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Abstract: The number of cameras utilised in smart city domains is increasingly prominent and

notable for monitoring outdoor urban and rural areas such as farms and forests to deter thefts of

farming machinery and livestock, as well as monitoring workers to guarantee their safety. However,

anomaly detection tasks become much more challenging in environments with low-light conditions.

Consequently, achieving efficient outcomes in recognising surrounding behaviours and events

becomes difficult. Therefore, this research has developed a technique to enhance images captured in

poor visibility. This enhancement aims to boost object detection accuracy and mitigate false positive

detections. The proposed technique consists of several stages. In the first stage, features are extracted

from input images. Subsequently, a classifier assigns a unique label to indicate the optimum model

among multi-enhancement networks. In addition, it can distinguish scenes captured with sufficient

light from low-light ones. Finally, a detection algorithm is applied to identify objects. Each task

was implemented on a separate IoT-edge device, improving detection performance on the ExDark

database with a nearly one-second response time across all stages.

Keywords: anomaly detection; low-light image enhancement; IoT-edge devices; object detection

1. Introduction

Deep learning (DL) has been involved as a key feature in many applications to replace
human effort in video surveillance systems with the aid of computer vision (CV), which is
one of the dominant fields concerned with extracting local and global features through the
processing of digital images and live-streaming videos [1]. Traditionally, authorities relied
on implementing closed-circuit television (CCTV) to monitor human–object behaviours in
private and public environments. However, implementing these systems involves signifi-
cant cost due to the installation procedure, the number of cameras needed depending on a
particular scenario, and the need for a cloud infrastructure to record and store captured data
for analysis and decision-making. Many sectors are inclined to replace traditional video
surveillance systems as well as non-vision sensors with off-the-shelf cameras (also known
as vision sensors) to build intelligent surveillance systems for security and other purposes.

Camera sensors are becoming increasingly accessible due to their affordability, with
low cost, high resolution, and less power consumption. Moreover, they can detect, track,
and identify object behaviours and send alerts in an automated manner without human
interaction. However, one of the ongoing and much-discussed challenges studied in video
surveillance system (VSS) domains in the last decades regards the location of processing
and the analysis of the obtained data. Indeed, streaming or transmitting the acquired
data to the cloud was found to entail a heavy workload on the communication network
in 2017, accounting for 74% of the total network [2,3]. Many prior studies relied on
processing the data on the Cloud, the Edge or both [4]. However, strategies that rely on
cloud-based computing services, whether on their own or in conjunction with edge-based
implementations, suffer from delay-sensitivity, bandwidth limitations and privacy and
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storage issues, which have crucial effects on increasing the computational cost of offloading
data and the affordability of the hardware infrastructure, as well as on processing and
maintaining high-volume recorded videos and still images [5].

Object detection is an essential task within the field of computer vision. It has been ap-
plied in numerous real-world situations along with video surveillance systems, including,
but not limited to, autonomous driving [6] and road detection [7]. The resultant output
identifies distinct instances (e.g., person, car, table, etc.) for detection and tracking objec-
tives. However, detecting objects can be complex when operating in degraded conditions,
such as inadequate night, dawn, and dusk illumination. Further, additional conditions
might contaminate captured images in low-light settings with noise (e.g., salt-and-pepper
effects), weather conditions (e.g., rainy, foggy, etc.), and blur. Indeed, such conditions
can negatively impact object detection performance, which can become problematic for
applications involving anomaly detection. Consequently, it is crucial to implement certain
methodologies that possess the capability to enhance image quality and facilitate feature
recovery (e.g., texture, edges, etc.). Also, it is essential for high-level tasks (e.g., object
detection, segmentation, classification, etc.), where improved performance and high true
positives are desired.

This research is based on the 5G Wales Unlocked project funded by the Welsh Govern-
ment Department for Digital, Culture, Media and Sport (DCMS). The project utilised 5G
technology to enhance different aspects of communication in rural and semi-rural regions
in Wales. Different scenarios considered incorporated the integration of multiple cameras
and sensors to collect data and improve understanding of the surrounding environment.
The video surveillance system implemented consists of multiple cameras (Meraki MV72X)
installed in four distinct locations to monitor and ensure the safety of lone workers at a farm
in Monmouthshire, in the northern region of Wales. The primary goal was to identify un-
known people and vehicles to avert the theft of livestock and machinery and to monitor the
farmers’ activities to ensure their well-being and security. Raglan Castle in Monmouthshire
was focused on to identify instances of vandalism and prevent children from scaling walls
and to detect individuals trespassing in prohibited zones. The primary objective of these
use cases was to detect anomalous events in either behaviour or appearance, thereby allow-
ing for prompt human intervention and decision-making processes to ensure the safety and
security of the premises. Moreover, the study focused on analyzing customer behaviour
within transport services by tracking the number of individuals boarding and alighting
buses and assessing the availability and occupancy of bus seats. Additionally, in Blaenau
Gwent, a region located in southeast Wales, the same camera system implemented in the
farm and castle scenarios was utilised to monitor parking lots, to detect available and
occupied spaces, and to monitor individuals at bus-stops.

The cameras employed in all the use cases possess and provide different functionalities
and capabilities, which are listed as follows: (1) A tiny machine-learning algorithm detects
only people and vehicle classes along with the (a) timestamp, (b) object ID, (c) bounding
box, (d) class confidence (%), (e) class name. (2) Audio level (dB), (3) Lux value, (4) A REST
API to request screenshots and publish the meta-data with an (5) MQTT broker.

The data generated by the cameras (referred to as “pre-identify single”) were con-
sidered and utilised to portray any possible anomalies within the scene. When the edge
camera detected such an event, a screenshot was obtained via the API and transmitted to a
cloud computing environment. The cloud-based environment employed various state-of-
the-art object detection algorithms to scrutinise and identify instances within the images.
Afterwards, the results were shared with relevant authorities for decision-making, sending
alerts, and visualisations.

As stated before, image quality plays a crucial role in producing reliable inputs for
object detection tasks, leading to superior outcomes. The quality of the data source is
impacted by several factors, including the communication channel, which results in the
loss of some image features during data transmission, thereby degrading the image quality.
However, the most significant hurdles during the project assessment pertained to the
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external low-light and weather conditions encountered, especially at night, as seen in
Figure 1. In most cases, the lux value approached zero, producing noisy images that were
challenging to interpret, especially when detecting anomalies. The subsequent section
presents a comprehensive overview of diverse methodologies associated with anomaly
detection. These studies primarily concentrate on tasks like detection and tracking, utilising
distinct location-based computing paradigms, such as edge, edge-fog, and edge-cloud
computing. Furthermore, they share a mutual objective of identifying instances involving
pedestrians and vehicles in prohibited zones, the disregard of safety protocols, and violation
of regulations, among other factors. However, it is worth noting that the training and
evaluation datasets used in these studies were typically composed of high-quality images
or videos captured in ideal conditions with ample lighting, which may lead to developing
approaches that perform poorly in scenarios where the data is contaminated with noise,
such as low-light conditions, also known as poor illumination.

(a) High light, “Farm” (b) Rainy weather, “Car Parking”

(c) Low light and noise, “Farm” (d) Low light and noise, “Castle”

Figure 1. The 5G Wales Unlocked project scenarios with various natural conditions with several

representative instances. (a) Vehicle in the farm scenario with bright lighting from a sun source

partially covering it. (b) Depiction of the car park scenario during rainy weather, producing finely-

detailed imagery. (c,d) Images captured in the farm and castle scenarios exhibiting poor illumination

and significant noise.

