
Canella: Privacy-Aware End-to-End Integrated IoT

Development Ecosystem

Atheer Aljeraisy

School of Computer Science and Informatics

Cardiff University

Cardiff, UK

Majmaah University, Saudi Arabia

aljeraisya@cardiff.ac.uk

Omer Rana

School of Computer Science

Cardiff University

Cardiff, UK

ranaof@cardiff.ac.uk

Charith Perera

School of Computer Science

Cardiff University

Cardiff, UK

PereraC@cardiff.ac.uk

Abstract—Applications for the Internet of Things (IoT) can
derive sensitive information about people, so developers must
protect users’ privacy in compliance with privacy and data
protection laws. However, developers face difficulties in ad-
dressing privacy issues as many applications exploit personal
data in a problematic manner. We present Canella, an inte-
grated IoT development ecosystem that is augmented with novel
privacy-preserving components for developing privacy-aware IoT
applications. Canella helps software developers meet privacy
requirements during the development phase and during rapid
prototyping, and it provides real-time feedback on potential
privacy concerns. Canella aims at assisting developers to (i) better
understand their code’s behavior, (ii) better overcome privacy
issues and comply with privacy and data protection laws, (iii)
reduce time to incorporate privacy into an IoT application, and
(iv) reduce the cognitive load of integrating privacy into an IoT
application. Thus, Canella can result in a significant improvement
in building privacy-aware IoT applications. (Demo Video)

Index Terms—Internet of Things, Privacy by Design, Software
Development, Data Protection, Privacy Law, Usable Privacy

I. INTRODUCTION AND MOTIVATION

Applications for the Internet of Things (IoT) can derive sen-

sitive information about individuals, so developers must ensure

that data is maintained in accordance with privacy and data

protection legislation. Nevertheless, developers still face many

difficulties in handling privacy issues, leading to numerous

applications exploiting sensitive data in a problematic way for

a number of reasons. First, it has been found that developers do

not treat privacy as a primary concern [1]. Second, developers

have a partial understanding of what should be considered to

protect users’ data [2]. Finally, developers lack knowledge of

their apps’ data practices, which makes it difficult to design

and implement effective privacy requirements [3].

Recent studies have revealed that developers face chal-

lenges when complying with privacy and data protection

laws when the regulations’ terms are ambiguous and it is

hard to understand and apply these legal requirements [4].

Due to this, it becomes important to transform these privacy

regulations into software requirements, a process known as

Privacy by Design (PbD) [5]. Several researchers have pro-

posed PbD principles, guidelines, strategies, and patterns to

assist developers in effectively integrating privacy-preserving

techniques into the development process [4]. The General Data

Protection Regulation (GDPR) [4] assures the importance of

PbD and its applicability to all systems that process personal

data, a characteristic of IoT applications. However, most

guidelines are legal rather than technical. This makes them

unsuitable for application-building tools, disconnecting them

from developers’ practical environment. Hence, there is a need

to enrich existing developers’ tools with privacy-preserving

components. This will increase developers’ awareness of how

personal information is utilized and misused [4].

In this paper, we present Canella, an integrated IoT de-

velopment ecosystem. It is augmented with novel privacy-

preserving components that work together to help developers

build privacy-friendly end-to-end IoT applications. Canella

provides real-time feedback on potential privacy concerns and

recommends privacy-preserving components to be integrated

into IoT data flows. This can encourage developers to consider

the potential effects of their applications and the possibility of

using less risky options when dealing with personal data. As a

result, this can reduce developers’ cognitive load and the time

it takes to incorporate privacy into an IoT application.

II. FOCUS GROUP FOR REQUIREMENTS GATHERING

As the PbD schemes are the mechanism to comply with

privacy and data protection laws, Aljeraisy et al. have mapped

the elements of the PbD schemes with the principles and

individuals’ rights of their Combined Privacy Law Framework

(CPLF)1. Thus, we conducted a focus group study with

novice developers to explore the applicability and feasibility of

designing and implementing these PbD schemes into different

IoT development environments, such as Arduino, Blockly, and

Node-RED, in a reusable manner. The participants were di-

vided into 25 groups, with three members in each group.

