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ABSTRACT In a resource-constrainedWireless Sensor Networks (WSNs), the optimization of the sampling
and the transmission rates of each individual node is a crucial issue. A high volume of redundant data
transmitted through the network will result in collisions, data loss, and energy dissipation. This paper
proposes a novel data reduction scheme that exploits the spatial-temporal correlation among sensor data
in order to determine the optimal sampling strategy for the deployed sensor nodes. This strategy reduces
the overall sampling/transmission rates while preserving the quality of the data. Moreover, a back-end
reconstruction algorithm is deployed on the workstation (Sink). This algorithm can reproduce the data that
have not been sampled by finding the spatial and temporal correlation among the reported data set, and filling
the ‘‘non-sampled’’ parts with predictions. We have used real sensor data of a network that was deployed
at the Grand-St-Bernard pass located between Switzerland and Italy. We tested our approach using the
previously mentioned data-set and compared it to a recent adaptive sampling based data reduction approach.
The obtained results show that our proposed method consumes up to 60% less energy and can handle non-
stationary data more effectively.

INDEX TERMS Wireless sensor networks, data reconstruction, spatial-temporal correlation, data reduction.

I. INTRODUCTION
The momentum and growth of large-scale sensor networks
have been increasing over the recent years. The rising pop-
ularity of such networks is due to the fact that they can be
used in numerous and diverse event monitoring applications
including traffic, air and water quality, e-health, environmen-
tal monitoring (wildlife, forest fires, storms, etc.), and many
other applications. Such networks are expected to operate
autonomously and for a long period of time. However, in a
large scale sensor networks, the high volume of redundant
data being communicated through the network increases col-
lision, causes data loss, and most importantly it costs sensor
nodes a large amount of scarce energy resources. There-
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fore, due to severe energy, computational and bandwidth
constraints, a sound body of literature has centered on
optimizing the efficiency of both the sensing and transmitting
activities in order to maximize the lifetime of the network.

One of the most commonly used approaches to tackle this
problem is the sampling rate adaptation [1]–[4]. A sampling
rate is a rate at which a new sample is taken from a continuous
signal provided by the sensor board. This rate can be adapted
according to the input acquired from the monitoring area.
If no significant change is noticed for a certain period of time,
the sampling rate could be reduced for the upcoming period,
and in contrast, if an event is detected, the sampling rate is
increased. This sampling rate adaptation is based on event
detection [1], [5]. Another sampling rate adaption technique
takes into consideration the temporal and spatial correlation
among the reported data [2], and limits the sampling rate of
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the sensors that show high correlation with other neighboring
ones, and maximizes the sampling rate of those showing
a little or no correlation at all. Both approaches aim to reduce
the amount of redundant data being transferred through the
network.

Other data reduction approaches focus solely on reducing
the number of transmissions while maintaining a fixed sam-
pling rate [6]–[10]. The most popular of them all is the dual
prediction scheme. A prediction model capable of forecasting
future values is trained and shared between the source and the
destination, thus enabling the source sensor node to transmit
only the samples that do not match the predicted value.
Some approaches also combine both adaptive sampling and
transmission reduction into a single mechanism [11] aiming
to minimize further energy consumption.

In this paper, we propose a spatial-temporal Correlation
based Approach for Sampling and Transmission rate Adapta-
tion (STCSTA) in cluster-based sensor networks. The sensor
nodes do not need to run any algorithm. The cluster head is
responsible for collecting data from its member sensor nodes,
computing a correlation function in order to measure the cor-
relation degree among these nodes. Finally, the sensors that
show high correlation will be asked to reduce their sampling
rate and the ones showing low correlation will be asked to
increase it. Moreover, in order to ensure the integrity of the
data, a reconstruction algorithm deployed on the Sink station.
The latter is used to reconstruct the ‘‘non-sampled’’ mea-
surements by exploiting the temporal and spatial correlation
among the reported data. We compare our approach to a Data
Prediction with Cubic Adaptive Sampling (DPCAS) and to
an exponential Double Smoothing-based Adaptive Sampling
(EDSAS) using real sensor data. The latter and the former
combines both adaptive sampling and transmission reduction
into a single mechanism, allowing us to compare the effi-
ciency of our proposal with two very effective approaches in
terms of reducing radio communication.

The rest of the paper is organized as follows: In section II,
the work related to energy efficient data reduction in a wire-
less sensor network is presented. In section III the system
model is briefly explained and the energy model to calculate
the energy consumption is illustrated. A detailed explanation
of the proposed approach is provided in section IV, while
experimental results are discussed in Section V. This paper
ends with a conclusion section, in which the contribution is
summarized and intended future work is outlined.

II. RELATED WORK
Resource management in sensor networks is a widely dis-
cussed topic among researchers. Subsequently, there have
been numerous studies regarding this topic. In this section,
we present and discuss the different approaches used to tackle
this issue.