To fill the gap in prior studies, we developed an image enhancement technique that
can be employed in low-light conditions for object detection tasks on various edge devices
(referred to as “nodes”). As proposed in [8], a lightweight detector and enhancer were
implemented to distinguish between captured blurred and clear images. Its objective was
to reinstate the sharp details if the detector considered the captured images to be blurred.
In addition, the whole system was explicitly designed to adhere to the edge computing
requirements. Similarly, our proposed technique was designed to select the most effective
enhancement method among multiple low-light enhancement networks by considering the
characteristics and features of the input images. In summary, the main contributions of this
research are as follows:

• We developed a lightweight dynamic classifier capable of selecting the optimal en-
hancement technique from a set of options based on input features and illumination
levels. In low-light environments, the introduction of additional noise and color arti-
facts poses challenges. Therefore, our classifier identifies the most effective approach
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during the feature extraction and selection phases, avoiding adherence to static or
predetermined techniques based on assumptions.

• Evaluation of the efficacy of image enhancement techniques in object detection tasks
involving the identification of instances such as people, cars, buses, motorcycles, etc.
Specifically, we consider the most effective pre-processing stage for the proposed
design by analyzing the performance of various image enhancement techniques.

• Evaluation of the image enhancement models on the ExDark dataset, comprising
images captured in real-world scenarios. This differs from studies listed in Table 1,
where models are evaluated on high-quality and paired datasets, such as SID, LOL,
and MIT-5K.

• We developed a proof-of-concept by implementing our proposed system on a va-
riety of resource-constrained edge-only devices, including the Raspberry Pi and
Jetson Nano Developer Kit. This is in contrast to previous studies that depended
on external resources, such as cloud-based solutions [9]. Our approach offers self-
sufficiency on edge devices, delivering high performance by conducting measure-
ments related to speed, detection accuracy, and other relevant computational re-
source metrics. The code and data to implement or test our proposed design is
available at https://gitlab.com/IOTGarage/anomaly-detection-on-the-edge-using-
smart-cameras-under-low-light-conditions.git (accessed on 12 November 2023).

Table 1. Learning types for low-light image enhancement techniques, SL: supervised learning, USL:

unsupervised learning, SSL: semi-supervised learning, ZSL: zero-shot learning.

Method/Learning SL USL SSL ZSL

LLNet [10] ✓

LightenNet [11] ✓

RetinexNet [12] ✓

MBLLEN [13] ✓

Chen et al [14] ✓

DeepUPE [15] ✓

KinD [16] ✓

KinD++ [17] ✓

EnlightenGAN * [18] ✓

ExCNet [19] ✓

Zero-DCE [20] ✓

DRBN [21] ✓

Xu et al. [22] ✓

TBEFN [23] ✓

RRDNet [24] ✓

DSLR [25] ✓

Zero-DCE++ * [26] ✓

RUAS * [27] ✓

Retinex-DIP [28] ✓

UTVNet [29] ✓

CSDNet [30] ✓

CSDGAN [30] ✓

LiteCSDNet-LOL * [30] ✓

LiteCSDNet-UPE * [30] ✓

SLiteCSDNet-LOL * [30] ✓

SLiteCSDNet-UPE * [30] ✓

RED-RT * [31] ✓

https://gitlab.com/IOTGarage/anomaly-detection-on-the-edge-using-smart-cameras-under-low-light-conditions.git
https://gitlab.com/IOTGarage/anomaly-detection-on-the-edge-using-smart-cameras-under-low-light-conditions.git
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2. Related Work

Anomaly detection in digital data refers to behaviours that deviate from typical ones
in space, time, or both [32]. In smart city applications, anomaly detection is crucial for
real-time monitoring through single or multiple cameras for inspecting vast quantities
of recorded videos and still images. Researchers have exploited cloud-based services to
handle computationally intensive tasks, like action recognition, tracking, etc, to identify
anomalies. However, recently, several studies have investigated detecting anomalies using
edge computing paradigms [32].

In [33], the authors proposed real-time video streaming for human detection and
tracking by extracting low-level features using edge and fog computing for performing
high-level human and action recognition tasks. Moreover, a histogram of orientation
(HOG) [34] with a support vector machine (SVM) classifier [35] was used to extract object
representations and to classify them as human and non-human on a Raspberry Pi 3. Finally,
the features extracted were passed on to a kernelised correlation filter (KCF) [36] tracker,
placed at the fog stratum (laptop) to estimate the pedestrians’ future positions and to
construct their trajectories.

The authors of [37] proposed a hybrid edge-cloud computing approach that utilises a
lightweight deep learning model at the edge. To reduce the complexity of the model on
the NVIDIA Jetson TX, the depth-wise separable convolution technique, as introduced
by [38], was employed on the convolutional neural networks (CNNs) component of both
Tiny-Yolo and MobileNetV2-SSD. Meanwhile, a centralised cloud-based system with a
graphics processing unit was used to host a larger model, YoloV3, which was utilised for
the detection phase.

In [39], a real-time system for detecting facial emotions was devised using a PYNQ-
Z1 board. Initially, a Harr-cascade algorithm and a binary neural network (BNN) were
employed to extract facial features from human images and to construct a feature map.
These features were then utilised for training a face emotions classifier through a BNN
to detect anomalies in public transportation, including shared cabs and taxis, to ensure
passenger safety. As a result, anger, disgust, fear, and sadness were categorised as abnormal,
while happiness and surprise were classified as normal. On the other hand, ref. [40]
described a system known as iSENSE, an intelligent surveillance system deployed at
the edge. It was accomplished by developing a lightweight convolution neural network
(L-CNN) based on the depth-wise separable convolution technique, as described in the
work of [38], to extract human features. In addition, an SSD-head was incorporated to
produce bonding boxes, probabilities, and classes. The proposed L-CNN was evaluated
in conjunction with three tracking algorithms: the Karman filter (KF) [41], the kernelised
correlation filter (KCF) [36], and background subtraction [42]. The system’s overall tracking
performance was tested on various single-board computers (SBC), including the Raspberry
Pi 3 and Tinker Board.

Furthermore, ref. [43] introduced a real-time method for performing video analytics
on an NVIDIA Jeston TX2, an edge device. This approach was augmented with a graphics
processing unit (GPU) to facilitate the detection of individuals in restricted areas through the
utilization of YOLOv5s [44], which generates a range of object outputs, such as bounding
boxes, class names, and probabilities. The DeepSORT tracker [45] was then applied to
enable the tracking of detected objects and to assign a unique identification number to
each object.

The above studies identified anomalies based on high-computational resources, such
as cloud-based or partial (e.g., edge-cloud or edge-fog) computing frameworks. Moreover,
the detection and tracking tasks were applied under favourable conditions of good visibility
and ample illumination (such as daytime, sunny weather, etc.). Thus, this work involved
using comprehensive operations, encompassing classification, enhancement, and detection,
on several “nodes” with limited resources, utilising only the edge computing paradigm.
Furthermore, this study aimed to enhance the detection phase in situations with inadequate
illumination through multi-network enhancement techniques by examining the input
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features. Additionally, the study sought to align with the objectives outlined in the existing
literature by concentrating on comparable categories, specifically humans and vehicles.
The research strategy involved a deliberate focus on these particular classes to ensure
relevance and consistency with prior studies in the field.

3. Materials and Methods

This section describes our suggested technique for enhancing images under low-light
conditions for object detection. It should be noted that the primary objective of employing
these methods is to accurately identify objects in poorly lit environments rather than
comparing methods for image quality improvement. Consequently, the emphasis will
be placed on the findings produced after the detection stage. Moreover, the performance
of the state-of-the-art object detection algorithm is comprehensively assessed using a
diverse set of evaluation metrics. These metrics, spanning aspects such as precision, speed,
and device-related considerations, include the average precision (AP), the mean average
precision (mAP), the inference speed, the number of detections, the receiver operating
characteristic curve (ROC) for the classifier, the accuracy on the testing set, and metrics
related to edge devices to ensure reliability and performance. This introductory overview
aims to provide readers with a roadmap for navigating the detailed evaluation presented
in the following sections.

The order of the following sections is determined based on the testing and evaluation
phases rather than the input‘s journey from source to destination.

3.1. Overall System

In this subsection, we offer a description of the end-to-end proposed design, com-
posed of three compulsory tasks; classification, enhancement and detection, as depicted in
Figure 2, where the steps are described as follows:

1. In the event of a probable anomaly (referred to as a pre-identify signal), the Meraki
camera commences the process by obtaining a screenshot and transmitting it to the
neighbouring node “Client (1)” for further analysis.

