] developed a taxonomy of self-adaptation mechanisms, offering a comprehensive
classification. Elhabbash et al. [28] extended these discussions to software engineering, covering
definitions and engineering practices for self-awareness in software systems. While these surveys
provide comprehensive insights into SAS, few explicitly examine the uniqueness of self-adaptive
properties in IoFT systems. Some studies partially address these aspects. For instance, Abdulrahman
et al. [1] explore self-optimisation for resource management in federated environments, Zhang
et al. [117] propose solutions for privacy and statistical heterogeneity, and Bellavista et al. [10]
emphasise communication efficiency and privacy. However, these efforts do not explicitly focus
on integrating SAS within the IoFT domain. Petri et al. [84] work shares a few similarities to our
work, yet the main focus of their work is to apply resource automation to reduce the complexity
requirements of industrial workflows for edge native applications.

1.2 Contributions
Despite the availability of systematic reviews on both SAS and FL, most existing studies treat
these topics independently. Additionally, no comprehensive study has addressed self-adaptive IoFT
systems. Therefore, our contributions are outlined as follows:

- We have thoroughly evaluated literature related to the implementation of self-adaptive
IoFT systems.

- We briefly define SAS, FL, and IoT and their unique characteristics and relationships.
- We introduce our taxonomy, highlighting the main properties of self-adaptive IoFT systems.
- We cover aspects of self-adaptive IoFT systems, such as the context, motivations, implemen-
tations and their use in key application areas, research challenges and future directions.

- We introduce a conceptual architecture with MAPE-K feedback loop for self-adaptive IoFT,
demonstrated through Anomaly Detection (AD) in smart home environments.

1.3 Paper Structure
The rest of this paper is structured as follows: Section 2 introduces key topics and terminology
for IoFT. Section 3 highlights the methodology for this survey. Section 4 presents the definition,
motivation, implementation, and application of self-adaptive IoFT. In this section, we also introduce
feedback control for self-adaptive IoFT and demonstrate how it works. An AD classification for
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Table 1. List of Abbreviations

Phrase Acronym Phrase Acronym
Internet of Federated Things IoFT Research Question RQ
Federated Learning FL Inclusion Criteria IC
Internet of Things IoT Exclusion Criteria EC
Industrial Internet of Things IIoT Transmission Control Protocol TCP
Self-adaptive System SAS User Datagram Protocol UDP
Machine Learning ML Internet Protocol IP
Reinforcement Learning RL Remote Procedure Call RPC
False Positive FP True Positive TP
Deep Learning DL Software-Defined Networking SDN
Anomaly Detection AD Virtual Machine VM
Artificial Intelligence AI Systematic Literature Review SLR
Independent and Identically Distributed IID Stochastic Gradient Descent SGD
Non-Independent and Identically Distributed Non-IID Neural Network NN
Network Functions Virtualization NFV Systematic Literature Review SLR
Supervisory Control and Data Acquisition SCADA Programmable Logic Controller PLC

Table 2. Previous Survey Comparison

|Paper |Year |Method |Domain |Focus |Studies |Self-adaptation System
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[44] 2008 Adh AC C|H|O|P N/A N/A Ex ✓ ✓ x ✓ x
[96] 2009 Adh SE C|H|O|P|A|D|CA N/A N/A Ex ✓ ✓ ✓ ✓ x
[53] 2015 Adh AC C|H|O|P|A|D|CA N/A N/A Ex ✓ ✓ ✓ ✓ x
[28] 2019 SLR SE H|P|A|D|CA 865 74 Ex ✓ ✓ ✓ ✓ x
[3] 2022 SLR CPS H|P|A|D|CA 266 30 Ex ✓ ✓ ✓ ✓ x
[1] 2021 Adh FL O N/A N/A x P/C P/C P/C ✓ ✓
[117] 2021 Adh FL D|P|L|CA N/A N/A Im P/C P/C P/C ✓ ✓
[10] 2021 Adh FL D|P|CA Ex N/A Im P/C P/C P/C ✓ ✓
This Paper SLR FL C|H|O|P|A|D|CA 290 17 Ex/Im ✓ ✓ ✓ ✓ ✓

C: Self-configuring H: Self-healing O: Self-optimization P: Self-protecting A: Self-awareness, D: Self-adaption M: Self-managing L: Self-
learning, CA: Context-awareness SLR: Systematic literature review Adh: Ad hoc Ex: Explicit Im: Implicit IoFT: Internet of Federated
Things, FL: Federated learning SE: Software engineering AC: Autonomic computing CPS: Cyber–physical system P/C: Partial coverage,
N/A: Not available

a smart home use case is presented in Section 4.8 to apply the conceptual architecture for self-
adaptive IoFT. We discuss challenges and future research directions for self-adaptive IoFT in Section
5. Finally, we provide concluding comments in Section 6.

2 BACKGROUND
2.1 Self-adaptive IoT Systems
SASs address the challenges of managing complex systems under runtime uncertainty. The research
community introduced the concept of SAS [96] [49] [31], describing a system that can configure
itself using a variety of mechanisms to preserve system quality within an unstable environment.
Uncertainties can have different forms, such as introducing a new device to the current network,
adapting to a new user behaviour, or responding to an unknown event in cloud resources. Therefore,
a system that can adapt to the dynamic environment is crucial. The core design philosophy of
a SAS is to distinguish between the adaptation logic that maintains or enhances certain system
qualities and the managed resources that executes the domain-specific functions of the application.
This architectural design principle offers valuable insights for developing self-adaptive IoT systems
which operate in dynamic and heterogeneous environments. A number of system architectures
and approaches to adaptation have been proposed in the last two decades for designing SASs. We
briefly discuss the key conceptual designs for developing and using SAS in the literature.
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(a) Autonomic feedback loop (b) MAPE-K model

Fig. 1. Conceptual designs of autonomic feedback loop and original MAPE-K model

2.1.1 Autonomic feedback loop . Driven by autonomic communication and distributed computing
paradigms, Dobson et al. [26] proposed an autonomic control loop as shown in Figure 1a to
enable self-adaptation to autonomic communication. Their suggestion states that the system begins
gathering information from various sources, such as network traffic, sensor readings, user context,
and application requirements. The data is analysed using different techniques, such as decision
theory and risk assessment. This analysis is used to capture the system’s current state, subsequently
used to make decisions. The decision-making stage is followed by an action phase, which provides
instructions to a system administrator or another actuation mechanism.

2.1.2 Traditional and MAPE-K Feedback Loop. The MAPE feedback control loop is a widely rec-
ognized engineering approach that enables self-adaptation. It consists of four computational
components: (M)onitor, (A)nalyze, (P)lan, and (E)xecute [49]. The monitoring stage initiates the
control loop by gathering relevant data from the environment to represent the system’s current
state. Following this, the system enters the analysis stage, which examines the monitoring phase
output. Various methods can be used during this stage to organize and interpret the information,
which will be discussed further in Section 4.3. Next, in the planning stage, the system defines a set
of actions to adapt the managed resources. This allows for a reactive response to events that may
arise over time. Finally, in the execution stage, the planned actions and responses are implemented
to enable adaptation within the system. Additionally, the MAPE-K feedback loop enhances the
original MAPE model by incorporating a knowledge base, which facilitates data sharing across all
computational components, as illustrated in Figure 1b.

2.1.3 Architecture-based Self-adaptation. Oreizy et al. [80] present one of the earliest architecture
for self-adaptation. Unlike other self-adaptation methods, Oreizy’s approach features a two-phase
model for SASs. The two phases are evolution management and adaptation management, both of
which enclose key processes essential for achieving the system’s goals and objectives. In the evolu-
tion management phase, various components are utilized to implement changes and consistently
gather observations. The primary purpose of this phase is to minimize changes and accidental
errors during system operation. Evolution management focuses on applying changes over time
while mitigating associated risks. In contrast, the adaptation management phase assesses system

J. ACM, Vol. 37, No. 4, Article 111. Publication date: 2025.



Self-adaptive Federated Learning in Internet of Things Systems: A Review 111:5

behaviour to respond appropriately and determine the necessary adaptations. Critical practices in
this phase include monitoring evaluations and planning for change. Overall, this model addresses
the challenges of unexpected inconsistencies and errors.

2.1.4 Rainbow Framework. Garlan et al. [31] introduced the rainbow framework, which integrates
a system’s architectural model in its runtime system in contrast to conventional applications of
software architecture as a purely design-time artefact. Developers of self-adaptation capabilities
specifically use the software architecture model of a system to track and analyse the system.
Therefore, the rainbow framework design consists of two layers: the System layer and the Ar-
chitecture layer. Separating the system design reduces the development cost and increases the
framework’s usability since it can be used with any system, such as a legacy system. Rainbow
realises self-adaptation by using the model manager to support the constraint evaluator, which
provides reasoning features for the current system and identifies the current system’s behaviour.
The reasoning features will support the planning for the following action through the adaptation
engine, which will later be translated to action via the adaptation executor.

2.1.5 The Common Features of SAS. We listed some of the approaches in the literature to enable
SASs. These self-adaptation techniques share some common features, which can be summarised
into three main observations. First, one crucial feature is separating the control logic and managed
resources. This separation enhances the usability and portability of these approaches, as it allows
for easy adaptation to new or existing systems. Moreover, it reduces the system’s complexity by
splitting it into small subsystems. From a system design perspective, the separation allows the
engineers to focus more on system operation and maintenance of system quality rather than on the
system interface with the adaptation logic component. Second, reducing the number of adaptation
logic and managed resource interactions is one of the main objectives. As a result, the system
permits costly operations on the adaptation logic component. It returns feedback as one or more
actions to apply on managed resources or notify the system administrator. Third, the main structure
of the adaptation cycle in these approaches contains several steps. All these steps involve state
management, sharing common variables and system configurations to synchronise data across all
the components.

The observations above are essential for designing and operating self-adaptive IoFT systems.
In the context of IoFT, separating control logic and managed resources aligns with the distributed
nature of FL, where adaptation logic typically resides at the FL server, and IoT devices act as managed
resources. This separation supports scalability and facilitates the integration of heterogeneous
devices. Additionally, minimising interactions between adaptation logic and managed resources is
essential for reducing communication overhead, where excessive communication in FL between the
FL server and client is undesirable. These principles collectively enable self-adaptive IoFT systems
to deliver efficient and scalable performance in diverse, real-world applications.