Compression [12]–[15] and aggregation [16]–[18] are two
techniques aiming to reduce the amount of data routed
through the network [19]. The former focus on compress-
ing the data before transmission to the upper node in the

network hierarchy and the latter filters and clean the data by
removing redundant information before routing these data to
the Sink station. Several data compression and aggregation
techniques have been proposed in the literature. The authors
in [12] proposed a compression technique for sensor net-
works organized in a cluster topology. The approach called
Cluster-Based Compressive Sensing Data Collection (CCS)
compresses data on the cluster head level by generating Com-
pressive Sensing (CS)measurements based on block diagonal
matrices created from the raw data received from neighboring
sensors. Moreover, the compressed CS measurements are
finally reconstructed at the base station (Sink). In [13] the
authors proposed a compression scheme called Compres-
sive Data Collection (CDC) for Wireless Sensor Networks,
it exploits the spatial-temporal correlation among sensory
data to perform compression. The scheme consists of two
layers, the opportunistic routing with compression and the
nonuniform random projection based estimation for recon-
struction. The authors in [20] proposed a data aggregation
technique called the Prefix-Frequency Filtering (PFF). This
approach mainly consists of two aggregation layers, the first
one is on the sensor level, and the second one is on the cluster
head or the aggregator. On both layers, redundant measure-
ments are filtered using the Jaccard similarity that measures
the correlation among collected measurements. In [16] a
Dynamical Message List Based Data Aggregation (DMLDA)
technique is presented, it is based on a special data structure
called dynamical list. The latter stores the history of received
measurements, that are then used to filter any duplicates.

One of the most energy consuming activities in WSN
beside transmission and processing is sampling, therefore
several studies have been conducted on how to reduce the
amount of sampled data through a technique known as
‘‘adaptive sampling’’, where a sensor can adapt its sampling
rate according to the change in the input environment. The
authors in [1] proposed and event-sensitive adaptive sam-
pling and low-cost monitoring (e-Sampling) scheme, where
each sensor has short and recurrent bursts of high sampling
rate in addition to a low sampling rate. Depending on the
analysis of the frequency content of the signal, each sensor
can autonomously switch between the two sampling speed.
The authors in [2] presents a decentralized temporal cor-
relation based adaptive sampling approach, enabling each
sensor to decide its own sampling rate while controlling the
size of the sampling interval by limiting the interval size
to an automatically calculated ‘‘MaximumSkipSamplesLimit
(MSSL)’’ value.

The overwhelming majority of studies agree on the fact
that radio transmission is the most consuming activity in
WSN [21]–[23]. Accordingly, numerous studies focused on
developing techniques to limit the number of radio transmis-
sions. Most of these techniques are based on the concept of
data prediction. The idea is to build on the Sink a prediction
model using previously collected readings, that is capable of
forecasting future measurements. Enabling the sensor node
to transmit a reading only when the prediction does not
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respect the error tolerance predefined the user. The authors
in [6] proposed a Hierarchical Least Mean Squares (HLMS)
adaptive filter as a predictionmodel, which is one of the many
adaptive filter based approaches [7], [8], [24]. This filter con-
sists of multiple layers of regular Least Mean Square (LMS)
filters, each layer takes feedback from the previous layer in
the hierarchy aiming to minimize the prediction error of the
model. Another technique called Derivative Based Predic-
tion (DBP) was introduced in [25], it is less complex than
the adaptive-filter based methods. The prediction model is
simply a straight line that interpolates a fixed window of data
of size m using the first and last l values in the window.
In [11] the authors proposed an approach that combines an
adaptive sampling method that is based on the TCP CUBIC
congestion protocol, with a transmission reduction method
that is based on an exponential predictive mode. The com-
plete data set including the ‘‘non-sampled’’ and ‘‘non trans-
mitted’’ measurements are then reproduced on the sink by
interpolating the received measurements. This approach was
inspired by both [26], and [27]. The latter uses an exponen-
tial Double Smoothing-based Adaptive Sampling (EDSAS)
technique, that adapts the sampling rate of a sensor based on
the accuracy of a prediction model. As long as this model
is producing good predictions the sampling rate is kept low.
It is increased, however, when the predictions surpass a prede-
fined error threshold. The former operates in similar fashion,
more specifically it adopted the TCP congestion control to
adapt the sampling rate of the sensor node. Thus the approach
is called Adaptive sampling TCP (ASTCP).

Both compression and aggregation are effective in term
of reducing the data load in the network, however, their
performance is limited and cannot reach the efficiency of
techniques such as adaptive sampling and transmission reduc-
tion. Therefore, compression and aggregation are considered
to be as a complementary layer that can be added to adap-
tive sampling and transmission reduction to further increase
their efficiency. Despite being very effective in reducing the
amount of sampled and transmitted data, adaptive sampling
and transmission reduction techniques can still consume a
substantial amount of energy. This is proportionally related
to the complexity of the algorithms that are required to be
implemented on the sensor level. The CPU running com-
plex algorithms can consume more energy than the sampling
activity [21], which renders the adaptive sampling technique
obsolete in case the implemented algorithm requires a large
number of CPU cycles.

In order to schedule the sampling intervals of sensor nodes
and reduce energy transmission, some approaches rely on the
spatial-temporal correlation between sensor nodes deployed
in the monitoring area [28]–[32]. The Authors in [28] pro-
posed an Efficient Data Collection Aware of spatial-temporal
Correlation (EAST). In the latter, the sink subdivides the
event area into spatially correlated cells of the same size,
then, in each cell, the node having the highest residual energy
is elected as a representative node. Only the latter transmits
data to the sink while also applying a temporal correlation

suppressionmethod on its collected data. Finally, at each time
instance, the representative node is re-elected according to
the same previous rule. The main drawback of this approach
is the size of the cell representing an area of spatially cor-
related nodes is static, and it is not calculated according to
the real level of correlation. Moreover, the representative
node is chosen according to residual energy rather than its
correlation with other nodes in the cell. Therefore, the term
‘‘representative’’ is not necessarily true.