2. The “Client (1)” holds a lightweight dynamic classifier in which the features are
extracted and labels are assigned to denote the suitable enhancement technique based
on the input’s features.

3. A queue is designed for holding requested images and releasing them one at a time
immediately after processing and completing the first image.

4. If the images have sufficient light, E0 is assigned, indicating that no enhancement is
necessary, and they are passed immediately to the detection phase on the same node.
If not, enhancement happens via E1 or E2 on separate nodes.

5. The RUAS and Zero-DCE++ methods are used to enhance low-light images delivered
to succeeding nodes with the labels E1 and E2, respectively, and are followed by the
detection phase. The selected enhancement techniques are based on critical factors
outlined in the subsequent section.
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Figure 2. Our proposed end-to-end system design. We illustrate the proposed design from source to

destination for detecting anomalies on multiple constrained devices when images captured by the

edge camera are enhanced through multiple low-light image techniques, donated by {E1, E2,. . . , EN},

based on the inputs’ local and global features. All nodes were designed, connected, and tested using

the “Node-Red” platform [46].

3.2. Low-Light Image Enhancement

The techniques introduced in this work vary in the type of learning on which they
are based, their architecture, data training, and the framework. Table 1 illustrates the
most recent accessible open-source methodologies with public implementation that have
been explored between 2017 and 2021 [47]. Notably, the prevalent techniques depend on
supervised learning, which involves feature mapping and metrics evaluation using paired
images of the degraded and ground truths. However, as acquiring paired data of identical
scenes is still a formidable task, some researchers have resorted to creating synthetic images
that emulate those taken in low-light environments, which might be utilised to formulate
new techniques that address the obstacles presented by low illumination levels. Nonethe-
less, approaches based on synthetic data exhibit poor performance in real-world situations,
leading to an increase in false positives during detecting anomalies (e.g., people, vehicles,
etc.), particularly at night. Consequently, researchers are exploring a new direction for
addressing the low-light issue that does not rely on prior knowledge derived from reference
images with normal illumination, such as zero-reference and unsupervised learning.

In the study by [13], a sub-networks enhancement MBLLEN was suggested by ex-
tracting feature representation from low-light and enhanced images for subsequent feature
fusion. Conversely, [18] proposed an unsupervised learning model that employed gen-
erative adversarial learning (GAN) techniques. TheUNet [48] architecture was chosen as
the generator part of the network. In general, the generator and discriminator in GAN
networks fight each other until the discriminator gives up on recognising images created
by the generator as fool images, producing a realistic output similar to the original ones.
In contrast to most known learning approaches, [26] proposed a model without using
paired images based on curve methods to create a lightweight network under the name
Zero-DCE++.
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Furthermore, the asterisk (*) located next to certain model names signifies a “Lightweight”
architecture, which might fit constrained devices and enable faster inference. Since previous
studies have not examined recently developed models, such as the CSDNet family and
RED-RT, these new methods are considered and included in the evaluation with the object
detection task.

Indeed, during the testing phase, several models were ignored and discarded, such as
Retinex, ExCNet, and RRDNet, since these techniques perform training during inference
to find the optimal value of the illumination map. Further, methods such as UTVNet and
DRBN only accept paired images, which are more suitable for custom data purposes. In ad-
dition, Chen et al. and REDIIRT only accept images captured in RAW format when most
modern cameras produce RBG as well as the public dataset format. On the other hand, sam-
ples should be smaller for faster processing when using KinD, KinD++, and EnlightenGAN.
Indeed, after inspecting each model structure, the training data, the framework, etc., none
of the models utilised the ExDark dataset (Section 3.5.2) for training and model creation;
only the EnlightenGAN, Retinex-DIP, and CSDNet employed the dataset for testing, which
encourages evaluation of these methods on unseen data for the detection assessment.

Ultimately, given that the primary goal is to boost the object detection accuracy, any
enhancement model that outperforms the existing ones may be substituted. In other words,
these models might be demonstrated to be suitable and effective as a preprocessing step
for improving subsequent tasks (e.g., classification, detection, segmentation, etc.), while
preserving output, quality, and latency at the edge.

3.3. Image Enhancement

3.3.1. Zero-DCE++

Zero-reference deep curve estimation (Zero-DCE) enhances image lighting through
a lightweight deep network, DCE-Net. It dynamically adjusts the dynamic range by
determining specific curves for pixels and the entire image, considering factors like the
pixel value range, monotonicity, and differentiability. Unique to Zero-DCE is its ability to
improve images without requiring specific pairs or unrelated data during learning, thanks
to innovative loss functions. This approach efficiently applies a simple nonlinear curve for
effective enhancement across various lighting conditions.

3.3.2. RUAS

RUAS, or Retinex-inspired Unrolling with Architecture Search, addresses the chal-
lenges of enhancing low-light images in practical scenarios without complex architectures
or extensive computational resources. Inspired by the Retinex rule, RUAS develops models
to understand the structure of underexposed images and unfolds optimisation processes
for comprehensive enhancement. Using a cooperative reference-free learning strategy,
RUAS identifies optimal architectures within a compact search space, resulting in a high-
performing, computationally efficient image enhancement network. RUAS has proven
superior to recent state-of-the-art methods in low-light image enhancement through rigor-
ous experiments.

3.4. Object Detection

The use of a 2D object detection algorithm is an emerging field when using deep
learning neural networks. The generated output is a bounding box wrapped around the
detected object with numerical coordinates, confidence (%), and class name. The specifics
of this output are determined by the dataset used to train these detectors and to identify
desired objects. For example, most of the techniques developed in this area have been
trained on image datasets, such as ImageNet [49] and MS COCO [50], which include
thousands of object classes. Fine-tuning and transfer learning are popular methods to
re-train the algorithm on a custom dataset or only to detect specific class name(s) [51].
One-stage and two-stage detectors are the two primary categories that make up the many
types of detectors. One-stage procedures are much quicker in the training and inference
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stages. In contrast, two-stage procedures require more time and effort to train but provide
accurate results. Thus, one common trade-off that focuses on speed against accuracy may
be made when deciding between the two kinds based on the application requirements.
One of the prevalent models for single-stages is known as YOLO, which stands for “You
Only Look Once” and its several modifications (from Yolo to Yolov8 up to when this paper
was written). At the same time, region-based convolution neural networks (RCNNs) are
gaining interest for two-stage models, which include various versions, such as RCNN,
Fast-RCNN, and Faster-RCNN [52].

The Faster-RCNN (Detectron2) base model with the default configuration was used
for benchmarking and evaluating the low-light enhancement on the cloud paradigm [53].
Additionally, Detectron2 was exclusively employed for all use cases in the 5G Wales
Unlocked project.

However, when dealing with limited resources, such as the Raspberry Pi, the primary
considerations revolve around the inference speed and the model accuracy. YOLOv5 has
demonstrated a trade-off between speed and accuracy in various detection applications
compared to other approaches [54,55]. Moreover, it is well-suited for resource-constrained
environments due to its low parameters within the model weights. Thus, in this study
YOLOv5-tiny, the latest and most widely applied detection approach developed by Intel,
was employed with a Neural Computing Stick 2 (NCS2) to achieve faster inference while
maintaining an adequate detection accuracy on a Raspberry Pi [44,56].

3.5. Lightweight Image Classification

3.5.1. Feature Engineering

The classification task aims to produce a label describing the content of an image,
assigned with a percentage probability. Feature engineering and data-driven methods are
two categories of classification techniques.

Feature engineering involves applying filters or kernels directly to the input image,
resulting in a new image of the same size denoted by f = I

⊙

K, where “I” refers to the
input image, “K” to the kernel, and “ f ” to the features that define and differentiate inputs
based on the texture, edges, luminance, and other factors. However, selecting appropriate
filters can be challenging since certain features may be difficult to identify, necessitating an
extensive search of descriptors to determine the best filters and their hyper-parameters.