2.2 Federated Learning in IoT Systems
2.2.1 Definition. Machine Learning use across IoT devices can be both centralised and decentralised,
i.e. a central server to carry out learning vs. use of distributed learning – each has its advantages and
disadvantages [6]. The FL paradigm for IoT is a new addition to these methods. FL applications can
be seen in a variety of fields, including smart city [64], healthcare [107], recommendation systems
[109], edge network [114], electric grid [100], vehicular ad hoc network [58] and blockchain [54].
In contrast to centralised ML approaches, FL inherently enhances security and privacy by keeping
data localised at the edge. In this framework, data generated on edge devices is used for local
training of ML models rather than being transmitted to a central server. Consequently, only model

J. ACM, Vol. 37, No. 4, Article 111. Publication date: 2025.



111:6 Aljohani, et al.

Fig. 2. Architectural design for (a) centralised learning vs. (b) federated learning

parameters are exchanged between the edge devices and the cloud server, as shown in Figure 2.
The federated learning process generally includes three main steps:

• Step 1: A FL server initiates the training task and creates an initial global ML model. The
FL server also determines the list of contributing clients, the number of rounds and the
aggregation process for all incoming parameters.

• Step 2: After receiving the model from the FL server, the FL clients engage in training
using their local data. After completing this training phase, they transmit the newly refined
model back to the federated server.

• Step 3: After receiving the refined models from FL clients, the FL server aggregates the
received model parameters to create an updated global model. Subsequently, the global
model is redistributed to all participants, initiating another training round.

These processes continue until the FL server reaches the maximum number of rounds or converges
to a known error bound. In the literature, the terms generalisation and personalisation are used to
describe different aspects of model performance. In the context of FL, generalisation refers to the
model’s ability to perform well on unseen data drawn from a distribution similar to the clients’
training data, as highlighted in Mora et al. [74]. Personalisation, on the other hand, denotes the
model’s capacity to quickly adapt to the local data of individual clients, as discussed in Tan et al.
[102] and Wang et al. [106]. Additionally, communication efficiency in FL is closely tied to the
model’s convergence speed. A model that generalises well typically requires fewer communication
rounds to reach a convergence point in test accuracy or loss. Therefore, efficient aggregation
methods and other optimisation strategies are often employed to improve convergence and reduce
communication overhead. The literature introduces many FL aggregation approaches. The most
common method is Federated Averaging – FedAvg [72]. In this approach, the algorithm tries to
reduce the loss function and reach convergence by averaging the received model’s weights from
the client, making it the baseline of FL. The FedSGD algorithm is commonly used in Deep Learning
(DL), as it aggregates gradients and performs one step of gradient descent [72]. However, FedAvg
distributes updated weights instead of gradients, allowing FL clients to perform multiple batch
updates on local data. If all FL clients have the same initialisation model parameters, averaging the
gradients in FedSGD is equivalent to averaging the weights in FedAvg.

2.2.2 Data Partitioning. An essential stage when designing a FL system is to analyse data distribu-
tion over samples and feature spaces. Therefore, the FL system can be typically categorised into
horizontal FL, vertical FL, and hybrid FL, as shown in Figure 3.
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Fig. 3. Data partitioning types in FL

Horizontal / Example-based FL. The datasets of participants may be different or have a limited
intersection, yet the feature space is identical. Horizontal FL for partitioning data occurs when
multiple participants attempt to enhance ML model performance on similar tasks – one of the most
widely used approach in FL research. As local data is in the same feature space, participants can train
their local models using the same ML model architecture and their local data. Therefore, FedAvg
has been used in horizontal FL to average all local models. A typical application is a Wake-word
detector [56] and a word prediction application [99].

Vertical / Feature-based FL. The data space between the participants is the same, but it differs in
the feature space. For example, assuming we want to make a generalised model that works across
different applications, we can combine features belonging to different applications to train one
global model. This type of data partitioning requires a different approach to achieve the FL task.
For instance, entity alignment techniques can acquire knowledge between participants and identify
the overlapping samples between participants [119]. Cheng et al. [22] proposed a new method for
vertical FL that allows participants to train gradient-boosting decision trees collaboratively without
losing information. Their approach finds commonalities between the data of different FL clients
that join the decision tree process, while still preserving FL client’s privacy.

Hybrid / Transfer FL. This involves a combination of both horizontal and vertical FL data
partition. Another name used in literature is Federated Transfer Learning. The main reason for
introducing this hybrid data partitioning is that if we have two or more FL clients with overlapping
sample data and features, the FL will perform poorly due to the heterogeneity of data and feature
spaces. An example of an application that could benefit from hybrid FL is a marketing company
that collects customer data to launch a marketing campaign in different countries. Due to cultural
variations, some countries may have more features than others that work well to predict the
marketing campaign’s success within a country. However, there is a small intersection in the
feature space, such as participant age, which can be generalised across countries. Furthermore,
due to the different geographic locations of the two marketing campaigns, the data overlap would
be negligible. As a result, hybrid FL provides benefit from both data partitioning techniques by
transferring learning [81] to another FL client. Liu et al. [65] provide a secure transfer FL system
that uses shared features and samples to learn a representation of FL clients.
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2.2.3 Federation Scale. The classification of FL scaling encompasses cross-device [111] and cross-
application domain (referred to as “cross-silo") [42] based on the number of participants and the
volume of data distributed within the federation.

Cross-Silo. It is usually used in cross-domain FL, such as banking or medicine, or for different
geographically distributed data centres. Cross-Silo FL leverages the extensive datasets from a
small number of FL clients to enhance the training of a global model. The number of FL clients
is usually small, typically encompassing companies or organisations. An example of cross-silo
includes YouTube, which shows targeted advertisements by training models using data collected
from different geographical locations and storing them in the nearest Google data centre. Due
to the flexibility of cross-silo FL, data partitioning could be either example-based (horizontal) or
feature-based (vertical). Moreover, many FL clients are incentivised to train a model using all their
data in the cross-silo context. However, they cannot exchange their data directly due to privacy
constraints, regulatory limitations, or even when they cannot organise their data to meet FL’s
initial data requirements.

Cross-Device. There are potentially a vast number of FL clients, but only a tiny fraction are
available at any given time. The type of FL client can vary due to the heterogeneity of devices
such as smartphones and IoT devices. Most of these devices have limited computational resources,
making them ineffective for performing the training task. In this case, the FL server must be
able to handle all revised local models to develop a global training model. For example, Google
suggested an FL-based keyboard suggestion using end-user devices to train the keyboard suggestion
model locally [36]. Similarly, Apple utilises cross-device settings to teach Siri to recognise various
voices [12]. Cross-device scaling is highly prevalent in IoT applications, often involving large-
scale, distributed FL clients. However, this setup introduces additional challenges, such as client
availability fluctuations, inconsistent local training performance, and communication overhead
due to intermittent connectivity and limited device resources. Moreover, the inherent nature of
the cross-device FL setting makes it nearly impossible to directly address or index all participating
clients. This limitation reduces the system’s reliability compared to cross-silo FL, where each client
can be easily identified and accessed [42]. These challenges emphasise the need for a self-adaptive
IoFT approach that dynamically reduces constraints, ensuring a balance between model accuracy
and overall system performance across all FL clients.

2.2.4 FL with Heterogeneous IoT Systems. The heterogeneity of IoT systems poses a significant
challenge in FL. Data in these environments are often collected from diverse sources, such as
smartphones, cameras and smart sensors, each with varying characteristics like data quality and
volume. This results in Non-Independent and Identically Distributed (non-IID) data, a common
challenge in FL systems. Such non-IID data can lead to model divergence, slower convergence,
and an overall reduction in performance [120] [59]. The variations among FL clients in IoFT
systems are more noticeable in cross-device settings compared to cross-silo settings, as shown in
Section 2.2.3. This is because the heterogeneity problem extends beyond the data collected by the
FL clients. Ye et al. [113] categorised the heterogeneous aspects of FL into four types: statistical,
model, communication, and device heterogeneity.

Statistical Heterogeneity. It refers to the non-IID nature of data across clients, where local
datasets can differ significantly in terms of features, labels, or distributions. This disparity leads
to biased model updates, preventing the FL system from converging effectively and limiting its
ability to generalise beyond the training data. To address these issues, optimisation frameworks
such as FedOpt propose adaptive approaches where FL clients are not restricted to SGD but can
utilise alternative optimisers (e.g., Adam, Yogi). To enhance local training and encourage more
unbiased aggregation amongst nodes[87]. Additionally, server-side optimisation techniques can be
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integrated. For example, Hsu et al. [41] introduce FedAvgM, which incorporates server momentum
to reduce the effects of non-IID data that are common in conventional FedAvg implementations.

Model heterogeneity. It arises when FL participants use different model architectures due to
variations in computational capabilities or application-specific requirements. This variation makes it
challenging to aggregate model parameters effectively. To address this, methods such as knowledge
distillation [75] and personalised FL approaches [102] align shared knowledge across participants,
while also allowing local models to retain features tailored to their specific contexts.

Communication heterogeneity. It reflects IoT device network connectivity, bandwidth, and
latency differences. Some clients may experience delays, limited connectivity, or even drop out
during training, causing disruptions to the FL process. Asynchronous FL [21] and dropout-resilient
aggregation [66] strategies are commonly used to overcome these issues and maintain robust
training despite communication variability.

Device heterogeneity. It refers to variations in hardware capabilities, such as processing power,
memory, and energy efficiency. These differences can restrict some IoT devices from participating
effectively in FL due to resource constraints. To address this, lightweight models, model compression
techniques [35], and resource-aware adaptation methods [108] are employed to ensure that even
resource-constrained devices can contribute effectively to the training process.

2.2.5 ML Techniques. IoFT can utilse several ML techniques. The selection of techniques is based
on the goal that needs to be achieved and the type of data available. Many domains utilise different
ML techniques along with SASs. ML techniques can make use of Bayesian Theory [43][68][43],
Clustering [48], Fuzzy Learning [98], Genetic Algorithms [4] [20], Neural Networks (NN) [25][39],
and Decision Trees [18][45][92]. Saqutri and Lee [97] provide a comprehensive review of ML for
SASs. A recent analysis of both qualitative and quantitative synthesis of 231 studies that reflect the
state-of-the-art in federated machine learning can be found in [67].

2.2.6 FL Frameworks. Many frameworks are used in the FL research community. These frameworks
were primarily created to be implemented on real-world systems. Some well-known frameworks
are PySyft [94], FedML [37], LEAF [17], Flower [11], Clara [79], PaddleFL [105], Open FL [89],
TensorFlow-Federated [103], FATE [110]. Burlachenko et al. [16] present FL_PyTorch, an FL simu-
lator, to deduce the preliminary required to implement FL without expert knowledge.