In [29] the authors proposed a sleeping schedule algo-
rithm that aims to minimize the total spatial-temporal cover-
age redundancy among neighboring nodes while maximizing
coverage. Each sensor node compares itself with neighbor-
ing ones using a weight criteria and it locally optimizes
its scheduling according to its coverage redundancy. This
method requires constant message exchange between sensor
nodes in order to keep track of the changing weight of each
one of them, which can produce overhead.

The authors in [30] proposed a spatial-temporal correlation
model that aims to extend the network lifetime by scheduling
a sleeping period for sensors showing high similarities with
other ones belonging to the same cluster. The similarity is
measured by computing the Euclidean Distance, Cosine Sim-
ilarity and Pearson Product-Moment Coefficient (PPMC).
If the result of one of the three indicates a high similarity,
the sensor node is set to sleep for half of the period time
(1 period = N samples). The first problem with such an
approach is if a sensor X shows a similarity with a sensor Y,
the opposite is also true (sensor Y will show similarity with
sensor X), therefore, according to this approach, both sensors
will be set to sleep. By doing so correlated sensors will miss
simultaneously instead of compensating for one another by
keeping one of them awake. The second problem is that the
sleeping duration is static instead of being computed in a
dynamic way according to the level of correlation.

Motivate by the problems related to the aforementioned
approaches, we present in this paper a spatial-temporal
Correlation approach for Sampling and Transmission rate
Adaptation (STCSTA) in cluster-based sensor networks. Our
approach does not require any algorithm to be implemented
on the sensor level, the only task performed by sensors are
uniquely sampling and transmission. All the work is done on
the Cluster-Head (CH) level, where at the end of each round
(duration predefined by the user), the CH runs an algorithm
that finds the spatial correlation among the data reported by
the sensors belonging to the same cluster. Then, it transmits
to each one of them its new sampling rate for the next round
according to its level of correlation with other neighboring
sensors in the cluster. The sampling rate scheduling respects
a strict protocol that keeps the sampling rate of the sen-
sors showing high correlation with a large number of nodes
at an optimal maximum level. Moreover, the protocol pre-
vents highly correlated sensors from missing simultaneously,
allowing one to compensate for another. in addition to sam-
pling rate scheduling, and in order to ensure the integrity of
the data, a reconstruction algorithm is deployed on the Sink.
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This algorithm can identify the time stamps where data has
not been received due to a reduction in the sampling rate
of a specific sensor, and reconstruct them using the spatial-
temporal relations among the collection of data reported by
the sensors.

III. SYSTEM AND ENERGY MODEL
A. SYSTEM MODEL
We consider a set S of N sensor nodes and C cluster heads
deployed over a specific monitoring area at locations LS =
{ls1, ls2, . . . , lsN } and LC = {lc1, lc2, . . . , lcC } respectively,
where a sensor Si is located at the location lsi and a cluster-
head Cj is located at the location lcj, and the Sink S is
placed in a distant location at a position l0. Sensor nodes
are grouped into clusters, where each one of them belongs to
one cluster only. The cluster heads are considered to be more
powerful than sensor nodes in term of processing capabilities
and they have been allocated larger energy resources. Figure 1
illustrates an example of the described network architecture
for one cluster.

FIGURE 1. Illustrative example of the network architecture.

The network is periodic and operates in rounds, where
each round R is exactly P seconds, and it is subdivided
into m time slots, where at each time slot a sensor samples
one measurement. Therefore, the maximum sampling rate
(SRmax) is considered to be P/m samples per round. During
the very first round, each sensor node collects data using the
maximum sampling rate SRmax and transmits the readings to
the CH after each acquisition. On the CH level, when the latter
receives a measurement from any sensor Si it stores the values
in its memory and routes it directly to the Sink. At the end of
the first round, the CH would have stored in his memory the
following matrixM . where n is equal to the current sampling
rate (SRmax) in this case, and N is the number of sensors in
the cluster.

M =


x11 x21 x31 . . . xn1
x12 x22 x32 . . . xn2
...

...
...

. . .
...

x1N x2N x3N . . . xnN


The CH than proceeds to computing the correlation between
each pair of sensors (The number of possible pairs is N (N−1)

2 ).
Using the obtained correlation results the CH calculates
than transmit to each sensor node its new SR. A detailed
explanation of how the correlation is calculated and how the

new SR is determined is provided in section IV. For the
next round, each sensor samples data according to its new
sampling rate provided by the CH. For Instance, if the latter
demands a specific sensor to reduce its sampling rate by 40%,
and supposing that SRmax is equal to 50 measures/round,
the sensor is supposed to sample 30 measurements instead.
If each period is 10 minutes long (600s), instead of sampling
a measurement every 12 seconds (600/50), the sensor would
sample a measurement every 20 sec (600/30). Moreover,
Knowing the duration of each period, the maximum sam-
pling rate and the time stamp when each measurement was
received, both the Sink and the CH are capable of identifying
the non-sampled data, which will be replaced by ‘‘Nan’’
(see matrix M′) in order to reconstruct them later at the Sink
station and in order to make the computation of the corre-
lation among sensor nodes easier for the CH as explained
in section IV-A. Therefore, the stored matrix that is used
to compute the correlation will actually be as shown below,
where n is equal to the maximum number of samples per
round (SRmax):

M ′ =


x11 x21 x31 . . . x501 Nan xn1
x12 x22 x32 . . . Nan Nan xn2
...

