
SenseLess: Minimal Vision, Maximum Insight for
Smart Homes

Abstract—We present SenseLess, a hybrid anomaly detection
framework for smart homes that, during the training phase,
automatically labels images without manual annotation by com-
bining sensor-guided detection, self-supervised visual clustering,
and unsupervised multi-sensor delay estimation for precise align-
ment. During operation, the system relies primarily on non-
vision sensors and activates a confidence-aware vision model
only under low-confidence, thereby preserving privacy while
maintaining adaptability. Evaluated in real home monitoring,
SenseLess achieved an average label coverage of 97.65% with
94.9% accuracy and reduced vision usage to less than 4% of
wall-clock operating time. Calibration mechanisms and minimal
configuration requirements support scalability and deployment
across diverse residential environments.

Index Terms—smart homes, anomaly detection, self-supervised
learning, sensor fusion, image labeling, privacy preservation

I. INTRODUCTION

Anomaly detection in home care is critical for supporting
older adults who live alone, where unnoticed events such as
forgotten appliances or unexpected exits pose risks. Moni-
toring systems can enable early detection and intervention,
but they must operate continuously while preserving privacy
and minimizing caregiver workload. Effective systems must
adapt to behavioral changes, reduce false positives, and provide
actionable insights without intruding on daily life. Achieving
this balance is essential for safe, respectful, and scalable in-
home care.

Non-vision sensor approaches are widely adopted in home
care for their low cost, unobtrusiveness, and ability to run con-
tinuously. Motion and door sensors detect abnormal activity
and nonresponse [1], while environmental sensors monitor air
quality, including elevated CO2 levels [2]. Smart plugs, tags,
and smoke or gas detectors support safety by identifying open
doors, unattended stoves, or unauthorized access [3]. However,
these systems often suffer from high false positives, limited
context, and data drift [4]–[6].

Vision-based systems, by contrast, offer high-resolution
contextual information and have been used to monitor illness
progression [7], detect falls using RGB and 3D video [8], and
recognize behavioral anomalies such as agitation in residents
with cognitive impairments [9]. However, these models require
extensive annotated datasets for training and are sensitive to
privacy constraints, lighting variability, and limited camera
coverage. Relying solely on visual input typically requires
continuous monitoring, which incurs high computational costs
and further complicates deployment on resource-constrained
devices. As a result, the use of vision systems in personal

living spaces remains limited, particularly in scenarios where
trust and privacy are essential.

In response, hybrid approaches have emerged, combining
data from multiple sensing modalities to improve robust-
ness and coverage [10]. Yet, these systems often inherit the
drawbacks of their constituent sensors, and can introduce
computational overhead and new challenges in data fusion
and synchronization. Addressing these trade-offs requires a
design that not only integrates complementary sensing streams,
but also adapts to uncertainty, limits privacy exposure, and
operates effectively with minimal supervision.

To address these limitations, we present a hybrid anomaly
detection framework that fuses non-vision sensor data with
self-supervised learning to build an adaptive, privacy-
conscious vision model. During training, the system uses
an unsupervised sensor-based model to identify anomalous
patterns in environmental data, which are then aligned with
corresponding camera frames to produce initial image labels.
In parallel, a contrastive self-supervised algorithm learns vi-
sual representations from the same unlabelled images and
generates pseudo-labels via clustering. These two streams are
merged through a confidence-weighted refinement process,
yielding a high-quality, self-labeled dataset for training a
vision-based anomaly detector. At deployment, the non-vision
model operates continuously as the primary detector, while
the vision model is selectively activated when sensor predic-
tions are uncertain or potentially drifting. This design enables
accurate and scalable anomaly detection with minimal visual
exposure, no manual annotations, and continuous adaptation to
evolving home environments, forming the basis of SenseLess,
our proposed hybrid framework.

While designing SenseLess, we addressed four key chal-
lenges that arise in deploying anomaly detection systems in
real-world home environments:

• Scarcity of annotated image data. Vision-based
anomaly detection typically requires large volumes of
labeled images, which are difficult to obtain in home
settings. Manual labeling is time-consuming, costly, and
often impractical for rare or privacy-sensitive events, as it
typically requires human supervision [11]. To overcome
this, we use a dual-labeling strategy:

– Sensor-guided image labeling: Non-vision sensors
detect anomalies, which are aligned with camera
frames to generate initial labels automatically.

– Self-supervised visual labeling: A contrastive learn-
ing model learns representations from unlabelled



images and clusters them to generate pseudo-labels
based on visual similarity.

• Temporal misalignment between sensor and image
data. Sensors such as temperature or CO2 respond with
delay to environmental changes, hindering alignment of
sensor events with visual observations [12]. Our analysis
confirmed these delays (see Section II-B). We address
them with a backward synchronization mechanism that
estimates and compensates for response lag to improve
labeling accuracy.

• Balancing privacy with contextual awareness. Always-
on cameras are intrusive. Our system activates vision only
when sensor predictions are uncertain, limiting exposure
while retaining interpretability.

• Drift in sensor performance. Sensor readings can shift
over time with environmental or behavioral changes,
reducing accuracy [6]. We address this with a self-healing
mechanism where the vision model retrains the sensor
model when drift is detected.

This work is guided by three research questions:
• RQ1: Can non-vision sensors be used to automatically

generate accurate labels for training vision-based anomaly
detection models?

• RQ2: How can self-supervised learning be combined
with non-vision data to refine these labels and eliminate
the need for manual annotation?

• RQ3: How can multi-modal sensor streams with variable
response times be calibrated and aligned for accurate,
synchronized anomaly detection?

To address these questions, we contribute the following:
• We propose SenseLess, a hybrid anomaly detection sys-

tem that uses sensor-based and self-supervised pseudo-
labels to train vision models without manual annotation.