2.2.7 The Relationship Between FL and IoT. Several limitations regarding the current IoT ecosystem
paradigm for implementing ML tasks must be noted. These limitations include lack of data avail-
ability, violation of end-user privacy, high communication costs, heterogeneity of IoT devices, and
challenges in scalability, availability, and reliability of ML functionality [55]. FL plays an essential
role in addressing the limitations of ML in the IoT domain. FL can be used to overcome the lack
of data availability by allowing several parties to join the collaboration and share their model
parameters trained within other parties’ local data. The conventional approach for training ML in
the IoT domain requires all benefited parties to share their data with a central server to perform
the model training. Many organisations, particularly in healthcare, may be hesitant to embrace
the idea of collaboration due to concerns about privacy violations related to sharing end-user data.
FL discourages all parties from sharing their local data to maintain privacy. Instead, participants
can share model parameters, such as gradients and weights. Moreover, the communication costs
associated with offloading local data to the cloud are critical for the traditional ML in IoT systems.
Additionally, the heterogeneity of the IoT introduces new challenges due to the capabilities of IoT
devices, which can affect the overall training process and the performance of the global model.
The architecture of FL provides a novel solution for both communication costs and the diversity
of IoT devices by taking advantage of the distributed nature of FL and the type of data required
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Fig. 4. Research methodology stages [23].

from joined parties. Each FL client is only required to share a small amount of data, processing
less payload and improving network bandwidth. Moreover, the FL server’s aggregation process
can efficiently be utilised to handle the diversity of IoT devices by leveraging different incentive
mechanisms to reward FL clients based on their contributions, such as data quality and quantity.
One major challenge of conventional ML systems in the IoT domain is their scalability, availability,
and reliability due to centralised training on a single server, which increases vulnerability to threats.
Additionally, as IoT devices increase in number, handling scalability is overwhelmingly complex.
In the FL architecture, the FL client is responsible for training a global model with its local data,
and the FL server will be responsible for global model initiation, including aggregating all FL
client contributions. FL clients are not required to join the training round and can be disconnected
anytime. However, they will lose the benefit of FL by obtaining the most updated model. In FL,
aggregation techniques are designed to manage many FL clients and measure their contribution to
the quality of the overall (global) model. One key objective of adapting IoFT is to overcome the
limitations of conventional ML systems when applied to continuously changing environments.

3 REVIEWMETHODOLOGY
The systematic literature review (SLR) is valuable for assessing papers that meet pre-defined
eligibility criteria [73]. In addition, the SLR is concerned with identifying, analysing, and assessing
research findings relevant to specified research questions. To conduct this work, we performed
both manual and automatic searches. We explored the implementation of self-adaptive IoFT in
edge, fog, and cloud computing scenarios. We used backwards and forward reference searching
methods to identify the most relevant results. We followed the research methodology outlined in
Figure 4.

• Stage 1 : Research Questions: We intend to present a comprehensive and structured overview
of all significant self-adaptive IoFT articles related to the following research questions.
– RQ1: What is the definition of self-adaptive IoFT systems?
– RQ2: What are the characteristics of self-adaptive IoFT systems?
– RQ3: What is the feedback loop architecture for self-adaptive IoFT systems?
– RQ4: What are the primary motivations for using self-adaptive IoFT systems?
– RQ5: What technical considerations for implementing self-adaptive IoFT systems?
– RQ6: How are self-adaptive IoFT systems evaluated?
– RQ7: What is the reality of self-adaptive IoFT systems?
RQ1 addresses the definition of a self-adaptive IoFT in the literature and its different
interpretations in Section 4.1. RQ2 is motivated by the need to define and characterise
self-adaptive IoFT capabilities. Additionally, we summarise several existing taxonomies
used in the literature to identify the primary characteristics of self-adaptive IoFT in Section
4.2. RQ3 addresses the adaptation logic and the conceptual architecture of feedback loop
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control for Self-adaptive IoFT in Section 4.3. RQ4 explains the motivation for utilising self-
adaptive IoFT in real-world application in Section 4.4. To conduct a thorough analysis, RQ5
will examine various engineering approaches for developing self-adaptive IoFT systems in
Section 4.5. The purpose of RQ6 is to identify various evaluation techniques, criteria, and
metrics proposed in the literature for assessing the performance and reliability of IoFT
in Section 4.6. Finally, RQ7 demonstrates the reality of self-adaptive IoFT by examining
real-world applications and domains that employ this paradigm in Section 4.7.

• Stage 2 : Literature Search Strategy: Our search technique begins with identifying data
sources and a search query. The study’s search strategy is based on an automated search in
multiple globally known databases and indexing systems such as Google Scholar, Scopus,
ScienceDirect, AMC Digital Library, IEEE Xplore and SpringerLink to collect relevant in-
formation from published sources. We searched for keywords against lists of databases and
scientific citation indexing services, as shown in Table 3. Our automatic search technique
was focused on the keywords "Federated learning", "Internet of Federated Things", "Auto-
nomic computing", and "Context-aware". Due to the ambiguity surrounding the definition
of self-adaptation, we used a wildcard search to get all relevant results that contain terms
such as "Self-configuration", "Self-learning", and "Self-optimisation".The automatic search
results before snowballing search strategy are reported in Table 4.

• Stage 3 : Selection Criteria: We conducted two rounds of study selection against the findings
of automatic searching to determine the primary study. We carefully filter the papers in
the first round according to their title, abstracts, and keywords. Additionally, we eliminate
duplicate data from a variety of data sources. In the second round, We filtered the primary
studies using well-defined inclusion (IC) and exclusion criteria (EC).
– IC1: FL was first proposed in 2016 by Google as an alternative setting for centralized ML
approaches[72]. Therefore, we limited our search to including papers published after 1
January 2016 demonstrating the self-adaptive IoFT.

– IC2: The study suggests an ML-based approach for IoFT and property. However, any
study incorporating a self-adaptive technique that explicitly or explicitly mentions the
IoFT, such as federation in cloud computing, software, or blockchain, will be included.

– IC3: The study discusses self-* logic in general. Since this study focuses on IoFT, we
include only research that applies the self-adaptive IoFT environment for self-adaptation.

– EC1: The study should not be an abstract or limited to one or two pages. These studies
are eliminated because they often need more information.

– EC2: The study should not use self-adaptation in contexts other than FL and IoT. This
study does not contribute to answering the main research question since we mainly
focus on the IoFT.

– EC3: The study that focuses on theory without proof of concept will not be included
because this study needs to meet our quality assessment criteria.

• Stage 4 : Cross-references Check: To ensure we do not miss any relevant research, we
use a cross-referencing methodology and identify potentially relevant papers through
the "snowballing" search strategy. This involves recording the references found in the
"References" section of each primary study [13] [73].

• Stage 5 : Quality Assessment Criteria: Kitchenham et al. [13] stated that the quality of
research is related to its ability to minimise bias and maximise internal and external
validity. Accordingly, our primary studies are evaluated according to the pre-defined
quality assessment criteria to assess the quality of the studies. In addition, we employed
the checklists provided by reference [13]. We included each paper that defined the problem
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Table 3. SearchQueries

Database or Indexing Services Search Queries
Google Scholar intitle:"federated learning" OR intitle:FL AND IoT OR "Internet of Things" AND intitle:self-* AND

-intitle:review AND -intitle:survey AND -intitle:systematic
Scopus TITLE-ABS-KEY(("federated")AND(self*) AND ("IoT" OR "Internet of Things")) AND PUBYEAR >

2015
ScienceDirect ("federated") AND ("IoT" OR "Internet of Things")
ACM [Abstract: "federated"] AND [Abstract: self*] AND [Publication Date: (01/01/2016 TO 31/12/2022)]
IEEE ("Abstract":"federated") AND ("Abstract":"self*") AND ("Abstract":IoT OR "Abstract":"Internet of

Things")
Springer Link "federated learning" OR "Internet of Federated Things" AND self-* AND (review OR survey OR

systematic)

Table 4. Search Results Before Snow-balling

Google Scholar IEEE ACM ScienceDirect Scopus Springer Link
64 21 50 23 104 28

Table 5. Data Item Collection Form

Data item Description Relevant QR
Title Paper’s reference Documentation
Year The publication year of the primary study Documentation
Publication source The publication metadata and type of primary study Documentation
Definition The definition of self-adaptive IoFT RQ1
Self-* property The properties of self-adaptive IoFT RQ2, RQ3
Self-* taxonomy The self-* taxonomy on different in the field of a self-adaptive system RQ2, RQ3
Feedback loop control The feedback loop architecture concept RQ3
Motivation The primary motivations for using self-adaptive IoFT RQ4
Technical aspect The technical considerations for implementing self-adaptive IoFT s RQ5
Assessment method The various evaluation techniques, criteria, and metrics for assessing self-

adaptive IoFT
RQ6, RQ7

Applications The real-world applications and domains that employ the self-adaptive IoFT RQ7

statement and contribution, presented background and context, clearly described the
research method and evaluation, and reported on the findings.

• Stage 6 : Data Extraction Item: We reviewed all selected primary studies to gather data to
help answer the research questions. Table 5 describes the data items to retrieve and their
corresponding research questions.

• Stage 7 : Analysis and Synthesis: Stages three, four, and six of the research method used
in this work examined the analysis and synthesis of research publications. Data items
defined earlier in stage six were extracted and recorded in a spreadsheet for each study.
Additionally, we used various software tools such as Nvivo and Excel to analyse and
visualise the findings of the selected primary studies.

• Stage 8 : Reporting The Review: In this section, we present the results of our analysis of
the 17 selected primary study data after completing the filtering process conducted in all
previous stages, along with the answers to our research questions.

4 SELF-ADAPTIVE INTERNET OF FEDERATED THINGS (IOFT)
4.1 The Definition of Self-adaptive IoFT
To define a self-adaptive IoFT, we first need to understand two terms: context and context-aware
systems. These terms form the foundation of every SASs.

4.1.1 Context and Context-aware Computing. The primary source of data generation is the con-
text. However, in the literature, many researchers define the term "Context" differently based on
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their domain expertise. For instance, Brown [14] defines context as the components of the user’s
surroundings that are known to the computer. Salehie et al.[96] extend Brown’s definition, so the
context is everything in the operating environment that influences the system’s attributes and
behaviour. However, the most accurate definition was introduced by Abowd et al. [2]. These authors
refer to context as:

”Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications
themselves.”