...
... Nan

...
...

...

x1N x2N x3N . . . x501 Nan xnN


B. ENERGY MODEL
In order to compute the energy consumption of a sensor
node [33], [34], it is necessary to take into consideration
the energy consumed by every single operation performed
by the node. Generally, the consumed energy relates to four
main tasks, namely, sampling, logging, processing, and radio
transmission. Therefore, the energy consumption model can
be defined as:

Enode = Esampling + Elogging + Eprocessing + Eradio (1)

where Esampling is the energy required for sampling one value,
Elogging is the required energy to log data in the memory,
Eproccessing is the required energy to run and algorithm con-
senting of N CPU cycles, and Eradio is the energy required
to transmit a b bits packet for a distance d . In this article we
use the energy model discussed in [21] to calculate the overall
energy consumption of each sensor node.

IV. THE PROPOSED APPROACH (STCSTA)
In this section, we will explain in detail, how the correlation
between sensor nodes and the new sampling rates of each
sensor are calculated.

A. COMPUTING CORRELATION AND SAMPLING
RATE ALLOCATION
1) ALGORITHM 1 - LINE(2–14)
After a round is completed, each sensor node would have
transmitted to the cluster head a different number of mea-
surements since the sampling rate of each one of them can be
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different. Nevertheless, as mentioned earlier the CH identifies
the non sampled data and fill their corresponding place in the
vector by a Nan value, therefore all the vectors will have the
same size n. However, the correlation between two vectors
containing Nan values cannot be computed. Therefore, each
and every Nan value is replaced by the value of the first
‘‘non-Nan’’ value that comes before it in the same vector. For
instance, in the ‘‘M′’’ matrix, x511 is Nan it will be set equal
to the same value as x501 , and x502 and x512 are set equal to the
same value as x492 , and so on.

2) ALGORITHM 1 - LINE(17–22)
Afterward, the linear dependency of each pair of vectors
(vi, vj) ∈M′ is calculated using the Pearson correlation coef-
ficient. The latter is known as the best method of measuring
the association between variables of interest because it is
based on the method of covariance. It gives information about
the magnitude of the association, or correlation, as well as
the direction of the relationship. The Pearson correlation
coefficient is described in the equation 2 below, where µ and
σ are the mean and standard deviations.

ρ(vi, vj) =
1

n− 1
×

n∑
k=1

(
vik − µvi
σvi

)(
vik − µvj
σvj

) (2)

The justification behind using the Pearson correlation can
is illustrated in Figure 2.We have used a data set of 92 sensors
to generate 4 graphs that show the number of sensors that
are moderately & highly correlated with 4 randomly chosen
sensors during each period and for the first 100 periods. For
instance, in Figure 2(a) we notice that this randomly chosen
ambient temperature sensor correlates with a large number
of sensors during each period. On average it correlates with
27 sensors as the mean values shows. Same for Figure 2(b)
and (c) on average these sensors correlate with approximately
30 other sensors that are in the same cluster. However, The
mean value in Figure 2(d) is significantly lower (mean=19),
in section V-D we will see how this will reflect on the results.

FIGURE 2. Figure showing the number of moderately & highly correlated
sensors (Pearson correlation coefficient ≥ 0.5) during each one of the
first 100 Periods. (a) Ambient temperature sensor. (b) Surface
temperature sensor. (c) Relative humidity sensor. (d) Wind speed sensor.

Heterogeneous environmental data beside other types of
data such as medical data (vital signs), movement tracking

data (speed, acceleration, location) and etc, are usually highly
and/or moderately correlated. This correlation thus can be
used in order to reduce the number of transmitted measure-
ments by deriving values from other observed ones. This is
indeed the motivation behind using correlation to adapt the
sampling rate of the sensors.

3) ALGORITHM 1 - LINE(23–28)
After computing the correlation value of each sensor i with
all the other sensors belonging to the same cluster, the CH
looks for the sensor j that it correlates the most with as shown
in table 1.

TABLE 1. The correlation table.

4) ALGORITHM 1 - LINE(29–38)
Afterward, the CH counts the number of occurrences of each
sensor j in the second column of the table and stores them in
a list according to their ascending order.

5) ALGORITHM 1 - LINE(39–49)
Starting from the first sensor j in the ordered list, the CH
looks in table 1 for the sensor j in the first column and
extract the value of its max correlation from the third column.
Then the CH notifies j that its sampling rate must be reduced
proportionally to the correlation value. For instance, if sensor
5 was first in the ordered list, the CH would notify it that its
sampling rate for the next round must be reduced by 75%,
since its level of correlation with sensor 6 is 0.75. Then the
sensor j (in this case 5) is flagged as already notified. Thus,
for the next sensor j in the ordered list, if its matching sensor
i is already flagged. Instead of reducing its sampling rate
proportionally to the level of correlation, it is reduced by
(100 - i’s reduction %). For instance, if the next sensor j in
the list is 3, it matches with sensor 5 in table 1, therefore, it’s
sampling rate will be reduced by 100 − 75 = 25%. And so
on, until the last element in the ordered array.