• We introduce the Hierarchical Event-Driven Synchroniza-
tion (HEDS) algorithm, which performs unsupervised
multi-sensor delay estimation and compensates for re-
sponse lags during sensor-to-image alignment. This im-
proves label precision across heterogeneous modalities,
ensuring reliable training data without manual calibration.

• We present a self-healing feedback mechanism in which
the vision model retrains and recalibrates the non-vision
model when drift or low-confidence conditions are de-
tected, enabling long-term robustness.

II. SYSTEM DESIGN

A. Problem Definition

We consider the problem of automatically labeling im-
ages captured in indoor environments to train a vision-based
anomaly detection model, without relying on manual annota-
tion. Let 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑛} be a set of unlabelled images,
and 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚} be the corresponding aligned non-
vision sensor readings associated with each image. The goal
is to generate a refined label set 𝐿∗ = {ℓ1, ℓ2, . . . , ℓ𝑛}, where
each label ℓ𝑘 ∈ {Normal, Anomaly, Unknown}, such that the
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Fig. 1. Delayed temperature and humidity response after door opens. The red
dashed line marks the event onset.

resulting dataset {(𝑖𝑘 , ℓ𝑘)} can be used to train a robust,
privacy-aware vision-based anomaly detector.

This task involves several key challenges:
• Sensor-to-image alignment: Sensor and image data must

be temporally aligned despite variable response delays
across sensor types.

• Sensor label uncertainty: Labels generated from unsu-
pervised sensor models may be noisy or uncertain due to
environmental drift or hardware variability.

• Unsupervised vision labeling: Visual features extracted
via self-supervised learning must be clustered and inter-
preted without access to ground truth.

• Deployment constraints: The final system must operate
under privacy constraints, manage data drift, and provide
confidence-aware decisions with minimal supervision.

B. Preliminary Investigation
Before system design, we ran experiments with real-world

home care sensor data. They revealed two key challenges
that shaped SenseLess: the limited accuracy of non-vision
anomaly detection without labels, and sensor response delays
that complicate alignment with visual input.

a) Limitations of non-vision anomaly detection.: We first
trained an unsupervised anomaly detection model using only
non-vision environmental sensor data. While this approach
worked in controlled settings, it performed poorly in realistic
home environments. The absence of ground truth made it
difficult to verify the timing or cause of anomalies, and
many sensor readings appeared ambiguous without contextual
information. These findings motivated the use of an additional
image stream and a self-supervised learning model to provide
complementary cues for labeling.

b) Sensor delay and misalignment.: We examined the
temporal patterns of sensor responses around events and
observed, through visual inspection, that some environmental
changes occurred gradually rather than immediately. For ex-
ample, temperature and humidity values often shifted several
seconds after a door was opened, as shown in Figure 1.
This misalignment increases the risk of associating anomalies
with incorrect visual frames. Based on these observations, we
designed the HEDS algorithm to systematically detect and
compensate for sensor delays during alignment with image
timestamps.

C. System Overview
SenseLess, illustrated in Figure 2, operates in two sequential

phases: a training phase that generates a self-labeled image
dataset, and a deployment phase that performs anomaly detec-
tion with minimal visual exposure.
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Fig. 2. System architecture of SenseLess. The training phase integrates non-vision anomaly detection, self-supervised vision, and label refinement to generate
labeled data. The deployment phase relies primarily on non-vision sensing and selectively activates the vision module when confidence is low.

During training, the system integrates three modules. First,
the non-vision module is trained on normal environmental
data to detect anomalies from sensor readings. Detected events
are then temporally aligned with image frames using the Hi-
erarchical Event-Driven Synchronization (HEDS) algorithm,
which performs unsupervised multi-sensor delay estimation
and compensates for response lags. This ensures that anoma-
lies are matched to their true visual context, improving la-
bel accuracy across heterogeneous modalities. Second, the
self-supervised vision module applies contrastive learning to
extract visual features from unlabelled images and clusters
them into pseudo-labels. Third, the label refinement module
fuses the sensor- and vision-derived labels using a confidence-
weighted strategy, producing a high-quality dataset for training
a vision-based anomaly classifier.

In deployment, the non-vision module runs continuously
as the primary anomaly detector. When predictions are un-
certain, the vision module is selectively activated to validate
the decision. This selective activation preserves privacy by
minimizing visual exposure and supports adaptation through
feedback-driven retraining. Together, these modules enable
SenseLess to deliver accurate, scalable, and privacy-aware
anomaly detection in dynamic home environments.

D. Training Phase

1) Non-Vision Module: The non-vision module generates
initial labels for image data by detecting anomalies in environ-
mental sensor streams. This process is implemented using the
HEDS algorithm, which synchronizes sensor data with image
timestamps while accounting for response delays and align-
ment uncertainty. The algorithm is outlined in Algorithm 1
and described in detail below.

a) Sensor Classification: Sensors are grouped into
instant-response (IRS) and delayed-response (DRS) categories
based on their characteristics and observed response behavior.
IRS sensors (e.g., motion detectors) react immediately and are
assigned zero delay (Δ𝑡𝑠 = 0). DRS sensors (e.g., temperature
or humidity) exhibit measurable latency and are assigned a
calibrated delay Δ𝑡𝑠 > 0 estimated during delay calculation.