Abowd et al. [2] state that the context compresses three entities, which are people (individuals,
groups), places (buildings, offices), and things (sensors, actuators). These entities are characterised
by several attributes across four categories: identity, location, status, and time. Abowd et al. [2]
also define these categories as the primary context. In contrast, secondary context can only be
obtained from the primary context with additional information, such as weather conditions based
on the user’s location. However, in IoT applications, this definition is only partially applicable.
Perera et al. [83] argue that Abowd et al.’s [2] categorisation scheme did not consider ordinary
IoT contexts. For example, calculating the distance between two GPS sensors involves processing
the locations obtained by both sensors. This type of data processing commonly occurs in IoT
applications as most data interpretation is derived from a group of sensor readings. Abowd et al.’s
[2] definition does not cover this common scenario in IoT applications. Therefore, Perera et al. [83]
extend the original definition to include an operational perspective. Their definition highlights the
challenges in data acquisition in the IoT application and the conceptual perspective to understand
the relationships between different contexts. Our research adopts the categorisation scheme by
Perera et al. [83], as it is better suited for the IoT paradigm and capturing both the operational
and conceptual attributes of context-aware IoT applications. Context-aware computing is derived
from the desire to make use of contextual information. In the literature, numerous viewpoints on
how systems should consider context have been provided [83] [2] [14] [96]. However, the primary
intent of context-aware computing is to evaluate the context and respond to dynamic environment
changes to meet a specific goal based on relevant information. In the IoT setting, context-aware
systems connect context information to sensor data to provide insight for interpretation.

4.1.2 Self-* IoFT Systems. An early definition of the term ’self’ emerged in the late 1890s within
psychology, where Baker [7] described ’self’ as a process of identification, marking the beginning
of its scholarly exploration. Goffman [32] further extended this conceptualization of ’self’ in
sociology, illustrating ’self’ as a dynamic entity influenced by varying circumstances and contexts.
The transition from these foundational ideas to the technological domain was marked by IBM’s
introduction of ’autonomic computing,’ aimed at developing systems capable of self-management
[49]. This manifesto led to the emergence of ’self-*’ systems, encapsulating behaviours such as self-
configuration, self-optimization, self-healing, and self-protection. The concept of ’self-*’ systems
has since evolved rapidly, prompting efforts to define it broadly, despite the lack of a universally
accepted definition as highlighted in [28][52]. The literature presents two opinions on the definition
of ’self-*’. Initially, the definition is influenced by the author’s perspective and the context in which
it is applied. Alternatively, it is shaped by the particular domain that adopts the ’self-*’ method. This
variation underscores the adaptability of ’self-*’ concepts across different scientific fields, including
the IoFT, where such systems play a crucial role. Table 6 shows explicit and implicit definitions of
’self-*’ in IoFT systems as found in primary studies.
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Table 6. Definitions of Self-* Property in IoFT System

Study Express Property Definition
[116] Implicit Self-organisation Ability of federated learning clients to autonomously enhance the uploaded weight of

parameters to the federated learning server.
[93] Implicit Self-organisation The ability of federated sensor network to autonomously detect resources, optimise the

network routing protocol and algorithm
[77] Implicit Self-learning The ability of federated learning to learn the device’s type and anomalies autonomously.
[82] Implicit Self-organisation The ability of federated learning to autonomously create different collaboration schemes

to identify the heterogeneity hidden in the federation.
[50] Implicit Self-organisation The ability of federated learning to autonomously formalities device clusters, join devices,

and allocate resources.
[30] Explicit Self-adaption ”In the context of self-adaptation, the roles are monitor, analyse, plan and execute over a

shared knowledge ”
[8] Explicit Self-adaption ”FedML solutions configure the system, that is, set its parameters, and allocate resource

dynamically”
[33] Explicit Self-awareness ”we refer to a SASO system S as a collection A of autonomous subsystems ai that are able

to adapt their behaviour based on self-awareness of the internal and external conditions”
[112] Explicit self-attention ”By using the self-attention mechanism, we can optimize both the server-to-client and the

client-to-client parameter divergence and increase the model’s performance to Non-IID
data. ”

[63] Explicit self-revealing ”The self-revealing mechanism of the contract theory approach enables workers to be
rewarded based on their specific types even in the presence of information asymmetry, i.e.,
when the worker types are not known by a model owner.”

4.2 The Characteristics of Self-adaptive IoFT
There has been a significant effort in the literature to develop various taxonomies to identify the
key characteristics of SASs over the years. A notable contribution to this field is the comprehensive
empirical analysis conducted by Krupitzer et al. [53], which spans early studies from the 2000s.
This work aimed to establish a uniform taxonomy for self-adaptation by addressing the 5W+1H
questions, a concept first introduced by Salehie et al. [96]. The taxonomy presented by Krupitzer
et al. is summarized into five dimensions: time, level, technique, reason, and adaptation control,
providing a general overview of the landscape of SASs. Other researchers, such as Andersson
et al. [5], have proposed alternative dimensions, viewing self-adaptation through system goals,
triggers, mechanisms, and adaptation outcomes. This perspective was further refined by Brun et
al. [15], who proposed five dimensions specifically for the software engineering domain, includ-
ing adaptation targets, effects, actions, states, and environment. While these contributions are
pivotal, they predominantly reflect the viewpoints and requirements of the software engineering
community without directly addressing the unique aspects of the IoFT. Therefore, we have formed
IoFT taxonomy in Figure 5, drawing inspiration from the studies above. The multi-dimensional
taxonomy is organised to encapsulate the distinctive nature of IoFT, offering a novel framework that
complements existing research while addressing the specificities of IoFT applications. Additionally,
in Table 8, we present the evaluation of self-adaptive IoFT characteristics taxonomy against the
primary studies we collected.

4.2.1 Time . In an ideal situation, Proactive adaptation is preferred over Reactive adaptation to
maintain consistent performance.Proactive adaptation depends on precise prediction capabilities,
which require continuous monitoring and advanced learning techniques [53]. In contrast, Reactive
adaptation starts after a change need is identified, responding to unexpected environmental patterns
as they arise. Therefore, the adaptation process in the Reactive model is initiated by detecting these
irregularities. On the other hand, Proactive adaptation seeks to anticipate potential environmental
changes before any performance degradation occurs, focusing on predicting and preparing for
future environmental shifts [96] [53].
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Fig. 5. A taxonomy of characteristics for self-adaptive IoFT

4.2.2 Reason . Adaptation action is often a response to a change. Consequently, the type and
effect of the change must be defined to determine whether a response is required. Additionally, it is
essential to identify the cause of the change and define the criteria for an appropriate method to
respond to that change. The main reasons for the adaptation in IoFT are: 1) change in the technical
resources, 2) change in the environment, 3) change due to user interactions, and 4) downgraded feedback
from FL clients. Firstly, a change in the technical resources includes all the tangible (e.g., IoT devices
failure and power outage from hardware components) and intangible (e.g., software failure, FL
server model divergence, FL client aggregation errors, and unstable network connection) assets.
Secondly, the environment changes when the context of the FL clients changes from one context
to another (e.g., smart home, smart building, smart manufacturing). Third, a change due to user
interactions can be either by altering user behaviour using IoT devices (e.g., fire alarm leading to
evacuation) or changing user preferences by the user to interact with IoT devices and sensors.
Finally, the FL server may trigger the adaptation strategy if the FL Client’s feedback does not meet
the current service requirement ( e.g., lack of availability to join the training, poor model training
due to data availability or model poisoning attack).

4.2.3 Level . The implementation of adaptation can exist at a different level. Various existing
taxonomies try to answer the question, "Which layer of the system can be changed?" [96] and
"Where do we have to implement changes" [53]. These questions were answered in the literature.
However, there is no explicit declaration of the adaptation levels in IoFT. There are two levels in
IoFT, which are the FL server and the FL client. They provide a high-level abstraction of where
the managed resources and adaptation logic exist. An FL server has many adaptation mechanisms,
such as client selection, global model selection, and model aggregation optimisation. Adaptation
also occurred in the FL client, where different actions such as local model optimisation, automatic
sensor configuration, and automatic delivery of actuation orders can be presented.

4.2.4 Technique . The literature employs several adaptation techniques from different fields. For
instance, McKinley et al. [71] mentioned two approaches for adaptation in the field of software
engineering: 1) parameter adaptation and 2) compositional adaptation. Parameter adaptation is the
most straightforward technical approach since it is achieved by simply identifying the contributed
system’s parameters and changing them according to the adaptation policies. Compositional adap-
tation is a dynamic approach to changing algorithms or system components to reduce performance
degradation. Therefore, we leverage these two adaptation techniques for self-adaptive IoFT. In
self-adaptive IoFT, the Parameter adaptation needs to consider three general FL system design
tiers: 1) FL server parameters, 2) ML model parameters, and 3) ML model hyperparameters. FL server
parameters adaptation achieves the adaptation behaviour by adjusting the global configuration
setting for the FL server and aggregator parameters, which vary depending on the aggregation
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Table 7. Configurable Parameters in FL Systems

Category Parameter/Algorithm Definition/Parameter Details
Global FL Pa-
rameters

fraction_fit The proportion of randomly selected clients participating in each training round reflects
the system’s strategy.

fraction_evaluate The proportion of clients selected for model evaluation after training.
min_fit_clients The minimum number of clients required to proceed with a training round.
min_evaluate_clients The minimum number of clients needed to validate the model’s performance.
min_available_clients The minimum number of clients that must be online and available for the FL system

to function.
accept_failures A policy determining whether training rounds that experience client failures are

accepted or discarded.
initial_parameters The initial global model parameters serve as a baseline for subsequent iterations.
client_learning_rate The learning rate used by individual clients to update their local models during training.

This parameter controls the size of the step taken during each gradient descent update.
batch_size The number of samples used in one forward and backward pass of the training process.

It impacts the stability and speed of local training.
local_epochs The number of passes over the local dataset performed by each client before sending

model updates to the server.
Aggregation
Parameters*

FedAvg [72] (c) Number of clients participating in each training round, (e) Number of training
epochs each client makes over its local dataset on each round, (b) The local mini-batch
size used for training in client side

FedSGD [72] (w) Model weights on communication selected round , (c) Number of clients participat-
ing in each training round, (e) Number of training epochs each client makes over its
local dataset on each round, (b) The local mini-batch size used for training in client
side, (eta) The learning rate

FedAdam, FedYogi
[88]

(eta) Server-side learning rate, (eta_l) Client-side learning rate, (beta_1) Momentum
parameter, (beta_2) Secondmoment parameter, (tau) Controls the degree of adaptability

FedAdagrad [88] (eta) Server-side learning rate, (eta_l) Client-side learning rate, (tau) Controls the
degree of adaptability

FedProx [60] (proximal_mu) The weight of the proximal term used in optimization
FedTrimmedAvg
[115]

(beta) Fraction to cut off of both tails of the distribution

q-FedAvg [61] (eta) learning rate, (q) Tune the amount of fairness

*Note: The aggregation methods listed in this table are not exhaustive. For a comprehensive review of aggregation
methods and their impact on federated learning performance, see [34].

algorithms. Table 7 shows the literature’s most commonly used aggregation algorithms and their
configurable parameters. ML model parameters allow the changes of ML algorithm parameters in
which it obtains a better starting model. Depending on the pre-defined strategy, the adaptation can
occur on the FL server or client side. Changing model parameters may require entirely reinitialising
the FL system to deploy the changes. UnlikeMLmodel parameters, themodel hyperparameters enable
changing at runtime in any part of the FL system, including the FL server and client. Two methods
can archive compositional adaptation: 1) Change component by replacing the ML algorithms or
adding more models in the case of ensemble ML, and 2) Add or remove component, such as including
or excluding FL clients, based on their contributions and effectiveness to global model convergence.
Finally, the adaptation triggers are based on specific pre-defined policies or criteria where the
adaption is required to prevent performance loss or to get better overall performance.