6) ALGORITHM 1 - LINE(50–56)
However, some sensors may not appear in the second column
of the table 1, since they have not been matched with other
sensors. Therefore, the CH looks for these sensor in the
1’st column of table 1, and for each sensor i, it find their
matching sensor j in the second column, looks at how much
the sampling rate was reduced for sensor j and notifies sensor
i that its sampling rate must be reduced by (100 - sensor j′s
reduction %).
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The same explained operation is repeated at the end of
each round. Therefore, enabling each sensor node to adjust
its sampling rate according to its level of correlation with
other sensors in the network. The algorithm 1 illustrates the
proposed method that is implemented on the CH.

Algorithm 1 STCSTA.

Input: SRmax (1 sample/ X seconds)
1: while Energy 6= 0 do
2: k ← 1
3: for each sensor j in the cluster do
4: receive the first value v0j at the beginning of the

round
5: data[j][0]← v0j
6: lastReceived[j]← v0j
7: end for
8: while ! end of round do
9: if nothing is received from sensor j after X seconds

then
10: data[j][k]← lastReceived[j]
11: else if vnj is received during the X seconds count

then
12: data[j][k]← vnj
13: lastReceived[j]← vnj
14: end if
15: k ← k + 1
16: end while
17: if end of round then
18: for i=1 to N do
19: for j=i+1 to N do
20: corrArray[i][j] ← PearsonCorr(data[i][:

], data[j][:])
21: end for
22: end for
23: for i=1 to N do
24: maxCorr[i][0]← i
25: [index, value]← max(corrArray[i][:])
26: maxCorr[i][1]← index
27: maxCorr[i][2]← value;
28: end for
29: k ← 1
30: for each element i ∈ the second column of maxCorr

do
31: if i /∈ first column of countOcc then
32: count ← count how many times i occures in

the second column of maxCorr
33: countOcc[k][0]← i
34: countOcc[k][1]← count
35: k ← k + 1
36: end if
37: end for
38: order countOcc in ascending order according to

the second column
39: k ← 1

Algorithm 1 (Continued.) STCSTA.

40: for each element j ∈ the first column of countOcc
do

41: match← maxCorr[j][1]
42: if reduce[match-1] is empty then
43: Notify sensor j that its sampling rate must be

reduced by (maxcorr[j][2]*100)%
44: reduce[j− 1]← (maxcorr[j][2] ∗ 100)
45: else
46: Notify sensor j that its sampling rate must be

reduced by (100 - reduce[match-1])%
47: reduce[j-1]=100 - reduce[match-1]%
48: end if
49: end for
50: for j=1 to N do
51: if reduce[j-1] is empty then
52: match← maxCorr[j][1]
53: Notify sensor j that its sampling rate must be

reduced by (100 - reduce[match-1])%
54: end if
55: end for
56: end if
57: end while

B. ANALYSIS STUDY
The objective of this algorithm is to create and manage
a sampling rate balancing system based on the correlation
degree between the nodes belonging to the same cluster.
The idea is to match each sensor node with the one that
correlates the most with, in such a way that, if one node of
the paired couple reduces heavily its sampling rate, the other
one keeps it high and vice versa, allowing them to compen-
sate one another. This compensation mechanism is crucial
for the success of the reconstruction algorithm in term of
minimizing the estimation error and increasing the quality
of the replicated data. The latter relies on the correlation
among sensor nodes in order to reconstruct the non-sampled
measurements. Therefore, if highly correlated sensors are
missing data simultaneously this would negatively affect the
accuracy of the reconstructed measurement. When the bal-
ancing of non-sampled data is kept in check on the CH level,
The reconstruction algorithm on the Sink will theoretically
produce better estimations.

In this section, we will illustrate an example that explains
our algorithm step by step. The latter provides a better analy-
sis of what happens at the end of each round on the cluster
head to better understand why and how this compensation
system works. Let us start by assuming that at the end of a
given period, the CH has already computed the correlation
between each pair of sensors belonging to the same cluster.
In addition, we assume that the CH already matched each
sensor with the one that correlates the most with and stored
the results in a table similar to Table 2. The next step is
to count for the sensors appearing in the second row of the
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TABLE 2. Table showing for each sensor its best match (maximum
correlation) and the degree of correlation with this match.