b) Model Training: We train a multi-model ensemble of
an autoencoder, Isolation Forest, and Elliptic Envelope, each
capturing different aspects of anomaly behavior. Sensor data
is cleaned in two stages: values outside physical ranges are
replaced by interpolation, and statistical outliers are removed
using a configurable method, with median absolute deviation
as the default and Z-score filtering as an alternative. The
autoencoder is trained on clean, normal-only data using mean
squared error loss, with architecture scaled to sensor dimen-
sionality. Features are normalized with either RobustScaler or
StandardScaler, and thresholds are derived from the training er-
ror distribution and calibrated on validation data. During eval-
uation, anomaly scores from the three detectors are combined,
and sensitivity is tuned by requiring agreement from one, two,
or all detectors. This mechanism is optimized to maximize
recall while limiting false positives. Confidence scores 𝑐 (𝑠)

𝑘
are

computed from reconstruction errors and sensor-specific error
distributions, aggregated across sensors, and calibrated with
isotonic regression to produce reliable probabilities. When
one detector achieves higher validation performance than the
others, the system can use it alone. If no method is clearly
superior, the full ensemble is retained.

c) Delay Estimation and Calibration: For DRS, the
system estimates the delay Δ𝑡𝑠 between the anomaly onset
and the point when reconstruction error first exceeds the
threshold. Anomalies are detected with the trained model,
which produces per-sensor error traces and thresholds. For
each event, the anomaly start time 𝑡start is identified by tracing
backward from the error rise to where values stabilize near
baseline, and the threshold crossing time 𝑡cross is the first
index where the error exceeds the threshold. The onsite delay
is then computed as Δ𝑡𝑠 = 𝑡cross − 𝑡start. The final Δ𝑡𝑠 for
each sensor is the mean of the filtered values, while IRS
sensors are assigned Δ𝑡𝑠 = 0. If ground truth event times are
available, an optional lab-based calibration can be performed.
In this case, delays are measured as the average difference
between known event times and the first detected anomalies.
Lab and onsite values may then be blended using configurable
weights or adjusted relative to a reference sensor. Human-in-
the-loop review is also supported, allowing experts to inspect



Algorithm 1 Hierarchical Event-Driven Synchronization (HEDS)
1: Input: Sensor dataset 𝑆, image dataset 𝐼
2: Output: Initial labeled image dataset 𝐿𝑠

3: Step 1: Sensor classification
4: for all sensor 𝑠 in sensor modalities do
5: if 𝑠 is instant-response (IRS) then
6: Assign Δ𝑡𝑠 = 0
7: else
8: Assign 𝑠 to delayed-response sensor (DRS) group
9: end if
10: end for
11: Step 2: Model training
12: Train anomaly detection model 𝑓 on a normal-only subset of 𝑆
13: Use 𝑓 to compute sensor-based confidence scores 𝑐

(𝑠)
𝑘

for detected anomalies
14: Step 3: Anomaly detection and delay estimation
15: for all sensor 𝑠 in available sensors do
16: Detect anomaly events with start time 𝑡start

17: if 𝑠 is DRS then
18: Find threshold crossing 𝑡cross (first error > threshold)
19: Compute delay Δ𝑡𝑠 = 𝑡cross − 𝑡start

20: Set Δ𝑡𝑠 to mean of valid delays
21: end if
22: end for
23: Step 4: Backward labeling and multi-sensor aggregation
24: for all sensor 𝑠 in sensor modalities do
25: for all anomaly periods 𝑃𝑠 do
26: Shift start time backward by Δ𝑡𝑠 to obtain 𝑃′

𝑠

27: for all 𝑡𝑘 ∈ 𝑃′
𝑠 do

28: Assign sensor-level label ℓ (𝑠)
𝑘

= Anomaly
29: end for
30: end for
31: end for
32: for all timestamps 𝑡𝑘 do
33: if ∃𝑠 : ℓ (𝑠)

𝑘
= Anomaly then

34: Set global label ℓ𝑘 = Anomaly
35: else
36: Set ℓ𝑘 = Normal
37: end if
38: end for
39: Step 5: Sensor-to-image alignment
40: for all image timestamps 𝑡𝑖 ∈ 𝐼 do
41: Define primary window: [𝑡𝑖 − 2, 𝑡𝑖 + 2] seconds
42: Search for anomaly event within primary window
43: if match found then
44: Assign ℓ

(𝑠)
𝑘

and 𝑐
(𝑠)
𝑘

; mark as Primary
45: else
46: Define fallback window: [𝑡𝑖 − 𝑑, 𝑡𝑖 + 𝑑 ], where 𝑑 = max(Δ𝑡𝑠 , 5 s)
47: Search for anomaly event within fallback window
48: if match found then
49: Assign ℓ

(𝑠)
𝑘

and 𝑐
(𝑠)
𝑘

; mark as Fallback
50: else
51: Assign ℓ

(𝑠)
𝑘

= Unknown with 𝑐
(𝑠)
𝑘

= 0
52: end if
53: end if
54: end for
55: return 𝐿𝑠

and correct selected cases. This multi-stage calibration process
ensures accurate temporal alignment between sensor events
and images, improving label precision across all sensor types.

d) Backward Labeling: For each sensor 𝑠, the calibrated
delay Δ𝑡𝑠 is applied by shifting the start time of detected
anomaly periods 𝑃𝑠 backward to obtain 𝑃′

𝑠 . All records 𝑡𝑘 ∈ 𝑃′
𝑠

are then labeled anomalous (ℓ (𝑠)
𝑘

= Anomaly). This process
is repeated for all sensors, and the overall label ℓ𝑘 is set
to Anomaly if any sensor produces an anomalous record
(ℓ (𝑠)

𝑘
= Anomaly); otherwise, ℓ𝑘 is set to Normal.
e) Image Alignment: To align images with sensor data,

the system applies a dual-window strategy. For each image at
timestamp 𝑡𝑖 , it first searches within a primary window [𝑡𝑖 −
2, 𝑡𝑖 + 2] seconds, a tolerance chosen to accommodate jitter
and timestamp offsets and to provide a margin of roughly two
sensor sampling intervals at 1 Hz. If no match is found, a
fallback window is applied with size 𝑑 = max(Δ𝑡𝑠 , 5 s) to

capture delayed sensor responses, where 5 s was chosen as
the maximum delay observed across all tested sensors. The
closest sensor record within the selected window is used, and
the image is marked as Primary or Fallback. If no record
is found, the image is labeled Unknown with zero confidence.

