
Performance Analysis of Apache OpenWhisk across

the Edge-Cloud Continuum

Areej Alabbas∗§, Ashish Kaushal†, Osama Almurshed∗, Omer Rana∗, Nitin Auluck†, Charith Perera∗

∗Cardiff University, United Kingdom

{alabbasam, almurshedo, ranaof, pererac}@cardiff.ac.uk
†Indian Institute of Technology Ropar, India

{ashish.19csz0003, nitin}@iitrpr.ac.in
§Imam Abdulrahman Bin Faisal University, Saudi Arabia

Abstract—Serverless computing offers opportunities for auto-
scaling, a pay-for-use cost model, quicker deployment and faster
updates to support computing services. Apache OpenWhisk is
one such open-source, distributed serverless platform that can
be used to execute user functions in a stateless manner. We
conduct a performance analysis of OpenWhisk on an edge-cloud
continuum, using a function chain of video analysis applications.
We consider a combination of Raspberry Pi and cloud nodes to
deploy OpenWhisk, modifying a number of parameters, such as
maximum memory limit and runtime, to investigate application
behaviours. The five main factors considered are: cold and warm
activation, memory and input size, CPU architecture, runtime
packages used, and concurrent invocations. The results have
been evaluated using initialization, and execution time, minimum
memory requirement, inference time and accuracy.

Index Terms—edge-cloud computing, serverless, function as a
service, OpenWhisk, performance evaluation.

I. INTRODUCTION

Serverless computing utilises containers and virtualization

to deploy applications, to offer users with isolated environ-

ments that can be used to execute functions as code [1].

Users only pay for the computational resources (CPU time,

memory utilisation etc) that are used for function execution.

As a consequence, the use of serverless platforms leads to an

increase in resource elasticity, seamless scalability and reduced

operational expenses. Serverless computing platforms offered

by cloud providers include AWS Lambda [2], Microsoft Azure

Functions [3] and Google Cloud Functions [4]. However,

these platforms can lead to vendor lock-in [5] and users

are required to modify their functions due to limits on the

size of function code, the time of execution, and the number

of concurrent executions that can be performed using these

commercial platforms [6]. Open source frameworks enable

serverless computing to be executed on private infrastructure

while avoiding vendor lock-in, such platforms include: Apache

OpenWhisk [7], OpenFaaS [8], Fission [9] and Kubeless [10].

The number of contributors on the source-code reposi-

tory identifies Apache OpenWhisk as the most widely used

platform. Moreover, OpenWhisk also offers a lite version

called Lean OpenWhisk [11], which can be deployed on

resource-constrained edge devices. Therefore, we have chosen

OpenWhisk in this study. Recent research on the performance

of commercial and open-source serverless platforms mainly

focuses on cloud-hosted platforms [12]–[19]. There are a very

limited number of studies on edge serverless platforms [20]–

[22]. Moreover, we also observe that the performance of

OpenWhisk on edge and cloud resources using a real-life video

analysis use-case has not been considered. We investigate

the performance of OpenWhisk across different factors that

contribute to the overall latency, including initialization time

and execution time. We also investigate the impact of cold

and warm activation, function input size, memory used, CPU

architecture, runtime package and rate of concurrent invoca-

tions. The following are the key contributions of this paper:

(i) deployment of OpenWhisk and Lean OpenWhisk over

edge-cloud infrastructure. (ii) a distributed, Lean OpenWhisk

framework that can be deployed on a cluster of RPi running

ARM architecture. A custom Python based runtime for Lean

OpenWhisk; (iii) performance analysis using a real-time video

analytics application; (iv) analysis of latency, initialization

time, memory requirement, inference time and accuracy of two

models for object detection (TensorFlow and TensorFlow Lite)

to improve model selection utilising edge-cloud serverless

computing.

The rest of this paper is structured as follows: Section II

reviews related works. Section III presents an overview of

Apache OpenWhisk serverless platform. Section IV describes

our video analysis application use case, and Section V eval-

uates OpenWhisk performance on edge-cloud infrastructure.

Finally, Section VI summarizes our contributions.

II. RELATED WORK

We divide related work into an evaluation of serverless

platforms not including OpenWhisk and a more detailed

discussion of studies that consider OpenWhisk specifically.