In contrast, modern approaches, such as convolutional neural networks (CNNs),
represent a shift towards automation in the selection of kernels and their values [57]. CNNs,
being part of the deep learning era, perform tasks without human intervention, making
decisions on suitable kernels intuitively.

In summary, while feature engineering allows for the manual selection of filters for
data-driven feature extraction, contemporary convolutional neural networks (CNNs) operate
seamlessly without human intervention in the selection of kernels and their values, resulting
in an increase in the model’s weight and overall complexity. Therefore, this shift towards
automation positions traditional methods as being valuable for building models suitable for
resource-constrained devices due to their lightweight nature, allowing for quick inference.

1. Original Pixels

In feature extraction, pixel values play a crucial role in representing the features. These
values convey the original characteristics, encompassing the colour intensity in RGB or
grayscale colour space, the texture, brightness, and other essential features. It is imperative
to incorporate these characteristics before applying convolution kernels to ensure accurate
feature extraction.

2. Gabor Filter

Gabor is a conventional tool utilised in image processing for texture analysis, edge
detection, and feature extraction, specifically for image classification and segmentation
purposes. It acts as a band-pass filter, enabling the transmission of specific frequencies
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while blocking all others, unlike high-pass and low-pass filters that solely allow the trans-
mission of high and low frequencies, respectively. Generally, Gabor is a product of a
sinusoidal signal of a certain frequency and orientation modulated by a Gaussian wave [58].
The equation representing the filter is displayed as Equation (1):

g(x, y, σ, α, θ, λ, γ, φ) = exp(−
x́2+ý2γ2

2σ2 )× exp[i(2π x́
λ + φ)], (1)

where x́ and ý are expressed as:

x́ = x cos θ + y sin θ (2)

ý = −x sin θ + y cos θ (3)

The Gabor filter relies on several parameters, mainly focused on orientation and
wavelength, to govern the kernel direction and frequency. These parameters include
(x, y) for the kernel size, σ for the standard deviation, θ for the kernel angle, λ for the
wavelength, γ for the aspect ratio, and φ for the kernel offset from the original center (0, 0).
The filter encompasses several parameters that produce a variety of kernels with different
sizes, orientations, positions, and other factors, resulting in a multitude of filters with
distinct values, collectively known as the Gabor filter bank. These filters can extract local or
global features from images for subsequent tasks [59]. In addition, these parameters were
subjected to value comparisons during the feature extraction phase to generate a filter bank.
These filter banks are subsequently used to train a model for classification tasks. While
having numerous features may seem advantageous, it is not always the case. More specific
features with fewer options generally perform better.

3. Sobel Filter

The Sobel operator is a spatial domain filter that uses a convolution kernel to compute
the approximate gradient of an image in the “Gx” and “Gy” directions for each pixel [60].
Unlike filters in the frequency domain, such as low-pass, high-pass, and band-pass filters
(e.g., Gabor filters), which allow only specific signals to pass, the Sobel operator operates
directly on the pixel values of the original image. The Sobel convolution kernel consists of
two R

3×3 operations, as shown below:

Gx =





−1 0 1
−2 0 2
−1 0 1



 & Gy =





1 2 1
0 0 0
−1 −2 −1



 (4)

where the magnitude and angle are calculated as:

GMag =
√

Gx2 + Gy2 , θ = tan−1(Gy
Gx ) (5)

The matrices above are identical in terms of their values, but one is equivalent to the
other with a 90-degree rotation applied to it. The Sobel is an extension of the “Roberts”
operator. However, the sole difference is the matrix’s form, denoted by the notation R

2×2.
Further, various edge descriptors, such as the Canny, Prewitt’s, Scharr, and Laplacian
operators, and various additional operators, have the same capability to identify edges in
digital images. However, in contrast to the previous edge approaches, recent studies have
shown that the Sobel operator outperforms other edge detection operators in preserving
edges, reducing noise, and producing sharp edges [61].

3.5.2. Random Forest Classifier

In the supervised learning (SL) context, Random Forest (RF) is used to predict categor-
ical or numerical dependent variables in classification and regression problems. The RF
algorithm achieves high accuracy in its predictions by constructing multiple classifiers, with
a collection of decision trees (Forest) picked randomly (Random), as suggested by its name.
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This approach addresses the limitations of the decision tree (DT) method, which relies on a
single tree for all training data, and could lead to model overfitting. By contrast, the RF
algorithm builds several decision trees using several datasets, referred to as a bootstrapped
dataset with various “N” values, in order to overcome the overfitting problem [62,63].

3.6. Dataset

The Exclusively Dark dataset (known as the ExDark https://github.com/cs-chan/
Exclusively-Dark-Image-Dataset, accessed on 26 October 2023) comprises 7363 sample
images captured with different light intensities and 13 object classes (e.g., people, cars,
buses, etc.) that exhibit a range of lighting conditions from near-zero lux to partially
dark [64]. These images were sourced from publicly available datasets provided by [65,66]
and obtained through digital cameras and smartphones. The dataset encompasses multiple
light intensity levels, providing potential feature extraction and classification utility. The
ExDark dataset was extensively utilised during the enhancement and detection stage,
owing to the varied lighting conditions encountered in real-world scenarios. Further,
the classifier was constructed using random samples for the ExDark as well as images
captured under normal light conditions from public databases, such as the Berkeley https:
//www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/, accessed on 26 October
2023 [67], Stanford https://www.kaggle.com/datasets/balraj98/stanford-background-
dataset, accessed on 26 October 2023 [68], MS COCO https://cocodataset.org/#download,
accessed on 26 October 2023. Additionally, images from the 5G Wales Unlocked project
scenarios were used to join the training and testing phases.

Addressing the low-light problem poses challenges due to the need for more suitable
datasets. Many existing datasets are primarily designed to address image quality issues
and lack annotation files, specifically the bounding box coordinates, which are essential
for object detection tasks. Furthermore, a significant limitation arises from several datasets
that predominantly feature images captured in indoor environments, rendering them less
suitable for evaluating performance in real-world scenarios. Additionally, certain datasets
involve images taken from behind glass or windows (e.g., inside a car), presenting a unique
challenge for image enhancement techniques. Such scenarios often introduce noise and
distort the content, further complicating the evaluation of these techniques. It is important
to note that collecting diverse and representative data for low-light conditions proved
challenging, and this consideration will be explored in future research endeavours.

4. Experiment

In this section, we initially assess the object detection process before and after imple-
menting enhancements while determining essential metrics, such as the inference speed
and the detection accuracy. Subsequently, we demonstrate effective techniques that yield
a significant number of true positive outputs, significantly contributing to the classifier’s
development. Moreover, we provide metrics in relation to edge devices when evaluating
the proposed design in edge scenarios. Lastly, supplementary findings are presented in
Appendix A.

4.1. Enhancement and Detection

4.1.1. Data Preparation

The ExDark dataset includes the class name and box coordinates [l, t, w, h] generated
using the Matlab toolbox [69]. Since most modern object detection algorithms generate
coordinates in popular formats (e.g., COCO, Yolo, etc.), all the ground truth formats were
converted to Yolo-normalised ones to facilitate the evaluation stage. Therefore, only the
classes, people (with 609 images), and cars (with 638 images) were used for this part.
Despite the recommended name, each dataset class contains additional instances, such as a
person, car, bus, or motorcycle.

https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www.kaggle.com/datasets/balraj98/stanford-background-dataset
https://www.kaggle.com/datasets/balraj98/stanford-background-dataset
https://cocodataset.org/#download
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4.1.2. Mean Average Precision

The primary evaluation for the object detection task is to measurethe model perfor-
mance when finding objects in digital media (e.g., images and videos). Nevertheless,
in some circumstances, the average precision (AP) reveals beneficial information about
the detector’s performance concerning certain classes. Moreover, calculating additional
metrics is essential in order to acquire the AP and mAP measures when these metrics are
the precision and the recall. Following this, TP and FP are also required for estimation of
the precision and recall.