table how many times it has been matched. For instance,
sensor 7 has beenmatched 4 times, sensor 1 has beenmatched
2 times, and sensor 10, 9, 3, and 8 have been matched only
one time. The matched sensors are then ordered in ascending
order according to how many times they have been matched.
the order will then be: {sensor 8, sensor 3, sensor 9, sensor 10,
sensor 1, sensor 7}.
Starting from the first sensor in the list (sensor 8) the CH

looks for the sensor that it matcheswith. Looking at table 2we
see that sensor 8 matches with sensor 7. The CH then checks
whether the sampling rate of sensor 7 for the next round has
been decided yet. If it is not the case the CH notes that the
sensor 8 must reduce its sampling rate for the next round by
83%, since the correlation degree for sensor 8 with its match
is 0.83. The CH then follows the same procedure for the next
sensor in the ordered list. sensor 3, 9, and 10 they all match
with sensor 7 too, and since the sampling rate of sensor 7 has
not been decided yet, their sampling rate will be reduced by
54%, 89%, and 90% respectively for the next round. Now the
CH searches for the sensor that matches with the next sensor
in the ordered list (sensor 1). Looking at table 2 we see that
it is sensor 8. However, the sampling rate of sensor 8 has
been already decided to be reduced by 83%, therefore instead
of reducing the sampling rate of sensor 1 by 78% it will be
reduced by 100-83%, therefore 17% only. Same for sensor
sensors 7, it matches with sensor 10, therefore its sampling
rate must be reduced by 100-90% (10% only).

The next step is to adapt the sampling rate of the sensors
that do not appear in the second row of the table, or in other
words they have not been matched with other sensors in the
cluster. In this example, the non-matched sensors are sensor 2,
4, 5 and 6. Starting by sensor 2, its match is 1, therefore the
sampling rate of sensor 2 for the next round must be reduced
by 100-17% (83%), same for sensor 4,5, and 6 their sampling
rate will be reduced respectively by 46%, 11%, and 83%.

Before computing the percentage of the reduction in sam-
pling rate, the matched sensors are first ordered in ascending
order according to how many times they have been matched.
The reason behind this crucial step can be explained as fol-
lows: Let us suppose the list has not been ordered, and the
CH started by sensor 7, which has been matched 4 times with
4 different sensors. The sampling rate of sensor 7 will be
reduced by 79%. Therefore, eventually, the sampling rates
of sensors 3, 8, 9, and 10 will be reduced by 21% only
compared to 54%, 83%, 89%, and 90% respectively if the
list was ordered. In consequence of not ordering the list
first, the overall reduction in the sampling rate of the sensors
would be reduced, which would lead to an increase in data

transmission and energy consumption. Since sensor 7 can
compensate for 4 other sensors, it is wise to leave it until the
end, allowing the sensors that it matches with to reduce more
their sampling rate.

TABLE 3. Table showing the % of SR reduction for each sensor compared
with its match.

A summary of the results is illustrated in table 3. We notice
that if a sampling rate of a particular sensor is highly reduced,
the one of the sensor that it correlates the most with will be
proportionally and slightly reduced (e.g. sensors 2 and 1).
This balanced reduction is meant to compensate for the
matched sensor since the non-sampled values will eventu-
ally be derived mostly from its best match. Similarly, if the
sampling rate of a sensor is slightly reduced, this will give
more freedom to its match thus allowing it to highly reduce
its sampling rate (e.g. sensors 5 and 9).

C. RECONSTRUCTION OF THE NON SAMPLED DATA
In this section, the algorithm used to reconstruct non-sampled
data is explained. As mentioned earlier, the Sink detects
and replaces non sampled data with a ‘‘Nan’’ value. After
a certain period of time, let’s say M rounds, defined by the
user, the sink runs a reconstruction algorithm that can replace
all the ‘‘Nan’’ values with estimations calculated using the
spatial and temporal correlation among the data reported
by the sensor nodes in the network. This algorithm it is
deployed on the Sink instead of the CH due to its complexity.
If deployed on CH it will consume a great amount of energy.
The reconstruction algorithm proposed in [35] essentially
used to estimate missing data in co-evolving time series was
adopted and adapted to suit our case. Assuming after M
rounds, the Sink would have stored in his Sink the following
data-set:

SinkDataSet =


x11 x21 x31 . . . x501 Nan xn∗M1

x12 x22 x32 . . . Nan Nan xn∗M2
...

...
... Nan

...
...

...

x1N x2N x3N . . . x501 Nan xn∗MN


A probabilistic model (Figure 3) is built to estimate the
expectation of missing values conditioned by the observed
part. The model is built by initializing a latent variable Z1,
a linear mapping matrix F and a projection matrix G, for the
readers interested in how these values are initialized please
refer to [35]. Afterward, using the linear mapping F the
algorithm can proceed to calculate the other Zn (n ∈ [1,n*M])
by simply multiplying Zn−1 ∗ F . Once all the values of Zn
are calculated, the algorithm then estimates the observed and
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FIGURE 3. The probabilistic model.

non-observed (Nan) values. This is achieved by multiplying
each Zn by the projection Matrix G, which gives the pre-
dictions ([xn1 , . . . , x

n
N ]) of the values at the sampling time n.

Using the estimations, and the observed part, the algorithm
then tries to maximize the log-likelihood of the observed
sequences using an EM iterative algorithm [36] in order to
update F and G and produce more accurate predictions. The
same operation is repeated with the newly computed F and
G until the number of iteration reaches a maximum value
predefined by the user, or until the log-likelihood is no longer
increasing.