4.2.5 Adaptation Mechanism. Adaptation Mechanism is the core element of any self-adaptive
system [53][96]. Krupitzer et al. [53] highlight that adaptation control is compressed into two main
components: Managed Resources and Adaptation Logic. The same components are also applied to
the self-adaptive IoFT domain but with different interpretations.

Managed resources. The IoFT ecosystem encompasses Physical and Virtual resources. Physical
resources within FL clients vary to their specific domain, such as motion sensors in smart homes or
heart-rate monitors in healthcare. Despite the diversity across domains, these resources universally
function as sensors, actuators, small devices, or gateways. For instance, a sensor translates physical
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Table 8. The Evaluation of Self-adaptive IoFT Characteristics Taxonomy Against The Primary Studies

Level Reason Technique Time
Adaptation
Mechanism

Paper Server Client Context
Technical
Resources

FL Client
feedback

User
Action Compositional Parameter Proactive Reactive Approach

Managed
Resources

[77] × ✓ × ✓ × ×
Addition/

Removal component × × ✓
Internal/
External

(Physical)
Gateway

[82] ✓ × × × ✓ × × Federated ✓ × External
(Physical)
FL server

[50] ✓ × × × × ✓
Change

component × ✓ × External
(Physical)

Small device

[95] × ✓ ✓ × × ×
Change

component Model × ✓ External
(Physical)
Gateway

[27] ✓ × ✓ × × ×
Change

component interaction Federated × ✓
Internal/
External

(Physical)
FL server

[62] × ✓ × × ✓ ×
Change

component Federated × ✓ External

(Physical)
Small
device

[38] × ✓ ✓ × × × × Model × ✓ Internal
(Physical)
FL server

[58] × ✓ ✓ × × × × Federated × ✓ External
(Physical)
FL server

[112] ✓ ✓ ✓ × × × × Model × ✓
Internal/
External

(Physical)
FL server

[107] × ✓ ✓ × × ×
Change

component interaction × × ✓ Internal
(Physical)
FL server

[101] × ✓ × × ✓ × × Federated × ✓ External
(Physical)
FL server

[57] × ✓ ✓ × × × × Model × ✓ External
(Physical)
FL server

[116] ✓ × ✓ × × ×
Change

component × × ✓ External
(Physical)
FL server

[30] × ✓ × × ✓ ×
Change

component interaction × × ✓
Internal/
External

(Physical)
Gateway

[8] ✓ × × × × ✓
Change

component interaction × × ✓ External

(Virtual)
Resource
capability

[121] ✓ × × × ✓ × × Federated × ✓ External
(Physical)
FL server

[19] ✓ × ✓ × × ×
Change

component interaction × × ✓ External
(Physical)
FL server

events into electrical signals, whereas an actuator executes physical actions based on electrical
inputs. Small devices like mobile phones or Raspberry Pi and any control system device with
limited computational power. A gateway connects the IoT devices to the Internet, facilitating data
transmission between FL client devices and the FL server. On the other hand, Virtual resources
represent the capabilities of these Physical resources, such as the accuracy of sensor data or the
storage capacity of devices. These intangible factors are crucial for the efficiency of IoFT ecosystems.
In the FL server, resources are represented differently, aligning more with cloud and fog computing
paradigms. Physical resources here refer to the devices hosting FL orchestration mechanisms,
ranging from PCs to virtual machines in the cloud. Virtual resources in the FL server enclose
performance metrics like computing power and autoscaling capabilities.

Adaptation logic The self-adaptation performed by the Adaptation Logic component, which can
be either Internal or External [53][96]. The main objective of Adaptation Logic is to explain how we
can adapt within a given context. Based on the nature of IoFT, Internal and External adaptation can
occur on the FL server and client since they are not tightly coupling systems. Therefore, the Internal
approaches integrate application and the logic of adaptation. This approach aims to change the
Internal configuration of IoFT. For example, an FL server hosted on the cloud internally configures
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its virtual resources for provisioning autoscaling infrastructure based on a specific threshold [118].
Additionally, an FL server may change the ML model during the run time due to a drop in the
overall performance. Similarly, an FL client may change the local ML model hyperparameters
based on concept drift [9]. The Internal approach has two main drawbacks: the cost of testing
and maintaining the system, and (ii) the knowledge required to perform the Internal adaptation is
only sometimes available [53][96]. Therefore, the External approaches overcome these limitations
by separating the Adaptation Logic and the Managed Resource and connecting them via different
interfaces. Thus, the Adaptation Logic uses an interface to acquire knowledge from the context
and to interact with Managed Resource [49]. The modularity of the External approach makes it
more suitable for the IoFT. An example of an External approach is an FL server that uses TCP/IP
communication protocol to get the FL client’s local model parameters and optimise the global
FL model according to the client’s feedback. Therefore, The communication protocol acts as the
interface that enables the Adaptation Logic in the FL server to gather contextual knowledge from
the FL client. In this context, the FL client utilises the gateway as a physically Managed Resource
to facilitate responses to the FL server. The External approach can also be implemented in FL
clients. The Adaptation Logic in FL clients collects knowledge from the context via sensors and
enables adaptation via actuators. For example, in federated smart homes with "anomaly detection"
scenarios, the adaptation logic gets humidity readings from the sensor, which gives the Adaptation
Logic the contextual information to decide whether to open or close windows using an actuator. In
summary, Managed Resource and Adaptation Logic are the two main pillars of SAS development,
including IoFT. Therefore, it is essential to define them to implement self-adaptive IoFT systems. In
section 4.3, we deeply explain the Adaptation feedback loop for the self-adaptive IoFT.

4.3 Feedback Control Loop for Self-adaptive IoFT
Because of the characteristics of SASs, it is crucial to comprehend how self-adaptive IoFT is used in
a MAPE-K loop. Furthermore, the feedback control loop mechanism should be able to handle the
growing complexity of IoFT systems, as we discussed in Section 2.1.5. Therefore, the MAPE-K loop
should contain an adaptation logic to manage different internal and external resources to comply
with these standards. Unlike the traditional design of standalone and distributed systems, the IoFT
systems design must contain two modules, FL server and client, to make the IoFT system work
as discussed in 2.2.1. To differentiate FL from the traditional client/server system, The minimum
number of FL clients is set to two, each as an independent module within the FL system. As a
result, The FL client will essentially be equivalent to what is found in a standalone IoT system. The
adaptation logic could be in the system gateway, and the managed resources could be virtual or
physical within the IoT environment, as discussed in 4.2.5. On the other hand, the FL server has
different characteristics and managed resources to perform self-adaptation. To explain and analyse
the self-adaptation in the context of IoFT, we utilised an architecture-based self-adaptation [80]
using the MAPE-K framework [49] to explain several aspects of the adaptation mechanism. First,
we will analyse each level of IoFT in section 4.2.3, including the adaptation logic and the managed
resources for both the FL server and client. Finally, We conclude with a generalised interpretation
of MAPE-K for the entire FL system. Figure 6 shows our conceptual architecture overview for
self-adaptive IoFT.

4.3.1 FL Client as Managed Resource. On the FL client side, we categorise the devices into two
types, including non-adaptive and adaptive IoT clients. First, the non-adaptive IoT client includes
all small and large devices such as smartphones, tablets, PCs, microcontrollers, microprocessors,
and other embedded systems. One important criterion in non-adaptive devices is the ability to
participate in the FL collaboration. Sensors and devices unable to perform computation power
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Fig. 6. Conceptual architecture overview for self-adaptive IoFT

will not be included unless they use an adapter to extend their capabilities, such as humidity
and temperature sensors connected to a microcontroller to join in FL rounds. Another factor
distinguishing non-adaptive IoT clients is that they only train the local model and share their
updated version. They did not adapt to the context or modify the model parameters based on some
factors, such as concept drift. On the other hand, adaptive IoT clients are any devices that can
join the FL collaboration and are also able to adapt to the context. These FL clients use one of the
self-adaptation approaches mentioned in 2.1. First, they receive the global model from the FL server,
and then they start training the local model using their local data. Asynchronously, they adapt the
training behaviour based on the sensing layer, which reflects the local model training. At the end
of each round, all non-adaptive and adaptive IoT clients will upload their trained local model to the
FL server to join another round of training.

4.3.2 Middleware. The middleware is responsible for communication between the FL client and the
server for 1) uploading or downloading the FL model, 2) registering or removing an FL client, and
3) modifying an FL client’s parameters. The middleware uses communication protocols to maintain
the orchestration of FL, such as Hypertext Transfer Protocol Secure (HTTPS) or Remote Procedure
Call (RPC). HTTPS is based on a TCP/IP, which leads to more reliable and stable communication
among the FL server and clients. However, RPC uses TCP for reliability and order, while it uses
UDP for lower latency and reduced overhead, depending on the application’s requirements or
system configuration. For example, it may use the TCP protocol when the amount of data to be
sent cannot fit into a single UDP datagram. Otherwise, RPC will use UDP initially for small data.

4.3.3 FL Server as Adaptation Logic . The workflow of the self-adaptive feedback loop in the FL
server has different characteristics and features than the one in the FL client. The overall objective
of the self-adaptive FL server is to maintain system quality by managing the orchestration of
IoFT systems. Therefore, the FL server is responsible for the adaptation logic. The FL server also
can be installed on physical devices such as computers, microcontrollers, or virtual devices like
containers and VMs running in the cloud. Additionally, it consists of several layers of independent
and dependent components that form the IoFT adaptation logic.

The FL Client Abstraction Layer is the interface between the FL server and clients, where
each FL client is connected to a client interface to facilitate communication. The FL client proxy is
changeable based on the communication protocol used by the FL system. The received data from
the FL clients via the client interface is used as contextual information for the MAPE-K module
within the Strategy Layer. FL Client Registration Manager component provides a client registration
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or elimination mechanism to allow FL clients to join the FL collaboration. The data will be available
in the knowledge base of the MAPE-K module for later use during the MAPE-K cycle. The System
Administration component allows the administrator to interact with the FL system and modify the
FL parameters within the knowledge base. The Strategy Layer is the core layer that contains the
MAPE-K module that helps the FL server to implement model aggregations and maintain system
performance. The MAPE-K cycle starts at the monitoring phase to collect data from the context,
as discussed in Section 4.1.1. From the FL server’s perspective, the context can be either physical
resources (e.g., adaptive or non-adaptive IoT clients) or internal factors as virtual resources ( e.g.,
CPU and RAM usage), as discussed in 4.2.5. Collecting contextual information involves two modes,
which vary depending on the data source. Data generated from virtual resources and updated by
the system administrator in the knowledge base is monitored in real-time. In contrast, data received
from the FL client abstraction layer is monitored after each FL round.