Matched images inherit the sensor-derived label ℓ (𝑠)
𝑘

and its
confidence 𝑐

(𝑠)
𝑘

. Unknown images are resolved during label
refinement using SSL pseudo-labels or optionally escalated for
human annotation. This process yields the labeled dataset 𝐿𝑠 =

{(𝑖𝑘 , ℓ (𝑠)𝑘
, 𝑐

(𝑠)
𝑘

)}, enabling supervised training without manual
annotation.

2) Self-Supervised Vision Module: The self-supervised vi-
sion module learns visual representations from unlabelled
images and produces cluster-based pseudo-labels independent
of the sensor subsystem.

We adopt a SimCLR framework with a ResNet-18 encoder
and projection head. Each image is stochastically augmented
twice (random crops, color jitter, grayscale, flipping) and the
paired views are trained with the normalized temperature-
scaled cross-entropy (NT-Xent) loss. This pulls representations
of the same image together while separating others.

After training, the SimCLR encoder generates feature em-
beddings for the dataset. These embeddings are clustered using
a Bayesian Gaussian Mixture Model (GMM), which employs
a Dirichlet prior to adapt the number of active components
while aligning with the binary objective of distinguishing Nor-
mal from Anomaly. For each image, we compute confidence
using a hybrid score that combines posterior probability with
normalized distance to the assigned cluster, providing well-
calibrated values in [0,1].

The result is a pseudo-labeled dataset (𝐿ssl) where each
image has a cluster index and confidence score. These labels
are later fused with sensor-derived labels during refinement.

3) Label Refinement Module: Each image 𝑖𝑘 receives two
candidate labels: a sensor label ℓ (𝑠)

𝑘
with confidence 𝑐

(𝑠)
𝑘

and
an SSL label ℓ (ssl)

𝑘
with confidence 𝑐

(ssl)
𝑘

. Confidence values
are calibrated using isotonic regression models trained for each
source and reused in later runs. Labels are then refined by the
following rules:

1) If both confidences fall below thresholds (𝜏𝑠 , 𝜏ssl), assign
Unknown.

2) If both labels agree and at least one confidence exceeds
its threshold, accept the shared label.

3) If only one source exceeds its threshold and is more
confident, select its label.

4) Otherwise, assign Unknown.
Thresholds 𝜏𝑠 and 𝜏ssl are obtained through isotonic calibration
against ground truth correctness flags, with the final cutoff
selected by grid search to balance accuracy and coverage.
Optional human review is supported for Unknown cases.
Reviewed labels are stored to avoid duplication in future
runs. The result is the final dataset 𝐿∗ = {(𝑖𝑘 , ℓ𝑘)} with
ℓ𝑘 ∈ {Normal, Anomaly, Unknown}.

4) Vision Model Training: We use the final labeled dataset
𝐿∗ to train a supervised convolutional neural network for the



detection of visual anomalies, excluding Unknown samples.
We adopt MobileNetV2 for its favorable balance between
classification performance and computational efficiency. The
model is initialized with ImageNet weights, with the final layer
adapted for binary classification. Training is performed using
cross-entropy loss and the Adam optimizer, with early stop-
ping based on validation loss. To improve generalization, we
apply standard data augmentations such as random cropping,
horizontal flipping, and color jitter.

E. Deployment Phase
During deployment, SenseLess runs a two-stage decision

pipeline. The non-vision module operates continuously as the
primary anomaly detector, and the vision module is selectively
activated when additional validation is required. This design
minimizes visual exposure while maintaining robustness under
uncertainty and sensor drift.

1) Primary Non-Vision Module: The non-vision module
operates continuously, analyzing sensor streams and identi-
fying outliers using an ensemble model trained on normal
data. Sensor values are cleaned using a Z-score filter, and
anomaly predictions are produced only for non-corrupted seg-
ments. Each prediction is assigned a label (Normal, Anomaly,
or Sensor_Error) and accompanied by a confidence score
estimated from reconstruction error. When the confidence is
high, the prediction is accepted without further processing.
Sensor errors and the names of affected sensors are logged
per instance to support inspection.

2) Fallback Vision Module: When the non-vision module
produces low confidence predictions or sensor errors, the
system activates the vision module to perform secondary
validation. In this case, a new image is captured and pro-
cessed by a pre-trained classification model. The image is
preprocessed and evaluated by the model, which returns a
predicted class label (Normal or Anomaly) along with a
confidence score derived from softmax outputs or object count
estimation. Vision-based predictions that exceed a configured
confidence threshold are logged and can override the original
decision. This selective activation strategy improves robustness
in ambiguous cases while minimizing unnecessary visual
processing. The captured image is processed solely for fallback
inference and is not retained, ensuring privacy is preserved.

3) Data Drift Handling: To support long-term reliability,
the system maintains a reference baseline that characterizes
normal sensor behavior under stable conditions. This base-
line is computed during an initial data collection period or
periodically updated using recent deployment logs filtered to
exclude sensor errors. For each sensor, the system calculates
mean, standard deviation, and percentiles, storing these as
reference statistics. Once deployed, incoming sensor readings
are compared against this baseline to detect data drift. Drift
is flagged when recent samples exhibit significant deviation in
statistical properties, such as shifts in mean or variance, or an
increased outlier rate relative to the baseline. In parallel, the
system monitors reconstruction error from the autoencoder to
detect structural changes in sensor patterns that may not affect

first-order statistics. When drift is detected consistently across
multiple runs, the system activates a self-healing feedback
loop. If the vision module is triggered due to low confidence
and returns a high-confidence prediction that contradicts the
non-vision decision, this prediction is logged and used as a
trusted label. These vision-verified events are then used to
retrain the non-vision model, ensuring that the system remains
adaptive to changing environments without relying on manual
annotations.