V. EXPERIMENTAL RESULTS
We implemented our algorithm in addition to DPCAS [11] in
a custom WSN simulator built in Matlab, and we conducted
multiple experiments in order to evaluate and compare their
performances. In the simulation, we used real sensor readings
collected from a sensor network that was deployed at the
Grand-St-Bernard pass between Switzerland and Italy [37].
The Network consisted of 23 sensors, each one of them col-
lects 9 different environmental features with a fixed sampling
rate of 1 sample every 2 minutes. We have chosen 4 out of
these 9 features (ambient temperature [C◦], Surface temper-
ature [C◦], relative humidity [%], and wind speed [m/s]),
since the others are not complete. Environmental features are
usually stationary, therefore, in addition to taking a sample
every 2 minutes, and for a rigorous comparison, we set up
two other scenarios, the first one, a sample is taken every
10 minutes instead, and the second one, a sample is taken
every 20 minutes. In this way, the data will become ‘‘non-
stationary’’ which makes it more realistic and harder for
both algorithms to adapt to high variation in collected mea-
surements. The raw data set (sample every 2mins) consists
of 10000 readings for each sensor, for the 1st scenario we
will end up with 2000 readings instead, and 1000 readings
for the second one.

In DPCAS the parameter ε defines the error tolerance of
the application, the greater is ε, the less is the amount of data
that will be sampled and transmitted. However, the error of
the estimated data will increase. Therefore, the value of ε is

the level of trade-off between the quality of the replicated data
and the amount of sampled and transmitted measurements.
In our experimentation, we set up five different values for ε
ranging between 0.1 and 0.5 and we compare our approach
to DPCAS for each value of ε.

A. SAMPLING AND TRANSMISSION REDUCTION
In this section, we will explore and compare the effectiveness
of each algorithm in reducing the number of both sampled and
transmitted data in three different scenarios. As mentioned
earlier, each sensor node collects 4 different environmental
features (ambient temperature, surface temperature, relative
humidity, and wind speed). For simplicity and better visual-
ization of the results, all the figures will be illustrating the
percentage of the aggregated sum of the data sampled and
transmitted by the 23 nodes combined and for all features.

FIGURE 4. Average percentage of data sampled by each sensor node.

FIGURE 5. Average percentage of data transmitted by each sensor node.

Figure 4 and 5 shows that on one hand, the bigger is
the sampling interval between two consecutivemeasurements
(higher variations in data), the greater is the average per-
centage of both sampled and transmitted data will be when
DPCAS is deployed. On the other hand, when our approach
(STCSTA) is deployed, the average percentage remains stable
despite the level of variations in collected measurements,
which makes it more robust, dynamic and tolerable to high
variations. This is not the case for DPCAS however, its effec-
tiveness can be significantly affected (a double-digit increase
in sampled and transmitted data) depending on the type of
data being collected. Moreover, Figure 4 and 5 shows that
STCSTA has the upper hand when it comes to reducing the
number of both sampled and transmitted data. For sampled
data, Figure 4 shows that STCSTA outperforms DPCAS in
all scenarios and for all the values of ε. Figure 5 shows the
average percentage of data transmitted by each one of the
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FIGURE 6. Average energy consumption of each sensor node.

23 nodes for both algorithms in 3 different scenarios and
using different ε for DPCAS. The obtained results show the
following: STCSTA outperforms DPCASwhen ε ≤ 0.2 in all
scenarios. However, for ε = 0.3 DPCAS transmits less data
in the first scenario (SRmax = 1 sample/ 2mins), butmore data
in the other two scenarios (SRmax = 1 sample/ 10 mins and
1 sample/ 20 mins). Finally, For ε = 0.4 and 0.5, DPCAS
is slightly better in the first two scenarios. To sum it all
up, the results in Figure 5 show that STCSTA outperformed
DPCAS 9 times, the latter outperformed STCSTA 5 times,
and finally, we have 1 tie.

To conclude on this, when it comes to reducing the sam-
pling and transmission rate, thus the energy consumed by
the sampling activity Esampling and the transmission activity
Eradio STCSTA is more effective than DPCAS.

B. ENERGY CONSUMPTION
In this section, we present a comparison between the average
energy consumed by the 23 sensor nodes when DPCAS and
STCSTA are deployed.

Previously, in section V-A, the obtained results clearly
show that the Eradio and Esampling are less when STCSTA is
deployed since the amount of sampled and transmitted data
is directly related to the energy consumed by the sampling
and transmitting activities. However, according to Equation 1,
we still need to calculate Elogging and EProcessing. This is
where our approach shows a clear advantage. Knowing that in
DPCAS an algorithm must be deployed on the node that han-
dles 4 different sensors at a time. The node needs to perform
reading and writing in the memory, and it needs to compute
mathematical operation using the CPU. Therefore, the node
will be consuming additional energy (Elogging and EProcessing).
However, for STCSTA, the node does not have to run an
algorithm, nor to perform read and write in the memory,
it simply collects a measurement using the integrated sensors,
and directly transmits it to the CH. Therefore, no additional
energy consumption is required. Figure 6 shows the average
energy in Joule consumed by each one of the 23 deployed
nodes. It is clear that our approach consumes approximately
from 20% up to 60% less energy than DPCAS depending on
the scenario and the value of ε.