The results of the focus group study led us to design

and implement the privacy-preserving components of Canella

based on the PbD guidelines suggested by Perera et al.

[6]. This could refer to the clarity of the specifications of

these guidelines in comparison to other elements of the PbD

schemes as well as their context as they are specific to the

IoT domain. After analyzing all participants’ responses, we

1The Combined Privacy Laws Framework refers to the selected privacy and
data protection laws analyzed in Aljeraisy et al.’s study [4].

https://iotgarage.net/projects/demos/AtheerPerCom2023Demo


excluded the guidelines that were not properly supported by

useful feedback. The resultant guidelines are shown in Figure

1. Each guideline complies with one or more of the CPLF

principles. For example, a developer will follow the CPLF’s

Data Minimization principle when integrating Minimize Data

Storage into an IoT application. In this paper, we decided

to focus on the guidelines that are in line with the Data

Minimization principle of the CPLF as a starting point for

designing and implementing privacy-preserving components.

These are as follows: (1) Minimize Raw Data Intake; (2)

Minimize Data Storage; (3) Reduce Location Granularity; and

(4) Category-Based Aggregation.

Fig. 1. The Relationship between Applying these PbD Guidelines and
Compliance with the Principles of the CPLF.

III. DESIGN AND IMPLEMENTATION OF CANELLA

A. Architecture of Canella

The architecture of Canella is based on the IoT architecture

in terms of how data moves through an IoT application.

Typically, data moves from sensing devices to gateway devices

and then to the cloud infrastructure. This pattern is usually

comprised of three components, which are edge nodes, fog

nodes, and cloud nodes, and these all have different computa-

tional capabilities. As shown in Figure 2, Canella utilizes two

widely used community IoT development tools:

Blockly—is an open-source library developed by Google

for adding block-based visual programming to an application.

The Blockly editor provides a user interface and a framework

to generate code using interlocking and graphical blocks [7].

Node-RED—is an open-source flow-based visual program-

ming development tool originally developed by IBM for

integrating hardware devices, APIs, and online services. It

provides a browser-based flow editor to (1) drag, drop, and

connect nodes in the pallets or (2) import JavaScript code [8].

Fig. 2. Canella’s Architecture.

Figure 2 depicts Canella’s architecture, which particularly

utilizes Blockly@rduino [9]. It is a visual programming editor

based on Google’s Blockly that has been forked to generate

Arduino’s C/C++ code. The Blockly@rduino represents the

edge of an IoT application in Canella, using a microcontroller

(NodeMCU ESP8266). The Node-RED is the fog of an IoT

application in Canella that performs data processing and stor-

age. It is based on a single-board microcomputer with complex

computational capabilities (the Raspberry Pi). The Node-RED

can directly access data from sensors connected to an Arduino

board in several ways (e.g., via a serial port number or WiFi

using a protocol called MQTT). Then, the Node-RED sends

the analytical information to the cloud through WiFi using the

MQTT protocol for storage purposes.

Canella’s goal is to help developers handle privacy issues

on the edge and fog nodes of an IoT app to reduce privacy

risks before data is sent to the cloud node. As a result, we

created privacy blocks in Blocky@rduino and privacy nodes

in Node-RED (Figure 2). Together, these privacy-preserving

components help IoT developers meet privacy requirements

throughout the data lifecycle when building IoT applications.