All received data is preprocessed in the monitor phase using the assumptions and system rules
predefined within the knowledge base component. This preprocessing includes extracting data
from sources (e.g., network instrumentation, environmental sensors, application requirements),
selecting a model (e.g., NN model, ensemble ML model, or Reinforcement Learning (RL) model),
and identifying FL clients using participant information and other metadata. After preprocessing,
the sensing data is passed on to the analysis phase for data diagnosis and model aggregation.
The sensing data received from the monitoring phase is used to analyse the quality of FL client
contributions. Various reasoning algorithms can be used in the analysis phase, depending on the
system requirements, FL client configuration type, and targeted application. The knowledge base
can provide the required data for reasoning, training, and model aggregating tasks. The analysis
task can also be extended to include multiple tasks simultaneously, such as fault detection and
classification, as shown in [77]. The result of the data analysis is stored in the shared knowledge
base, making it available across all the MAPE-K framework components. If adaptation is required,
an adaptation request is sent to the plan phase, which creates a workflow of adaptation actions
required to maintain the system’s performance. This workflow may include removing weak FL
clients’ contributions, reducing the weight of their contributions, changing the aggregation model
approach, and changing FL global configuration (e.g., the number of FL clients or the training
rounds). The execution phase then carries out these workflows produced by the planning phase
through the actuators of the managed resources.

Finally, the FL Client Registration Manager component serves as the primary entry point
for any FL client looking to participate in the collaboration. This component is responsible for
initializing and profiling newly added FL clients and reporting them to the knowledge base within
the Strategy Layer. Additionally, It provides the initial FL model and any other FL configuration
settings to the FL client. During the joining process, a new FL client has a chance to provide any
extra information regarding their context, which may help FL to be aware of the context of their
FL client. By introducing this component, the system designer will have extra flexibility to manage
the initial data exchange between the FL client and server before allowing the new FL client to join
the training round.

4.4 Motivation of Self-adaptive IoFT
This section examines the motivation behind studies focused on self-adaptive IoFT. A significant
portion of these studies explicitly articulate motivation as a benchmark for evaluating the effec-
tiveness of their proposals. Nonetheless, a few studies have not overtly acknowledged their use of
self-adaptive IoFT. Therefore, we reviewed each study, extracting the inherent "self-*" feature to
bridge the connection between the intended purpose and the motivation, as shown in Table 9. We
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Table 9. Motivation of Self-adaptive IoFT Systems

Motivation Primary Studies
Improve FL performance [77] [82] [95] [27] [38] [58] [112] [107] [57] [116] [30] [8] [121] [19]
Data Quality [112] [107] [19] [27]
System Complexity and Resource Consumption [50] [27] [62] [101] [30] [8] [19]
IoT Heterogeneity [77] [82] [95] [62] [38] [58] [101] [116] [30] [8] [121] [19]

Table 10. Implementation of Self-adaptive IoFT Systems

Implementation Primary Studies
Context-based approach [77] [121]
ML-based approach [95] [27] [38] [58] [112] [107] [57] [116] [8] [19]
Nature-based approach [50] [62] [30]
Agent-based approach [82] [101]

enumerate the primary motivations that have driven researchers toward exploring the domain of
self-adaptive IoFT.

4.4.1 IoFT Performance . One of the core components of FL is predictive modelling. In contrast
to the traditional method of training and evaluating a machine learning model in a centralised
ML application, an FL model is trained and evaluated in a distributed environment, which can
introduce various challenges, as discussed in Section 2.2.1. Some work in the literature has been
done to improve IoFT performance using a self-adaptation approach.

4.4.2 Data Quality. One of the challenges of the IoFT is the data quality used to train the global
model. For example, IoFT based on stochastic gradient descent (SGD) is highly sensitive to the data
used to train the model. Therefore, The independent and identically distributed (IID) data sample
is required to ensure that the stochastic gradient is an unbiased estimate of the entire gradient.
The Non-IID data samples must be addressed to obtain better performance [112]. To overcome
this issue, many researchers have developed self-adaptive IoFT to minimise the effect of non-IID
impacts.

4.4.3 System Complexity and Resource Consumption. Due to the complexity of implementing IoFT
systems in a real-world scenario, many researchers try to facilitate the deployment and reduce the
resource consumption of IoFT systems. That includes reformatting the structure of the IoFT system
[50] or automatically altering the training behaviour [19].

4.4.4 IoT Heterogeneity. Another motivation driven by the literature is dealing with FL client
heterogeneity. In real-world applications, IoT devices are diverse and have heterogeneous comput-
ing resources. Also, the wireless network is unstable, making it difficult to guarantee consistent
connection as communication conditions change. Therefore, to implement FL training processes
on heterogeneous FL client devices, researchers use the self-learning approach to overcome this
challenge in the IoFT system [77][101] [19].

4.5 Implementation of Self-adaptive IoFT
Engineering self-adaptive IoFT aims to integrate "self-*" properties into the system design. This
integration enables the system to reactively or proactively manage its state, knowledge, and execu-
tion environment. This section outlines how self-adaptation techniques have been implemented
in IoFT systems. In Table 10, we present the implementation of self-adaptive IoFT based on the
primary studies.
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4.5.1 Context-based Approach. As discussed in section 4.1.1, The primary responsibility of context-
aware systems is to assess the context and respond to dynamic environment changes to accomplish
a specific objective based on relevant data. Nguyen et al. [77] use a self-learning approach to
improve the overall AD classifier within an IoFT environment. They use a device-type identification
approach to identify the device type and extract feature representations of normality. As the authors
claim, they achieved no false alarms in a real-world smart home environment. Similarly, Zhaohang
et al. [121] improve the quality of FL performance by introducing an adaptive asynchronous FL for
participants. They intend to solve the issue of slower devices that decrease convergence speed and
worsen the global model performance.

4.5.2 ML-based Approach. Learning and self-adaptation are closely related in the IoFT systems.
A self-adaptive IoFT system continuously adjusts its structure, settings, or algorithms to become
more effective, as discussed in Section 4.2.4. Therefore, various learning techniques were used
in the literature to achieve different system goals. Firstly, Improving ML performance in IoFT
is one of the motivations for utilising the self-adaptation technique. For example, Li et al. [58]
take advantage of information about the device’s historical training tasks to constrain future
workflow and combine it with active learning to select participants adaptively. They also integrate
spatiotemporal information with a self-attention approach to mixing the local and global models
based on the differences between the local, global, and personalised models [57]. Zhu et al. [116]
suggest a mechanism to improve the uploaded weight of parameters to the FL server. They also
achieve faster convergence with higher accuracy by improving the sparsity of the global model
by continuously updating the online optimisation function in their proposal algorithm. Whereas,
Baresi et al.[8] explore the self-adaptive IoFT system by optimising clients’ resources at runtime
considering network overhead and model accuracy. Secondly, there are some works in the literature
that improve the quality of the data collected in the FL client. For example, Duan et al. [27]
use Kuullback-Leibler divergence to solve the unbalanced data and improve the FL performance.
Similarly, Wang et al. [107] introduced self-paced learning to keep the high-confidence samples
and drop the high-noise samples. As most FL algorithms are severely affected by the distribution
of data, A self-attention approach was proposed by Xu et al. [112] to set up a communication
strategy for FL effectively. Their approach applies parameter optimisation for server-to-client and
client-to-server to overcome the problem of non-IID in an FL setting. Finally, some work has been
done to address unlabelled data collected from the FL client. Saeed et al. [95] leverage the scalogram
signal correspondence learning on wavelet transform to self-learn valuable representations from
unlabelled sensor inputs. He et al. [38] propose a self-supervised and personalised FL framework
that uses algorithms for collaborative training of global and personalised models. Moreover, Chen
et al. [19] propose a federated graph learning framework to optimise a global self-supervision
model to create global pseudo-label discovery and graph construction that will be shared with a
federated client to label the data.

4.5.3 Nature-based Approach. A nature-inspired approach optimises the given system to achieve
specific goals. The main idea is that each system component has limited information and acts
according to the tasks the system administrator assigns. The overall system behaviour can be pre-
dicted by the collective behaviour of each individual participating within the population. Reducing
training time in ML is a significant area of interest within nature-inspired computing. Khan et al.
[50] propose a novel FL scheme that uses a formulated optimisation problem to minimise global
FL training time. They achieve that with the help of cluster formalisation, joint device frequency
selection and resource allocation. Another work was introduced by Lim et al. [62] to select an FL
server and resource allocation based on the evolutionary game. Their approach provides two levels.
The lower level uses an evolutionary game to represent the workers’ edge association strategies.
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With the edge server’s bandwidth allocation control method, the upper level uses a Stackelberg
differential game in which the model owner selects the optimal reward structure. Franco et al.
[30] provide a self-adaptive architecture for IoFT in industrial automation systems. Their method
considers the participating parties at various levels of the industrial ecosystem. Each factory in-
ternally trains the model in a self-adaptive way and delivers it to the centralised cloud server for
global aggregation. As a result, they fulfil the goals of global model optimisation and reduction
of communication cycles within the IoFT system. Furthermore, to overcome a multi-assignment
optimisation issue, they split the dataset into as many subsets as are equivalent to the number
of participants. At each local iteration, each device selects the appropriate subset to optimise the
model.

4.5.4 Agent-based Approach. The agent-based approach contains different agents who share
similar goals. Those agents coordinate and communicate with each other, which opens the door to
working with the decentralised systems more efficiently. This approach can be helpful for the IoT
environment since different IoT devices can be considered different agents. Pang et al. [82] use the
agent-based approach in IoFT for finding cooperation plans based on RL. They also adjust system
weight based on user feedback. Similarly, Tam et al. [101] suggested implementing a self-learning
agent engaging with a network functions virtualisation (NFV) orchestrator and software-defined
networking(SDN) architecture by incorporating a deep q-learning algorithm.

4.6 Evaluation of self-adaptive IoFT
This section examines the evaluation methodologies used in the literature for self-adaptive IoFT
and the testbeds involved.