AP =
1

N
∗

N

∑ peaki (6)

Calculation of the average precision is described in the equation above when N denotes
the number of interpolated points. For example, eleven points are the most commonly
used when peaki ≥ 0 represents the peak values at the N interpolated point in the precision
versus recall plot. Afterwards, the mean average precision is obtained by the following
equation, where C is the class name(s) [70]:

mAP =
APperson + APcar + . . . + APC

Total number of classes
(7)

However, to facilitate the dataset evaluation, this research introduced an object de-
tection metric tool suggested by [71], which allows the user to upload the following
requirements: (1) the ground truth files, (2) the image files, (3) the class names file, (4)
the predictions files, and (5) several options to choose the coordinates style (e.g., COCO,
Yolo, and VOC), and the metrics to be measured (e.g., mAP, AP per class, AP(50/70) when
IoU is equal to 0.5 or 0.7, and AP(large/medium/small) for evaluating large, medium, or small
objects only). For this work, the options considered are: IOU@0.5, AP(50) for person, car,
motorcycle and bus, mAP, and the Yolo coordinates sorted as ClassId, Confidence, X_center,
Y_center, Width and Height.

4.1.3. Results

All the measured metrics related to object detection before and after applying low-light
image enhancement techniques are presented in this subsection. The testing and evaluation
occurred in an environment with an Intel(R) Xeon Gold 6148 CPU @ 2.10 GHz (x86_64-
bit) and NVIDIA Tesla P100 with CUDA 11.5. The results of the “Detectron2” baseline
model on the original datasets without undergoing any enhancements are displayed in
Table 2. In addition, the average detection speed on both datasets is calculated as the
images are maintained at their default size and scale. Further, after the enhancement
process is carried out, the metrics above are computed for each enhancement technique.
In summary, the Tables 3–8 presented below reveal the performance outcomes of the top
five enhancement models following detection across various metrics.

Table 2. Baseline metrics (before enhancement).

Dataset
Class

Num. of
Predictions

Person
(AP %)

Car
(AP%)

Bus
(AP%)

Motorcycle
(AP%)

mAP
(%)

Time
(ms)

Num.
of GT

Car 1704 0.115 0.438 0 0 0.1386 0.12 1700

Person 2240 0.1885 0.1415 0.25 0 0.145 0.12 2073
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Table 3. The fastest and slowest enhancement model. Bold indicates the fastest model.

Model Name Inference Speed (s)

ElightenGAN 6.38

Zero-DCE++ 0.0013

SLiteCSDNet_LOL 0.0024

TBEFN 5.77

Zero_DCE 0.0023

Table 4. The high and low “mAP”. Bold indicates model with highest mAP.

Model Name Average Precision

RetinexNet 0.300

MBLLEN 0.587

Zero-DCE++ 0.590

SLiteCSDNet_UPE 0.486

CSDGAN 0.370

Table 5. The high/low AP for “Person” class. Bold indicates model with highest APPerson.

Model Name Average Precision

CSDGAN 0.524

RetinexNet 0.569

CSDNet_UPE 0.696

Zero-DCE++ 0.778

RUAS 0.760

Table 6. The high/low AP for “Car” class. Bold indicates model with highest APCar.

Model Name Average Precision

LiteCSDNet_LOL 0.504

RUAS 0.725

ElightenGAN 0.639

MBLLEN 0.633

CSDGAN 0.475

Table 7. The high/low AP for “Bus” class. Bold indicates model with highest APBus.

Model Name Average Precision

All Models 0

Zero-DCE++ 0.504

Table 8. The high/low AP for “Motorcycle” class. Bold indicates model with highest APMotorcycle.

Model Name Average Precision

SLiteCSDNet_UPE 0.194

LiteCSDNet_LOL 0.225

Zero-DCE++ 0.277

ElightenGAN 0.052

MBLLEN 0.247

Table 3 presents the average time to enhance a single image using a particular method,
including the slowest and fastest times. The images were maintained at their original
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dimensions, which ranged from (220 and 293) to (2906 and 4372) in width and height.
The superior method “Zero-DCE++” is highlighted in green, while the second-best ap-
proach and the underperforming methods for both datasets are also reported. Moreover,
Table 4 shows that “Zero-DCE++” outperformed the other techniques again with a mean
average precision of approximately 60% on the person dataset. In contrast, “MBLLEN”
achieved an AP of approximately 50%. Moreover, “RUAS” obtained more predictions than
the others. Additionally, as demonstrated in Tables 5–8, several techniques performed
well for specific classes, highlighting the importance of selecting a suitable method for
conditions such as light intensities and object types. These results suggest that no single
technique is universally superior and that combining different approaches is necessary for
achieving optimal results for different scenarios.

Figures 3 and 4 illustrate the number of predictions for the person and car datasets
before and after applying enhancement techniques to the original data for the detection
task. The actual regions of interest (ROIs) provided by the dataset serve as the ground truth.
For example, Figure 3 shows that the detector can identify more objects as the ground truth
using multiple tested models compared to the baseline model. Similarly, specific models
exhibit improved performance for the car dataset. However, these additional detections
may represent false predictions or accurate instances the annotators excluded during the
annotation process. Nevertheless, the mean average precision (mAP) ensures that the
correct ROIs align with the ground truth. The evaluation metric only compares the position
and size of anticipated ROIs with those already present in the ground truth. Thus, incorrect
predictions may result in overestimation or underestimation, affecting the model’s accuracy.

Figure 3. The number of ROIs, “Car” dataset.

Figure 4. The number of ROIs, “Person” dataset.
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4.2. Classification

4.2.1. Data Preparation and Model Selection

The study employed a total of 600 images, which were made up of 200 bright images
and 200 dark images for each of the selected techniques, namely,RUAS and Zero-DCE++,
since they yielded the most significant number of unique images. The augmentation in-
volved upsampling the dark images to match the majority class (bright), seeking to balance
the data by increasing the number of image features from 113 and 102 to 200, as presented
in Table 9. Moreover, the data were split into train and test sets representing 90% for
training and 10% for validation with a random state equal to 20. Additionally, to facilitate
speedier processing and to ensure that every image was treated fairly, the dimensions of the
inputted images were scaled down to 128 by 128 pixels, followed by pixel normalisation.
Indeed, a series of processes, including enhancement and detection, were performed on the
images, resulting in outputs with different accuracies. First, the detector’s performance on
an individual input was evaluated using the average mean precision (mAP). Afterwards,
the output samples with an mAP value ≥ 0.9 were included and categorised into a distinct
folder representing a specific enhancement technique. At the same time, those with lower
accuracies were disregarded. Because the same data samples were used for each enhance-
ment model, unique images (outperformed by a specific enhancement technique) were
isolated and evaluated individually, and duplicates were discarded; see Table 9 showing
unique images with the highest mAP using a particular enhancer.

For example, the three techniques that contributed the largest number of unique sam-
ples were “Zero-DCE++”, “RUAS”, and “SLiteCSDNet_UPE”. However, due to the limited
availability of ExDark samples (7 k) and a constrained number of unique outputs, only
two techniques, “Zero-DCE++” and “RUAS”, were chosen to be included in the proposed
edge design. In general, “Zero-DCE++” was particularly favoured and showed promising
results due to its speed, overall accuracy, and accuracy in specific classes. Additionally,
“RUAS” achieved the highest number of predictions compared to the ground truth and the
baseline method, performing better on the “Car” class where additional predictions may
reveal objects concealed by dark pixels.

Table 9. Unique samples with mAP ≥ 0.9 (in bold) after applying image enhancement techniques

and detection on the whole 7k ExDark dataset.