1) “Non-OpenWhisk serverless”: Studies in this category

have evaluated different serverless platforms, excluding Open-

Whisk. Mohanty et al. [12] evaluate the auto-scaling and con-

current user capabilities of Fission, Kubeless, and OpenFaaS.

Using Python applications, another study [13] analyzes latency

across AWS, Google, and Microsoft serverless platforms.

Lloyd et al. [14] identify five factors that affect AWS Lambda

and Microsoft Azure latency.

2) “Cloud-based OpenWhisk”: This category focuses on the

performance of OpenWhisk on cloud platforms. Maissen et

401

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

2159-6190/23/$31.00 ©2023 IEEE
DOI 10.1109/CLOUD60044.2023.00054

al. [15] studied the influence of request rate, cloud location,

memory size, and programming language on latency across

different serverless providers. Djemame et al. [16] assessed

OpenWhisk's effectiveness and efficiency on the cloud, com-

paring it to Docker and native function execution solutions.

Back et al. [17] and Lee et al. [18] performed comparative

analyses of OpenWhisk, AWS Lambda, Google Cloud, and

Microsoft Azure, considering aspects like execution time,

cost, and resource utilization. Kuntsevich et al. [19] evaluated

OpenWhisk's limitations and bottlenecks on a private cloud.

3) “Hybrid edge-cloud and edge-based OpenWhisk”: This

category investigates OpenWhisk's performance on edge de-

vices and hybrid edge-cloud setups. Javed et al. [20] compared

OpenWhisk, OpenFaaS, and AWS Greengrass on edge re-

sources, and AWS Lambda and Azure Functions on the cloud,

measuring response time and success rate. Palade et al. [21]

evaluated four open-source serverless platforms on edge in-

cluding OpenWhisk, but not on resource-constrained devices

like RPi. Tzenetopoulos et al. [22] evaluate OpenWhisk and

OpenFaaS on a hybrid edge-cloud cluster with an emphasis

on applications for optical character recognition. They deploy

OpenWhisk on a single edge node and evaluate it in five steps.

Our study examines the performance of the OpenWhisk

platform in edge-cloud environments. To do this, we explore

the unexplored application of evaluating the function chain of

video processing in an edge-cloud environment. We deploy

OpenWhisk on multiple edge devices with multiple invokers,

resulting in a complex and realistic configuration.

Fig. 1: Apache OpenWhisk architecture

III. OVERVIEW OF APACHE OPENWHISK

OpenWhisk is an open-source serverless cloud platform that

allows users to execute functions in response to a trigger event.

OpenWhisk utilises Function as a Service model (FaaS), where

functions are referred to as actions and their invocations as

activations. OpenWhisk assumes a direct relationship between

memory and CPU limits of containers, so developers are only

allowed to specify RAM (memory) size for executing their

actions. Developers can create a chain of actions where one

action calls another sequentially.The OpenWhisk architecture

is shown in Figure 1 and has two key components: Controller

and Invoker, both use Nginx [23], Kafka [24], Docker [25] and

CouchDB [26]. Kafka connects and buffers messages between

Controllers and Invokers. Lean OpenWhisk is designed for

edge devices and is less resource-intensive than the full

version. Kafka is replaced by an in-memory queue and the

Invoker is co-located with the Controller.

IV. USE CASE – VIDEO ANALYSIS APPLICATION

For our experimentation, we have considered a video anal-

ysis application as a realistic use-case scenario to investigate

and analyze various crucial factors that affect the performance

of OpenWhisk serverless platforms deployed on both edge and

cloud resources. Most of the video analysis applications re-

quire processing of video streams in real-time. Moreover, these

applications are sensitive to delay and require low latency

response. To evaluate the application, we have fragmented our

video analysis process into four interconnected and dependent

functions. These functions are executed sequentially, with the

output of each function serving as an input for the subsequent

function in our chain. Partitioning the video analysis applica-

tion allows us to efficiently deploy each function on a resource-

constrained device in the edge layer. Moreover, because of the

resource limitations imposed by platform providers (default

memory limit for OpenWhisk is 256MB), these platforms

are more suitable for executing smaller functions and tasks.