B. Design and Implementation of Privacy Components

In this section, we demonstrate the design and implemen-

tation of the PbD guidelines. In particular, each privacy block

and privacy node corresponds to a specific PbD guideline that

is in line with CPLF principles. We define the shape of a

block, its field, and its connection points. Likewise, we specify

the node’s properties, edit dialog, and help text. To assist

developers in protecting personal data without compromising

the IoT application objective, we suggest different choices

for users’ data values. Privacy blocks and privacy nodes are

designed to be generic enough to be used in any IoT appli-

cation. Canella provides detailed information for developers

about the objective of each privacy block and privacy node.

In the same way, it supports information about compliance

with privacy and data protection laws on each privacy block

and privacy node to raise developers’ awareness of privacy

and data protection regulations.

Reduce Location Granularity: Granularity refers to the

level of detail represented by the data. High granularity

refers to detail at the atomic level, while low granularity

zooms out into a summary. The dissemination of location can

be considered coarse-grained, while the full address can be

considered fine-grained, which poses more privacy risks. The

Reduce Location Granularity performs reverse geocoding to

convert longitude and latitude into a human-readable address.

Accordingly, we designed its block and node to suggest to

developers three GPS coordinates for reducing location gran-

ularity to a postcode, city name, or country name, requiring

an API key to access the Google Maps API (Figure 3).

Minimize Raw Data Intake: IoT apps should convert raw

data into secondary context data to avoid privacy violations.

We designed the Minimize Raw Data Intake block to reduce

the amount of raw data it receives by taking the average of the

sensor data values over a specified period of time. Developers

can choose different types of data to minimize as well as

units of time (seconds, minutes, and hours) and are required

to input a number value for a selected time to calculate the

average of the data (Figure 3). In Node-RED, however, it only

reduces the amount of raw data by calculating the average



of the sensor data values over the number of sensor data

values, as it receives data after the user completes a particular

workout. This guideline also advises building a platform that

actively discourages developers from accepting raw data. In

Canella, we apply this by developing warning messages in the

blocks that collect sensitive (e.g., heart rate) and personal (e.g.,

location) data in Blockly@rduino to encourage developers to

avoid accepting raw data into the application.

Category-Based Aggregation: This guideline suggests re-

ducing the granularity of the raw data. We designed the

category-based aggregation block and node to aggregate data

based on its average. It suggests different types of data for

developers to categorize, as well as different categories based

on the data type selected. For example, to categorize heart rate

data, the block and node suggest two categories: status (low,

normal, or high), or range (60–80 BPM) ((Figure 3).

Minimize Data Storage: This guideline suggests reducing

the amount of data stored by IoT applications. We designed

Minimize Data Storage to suggest different data types for de-

velopers to choose which data to delete (Figure 3). Logically,

this block or node can be used once secondary contexts are

derived. This can be utilized when another privacy-preserving

component is added to an IoT application’s data flow.

Privacy Law Validator: A Privacy Law Validator

node recognizes data practices when sending data from

Blockly@rduino to Node-RED. It checks the compliance

status of the received data. Three data statuses are displayed:

(1) a red circle, indicating a privacy issue (the format of the

received data does not comply with privacy and data protection

laws); (2) a yellow circle, indicating partial compliance 2

with privacy and data protection laws; and (3) a green circle,

indicating compliance with privacy and data protection laws.

IV. DEMONSTRATION

To demonstrate Canella, we present a fictional use case for

a Fitness-Tracking IoT application. It is a helpful system that

enables trainees to track their activities easily. It also assists

trainers in monitoring trainees’ progress and encouraging them

for their wellbeing and safety. Figure 3 demonstrates the

system’s components: a wristband (with GPS and a heart rate

monitor), a trainer server where trainees are registered to moni-

tor their activities, and a cloud that is managed by a third party.

Developing such an application requires privacy compliance.

The challenge for developers is to integrate privacy-preserving

techniques into the data flow of an IoT application during the

development phase, which Canella might facilitate.

This demo will show the running Canella (Demo Video). To

illustrate how Canella works, we built custom blocks for build-

ing the Fitness-Tracking IoT application in Blockly@rduino.