Model Name Number of Unique Images Time (s)

CSDNet_UPE 33 0.005

LiteCSDNet_UPE 23 0.0035

LiteCSDNet_LOL 52 0.0032

RUAS 113 0.12

SLiteCSDNet_UPE 59 0.002

Zero_DCE++ 102 0.0012

4.2.2. Feature Extraction and Training

As mentioned before, the “RUAS” and “Zero-DCE++” strategies were chosen to
contribute to the system that was implemented at the edge for the enhancement phase.
These techniques are represented by the labels E1 and E2, respectively. In addition, the value
E0 indicates that no enhancement is required for inputs deemed to be bright. Due to the
small ExDark dataset, the number of genuinely unique samples was restricted. As a result,
features were extracted using the whole datasets to represent the “Zero-DCE++” and
“RUAS” by their labels, respectively.

Several filters were utilised during the extraction phase; however, only some of them
contributed to the model’s ability to generate satisfactory predictions during the training
phase. Examples of some of the used filters include: (1) the Gabor filter bank, (2) the
Sobel, Scharr, Laplacian, and Prewitt operators for edge detection, (3) the Gaussian blur,
(4) median filtering, (5) the variance filter, (6) the Sharpen filter, (7) the original pixels, and
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others. It is important to note that while multiple filters are suitable for data sources that
use RGB and grayscale colour spaces, only filters applicable to RGB colour were introduced
and applied to the collected data since the RGB colour space provides more comprehensive
information for describing the entire image in various aspects. On the other hand, grayscale
representation, which ranges from 0 to 255, only describes areas through black, white,
or shades of grey. Therefore, for the Gabor filter configuration, it was defined with specific
values: σ equal to 1 and 3, θ equal to 0 and 0.785, γ equal to 0.05 and 0.5, λ equal to 0
and 0.0785 and 1.57 and 2.356, Ksize equal to 9, and φ equal to 1, enabling the creation of
different Gabor kernels (e.g., G1, G2, . . ., GN).

On the other hand, the Sobel operator was utilised in its default configuration as
well as the original pixel values for each trial conducted. After applying the convolution
kernels on the input images, the features were extracted and reshaped into a 1D vector to
be fed into the classifier for the training phase. The number of trees in the random forest
classifier was set to n_estimators = 48, which was determined as the optimal value using the
GridSearchCV technique to find the optimal hyperparameters with a random_state = 42 for
all trials [72]. Furthermore, the imbalanced classes, including bright and low-light images,
was solved by applying an upsampling technique to augment the features of the low-light
images, given that obtaining them is relatively effortless [73].

Figure 5 illustrates that the mean test score of 93% can be attained by applying 48 trees.

Figure 5. The plot represents the n_estimators in a range of 10 to 80 with the mean test scores. It

can be noted that the best score highlighted in yellow is achieved when trees = 48, obtaining a score

of 93%.

4.2.3. Results

Table 10 displays the accuracies of the classifiers utilised in each experiment. The
features were achieved by arbitrarily utilising an assortment of filters, applying upsampling
for imbalanced data, and finding the optimal number of trees using the GirdSearchCV
method. The accuracy was calculated using the “metrics.accuracy_score”, which compares
the predicted labels on the test set with the actual labels. As a result, the best outcomes were
achieved when combining the Gabor filter (G1, G2, G3 and G4), the original pixel values,
and the Sobel operator. The experiment (5) reported in Table 10 shows the outperformed
approach surpassing the high-order kernels for the Gabor filter as well as the modern pre-
trained weights convolutional neural networks (e.g., VGG-16) as a feature extractor. These
features were generated using six produced kernels and then reshaped into a 1D vector.
The findings demonstrated that the classifier achieved the extraction and label prediction
for a single input, regardless of its random size, within 0.2 ms on the Raspberry Pi. This
performance relates to real-time processing demands, ensuring a low response time at the
edge with an accuracy on the test set of 85.24%, suggesting that an appropriate technique
for the enhancing phase may distinguish certain low-light features as well as differentiate
them from bright ones. However, it should be noted that this conclusion was reached
through a single experiment on a small portion of the data. Moreover, the confusion matrix
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depicted in Figure 6a indicates the classifier’s ability to differentiate between bright and
dark images in general and between the two chosen techniques.

Table 10. Details of the conducted experiments with different convolution kernels and VGG-16

CNN (as a feature extractor), where OP, GB, US, and HP stand for the original pixels, the Gabor

bank filter, upsampling, and the hyperparameters, respectively. Bold indicates the classifier with

highest accuracy.

Exp ID Filters/Model US HP Accuracy

1 OP, GBF and Sobel ✗ ✓ 85%

2 OP, GBF and Sobel ✓ ✗ 81%

3 VGG-16 ✓ ✗ 75%

4 VGG-16 ✓ ✓ 78%

5 OP, GBF and Sobel ✓ ✓ 85.24%

The classifier algorithm encountered challenges in discriminating images exhibit-
ing “RUAS” or “Zero-DCE++” characteristics. Figure 6b displays the receiver operating
characteristic (ROC) curve which is mainly used to evaluate the performance of binary
classification models. The ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR) at different threshold values for classification. The TPR represents the
proportion of valid positive instances correctly identified as positive. In contrast, the FPR
represents the proportion of valid negative instances incorrectly classified as positive [74].
The classifier obtained an ROC accuracy of 96.6%, indicating that the model can discrimi-
nate between positive and negative instances, which implies that the classifier can correctly
classify positive instances while minimising false positives.

In conclusion, the images captured by the Meraki camera underwent initial processing
by the classifier. During this stage, the features were extracted by utilising Gabor and
Sobel filters, along with considering the original pixel values. This extraction process
guided the decision-making on selecting the most suitable image enhancement based on
the feature extracted.

4.3. Edge Computing Paradigm

In this section, the best practice enhancement models are evaluated and tested for their
suitability in an edge environment. The selection of these models is based on the findings
from previous benchmarking conducted on the cloud-based platform. Table 11 showcases
the performance of the large model, “Detectron2” on both paradigms. The results from
both datasets indicate that the application of the enhancement model leads to improved
accuracy, which remains consistent even in the edge paradigm. The only notable difference
is the time required to detect instances in a single image. It is important to note that batch
processing of images at the edge is performed rapidly, at approximately 0.11 ms per image.

(a) (b)

Figure 6. (a) Confusion matrix, “0” for Bright, “1” for the RUAS model, and “2” for the Zero-DCE++

model. (b) ROC curve for the multi-classification.
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Consequently, “Yolov5-tiny” object detection was used on edge in conjunction with the
enhancement models for the suggested design, as mentioned before. The test bed consisted
of 40 images taken randomly from both datasets with various brightness levels (e.g., dark,
semi-dark, bright, etc.) and was resized into 500 × 500 pixels. The tiny detector was
evaluated using the same evaluation methods of the large model “Detectron2”. The results
showed an improvement in both ‘mAP” and “AP” for both dataset classes in contrast to the
baseline model when using the “RUAS” and “Zero-DCE++” techniques. Sample outputs
comparing the results before and after the enhancement models were applied are as shown
in Figure 6.

Table 11. Evaluation of the large model “Detectron2” on the Cloud and Edge computing paradigms,

w: with enhancement and wo: without enhancement.

Env mAP% P (Person) AP (Car) % Speed (in s) Size

Cloud (wo) 0.42103767 0.625056609 0.638056402
0.09 500 × 500

Cloud (w) 0.425116397 0.573534606 0.701814585

Edge (wo) 0.42103767 0.625056609 0.638056402
4.4 500 × 500

Edge (w) 0.425116397 0.573534606 0.701814585

Furthermore, the computational resources metricised for the contributed devices, also
known as “Nodes” or “Servers”, were taken into consideration throughout this work.
A test of three images per category, bright, dark for E1, and dark for E2, was carried out
in a separate experiment to evaluate device computation for a unique scenario. Table 12
shows different measurements taken simultaneously by running an input image for each
class when resources such as the RAM usage, temperature readings, CPU and GPU usages
were also gauged and considered for each test. The device’s measurements were obtained
by creating a dashboard for a single device using a visualisation web application called
“Grafana” [75]. These dashboards were then used to collect the device’s measurements
and to report values by matching the timestamp during a particular process. The Grafana
application works along with the“Node-Exporter” to extract the desired computation
resource readings along with the “Prometheus” application to establish the connection
with the dashboard and publish the metrics for visualisation [76].