A depiction of functions considered in the video analysis

application is given in Figure 2.

Our video analysis application is composed of three stages:

(i) Pre-process, (ii) Analysis, and (iii) Result. In the Pre-

process stage, the video streams are loaded from the data

source (camera) and decoded to extract individual video

frames using the first function F1. These extracted frames are

then resized using F2 function and sent to the next stage. In

the Analysis stage, a real-time TensorFlow [27] based object-

detection algorithm is applied on each frame to detect the

desired objects using function F3. The last stage, Result,

extracts the detected objects by drawing boxes around them

and adding labels on each object. The output frames are then

uploaded to the database (final destination) using function F4.

Functions F1 and F2 are considered light functions while func-

tions F3 and F4 have computational resource requirements.

The computational level of our benchmarking functions, out-

lined in Table I, is tied to the resources used for function

execution. Low level involves minimal arithmetic operations,

such as resizing an image matrix. High level requires extensive

operations and memory usage for storing intermediate results,

such as large matrix manipulations. Medium level requires

moderate operations like image slicing, cropping, and data

storage via an input-output streaming channel.

Function ID Function Name Computational level

F1 Decod&Extract Frame Low

F2 Resize Frame Low

F3 Object Detect High

F4 Object Extract & Save Medium

TABLE I: List of functions and their computational levels

402

Fig. 2: Video Analysis Application

In stage (ii) of our video analysis application, we have

implemented functions F3 and F3 PRIME. F3 utilizes Ten-

sorFlow and F3 PRIME uses TensorFlow Lite. MobileNetV2

SSD [28] and MobileNetV1 SSD [29] models, both trained on

the Common Objects in Context (COCO) dataset [30], were

used for inference in F3 and F3 PRIME, respectively. Tensor-

Flow Lite is a compact and lightweight variant of TensorFlow,

with lower accuracy but higher execution performance.

V. IMPLEMENTATION AND EVALUATION

The integration of our edge-cloud distributed framework

with the designed testbed is shown in given Figure 3. The

setup includes VMs deployed on OpenStack cloud platform,

resource-constrained RPi as edge devices, and video capture

via cameras as a data source. The detailed hardware and

software specifications of edge and cloud nodes are shown

in Table II and Table III respectively.

Location No. of Nodes Processor Architecture Cores RAM

Cloud (VMs) 3 Intel Xeon x86 64 GNU 2(vCPUs) 4GB

Edge (RPis) 6 Cortex-A72 armv7l GNU 4(vCPUs) 4GB

TABLE II: Hardware specifications of cloud and edge nodes

Software Edge Cloud

OS Raspbian GNU/Linux 11 (bullseye) Ubuntu 20.04.3 LTS (Focal Fossa)

OpenWhisk incubator-openwhisk(Lean version) 1.0.0 (full version)

WSK CLI 0.10.0-incubating v1.2.0

Ansible 2.7.9 -

Helm - v3.9.0

Kubernetes - 1.20.15

Docker 20.10.16 20.10.12

Python 3.7 &3.9 3.7 &3.9

OpenCV 4.6.0-dev (Lite version) 4.6.0

TensorFlow Lite & full(2.2.0) Lite & full(2.9.1)

TABLE III: Software specifications for cloud and edge nodes

On cloud, we have deployed OpenWhisk as a Kubernetes

cluster on three VMs. All VMs run Ubuntu Server 20.04 OS,

and have 2 cores of CPUs and 4GB RAM; two of them are

used to host Invokers, while the third one is utilised to host

the remaining OpenWhisk components.

On edge, we have used six Raspberry Pi's 4 computer

- model B, running Raspberry Pi OS Lite (32-bit) Debian

Bullseye. Each RPi has a 1.5GHz 64-bit quad-core CPU (ARM

processor) and 4GB RAM. We have deployed Lean Apache

Open Whisk on edge devices that do not require Kafka and

Invokers as separate entities. However, Lean OpenWhisk is not

natively compatible with ARM architecture; only the x64 and

x86 architectures are supported by the OpenWhisk platform,

so in order for it to be compatible, we have customized Docker

images of the platform for setting up Lean OpenWhisk on RPi

Fig. 3: Overview of cloud-edge infrastructure

devices with the ARM architecture. A Python runtime for Lean

OpenWhisk running on ARM architecture devices has also

been implemented; currently Lean OpenWhisk has runtime

support in only one language i.e.NodeJS-6, for ARM devices.