4) Model Retraining: When persistent data drift is detected,
the system triggers a retraining workflow to update the non-
vision anomaly detector. A data collector module first gathers a
retraining set composed of recent sensor data, fallback vision-
labeled samples, replay buffer entries, and a small portion of
the original training data. These sources are combined and
filtered to ensure statistical quality and coverage diversity.
A new non-vision model is then trained using the same
ensemble configuration as in the original deployment, and its
performance is evaluated against a validation set. If the new
model outperforms the current one by a predefined margin
(e.g., ≥ 0.02 macro-F1 improvement), it is deployed to replace
the old model after creating a backup. To prevent overfitting
to recent events, the replay buffer maintains representative
samples across time and label types. This modular pipeline
ensures that retraining occurs only when sufficient, high-
quality data is available and performance gains are measurable.

III. IMPLEMENTATION AND EVALUATION

A. Evaluation Setup and Dataset Overview

We evaluated SenseLess in a real home with sensors and
cameras installed. The system ran continuously for four weeks,
capturing non-vision readings and image data. Deployment
targeted key safety cases: prolonged door openings, unattended
kitchen appliances, abnormal occupancy, and obstructed path-
ways. The setup included temperature, humidity, pressure,
CO2, and ultrasonic distance sensors, and both RGB and
thermal cameras. Non-vision sensor data were collected every
second during 12.5 hours of daily operation. To broaden
applicability, we repurposed common household sensors for
secondary detection of these cases, even though each case
already has dedicated primary sensors. To support model
training and evaluation, the collected dataset was split into
24 days for training and 6 days for testing. The image
dataset comprised 2,516 door images, 2,575 appliance images,
1,511 occupancy images, and 1,960 abnormal object images,
covering diverse conditions across the four scenarios. In real
deployments, the system should begin with a 1–2 week period
of collecting normal data, which can then be used to train the
initial sensor model and establish baseline patterns.

B. Non-vision Sensor Model Performance

Table I reports the results on temporally held-out test sets.
Non-vision models achieved high accuracy and macro-F1 on
appliance and object use cases. Occupancy and door detection
were less reliable. Across door, appliance, and occupancy



TABLE I
Non-Vision Model Performance by Use Case

Use Case Method Accuracy Macro-F1
Door Single Autoencoder 86.0% 0.73
Appliance Single Autoencoder 100% 0.98
Occupancy (Incremental) Single Autoencoder 98.0% 0.95
Abnormal Object Rule-based 100% 1.00
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Fig. 3. Signal factors affecting detection. (a) Door anomalies show subtle,
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cases, a single autoencoder consistently outperformed the en-
semble variant, indicating that additional methods introduced
more noise than benefit in these settings.

In the door case (Figure 3a), temperature, humidity, and
pressure exhibited low variance and strong distributional
overlap between normal and anomalous states. For example,
anomaly means were close to normal averages. Correlations
across features were weak, and temporal patterns followed
smooth trends rather than abrupt shifts. These subtle changes
reduced the contrast available to the autoencoder, making
boundary precision and anomaly detection more difficult.

Occupancy detection using only CO2 (Figure 3b) was
hindered by strong overlap between normal and anomalous
ranges. Anomalies averaged 791 ppm (SD = 67.7) and normal
periods 725 ppm (SD = 42.4), making elevated levels common
in both states. Additonally, this single-feature setup limited
the autoencoder’s ability to distinguish anomalies. Temporal
patterns showed smooth drifts rather than sharp jumps, further
reducing discriminability. Conventional full-dataset training
produced unstable boundaries, but incremental training in 5-
day cycles with replay memory improved robustness, raising
macro-F1 from 0.72 to 0.95.

C. Delay Calculation
Delay baselines were established using labeled datasets and

a supervised Random Forest classifier (RF), which served as
a proxy ground truth for anomaly onset. For each use case,
the classifier was trained to detect the first anomaly, and the
average gap between event onset and first detection defined
the lab delay. These values provide a reference baseline but
are not directly usable in deployment since true physical onset
cannot be measured at scale. When evaluated against the RF
baseline, our delay estimation method achieved RMSE = 1.83s
and MAE = 1.60s (Figure 4). Door events showed strong
agreement, with deviations below 1.2s for temperature and hu-
midity, and 2.6s for pressure. Appliance sensors tracked short
delays with errors between 1.7s and 2.5s, while the occupancy
case differed by only 0.62s. These results confirm that onsite
estimation provides physically plausible and deployment-ready
delays, even in scenarios where environmental responses are
gradual.
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Fig. 4. Comparison between proxy ground truth (RF) delays and the proposed
delay estimation method. Each point represents a sensor measurement: door
sensors (circles), appliance sensors (triangles), and occupancy sensor (square).
The dashed line indicates close agreement (𝑦 = 𝑥). Our method achieved
RMSE = 1.83s and MAE = 1.60s.

Door sensors showed close agreement between RF baselines
(3.36s, 1.80s, 1.25s for temperature, humidity, and pressure)
and onsite estimates (3.17s, 2.92s, 3.84s). For appliances,
temperature and humidity delays were near-instantaneous (RF:
1.07s, 1.04s; onsite: 2.80s, 3.49s), while CO2 exhibited slightly
longer but consistent lags (RF: 3.59s, onsite: 1.12s). The
occupancy case showed the slowest dynamics, with CO2 delays
of 5.99s (RF) and 5.37s (onsite), reflecting gradual diffusion
compared to the sharper transitions of appliance events. If
available, final delays can be blended with RF baselines,
reference-sensor adjustments, or human-in-the-loop review to
ensure robust alignment across deployment settings.