For instance, the“Ideal Mode” indicates device stability, and that no processing occurs
across all the nodes. On the other hand, a bright pixels image was used as the input for
“Test 1”; thus, since no processing is needed, the detection job is immediately executed on
the same node. In addition, it is essential to note that the CPU utilisation and temperature of
“Node 3” rise due to the execution of the classification and detection tasks only. Following
the same principle, “Test 2” and “Test 3” with low-light images as inputs required to
have their brightness improved through“Node 1” and“Node 2” prior to the detection
task. Similarly to “Node 3”, the resources increased dramatically since classification and
detection were involved. For the GPU utilisation, both servers reached 99 % of usage since
these enhancement models rely upon during processing.

Furthermore, an alternative design proposal was considered in the study since the eval-
uation results revealed high accuracy in detecting instances of “People” when employing
the “Zero-DCE++” technique, achieving an average precision (AP) of approximately 0.778.
Conversely, the“Car” class exhibited superior performance with an AP of approximately
0.725 when utilising“RUAS”. Therefore, both techniques can be utilised concurrently and
enhance inputs in parallel since each process occurs in a separate node. Subsequently,
the detection for “Car” will be conducted on images enhanced by “RUAS”, while “People”
instances will be detected using “Zero-DCE++”, and the results will be combined into a
single message. It is worth noting that in this situation, the same detector “Detectron2”,
is recommended based on the previous evaluation. Figure 7a illustrates the detector’s
failure in identifying the car without the application of any image enhancement techniques.
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In contrast, in Figure 7b,c, the detector successfully identifies the car using "RUAS" and
"Zero-DCE++," respectively, on the same edge devices.

(a) Yolo (Only). (b) RUAS with Yolo (c) Zero-DCE++ with Yolo.

Figure 7. Detection outputs on the constrained devices using the state-of-art Yolov5-tiny object

detection algorithm and the chosen enhancement techniques.

Table 12. Nodes computational resource metrics, where N/A: Not applicable, N/U: Not used in

processing, C: Classification task, OD: Object detection task, IE: Image enhancement task, Node 1:

Enhancement model (1), Node 2: Enhancement model (2), and RPi: Raspberry Pi.

CPU Usage GPU Usage RAM Usage Temp Usage Task Involved

Jetsons Jetsons Jetsons Jetsons Jetsons

Node 1 Node2Test ID
Rpi

(Node 3) Node 1 Node2 Node 1 Node2

Rpi
(Node 3) Node 1 Node2

Rpi
(Node 3)

CPU GPU CPU GPU

Rpi
(Node 3) Node 1 Node 2

Idle
Mode

1.47% 7.23% 14.50% 0% 0% 800 MB 1.23 GB 1.28 GB 41 °C 29 °C 27.5 °C 27 °C 25.5 °C N/U N/U

1 15.00% N/A N/A 1.15 GB N/U 49.9 °C N/U N/U C + OD N/U

2 14.70% N/U 65.60% N/U 13% 1.19 GB N/U 3.16 GB 50 °C N/U 31 °C 29.5 °C C + OD N/U IE

3 17.20% 31% N/U 98% N/U 1.13 GB 2.68 GB N/U 49.2°C 36°C 33.5 °C N/U C + OD IE N/U

The “Latency” is a vital aspect to consider since the implemented design is suggested
for use on devices with limited resources; thus, it is one of the most critical variables.
In other words, the whole amount of time required to perform classification, enhancement,
and detection on a single picture includes the latency.

The following Tables 13 and 14 illustrate the amount of time required to complete
a separate task and the overall time across all tasks. In addition, it is interesting to note
that the sole difference between RUAS and Zero-DCE++ pertains to the enhancement
process, whilst all the other tasks are completed using the same approaches. Since the
classification stage only resizes for label prediction, the original dimensions are passed to
subsequent nodes.

Table 13. Total time taken for processing one-image (from source to destination) using “RUAS”.

Node Id Task Time (in s)

1 Classifier 0.4

2 Enhancement 0.03

3 Detection 0.03

Total Time: 0.46

Table 14. Total time taken for processing one-image (from source to destination) using “Zero-DCE++”.

Node Id Task Time (in s)

1 Classifier 0.4

2 Enhancement 0.001

3 Detection 0.03

Total Time: 0.431
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5. Discussion

The research undertaken addressed the problem of recognising objects in environ-
ments with low-light settings at the edge. First, existing techniques for low-light image
enhancement were studied along with the state-of-art object detection algorithm by eval-
uating the detection before and after enhancement and among multiple enhancement
networks. Afterwards, best practice techniques were utilised to create a lightweight dy-
namic classifier that could assign labels based on image features and the amount of light
intensity accumulated to choose the optimal technique for the enhancement task. Moreover,
the model selection relied on the mean average precision for a single image with a value
greater than 0.9, in addition to several metrics and computational resources, including
the processing speed, the number of predictions, and the specific class accuracy. Finally,
the end-to-end proposed system was implemented on constrained-resources devices.

According to the findings, the“Zero-DCE++” method is the optimum approach for
the vast majority of situations, with regard to more rapid inference on several different
input dimensions, around 0.001 s. The highest mAP was accomplished using the following
techniques: “Zero-DCE++” and “MBLLEN” on the person and car datasets, respectively.
The baseline model produced “mAP” values of 34 % and 45%. Both models achieved a
higher “mAP” value, equivalent to 59% and 48%, than the baseline model. Again, when
assessing a single class “AP”, the“Zero-DCE++” outperformed other approaches for the
person, bus, and motorcycle classes with accuracies of 77%, 71% and 27%, respectively.
However, the baseline results for several classes had extremely few advanced placements
or almost none. The“EnlightenGAN”, on the other hand, did quite well in the car class,
obtaining an“AP” score of 64%. On the other hand, the“RUAS” was the only model that
produced a more significant prediction after enhancement than the others did for both
datasets—about 2393 and 1836 bounding boxes, respectively—as well as compared to the
actual predictions, 2073 and 1700. In addition, it was the optimal technique when it comes
to detecting the“Car” classes with an AP 72%. Indeed, the results demonstrate that at
least seven enhancement techniques can identify more correct objects than direct detection
(without enhancement), as well as the ground truth.

Further, despite the limited samples in the ExDark dataset used to build the classifier,
an accuracy of 85.24% was obtained on the test set, indicating the ability to differentiate
between bright scenes from low-light scenes and among various low-light settings for an
appropriate enhancement method. Indeed, the findings demonstrated close competition
amongst all approaches in some facets. For example, model E1 performed better than
model E2 on Image1 and vice versa. Therefore, the capabilities of the various models permit
the combination and integration of several models for handling various input conditions
and indicate the most confident approach based on particular features within the image,
making this feasible by virtue of the fact that the models can work together rather than
relying on a single method, improving the object identification task.

Moreover, encouraging findings were observed in the computational resource perfor-
mance of the resource-constrained devices, indicating their potential to carry out all the
processing activities while ensuring high quality and rapid response times. As an illustra-
tion, the cumulative duration required to process an individual image from its origin to its
destination was recorded as 0.43 s, with respective time intervals of 0.4, 0.001, and 0.03 s for
classification, enhancement (utilising Zero-DCE++), and detection (employing Yolov5-tiny),
indicating that other processes could be incorporated into the suggested framework, either
on the same nodes or different ones. In addition, the inter-node transmission duration was
under 1 s, as all the nodes are part of a shared local network.

Furthermore, since the ExDark dataset was not intended to address low-light image
enhancement tasks but instead emphasised high-level tasks, such as object detection and
classification, particular challenges were encountered when applying enhancement tech-
niques to low-light images. These challenges included (1) increased coverage and obscuring
of objects by dark pixels, (2) distant and small objects, and (3) partially displayed objects,
where only a portion of an object is visible in the image (e.g., the rear part of a car). All these
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factors refer to objects not labelled and included in the ground truth. As a result, the newly
discovered and missing objects considerably impact the object identification performance,
leading to inadequate overall accuracy and accuracy for a specific class. Henceforth, it is
suggested that the dataset be relabeled using suggested effacement techniques identified
during the current research in future work, allowing other researchers to evaluate new
proposed methodologies in the same field and to obtain accurate outcomes.