Different docker images have been created as runtime for our

function invocations using Python programming language with

OpenCV, TensorFlow Full, and TensorFlow Lite versions. We

use 4 RPi devices as Invokers and the rest are utilised for

deploying the Nginx and CouchDB modules. To ensure that no

other components are using the system resource, each Invoker

is deployed separately on a different machine.

Moreover,We have installed the WSK CLI tool. This allows

users to easily create, update, and invoke functions within

our system. In addition, as users of OpenWhisk can specify

only a single dimension (memory requirement), we have

made modifications to the default settings of OpenWhisk by

increasing the maximum memory limit for function execution

on all Invoker machines to 3072MB. We have increased the

timeout limit for function execution to 300000ms (5 mins).

The motivation behind increasing timeout limit is driven by

high computational requirements of designed function F3.

A. Proposed Methodology

Our proposed approach is designed to analyze the per-

formance of edge-cloud framework in terms of latency. We

executed the designed functions in both synchronous and

asynchronous invocations mode on both edge, cloud resources

and compared their performance with each other. The implica-

tions of various critical factors that directly influence function

execution is also considered in this work. The five main factors

investigated here are:

Cold and Warm Activation: In serverless platform, the

delays incurred during the cold activation include the time to

initialize the docker container runtime and time to execute

function's code. However, in warm activation, there is no

initialization time. The duration of a cold activation can

403

vary depending on several factors, such as the programming

language used, size of the function's code and package depen-

dencies, and the resources required to run the function. Thus,

this step compares the latency of cold and warm activation for

functions with different package dependencies (e.g OpenCV,

TensorFlow). In addition, we created a metric called Activation

Ratio which calculates the ratio between the Warm and Cold

activation. This ratio is utilised to decide whether to keep the

warm containers operational or not.

Resolution Type Common Name Frame Size(Pixel)

LD (Low Definition) 240p 320 x 240

SD (Standard Definition) 480p 640 x 480

HD (High Definition) 720p 1280 x 720

FHD (Full High Definition) 1080p 1920 x 1080

TABLE IV: List of Video Frame Resolutions

Memory Setting and Input Size: The execution time

of a function on serverless platforms is influenced by two

crucial factors, namely, the amount of memory allocated and

the size of the input provided. Therefore, we run our video

analysis functions using different frame resolutions (frame

sizes) as shown in Table IV and using different memory

settings ranging from 128MB to 3072MB. Furthermore, we

measure the minimum memory capacity necessary to run each

function without failure.

CPU Architecture: The performance of distinct functions

tends to vary based on the resources utilised, such as RPi or

cloud. However, resource-constrained devices like RPi devices

can result in a higher latency or delay when executing these

functions. As the next step of our proposed method, we

measure the total latency and docker initialization time of our

functions using different resources RPis and cloud servers.

Runtime Package: In OpenWhisk, different runtimes (e.g

Python, Java etc) and runtime's packages (e.g OpenCV and

TensorFlow) can impact the total latency of a running func-

tion. As mentioned earlier in section IV, we implemented

two versions of the third function, F3 and F3 PRIME. The

difference between them is the runtime package used for the

object detection process. The two packages used for evaluation

are: TensorFlow and TensorFlow Lite. We have measured the

inference time, and compared accuracy of these two modules.

To measure the accuracy in our experiment, we considered

four metrics: (1) Object Location: whether the object in image

is properly (x and y axis aligned) detected or not; (2) Class

Labels: whether the detected object is labeled correctly or not;

(3) Detection Confidence: the percentage of confidence with

which the object has been detected; and (4) Detection Count:

number of objects that have been totally detected in the image.

Concurrent Invocations: A serverless function in a video

analysis application may be invoked concurrently several

times, depending on the frame rate (e.g., 15 or 25 frames

per second). Consequently, any bottlenecks in the various

components of the serverless platform may increase the overall

latency of function execution. To address this issue, we con-

ducted performance evaluations of our serverless platform us-

ing different concurrent invocation rates(e.g., 1, 5, 10, and 15)

to assess the impact of concurrency on its overall performance.