4.6.1 IoFT Testbed. IoFT systems can be developed using various approaches, including case
studies, physical deployments, local lab networks, simulations, and publicly available datasets. Case
studies provide in-depth examinations of real-life contexts. For example, Khan et al. [50] utilized
a smart tourism scenario to automatically formalise IoFT device clusters and resource allocation.
Moreover, physical deployments allow for testing in realistic environments, while local laboratory
networks, including virtual machines (VM) and physical devices, can provide valuable data. An
example is the work by Nguyen et al. [77], where they detected Mirai malware in small office
settings by creating profiles for 33 IoT devices. Simulations can also replicate real-world behaviour.
For instance, Tam et al. [101] used Mininet to emulate IoFT for resource optimization. Additionally,
researchers often rely on publicly available datasets, such as MNIST [8][121][112][27], CIFAR10
[121], CINIC-10 [27][38][112], BAL1 [27], FEMNIST [58], Tweets [57], and Cora [19].

4.6.2 IoFT Evaluation. In recent years, evaluating SASs has become increasingly complex, es-
pecially when SAS adopt the distributed nature of FL and the inherent heterogeneity of IoT
environments. Researchers from various domains have undertaken considerable efforts to address
this complexity, focusing on different aspects of SAS evaluation through multiple perspectives
and mechanisms. Broadly, these efforts align with two principal paradigms: the evaluation of
the adaptation mechanism (i.e., architectural evaluation, as referred to in the literature) and the
evaluation of the impact of embedding self-* properties into underlying systems. The motivation
for these evaluations, as discussed in Section 4.4, is to clarify the overall goal, whether to assess the
adaptation mechanism or the performance impact of the SAS.

In adaptation mechanism evaluations, system architects primarily evaluate the design at-
tributes of all stages in the SAS architecture, which we discussed in Section 2.1. McCann et
al. [70] propose nine perspectives for assessing SAS, encompassing quality of service, cost, granular-
ity/flexibility, failure avoidance (robustness), degree of autonomy, adaptivity, time to adapt/reaction
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time, sensitivity, and stabilization. These perspectives help evaluate the managed resources’ runtime
performance and the adaptation mechanism. While the authors suggest example metrics for each
perspective, they note that actual measurement strategies depend strongly on factors such as
system domain, adaptation goals, and design choices. They also highlight that some aspects, such
as cost, granularity and flexibility, can be evaluated at both runtime and design time. Moreover,
Villegas et al. [104] propose a quality-driven framework for evaluating SASs. They identify key
analysis dimensions, such as adaptation goals, reference inputs, measured outputs, and computed
control actions. Then, the authors focus on the adaptation goal by introducing four main quality
attributes, which are performance, dependability, security, and safety. These attributes map to
self-* properties in SAS for both the adaptation mechanisms and the managed resources. These
evaluations of adaptation mechanisms aim to assess the quality of architectural design in SASs and
how they function across various use cases. However, none of those mentioned above provides a
quantitative evaluation to precisely measure these self-* properties’ benefits for targeted systems.

On the other hand, a group of researchers adopt different approaches to evaluating the impact
on the performance of utilising self-* properties on the underlying systems. Most of these contribu-
tions use quantitative methods to make these evaluations comparable. For example, Kaddoum et al.
[47] presents 31 metrics for evaluating SAS that are categorised into methodological, architectural,
intrinsic, and runtime dimensions. Methodological criteria address the development process, while
architectural criteria focus on system growth and separation of concerns. Intrinsic criteria evaluate
computational complexity, decentralisation, and external factors, while runtime criteria assess
performance metrics such as latency, communication load, and robustness. The authors demon-
strate the applicability of the proposed criteria by analysing different case studies from various
domains that use self-* proprieties. Similarly, Reinecke et al. [90] present a method for defining an
adaptivity metric that facilitates the comparison of SAS according to their adaptive performance.
The proposed metric measures how closely the benefits accumulated by a system match those of
the optimal system. Additionally, the metric is intentionally independent of the system’s internal
design. So, It focuses solely on the system’s adaptive behaviour and quantitatively measures how
effectively the system adapts. The process for establishing an adaptivity metric involves four key
steps. 1) Clearly define the system that needs to be evaluated. This includes all adaptation logic and
managed resources and their interfaces. At this stage, it is also essential to identify whether the
system is fully adaptive or partially adaptive. 2) Identify all the performance metrics representing
the system’s value and usefulness to its intended purpose. 3) Using the performance metrics to
calculate a payoff metric. 4) Observe the performance of SAS in a real-world scenario or the testbed.
5) Calculate the adaptivity metrics using the given formula. The author explains the adaptation
process as a sequence of trials where the SAS experiences multiple iterations over time. During
these iterations, the system may make positive, neutral, or negative decisions, particularly when
its observable performance declines.

Despite all the effort, the complexity of the evaluation of SAS comes from the fact that most
of these systems are domain-dependent and customised toward specific goals specified by the
system architect. Therefore, a good evaluation approach requires a high level of abstraction and is
easily customised and interpreted despite the domain that adapts it. In the literature, we found that
the work proposed by Reinecke et al.[90] can be easily adapted for any domain. Yet, it provides
quantitative metrics that can easily be understood and compared. In table 11, we have explained
and customised each step of Reinecke et al.[90] approach to evaluate self-adaptive IoFT systems
with its distinguish distributed nature and the heterogeneity of IoT system.
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Table 11. Evaluation of Self-adaptive IoFT Systems

Step 1 Step 2 Step 3 Step 4 Step 5

IoFT
Characteristics

Performance
Metrics

Payoff
Calculation

IoFT
Testbed

Adaptivity
Metrics Calculation

Technique
(Sec. 4.2.4),

Time
(Sec. 4.2.1),

Adaptation
mechanism
(Sec. 4.2.5),

Level
(Sec. 4.2.3),

Reason
(Sec. 4.2.2)

Accuracy [82] [27]
[38] [58] [112] [107]
[101] [57] [116]
[30] [8] [121] [19],
FP/TP [77], F-score
[95] [107], Kappa
[95], AUC [107],
Loss [38] [58] [112]
[101] [8], Recall
[107], Precision
[107], Negative
log-likelihood
[57], Average per-
centage ranking
[57]

P : M1 × M2 × · · · × Mn → [0, 1]

where M = {M1,M2, . . . ,MN },
which represents the set of 𝑁 metrics.

D− = {i | pi−1 > pi } (Negative)
DΘ = {i | pi−1 = pi } (Neutral)
D+ = {i | pi−1 < pi } (Positive)

Here, i ∈ {2, 3, . . . ,N}, and pi
denotes the probability at trial i.

The value of pi must be normalized
using the reference scale from

the IoFT system in its optimal state.

Real-world
scenario,
Physical
Testbed,

Laboratory
Testbed,

Simulation

(Sec. 4.6.1)

Ad :=
∑

i∈D+ ∆i +
∑

i∈DΘ pi

N − 1

∆i :=
pi + pi−1

2

Where ∆i defines the benefit
of a decision, and pi is
the benefit in a trial i.

Ad ∈ [0, 1]
where 1 represents the maximum
benefit the IoFT system can obtain
from employing self-* properties.

4.7 Application of Self-adaptive IoFT
This section shows the recognised application domains in the literature that may benefit from using
the concept of self-adaptive IoFT.

4.7.1 Healthcare . The domain of Healthcare faces significant challenges, including patient privacy
concerns, data availability issues, and system complexities. For instance, IoT devices collecting
patient metrics encounter restrictions on data sharing across organisations for further analysis.
Limitations such as obtaining patient information restrict ML-based healthcare applications from
scaling effectively. As a result, a self-adaptive IoFT offers a solution by enabling self-adaptive
collaborative model training across organisations without sharing patient data to preserve privacy
and governance [91]. A self-adaptive IoFT entails handling the issues associated with data collection
and energy efficiency-related issues and developing an unbiased model for better diagnosis and
treatment. For example, Wang et al. [107] aim to demonstrate self-adaptation in patients’ data to
diagnose diseases while preserving patients’ privacy.

4.7.2 IoFT for Dynamic Context . Self-adaptive IoFT can be implemented in unstable environments,
allowing for the dynamic replacement or adjustment of IoFT components in response to changing
contexts. Additionally, the techniques outlined in Section 4.2.4 may yield promising results in
maintaining system performance and availability. For example, Khan et al. [50] present a self-
organizing FL system over a wireless network in smart tourism, which substitutes an unavailable
FL server with an alternative candidate. Moreover, Lim et al. [62] propose strategies for FL client
associations and resource allocation that help reduce communication overhead for large-scale
implementations.

4.7.3 Industrial Internet of Things (IIoT) . Many IIoT systems utilise distributed control systems such
as Supervisory Control and Data Acquisition (SCADA) and Programmable Logic Controllers (PLCs)
to enable real-time collaboration among sensors, actuators, and controllers. Effective communication
between these components is essential tomaintain quality of service. Moreover, real-time feedback is
critical in applications like cyber-physical systems. Consequently, many of these systems implement
inference ML models at the edge. Franco et al. [30] provide an example from the IIoT sector, where
they propose a self-adaptive IoFT architecture specifically designed for industrial automation
systems.
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4.7.4 Smart-* . Many smart applications (e.g., smart places, cities, and homes) utilise a variety of
IoT devices to meet user needs. These needs may include ensuring user comfort and privacy and
protecting against cyberattacks on smart applications. For instance, Nguyen et al. [77] introduce
a self-learning anomaly detection model for the IoFT, designed to identify Mirai malware within
smart office environments.

4.8 Self-adaptive IoFT for AD in Smart Home Use Case
This section will apply the conceptual architecture for self-adaptive IoFT for AD classification, as
discussed in Section 4.3. AD is finding unexpected items or events that deviate from the norm. It
has received much attention from the research community. Nguyen et al. [77] propose DÏoT, a
self-learning FL-based AD system for the IoT. The definition of self-adaptation for their work was
introduced in Table 6. Nguyen et al.’s [77] system successfully utilised FL to create AD that could
identify various IoT devices and build detection profiles based on the device’s type for small and
home offices. Their system is capable of functioning without human intervention or labelled data.
Therefore, it is essential to understand how IoFT for AD works in typical smart places. Figure 7
shows the architecture of using self-adaptive IoFT for AD in smart homes, and Table 12 presents
the characteristics of the two scenarios that we used based DÏoT system. This use case has two
main components: 1) a security gateway as FL client and 2) an AD service provider as FL server. The
security gateway has access to the internet and is responsible for running local AD to identify any
infected IoT device. Additionally, it detects the type of device for any newly connected IoT device
to the network to create a device-type profile. As part of FL participation, security gateway will
train the received global model with the local data and share the model weight and the updated
device-type profile at the end of each round. The AD service provider periodically supports the
security gateway. Each device type has its AD model stored in a model repository within the AD
service provider. The security gateways within this proposed system are FL clients, whereas the IoT
service provider is an FL server.