In Node-RED, we have created a dashboard to allow trainers

to track their trainees. The demo will go through the archi-

tecture of Canella, presenting the used hardware components,

Blockly@rduino, and Node-RED. We will show how to use

Blockly@rduino to create a Fitness-Tracking IoT application.

2Partial compliance means that there is a chance to add an extra layer of
privacy-preserving techniques to the received data.

Fig. 3. Integrate Privacy Blocks and Privacy Nodes into the Data Flow for
the Fitness-Tracking IoT Application During the Development Phase.

We will also demonstrate the real-time warning messages that

we developed in the blocks that collect personal or sensitive

data to notify developers about potential privacy issues. In

addition, we will present the privacy blocks that we created

in Blockly@rduino and how they could be added to the data

flow before the data is stored in Blockly@rduino or sent

to Node-RED. Then, we will show the interactivity between

Blockly@rduino and Node-RED. Following that, we will

present the privacy nodes that we have created in Node-RED

as well as their edit dialogues. Furthermore, we will present

the Privacy Law Validator node that could be used to check

the compliance status of the received data with privacy and

data protection laws. Finally, we will illustrate two examples

of how to integrate the privacy nodes into the received data

before the data is stored in Node-RED and sent to the cloud.

For instance, based on the use case, the exact location where

athletes may have performed the activity is not necessary.

Therefore, developers need to pick up the Reduce Location

Granularity block to reduce location granularity from latitude

and longitude to a postcode before sending the location to

Node-RED. Once Node-RED receives the data, developers

should integrate the Reduce Location Granularity node into the

data flow to reduce the location granularity from a postcode to

a city name before sending the data to the cloud. By doing so,

the user’s data is protected, and the objective of the Fitness-

Tracking IoT application is not affected.

REFERENCES

[1] R. Balebako and L. Cranor, “Improving app privacy: Nudging app
developers to protect user privacy,” IEEE Security and Privacy, vol. 12,
no. 4, pp. 55–58, 2014.

[2] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and
A. Balissa, “Privacy by designers: software developers’ privacy mindset,”
Empirical Software Engineering, vol. 23, no. 1, pp. 259–289, 2018.

[3] R. Balebako, A. Marsh, J. Lin, J. Hong, and L. Faith Cranor, “The Privacy
and Security Behaviors of Smartphone App Developers,” In Proceedings

2014 Workshop on Usable Security, 2014.
[4] A. Aljeraisy, M. Barati, O. Rana, and C. Perera, “Privacy laws and privacy

by design schemes for the internet of things: A developer’s perspective,”
ACM Comput. Surv., vol. 54, no. 5, may 2021.

[5] A. Cavoukian, “Privacy by Design,” Identity in the Information Society,
vol. 3, no. 2, pp. 1–12, 2010.

[6] C. Perera, M. Barhamgi, A. K. Bandara, M. Ajmal, B. Price, and
B. Nuseibeh, “Designing privacy-aware internet of things applications,”
Information Sciences, vol. 512, pp. 238–257, 2020.

[7] “Blockly.” [Online]. Available: https://developers.google.com/blockly
[8] “Node-RED.” [Online]. Available: https://nodered.org/
[9] “Blockly@rduino: Create Code with Blocks.” [On-

line]. Available: https://create.arduino.cc/projecthub/libreduc/
blockly-rduino-create-code-with-blocks-b6d3e4

https://iotgarage.net/projects/demos/AtheerPerCom2023Demo
https://developers.google.com/blockly
https://nodered.org/
https://create.arduino.cc/projecthub/libreduc/blockly-rduino-create-code-with-blocks-b6d3e4
https://create.arduino.cc/projecthub/libreduc/blockly-rduino-create-code-with-blocks-b6d3e4

	Introduction and Motivation
	Focus Group for Requirements Gathering
	Design and Implementation of Canella
	Architecture of Canella
	Design and Implementation of Privacy Components

	Demonstration
	References