Contrary to all previous factors that utilized synchronous

invocations, in this factor, we conducted invocations in an

asynchronous manner.

The Total Latency (TL) for running the function in Open-

Whisk consists of (i) Initialization Time (Tinit), the time

to initialize docker container runtime (for warm activation:-

Tinit = 0) and (ii) Execution Time (Texec), the time to execute

function. Therefore, the Total Latency can be mathematically

represented as: TL = Tinit+Texec. We have benchmarked the

Initialization Time, Execution Time, Total Latency, activation

ratio, minimum amount of resource required (memory), and

inference time and accuracy of TensorFlow and Tensorflow

Lite on both edge and cloud resources.

B. Results

1) Impact of Cold and Warm Activations: Figure 4 shows

the total latency in cold and warm activations on RPi. In cold

activation, the average latency increased by 3x, 4x and 2x for

F1, F2, and F4 respectively compared to warm start. Figure 5

illustrates the initialization time for executing each function

on RPi. F1 and F2 have similar average initialization time

(approx. 1500ms), using the same Docker image consisting

of Python, OpenCV Lite packages for execution. F3 and

F4 however require installing TensorFlow packages in the

Docker runtime, therefore the average initialization time is

much higher (around 10000ms) compared to F1, F2.

Fig. 4: Total latency in Cold and Warm activation on RPi.

Fig. 5: Initialization time on RPi

From Figures 4 and 5, docker initialization exceeds execu-

tion time (Texec = TL−Tinit) for F1, F2, F4 whereas for F3

the execution time exceeds initialization time. It is realised that

functions with an activation ratio higher than 1 perform better

with warm containers, whereas functions with an activation

ratio below or equal to 1 perform similarly in both cold and

warm activation.

404

Fig. 6: Execution Time for the different frame sizes on RPi

Fig. 7: Execution Time for different memory settings on RPi

2) Impact of Input Size and Memory Setting: Figure 6 and

7 show the execution time of four functions running on RPi

nodes with different frame sizes and different memory settings

respectively. The overall average execution time for F1, F2,

and F4 increases when the input size for each function is

increased. For function F3, the execution time did not increase

with the increase in frame size because a resized frame from

the previous function (F2) was utilised as input in this function.

Secondly, an increase in memory setting does not signifi-

cantly impact the average execution time of functions as seen

in Figure 7. This is due to the fact that Docker's interaction

with OpenWhisk permits partially dynamic memory allocation

that restricts utilisation of total memory space during function

execution. Similar results has been mentioned in works [17],

[31]. In order to determine the minimum amount of memory

required for running each function without failure, we have

tested each function using six different memory settings start-

ing from 128MB to 3072MB using the same input size. The

result shows that F1 and F2 are lighter functions and can be

run with a small amount of memory (from 128MB) while F3

and F4 are heavier functions and need more intensive resources

with a minimum of 2048MB and 512MB respectively.

3) Impact of CPU Architecture: Figures 8a and 8b illus-

trate the latency of the four functions executed on RPi and

cloud, using both cold and warm activations respectively. By

running functions on cloud node, the total latency of F1 and F2

decreased by 2.7x and 2.6x for cold activation and by 3.9x and

3.2x for warm activation. For F3 and F4, the latency decreased

by up to 5.6x and 3.3x in the cold invocations whereas it

decreased up to 9.3x and 6.5x in the warm invocations, when

executed on cloud. As shown in Figure 8c, the time to initialise

a docker container on RPi devices is higher than on the cloud.

The initialization time of the first two functions increased by

2.8x, and for F3 and F4 it increased by 1.5x and 2.7x on RPi.

4) Impact of Runtime Packages: Figures 9a and 9b

show the total latency and the initialization time of F3 and

F3 PRIME on both RPi and Cloud. It is observed that total

latency for F3 PRIME (in comparison to F3) is reduced by

almost 118x and 37x times on RPi and Cloud respectively.