Across all use cases, onsite estimates stayed within seconds
of RF-derived ground truth, while alternative unsupervised
baselines such as CUSUM or cross-correlation often mis-
estimated delays by minutes or produced negative lags. The
stability of our method ensures physically plausible estimates,
which is essential for sensor–image alignment in multimodal
anomaly detection systems.

D. Sensor-Image Alignment

TABLE II
Sensor–image alignment results across use cases

Use Case Match Rate (%) Accuracy (%)
Door 100 67.2
Appliance 100 97.1
Occupancy 100 78.6
Abnormal Object 100 100

Alignment accuracy was evaluated by comparing the image
labels transferred from non-vision records with the ground
truth image labels (Table II). Since the alignment procedure
relies on previously labeled sensor data, its performance re-
flects the effectiveness of the non-vision anomaly detector.
Appliances achieved 97.1% accuracy, consistent with strong
upstream sensor performance. Occupancy reached 78.6%,
where the autoencoder struggled to capture CO2 deviations,
leading to reduced image-level agreement. Door alignment
was lowest at 67.2%, mirroring the difficulty of detecting
gradual environmental transitions in sensor data. Abnormal
object events were straightforward to align, achieving 100%
accuracy due to the clear signal from instant-response distance
sensors. Overall, the observed performance variations reflect
the inherent challenges of the upstream anomaly detection task,



and therefore the alignment procedure performs best for events
producing immediate and unambiguous sensor changes.

E. Self-Supervised Vision Module Performance
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Fig. 5. Performance of the SimCLR and GMM pipeline across the four
evaluation use cases. Metrics include precision, recall, and 𝐹1-score for
anomaly and normal classes, and overall accuracy.

We evaluated multiple SSL models, including Barlow
Twins, DINO, FastSiam, MoCo, and SMoG. SimCLR achieved
the best balance of accuracy, training time, and model size, and
was selected for our framework. For clustering, we compared
K-Means, GMM, DBSCAN, and Agglomerative methods. The
GMM was adopted as the default, as it adapts the number of
active components through a Dirichlet prior, provides well-
calibrated confidence scores, and offered the most consistent
trade-off between accuracy and efficiency across use cases.

Figure 5 shows the performance of the selected SimCLR +
GMM pipeline. Occupancy detection achieved perfect accu-
racy (1.00), with both classes classified correctly. Appliance
detection reached 0.74 accuracy; anomaly recall was perfect
(1.00) but precision was lower (0.61), indicating that some
normal frames were misclassified as anomalies, likely due to
thermal interference from nearby appliances. Abnormal object
detection reached 0.75 accuracy with balanced 𝐹1-scores for
both classes (anomaly 0.75, normal 0.71). Door detection
was the most challenging, reaching 0.75 accuracy. Anomaly
precision was high (0.66) but recall was lower (0.33).

(b) (c)(a)

Fig. 6. Failure cases in SSL clustering: (a) overlapping door states, (b) thermal
overlap from nearby appliances, (c) shadows misclassified as objects.

The observed errors were primarily due to visual ambiguity.
In the door case, shadows and overlapping door states reduced
class separability (Figure 6a). Appliance detection was affected
by thermal interference from nearby devices (Figure 6b), while
abnormal object detection was hindered by shadows misinter-
preted as obstructions (Figure 6c). These failures illustrate how
limited visual separability and intra-class variability constrain
SSL clustering quality.

F. Label Refinement
Table III compares the non-vision, SSL, and hybrid meth-

ods. The non-vision approach achieved high coverage but

variable accuracy, ranging from 67.2% in the door case to
100% for abnormal objects. SSL clustering offered more
balanced performance, with stronger results for occupancy
(100%) but lower accuracy in appliances and abnormal objects
(74.0% and 75.2% respectively).

The hybrid method improved reliability by combining both
sources. Overall, in automated mode, it achieved 97.65%
coverage with 94.94% accuracy, yielding an effective accuracy
of 92.50%. When low-confidence cases (Unknown) were re-
viewed, coverage reached 100% and accuracy rose to 95.84%,
with only 9.4% of door images requiring manual annotation.
The appliance, occupancy, and abnormal object cases required
no human input, as automated refinement already provided
near-perfect performance.

Overall, the hybrid strategy reduced dependence on a single
modality. Door events benefited from fusion, where SSL
compensated for weak sensor signals, while appliance and
abnormal object cases leveraged sensor reliability to cor-
rect SSL misclassifications. Occupancy detection benefited
strongly from visual clustering, with SSL and the hybrid ap-
proach achieving perfect accuracy. These results demonstrate
that multimodal refinement not only recovers accuracy lost in
individual methods but also achieves robustness across diverse
event types.

G. Image Classification Model Performance
We evaluated the MobilenetV2 classifier on the door, ap-

pliance, and abnormal object use cases, while the occupancy
case employed a pre-trained EfficientNet-based crowd counting
model without further training. Since CO2 levels indicate occu-
pancy, people counting validates the sensor-based occupancy
anomaly detection. In each case, only the classification head
was trained, with the backbone frozen, using refined image
labels containing a small proportion of mislabelled samples
from the automated sensor–SSL labeling process. As shown
in Fig. 7, appliance achieved the highest accuracy (95.35%)
and balanced macro-recall (0.95) across both classes. Door and
abnormal object reached accuracies of 88.10% and 89.80%,
respectively, with anomaly recall exceeding normal recall,
suggesting a bias toward detecting anomalous cases even under
imperfect label conditions. This bias may be advantageous
in safety-critical scenarios, where missing an anomaly carries
greater cost than a false positive.
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Fig. 7. Performance of the MobilenetV2 classifier across use cases.