The proposed architecture includes security gateways that act as adaptive IoT clients. Their
dedicated MAPE-K module enables them to self-learn the type of IoT device based on their commu-
nication pattern with the security gateways. This self-learning AD is located on the client side of
the IoFT paradigm. However, the AD service provider, which acts as an FL server, also automatically
identifies one of the challenges associated with the AD model based on device-type behaviour. This
challenge is the rise of false alarms due to regular device firmware updates provided by one of
IoT service providers in the market, such as Amazon, Samsung, and Philips, amongst others. This
behaviour can affect the overall AD performance as it gets aggregated to a global model, which has
a similar impact as a model poisoning attack [29]. Nguyen et al. [77] highlight this issue and suggest
that an FL server must track the rising alarm across FL clients to determine the legitimacy of the
alarm. We incorporate this aspect in our use case; therefore, the AD service provider has three tasks:
1) aggregating the FL client’s module, 2) determining if a new device-type profile does not match
any existing records in the device-type profile repository, and 3) dealing with IoT firmware updates
that arise from FL clients with similar device-type profiles. The two use cases below demonstrate FL
adaptation logic interpretation within the proposed conceptual architecture of the self-adaptive
IoFT, automatic enrolment of FL clients, and address IoT firmware updates for self-adaptive IoFT
for AD in smart homes.
FL Client Automatic Enrolment Figure 8a illustrates the FL adaptation logic for enrolling new or
existing device-type FL client profiles.

• Initial component: The FL Registration Manager updates the knowledge base with the new
client profile, prompting the Monitor component to send an analysis request.
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Fig. 7. IoFT architecture for AD in smart homes

(a) Automatic client enrolment (b) IoT device firmware update spotting

Fig. 8. Two case studies of MAPE-K-based self-adaptive IoFT

• Monitor component: Detects knowledge base changes and forwards the registration request
to the Analyse component.

• Analyse component: Retrieves device-type AD models from the Knowledge Base, analyzes
the new profile, and sends a registration request to the Plan component.

• Plan component: Decides whether to assign an existing AD model or create a new one. If
a match is found, a model assignment request is sent to the Execute component; otherwise,
a new FL client request is initiated.

• Execute component: Either creates a new random device-type-specific ADmodel or assigns
an existing model to the new FL client. The resulting model is reported to the FL Registration
Manager and stored in the Knowledge Base.

IoT Device Firmware Update Spotting Figure 8b shows the FL adaptation logic for firmware
updates, focusing on AD during training rounds.
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Table 12. Characteristics of Self-Adaptive IoFT in Two DÏoT Use Cases [77] [69]

Use Case Motivation Implementation Evaluation Metrics Evaluation Testbed Application

IoT Device Firmware
Update Spotting

Improve IoFT
Performance Context-based Approach FP/TP Rate Laboratory Testbed Smart Offices

FL Client Automatic
Enrolment

Overcome IoT
Device Heterogeneity Context-based Approach

Precision, Recall,
F1-Score Laboratory Testbed Smart Homes

• Monitor Component: FL clients submit anomaly reports at the end of each training round,
which are forwarded to the Analyse component.

• Analyse Component: Detects and categorizes anomalies by comparing them with known
cases in the Knowledge Base, then sends findings and action requests to the Plan component.

• Plan Component: Determines if the anomaly is legitimate or illegitimate based on prior
knowledge.

• Execute Component: For legitimate anomalies, false alarms are cancelled and the AD
model is retired. For illegitimate anomalies, a verification process is triggered. Outcomes
are returned to the FL client via an actuator.

5 CHALLENGES AND FUTURE DIRECTION
Utilising self-adaptive IoFT introduces new features to existing FL and IoT systems. The main goal
of this application is to provide enhanced resiliency to an IoFT. Nevertheless, certain challenges
must be addressed to fully realise the benefits of adopting this new design paradigm.

5.1 Challenges in Designing Self-adaptive IoFT Systems
One of the biggest challenges is identifying the requirement of the IoFT system that needs to be
maintained and how to build a self-adaptive IoFT that fulfils the adaptation requirement. In Section
4.2, we explain the main properties of designing self-adaptive IoFT. As a part of Technique used,
Parameter adaptation in IoFT can be challenging. An engineer who designs self-adaptive IoFT needs
to clearly state which parameter must be optimised automatically ( i.e., FL global parameter, Model
initial parameter, and Model hyperparameter). An optimisation technique based on a nature-based
approach can be used to modify these parameters as discussed in Section 4.5.3. However, attempting
to change all the parameters in the IoFT paradigm together is a resource-intensive task. Moreover,
performing self-adaptation proactively is limited by the need to establish a strict policy to drive the
adaptation towards a specific direction – therefore making reactive adaptation more appealing for
system designers, as it triggers the adaptation process when these policies are violated. Therefore,
more work on proactive adaptation is needed, especially for critical applications (healthcare, finance,
IIoT) where we must start the adaptation process before the violation occurs. Qi et al. [85] follow
this direction by introducing proactive handover using FL to maintain quality of service for mobile
users in vehicular networks.

5.2 Challenges in Distinct Domains of IoFT Systems
Self-adaptive IoFT systems are exposed to the same limitations that affect FL and IoT systems, as
outlined in Section 2.2.7. Additionally, the discussion in Section 2.2.4 highlights that the diversity
of IoT systems among FL clients complicates the definition of adaptation logic and the allocation of
suitable resources. Furthermore, communication and bandwidth limitations constrain the decision-
making process in the design of self-adaptive IoFT systems by limiting the interaction between FL
clients and servers. This challenge arises because the adaptation logic requires a reliable interface to
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manage resources effectively. Another challenge related to IoT devices is their limited computational
capacity, which restricts their ability to participate in IoFT systems. Likewise, the availability of FL
clients is highly dependent on the IoFT architecture. In cross-device FL, as discussed in section 2.2.3,
there can be numerous clients, many of whom may be intermittently available for participation in
the training process. Khan et al. [50] proposed a self-organising FL approach for wireless networks
to address this challenge. This method improves client availability by forming clusters, registering
devices and allocating resources in a completely autonomous technique. Moreover, data privacy
requirements imposed by FL clients often limit the degree of context-sharing across FL clients. In
Section 4.8, we demonstrated the advantages of sharing device-type profiles across FL clients to
detect false alarms resulting from firmware updates of IoT devices. However, the main advantage
of FL lies in its ability to maintain privacy across participants. Sharing additional information could
accidentally lead to data leakage, thus exposing the IoFT systems to various security threats. There-
fore, strict privacy and security requirements for IoFT systems pose significant challenges when
designing adaptation logic. Mothukuri et al. [76] present a classification of the security and privacy
issues in general FL systems. In Figure 9, we expand upon their proposed threat categorisation by
incorporating the unique implementation challenges for adopting various defence techniques spe-
cific to self-adaptive IoFT systems. These challenges are further magnified in real-time processing
scenarios, where decisions must meet strict latency constraints to maintain system responsiveness
and effectiveness. Real-time data streams in IoFT systems require continuous monitoring, updating
the predictive models to adapt to new data, and providing rapid feedback mechanisms to respond
quickly to changes in the operating environment. The limited memory and processing power of
edge devices and the need for real-time data processing add more complexity to implementing
self-adaptive IoFT. Therefore, there is a need to design efficient ML model architectures, robust
communication protocols, and proactive adaptation strategies to prevent system degradation and
preserve privacy for real-time self-adaptive IoFT systems.

5.3 Challenges in Adaptation Logic
The MAPE-K framework is the main engine that drives self-adaptive IoFT towards different states.
To utilise them effectively, we need to highlight the difficulty of each stage of the framework.
For instance, Which part of the IoFT system needs to be monitored? What are the states and
behaviours of a self-adaptive IoFT system that need to be analysed thoroughly to identify the
system’s status? What is the best adaptation plan for the underlying system to make effective
decisions?What is the correct execution approach that assures the adaptation is performed correctly?
Answering these questions required a comprehensive understanding of the specific IoFT system
being utilised to monitor, analyse, plan, and execute adaptations effectively. Also, it requires in-
depth knowledge of the system’s components, functionalities, and potential challenges that may
arise during each framework stage. Jahan et al. [46] present a security-focused feedback control
loop that interacts with the MAPE-K framework to dynamically manage runtime adaptation for
the changes in functional and security conditions. Their approach provides two control loops that
interact with each other to reduce the effort undertaken at the design stage for building a reliable
MAPE-K framework. Although there have been efforts to tackle the challenges of designing the
MAPE-K framework in various domains, this issue warrants further focus when implemented in a
self-adaptive IoFT system.

5.4 Challenges in Evaluating self-adaptive IoFT
Evaluating self-adaptive IoFT systems presents significant challenges due to their reliance on FL
and IoT infrastructures. Previous evaluation frameworks for SASs, such as those by McCann and
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Fig. 9. Overview of security and privacy threats in IoFT systems

Huebscher [70], address core concerns related to scalability and responsiveness but lack detailed
case studies or practical tool support. Similarly, Villegas et al. [104] offer a quality-driven framework
without practical implementation. Moreover, the quantitative evaluation proposed by Reinecke et
al. [90] does not include the architectural properties often implicit or distributed across the system.
These challenges are observable in IoFT systems due to device heterogeneity, non-IID data, limited
client availability, and concerns regarding privacy and security. Current evaluation approaches do
not adequately capture the unique interplay of FL and IoT constraints. As a result, the lack of a
suitable evaluation approach emphasises the need for a generalisable framework to address these
challenges. Addressing this gap could open new research directions that enhance the scalability
and reliability of SASs in general and IoFT systems specifically.

6 CONCLUSION
Self-adaptive IoFT combines three distinctive domains (i.e., SAS, FL, and IoT systems). This work
presents a systematic review establishing a comprehensive framework for understanding and
implementing self-adaptive IoFT systems. Moreover, we propose a conceptual architecture that
combines MAPE-K feedback loops with FL server-client interactions. This architecture provides a
foundation for implementing self-* properties while maintaining privacy by separating adaptation
logic and managed resources. Our analysis identified four main approaches to implementing self-
adaptive IoFT systems (i.e., context-based, ML-based, nature-based, and agent-based), each with
distinct advantages. Additionally, these implementation techniques illustrate the applicability of self-
adaptive IoFT systems in various application domains (e.g., healthcare, industrial Internet of Things,
and smart places), where collaborative learning and adaption in real time are essential. On the other
hand, additional efforts are required to implement a successful self-adaptive IoFT system reliably.
This review highlights a few challenges affecting the reliability of the adaptation mechanism,
including privacy preservation versus adaptability, heterogeneous IoT devices, and communication
overhead. Moreover, the literature emphasises the importance of exploring proactive and efficient
adaptation strategies for resource-constrained IoT devices and standardised evaluation frameworks,
which will benefit researchers and developers of self-adaptive IoFT systems.
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