F3 PRIME has a lower initialization time than F3 on both

Cloud and RPi. The performance of full and lite versions are

bound to the CPU resource architecture and the type, size of

data which affect data locality during arithmetic operations,

i.e., data in registers, cache, or main memory. Although

the RPi has more CPU cores, it requires additional CPU

instructions that shift data across memory tiers, e.g. cache

to registers, to overcome the limitation of the fast memory

– float-32 (8bytes) is used in the full version, whereas integer

data type (int-8, 1 byte), is used in the lite version. Converting

float-32 to int-8 is known as quantization, as used in the lite

version.

One of the significant results observed is that: running

F3 PRIME on RPi has a lower delay (with over 100ms) than

on the Cloud in warm activation (Figure 10). This is due to

the fact that lite version requires less memory space near the

CPU (solving the RAM limitation issue for 32-bit) and that

the RPi has four cores that run more operations in parallel.

(a) Cold activation latency (b) Warm activation latency (c) Initialization time

Fig. 8: Comparison: RPi and Cloud

405

(a) Total latency (b) Init. time (c) Inference time

Fig. 9: Comparison: F3 and F3 PRIME

Fig. 10: Average latency: F3 PRIME in cold/warm activation

F3 PRIME can run with a minimum of 128MB, while

F3 requires 2048+MB for function execution. Quantization

reduces memory footprint of TensorFlow Lite. The inference

time of both functions is illustrated on Figure 9c, showing the

inference time for the lite version on Cloud is double compated

to the RPi. The 32-bit system of RPis requires additional CPU

instructions for floating-point computations and data transfers

via the memory hierarchy. In the cloud, quantization reduces

loading times and float operations, but has a minimal effect on

data transfers. Further performance optimization on a 64-bit

cloud produces less significant results compared to RPis. Ar-

chitectural variations such as processor type and data locality

can cause bottlenecks in shared-memory parallel computing,

leading to performance disparities [32]. Although both models

predicted the right object classes, in the right position, as seen

in Figure 11, the confidence score for detecting an object is

higher in Figure 11a compared to Figure 11b. This is because

lite models use a quantization technique on model parameters,

trading-off generalization of model with inference time and

memory. Moreover, in Figure 11c and 11d, having a higher

confidence score, we can see that the full version was able to

detect a greater number of objects. In general, we can say that

the full version performs better than lite version but requires

more time and resources for execution.

5) Impact of Concurrent Invocations: Figure 12 shows

that with increase in the number of concurrent invocations, the

overall delay on both edge and cloud nodes also increases. We

concurrently execute 1, 5, 10 and 15 functions on both cloud

and edge layers asynchronously. Concurrent executions was

performed with function F1 only, as it has minimum memory

(128MB) requirement for execution. However, for function F3

the minimum memory requirements are 2048MB. This does

(a) Full version (b) Lite version

(c) Full version (d) Lite version

Fig. 11: Accuracy comparison of TensorFlow Full and

TensorFlow Lite

(a) RPi (b) Cloud

Fig. 12: Average latency: concurrent invocations

not allow us to run multiple invocations due to maximum

memory limitation of the Invoker machines (3072MB).

VI. CONCLUSIONS

A video processing application is used to benchmark an

open source serverless platform using TensorFlow and Ten-

sorFlow Lite. We consider both cold and warm activation,

function input size and memory, CPU architecture, runtime

package and rate of concurrent invocations. We observe that

OpenWhisk has a high cold activation latency during function

execution. Memory allocated and input size are two crucial

factors that affect function execution time. Increase in memory

does not significantly impact average function execution time,

however increasing the input size has an impact. We observe

that executing functions on cloud nodes (compared to RPi

nodes) reduces total latency in both cold and warm activation.

However, executing these functions on cloud could increase

network delay, subsequently impacting total latency. The total

latency, execution time, initialization time and inference time

for the functions using TensorFlow Lite is low compared to

the full TensorFlow package. Concurrent executions improve

resource utilisation on both cloud and RPi nodes; however, this

increases average latency significantly. Concurrent execution

on cloud node is recommended as RPi takes almost 2x more

time to execute a similar number of functions.

406

REFERENCES

[1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, no. 12, pp.
44–54, 2019.