H. End-to-End Labeling Duration
Table IV reports the execution time of each stage in the

hybrid labeling pipeline. Across the four use cases, anomaly
detection was the most time-consuming step, ranging from



TABLE III
Comprehensive Labeling Performance Comparison

Use Case
Non-Vision SSL Hybrid (Ours)

Automated + Human

Coverage Accuracy Effective Acc. Coverage Accuracy Effective Acc. Coverage Accuracy Effective Acc. Coverage Accuracy Effective Acc.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Door 100 67.2 67.2 100 74.6 74.6 90.6 82.81 75.02 100 84.4 84.4
Appliance 100 97.1 97.1 100 74.0 74.0 100 96.97 96.97 100 96.97 96.97
Occupancy 100 78.6 78.6 100 100 100 100 100 100 100 100 100
Abnormal Object 100 100 100 100 75.2 75.2 100 100 100 100 100 100

Average 100.00 85.73 85.73 100.00 80.95 80.95 97.65 94.94 92.50 100.00 95.84 95.84
Notes: Coverage = Percentage of images labeled. Accuracy = Percentage correct among labeled images. Effective Acc. = Coverage × Accuracy.
Automated = Fusion without human input. + Human = Including optional human labeling for ambiguous cases. Bold = Best performing method.

TABLE IV
Labeling Pipeline Timing Performance (Seconds)

Use Case Non-Vision Alignment SSL Refinement

Door 142.95 35.09 7.36 73.99∗
Appliance 136.82 54.90 7.39 0.26
Occupancy 65.09 17.51 10.06 0.24
Abnormal Object 27.72 35.54 11.02 0.31

Average 93.15 35.76 8.96 18.70
∗Includes human annotation for 9.4% (Door). Total pipeline time:
71.38–259.39 seconds.

27.72 seconds (abnormal object) to 142.95 seconds (door).
Image-sensor alignment required between 17.51 and 54.90
seconds, with larger datasets incurring longer alignment times.
SSL labeling was comparatively fast, completing in 7.36–11.02
seconds across all scenarios. Label refinement varied de-
pending on dataset complexity: while door required 73.99
seconds (including human labeling), appliance, occupancy, and
abnormal object cases required less than one second each.
Overall, full dataset annotation was achieved in 71.38–259.39
seconds per use case, representing a significant efficiency im-
provement over manual labeling, which would require hours to
days. These times exclude model training (non-vision anomaly
detector and SimCLR).

I. Ablation on Delay Compensation

To quantify the contribution of the HEDS algorithm, we
conducted an ablation study comparing alignment performance
with and without delay compensation. Table V reports the
accuracy of sensor-to-image label alignment across the four
evaluation use cases.

HEDS improved label alignment in cases where sensor
delays were present. The door scenario showed the largest
gain, with accuracy increasing by 4.7%. Appliances benefited
only marginally (+0.1%), reflecting their strong and immediate
thermal signatures. Occupancy showed a small improvement
(+0.4%). No improvement was observed for abnormal object
detection, since instant-response distance sensors incurred
negligible delays. These results demonstrate that backward
delay compensation is most effective in scenarios affected by
gradual environmental responses.

TABLE V
Alignment accuracy with and without HEDS delay compensation.

Use Case HEDS Alignment (%) No-Delay Alignment (%)

Door 67.2 62.5
Appliance 97.1 97.0
Occupancy 78.6 78.2
Abnormal Object 100.0 100.0

TABLE VI
Vision usage during deployment (6 days, 12.5 h/day).

Use Case Fallback Rate (%) Inf. (ms) Sec/day Usage (%)

Door 27.2 39.5 483.7 1.08
Appliance 29.9 35.4 476.7 1.06
Occupancy 29.2 35.4 458.2 1.03
Abnormal Object 8.0 31.4 112.8 0.25

Overall 94.3 141.7 1531.4 3.42

J. Deployment Evaluation

We evaluated SenseLess over the final six days of de-
ployment, covering 270k records per use case. Figure 8 and
Table VI summarise accuracy, fallback behaviour, and vision
usage. Appliance monitoring maintained strong performance
(88.5%) with modest fallback use, while occupancy detection
started at 21.1% accuracy but improved to 76.7% after re-
training, though still requiring frequent fallback (29.2%). Door
detection initially achieved 55.2% accuracy but recovered to
69.3% following automatic retraining, and abnormal object
detection achieved perfect accuracy with minimal fallback.
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Fig. 8. Deployment performance across four use cases: (left) detection metrics
and confidence scores; (right) vision fallback triggers showing the share of
decisions needing secondary validation due to low sensor confidence or errors.

Across all scenarios, fallback activation scaled with sensor
uncertainty and drift, providing secondary validation only



when required. Door and occupancy triggered the highest
fallback rates, but each inference added just tens of millisec-
onds. Normalized over 270,000s of deployment (6 days, 12.5
h/day), the cumulative vision overhead was 9188s, amounting
to 3.42% of operating time.

K. Cross-Home Validation

We further evaluated the framework in a new home using the
door and occupancy use cases. For the door case, training on
two days of data and testing on a third yielded 96.0% accuracy
with an F1-score of 0.84. During deployment, the initial model
achieved 24.4% accuracy, but automatic retraining adapted
within the same environment and improved performance to
80.8% without manual intervention. For the occupancy case,
training on 2.5 days and testing on 1.5 days achieved 93.0%
accuracy with an F1-score of 0.91, and deployment maintained
89.6% accuracy with anomaly recall of 99.2%.