Regarding the classification task, the number of unique images that can outperform
a single enhancement model is limited, especially during the feature extraction phase.
Because of this, increasing the number of images by utilising additional datasets rather
than relying solely on a single dataset for the training phase is recommended. Indeed,
additional datasets other than the ExDark might boost the likelihood of obtaining more
unique samples from which to extract relevant characteristics.

Furthermore, the collected metrics with regards to the resource-constrained devices
across all stages pointed to a significant orientation toward consolidating more jobs and
computations onto a single device. Several low-light enhancement networks may be
carried out in a single “Node” when the appropriate enhancer is selected, depending on
the acquired input features and attributes. Further, moving techniques related to other
problems to separate nodes to the design allows for handling different challenges, such
as blur and weather conditions. Thus, an input may be preprocessed and directed to
numerous nodes before the detection occurs when inputs are represented with multi-labels
describing the scene content. Due to logistical constraints and the targeted focus of our
study on representative smart city environments, we could not conduct a comprehensive
examination. We acknowledge this limitation, and future research may explore a broader
range of real-world scenarios to further validate the system’s scalability and practicality.

5.1. Comparative Analysis with Existing Systems

Examining object recognition in degraded images within edge computing takes a
secondary role compared to the processing and training of large-scale models on systems
endowed with ample computational resources. This discrepancy is particularly pronounced
when addressing images affected by insufficient lighting conditions. In [77], a system was
proposed to enhance low-light images of electrical equipment in outdoor environments
using the Zero-DCE as the enhancer technique. The study under review primarily focused
on enhancement tasks and omitted additional aspects outlined in our paper, particularly
object detection. It is worth noting that our work has demonstrated that the effectiveness
of an object detection algorithm is largely unaffected by the image quality. As a result,
higher image quality only occasionally corresponds to improved detection performance.
Moreover, their approach involved utilising the IoT-Cloud, leveraging its resources for
processing, managing, and storing. In contrast, our methodology encompasses implement-
ing all methods on resource-constrained devices. Lastly, the employed Zero-DCE was
compared solely with one technique, Retinex-Net. In contrast, our research is dedicated
to the comprehensive evaluation of multiple techniques. Moreover, a hybrid system was
devised to improve low-light images and to facilitate detection in both edge and cloud
environments by [9] In this configuration, a user’s mobile device is utilised at the edge to
extract the feature map. The extracted data is then transmitted through a base station to the
cloud for subsequent stages of enhancement, detection, and processing. Finally, the results
are sent back to the edge for further action. However, in our work, all stages, including
classification, enhancement, and detection, are executed entirely on the edge, resulting
in a substantially lower latency of approximately one second. In contrast to their study,
the hybrid system achieved a latency of 12 s per image due to the involvement of cloud
processing. The localisation of all the processing stages at the edge in our methodology
contributes to the notable reduction in latency, enhancing the system’s overall efficiency.
Additionally, our methodology outperforms theirs in detection accuracy, achieving approx-
imately 70%, compared to their 62.2%, showing the effectiveness of our edge-based model
in balancing low latency and high accuracy across tasks.
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5.2. User Privacy and Data Security

Ensuring adherence to privacy and data security guidelines is imperative in all surveil-
lance systems, especially systems that rely on partial processing between edge and cloud
computing paradigms. This includes defining privileges for accessing the data, obscuring
faces in images, and implementing hashing and cryptography techniques on the transmit-
ted data [78]. However, each system may have distinct criteria tailored to the specific project
requirements and scenarios. Our system considers only the specific images containing
detections at the edge devices, transmitting them through an API to the cloud for subse-
quent processing, while undesired data are discarded, ensuring that the devices adhere to
privacy compliance standards. Additionally, this approach leads to limited data processing,
as only specific images undergo the processing and transmitting stages. In addition, images
containing detections, such as vehicle and people, are exclusively accessible to authorised
authorities and stakeholders.

Furthermore, image enhancement techniques are designed to enhance various aspects
of image quality, yet their real-world implementation frequently does not match their
performance in controlled settings. In this study, we demonstrated the improved efficiency
of detecting several classes after enhancement compared to the pre-enhancement stage.
However, the results also underscored deficiencies in image quality, particularly affecting
the recognition of faces and vehicle license plates. Interestingly, this limitation may inad-
vertently address privacy concerns by making it harder to identify individuals or sensitive
information within the images. Furthermore, the positioning of cameras during installation
plays a critical role in ensuring data quality, impacting the distinct recognition of features.
For instance, in the 5G Wales Unlocked project, cameras are installed at elevated positions,
posing a particular challenge in distinguishing features and concurrently contributing to
privacy preservation.

6. Conclusions

In this research, a technique was developed to improve the detection accuracy of
objects by enhancing images captured under low-light conditions. Initially, the input
images were subjected to feature extraction. Subsequently, a distinctive label was assigned
to identify the most effective model from multiple enhancement networks. Each task
was carried out using a separate resource-constrained device. The findings illustrated an
improvement in accuracy when enhancement techniques occur before the detection phase
by boosting the object detection accuracy by more than 20%. Moreover, each technique
was superior under particular conditions, for object classes, images captured with noise
accumulated, weather conditions, and resolutions, indicating that diverse capabilities might
be obtained from a single technique to handle a specific situation. Furthermore, the proof-of-
concept indicated the practicability of deploying the entire system exclusively with the edge
computing paradigm without depending on external computational resources achieving
1 s from source to destination, consistent with real-time requirements and encouraging
the addition of more tasks on the same node as well as additional nodes to address
further challenges.
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Appendix A

The following samples present results when detection occurred before and after
enhancement to better understand how image enhancement methods used as a prior stage
help achieve higher detection accuracy. It is worth mentioning that only best practice
methods were selected and considered.

Table A1 presents an overview of the classifier’s effectiveness in discerning between
bright and dark images and its capability to categorise dark images for a suitable enhance-
ment network based on the input features. Figures A1–A4 demonstrate randomly selected
samples to examine the approach’s functionality and capabilities. After further investiga-
tion, the optimal technique is shown by the green box surrounding the model names, which
provides additional correct predictions compared to the ground truth and direct detection
(see the figures caption). Moreover, the total number of predictions after applying each
method is presented in Figures A5–A8, where the “green” bar represents the ground truth
(GT), “orange” represents detection before enhancement (direct or baseline), and the “blue”
ones for low-light image enhancement methods. The number on the top bars indicates the
total number of predictions.

Table A1. Sample results from test set with actual and predicted labels. (“A” stands for Actual and

“P” for Predicted label).

Index A B C

1

A: E0

P: E0

A: E0

P:E0

A: E1

P:E1
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Table A1. Cont.

Index A B C

2

A: E1

P: E1

A: E2

P:E2

A: E2

P: E2

3

A: E1

P: E2

A: E2

P: E1

A: E2

P: E1

(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

Figure A1. Cont.
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(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A1. Comparison of model enhancement for the detection stage on sample “2015_02448.jpg”.
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(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A2. Comparison of model enhancement for the detection stage on sample “2015_02926.jpg”.
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(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A3. Comparison of model enhancement for the detection stage on sample “2015_06339.jpg”.
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(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A4. Comparison of model enhancement for the detection stage on sample “2015_06574.jpg”.
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Figure A5. Ground truth vs. direct vs. after enhancement for sample “2015_02448.jpg”.

Figure A6. Ground truth vs. direct vs. after enhancement for sample “2015_02926.jpg”.

Figure A7. Ground truth vs. direct vs. after enhancement for sample “2015_06339.jpg”.

Figure A8. Ground truth vs. direct vs. after enhancement for sample “2015_06574.jpg”.
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