[2] Aws lambda. [Online]. Available: https://aws.amazon.com/lambda/

[3] Microsoft azure functions. [Online]. Available:
https://azure.microsoft.com/en-us/products/functions/

[4] Google cloud functions. [Online]. Available:
https://cloud.google.com/functions

[5] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research advances

in cloud computing. Springer, 2017, pp. 1–20.

[6] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary
review of enterprise serverless cloud computing (function-as-a-service)
platforms,” in 2017 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom). IEEE, 2017, pp. 162–169.

[7] Apache openwhisk. open source serverless cloud platform. [Online].
Available: https://openwhisk.apache.org

[8] Openfaas. [Online]. Available: https://docs.openfaas.com

[9] Fission open source kubernetes-native serverless framework. [Online].
Available: https://fission.io

[10] Kubeless. [Online]. Available: https://github.com/vmware-
archive/kubeless

[11] D. Breitgand. Lean openwhisk: Open source faas for edge computing.

[12] S. K. Mohanty, G. Premsankar, M. Di Francesco et al., “An evaluation of
open source serverless computing frameworks.” CloudCom, vol. 2018,
pp. 115–120, 2018.

[13] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on

Cloud Computing (CLOUD). IEEE, 2019, pp. 502–504.

[14] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE international conference on cloud

engineering (IC2E). IEEE, 2018, pp. 159–169.

[15] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “Faasdom: A bench-
mark suite for serverless computing,” in Proceedings of the 14th ACM

International Conference on Distributed and Event-based Systems, 2020,
pp. 73–84.

[16] K. Djemame, M. Parker, and D. Datsev, “Open-source serverless ar-
chitectures: an evaluation of apache openwhisk in: 2020 ieee/acm 13th
international conference on utility and cloud computing (ucc), 329–335,”
DOI: https://doi. org/10.1109/UCC48980, 2020.

[17] T. Back and V. Andrikopoulos, “Using a microbenchmark to compare
function as a service solutions,” in European Conference on Service-

Oriented and Cloud Computing. Springer, 2018, pp. 146–160.

[18] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless
computing environments,” in 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD). IEEE, 2018, pp. 442–450.

[19] A. Kuntsevich, P. Nasirifard, and H.-A. Jacobsen, “A distributed analysis
and benchmarking framework for apache openwhisk serverless plat-
form,” in Proceedings of the 19th International Middleware Conference

(Posters), 2018, pp. 3–4.

[20] H. Javed, A. N. Toosi, and M. S. Aslanpour, “Serverless platforms on
the edge: a performance analysis,” in New Frontiers in Cloud Computing

and Internet of Things. Springer, 2022, pp. 165–184.

[21] A. Palade, A. Kazmi, and S. Clarke, “An evaluation of open source
serverless computing frameworks support at the edge,” in 2019 IEEE

World Congress on Services (SERVICES), vol. 2642. IEEE, 2019, pp.
206–211.

[22] A. Tzenetopoulos, E. Apostolakis, A. Tzomaka, C. Papakostopoulos,
K. Stavrakakis, M. Katsaragakis, I. Oroutzoglou, D. Masouros, S. Xy-
dis, and D. Soudris, “Faas and curious: Performance implications of
serverless functions on edge computing platforms,” in International

Conference on High Performance Computing. Springer, 2021, pp. 428–
438.

[23] Nginx. [Online]. Available: https://www.nginx.com

[24] Kafka. [Online]. Available: https://kafka.apache.org

[25] Docker. [Online]. Available: https://www.docker.com

[26] Couchdb. [Online]. Available: https://couchdb.apache.org

[27] Tensorflow. [Online]. Available: https://www.tensorflow.org

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.
[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[31] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking
heterogeneous cloud functions,” in Euro-Par 2017: Parallel Process-

ing Workshops: Euro-Par 2017 International Workshops, Santiago de

Compostela, Spain, August 28-29, 2017, Revised Selected Papers 23.
Springer, 2018, pp. 415–426.

[32] O. Almurshed, P. Patros, V. Huang, M. Mayo, M. Ooi, R. Chard,
K. Chard, O. Rana, H. Nagra, M. Baughman et al., “Adaptive edge-
cloud environments for rural ai,” in 2022 IEEE International Conference

on Services Computing (SCC). IEEE, 2022, pp. 74–83.

407