IV. DISCUSSION

SenseLess demonstrates that a hybrid sensor–vision
pipeline can support scalable, privacy-preserving, and adaptive
anomaly detection in home environments without manual im-
age annotation. The HEDS algorithm compensates for sensor
delays and improves label accuracy in scenarios with gradual
responses. The hybrid labeling strategy achieves high coverage
(97.65%) and accuracy (94.94%) while reducing annotation
effort. Selective fallback limits visual processing to less than
4% of operating time, preserving privacy.

The self-healing loop enables adaptation under data drift
by retraining the non-vision model using vision-derived cor-
rections. Door and occupancy performance improves after
retraining, with accuracy rising from 55.2% to 69.3% and
from 21.1% to 76.7%, respectively. Cross-home evaluation
highlights both generalizability and its limits. Physics-driven
signals such as CO2 transfer well across environments, while
layout-dependent signals require adaptation. These results
show that generalization is scenario-dependent but achievable
through adaptation.

Performance variations reflect differences in non-vision sen-
sor signal characteristics and availability. Strong and immedi-
ate signatures from appliances and distance sensors support
accurate detection, whereas gradual transitions in door and
occupancy cases limit model sensitivity. In practice, sensor
types, placement, sampling rates, and reliability vary across
homes, and while the framework can operate with different
sensor subsets, detection accuracy depends on the quality and
stability of the available signals.

SenseLess focuses on anomalies manifested through envi-
ronmental changes. Human-centered abnormalities, such as
falls or behavioral shifts, rely on sensing dynamics that differ
from environment- and object-centric events and often do not
produce clear environmental signatures. Detecting such events
would therefore require different sensing modalities or explicit
behavioral modeling beyond the design assumptions of this
framework.

Environmental variability also impacts performance. Differ-
ences in layout, ventilation, and occupant routines influence
baseline sensor behavior. Abrupt changes, such as renovations
or sensor relocation, may temporarily degrade accuracy until
adaptation occurs.

The delay estimation algorithm assumes a clear anomaly on-
set followed by a delayed sensor response at one-second sam-
pling resolution. Weak, intermittent, or overlapping anomalies
may violate this assumption. Higher sampling intervals, such
as minute-level data, reduce temporal resolution and would
require architectural changes to the algorithm.

The vision component of SenseLess is designed to operate
with selective activation and multimodal validation limiting
exposure to visual uncertainty. Image augmentations applied
during training, including zooming through random resized
cropping, improve robustness to lighting variation and partial
visibility. Despite these design choices, inherent limitations
remain. Camera coverage is spatially constrained, and anoma-
lies may still be fully occluded by furniture or occupants.
In addition, the system infers anomalies from single images,
which limits its ability to distinguish events whose interpreta-
tion depends on temporal evolution rather than a single visual
snapshot. Addressing these limitations fully would require
multi-camera configurations.

Privacy perception is a major concern in camera-based sys-
tems. Prior studies show low acceptance of always-on cameras,
with higher acceptance when video use is restricted to spe-
cific situations or time windows and combined with privacy-
preserving measures [13]. SenseLess follows this model by
activating vision only when non-vision predictions are uncer-
tain. While user preferences are not directly evaluated, this
design aligns with reported privacy expectations and balances
contextual awareness with privacy preservation.

V. RELATED WORK
A. Sensor-Based Anomaly Detection

Unsupervised and semi-supervised methods are widely used
to detect anomalies in smart homes with ambient sensors.
Common approaches include autoencoders [14], Isolation For-
est [15], and One-Class SVM [16], with ensembles improving
robustness and reducing false positives [17], [18]. Federated
learning has also been explored to support distributed training
without raw data sharing [19], though most work is limited to
homogeneous deployments and scalar signals, without camera
fusion or delay handling [18].

Vision-based systems provide detailed spatial context and
are used for fall detection [4], [20] and other indoor anomalies
[21], but require large annotated datasets and face privacy and
computational challenges [22].

A recent survey highlights persistent gaps in multimodal fu-
sion and adaptability [11]. Existing systems often treat sensor
and vision data independently, lack continuous adaptation to
drift, and require manual tuning for seasonal or layout changes.
To our knowledge, no prior work integrates ambient sensing
and static vision in a temporally aligned, privacy-preserving
framework with adaptive, bidirectional training.



B. Image Labeling in Vision-Based Systems

Labeling large-scale visual data remains a major bottleneck,
particularly for anomaly detection. Manual annotation yields
high accuracy but is slow and costly, with datasets such
as ImageNet requiring years of effort [23]. Semi-automated
methods combine model suggestions with human input [24],
[25], while automated approaches use clustering [26], pre-
trained models [27], or domain-specific pipelines [28], often
integrated into tools like V7 and CVAT.

Most approaches assume abundant, well-structured cate-
gories, whereas anomalies are rare, context-dependent, and
hard to define. Cross-modal labeling with wearable sensors
has been explored in activity recognition [29]–[31], but re-
mains limited for anomaly detection in images [32], [33]. We
extend this line by leveraging ambient non-vision signals (e.g.,
motion, temperature, CO2) to label indoor images, enabling
scalable, privacy-aware training without human supervision.

VI. CONCLUSIONS

We presented SenseLess, a hybrid anomaly detection frame-
work that generates image labels without manual annota-
tion by combining sensor-guided and self-supervised learning
with delay-aware alignment. The system integrates confidence-
aware vision fallback, drift detection, and selective vision
activation to preserve privacy while maintaining adaptability
across scenarios. Evaluation across four home monitoring
tasks demonstrated high labeling coverage and competitive
accuracy, with scalability to new environments supported by
modular design and minimal configuration requirements.
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