C. COMPARISON WITH A BASELINE METHOD
The previously described results demonstrated that our
approach STCSTA outperforms DPCAS in terms of

energy preservation. The DPCAS algorithm in [11] was
compared to two other approaches that use a similar tech-
nique, namely EDSAS [27] and ASTCP [26]. As mentioned
in section II, the ASTCP algorithm was inspired by the
EDSAS. Moreover, the DPCAS algorithm was inspired by
both ASTCP and EDSAS. In this section, we will use the
EDSAS as a baseline for comparison since it was the root
algorithm that inspired both ASTCP and DPCAS. Table 4
below shows the average energy consumed by each node in
all scenarios and for the same value of ε = 0.1 used in [11].
The obtained results are fairly similar to the ones obtained
in [11] and our approach remains better.

TABLE 4. Table comparing STCSTA and DPCAS to the baseline EDSAS.

TABLE 5. Quality of the reconstructed data.

D. THE QUALITY OF THE REPLICATED DATA
In order to measure the quality of the final set of data, we use
the accuracy of the estimations as the validation criteria.
Specifically, we use the Root Mean Square Error (RMSE)
and the Mean Absolute Error (MAE) as an accuracy metric.
Table 5 shows the RMSE and MAE of the estimated data
for the three scenarios. For ambient temperature, surface
temperature and relative humidity the errors are low. This is
due to the fact that the spatial-temporal correlation of these
features is strong, so the estimation algorithm can obtain an
accurate and solid relationship based on mining correlation
rules. Table 5 also shows that the error increases when the
sampling interval widens. The bigger is the sampling interval,
the weaker is the temporal correlation, therefore the harder
is for the estimation algorithm to accurately estimate values.
For Wind direction, the errors increase significantly but they
are still proportionally low compared with the range of value
for the wind speed (between 0 and 350 m/s). Wind speed
has no spatial correlated with any other feature. Moreover,
the wind speed value varies significantly between one sample
and the other as shown in Figure 10, therefore the temporal
correlation is weak as well, that is why it has the highest error
among other features.

Figures figs. 7 to 10 shows a reconstructed signals for
ambient temperature, surface temperature, relative humidity,
and wind speed respectively. As shown in the figures, the data
estimation (reconstruction) algorithm has been able to cap-
ture both the dynamics of the signal as well as the correlation
across given inputs, therefore achieving a very satisfying
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FIGURE 7. Reconstructed ambient temperature signal.

FIGURE 8. Reconstructed surface temperature signal.

FIGURE 9. Reconstructed relative humidity signal.

FIGURE 10. Reconstructed wind speed signal.

reconstruction of the signals. To conclude on the quality
of the replicated data, simulation results presented in this
section, demonstrated that the Sink is capable of reproducing
the ‘‘non-sampled’’ data with a tolerable error margin. Thus,
using our approach a sensor node can significantly reduce its
sampling rate without affecting the integrity of the data.

E. THE EFFECT OF THE SAMPLING STRATEGY
ON ERROR MINIMIZATION
The previous results have evaluated the efficiency of our
proposed approach (STCSTA) in terms of reducing data
transmission and energy consumption as well as the quality
of the data replicated on the Sink. However, as previously
explained in section IV-B, the objective of our algorithm
is to guarantee that the highly correlated sensors are not
skipping data sampling simultaneously in order to reduce the

reconstruction error. That was in theory, Therefore, in this
section, we put the theory into practice in order to justify this
claim.

Instead of building a list of matching sensors, ordering
the list, and reducing the sampling rate of each sensor pro-
portionally to its match. We eliminated the steps from line
30 and upward in Algorithm 1, only to allow a sensor to
reduce its sampling rate according to its highest degree of
correlation. For instance, let’s assume that the sensor 1 has
the highest correlation degree with sensor 5 (0.8). Without
checking whether sensor 5 has already reduced its sampling
rate or not, it will automatically reduce it by 80%. There is
a chance that sensor 5 has already reduced its sampling rate
lets say by 70%. Thus, both sensor 5 and 1 will skip sampling
simultaneously which would, in theory, affect negatively the
reconstruction algorithm, which will lead to an increase in
the reconstruction error. We will be calling this method ‘‘The
exaggerated sampling reduction’’ method. Table 6 shows the
% of increase in the reconstruction error when this method is
applied.We notice that the Reconstruction error increases sig-
nificantly in all scenarios and for all environmental features,
which justifies our controlled sampling strategy.

TABLE 6. Percentage of increase in reconstruction error (the exaggerated
sampling reduction method).

F. SCALABILITY AND LIMITATIONS
Obviously, the scalability of such a network depends on the
computational power of the CH and its memory capacity.
A more powerful CPU and big memory size mean that the
CH could handle a large number of sensors simultaneously.
The weaker is the CPU and the smaller is the memory size,
the fewer nodes a CH can handle. A great number of devices
that can be used as a CH are currently available in the market,
they all have different features and characteristics. One can
find cheap less powerful CH device for personal use or an
expensive and powerful device for commercial use. There-
fore, the choice of the CH depends on the size of the network
a user wants to deploy. A network consisting of thousands of
nodes will certainly need a powerful CH. However, a network
consisting of a few hundred or tens of nodes could work just
fine with a less powerful CH.

Our proposed algorithm is not very complex though,
it has a complexity that is linear in time (O(n)). This linear
complexity allows the CH to handle a large number of nodes
with minimal computational power. Regarding the memory
size required by the STCSTA, assuming that the number of
nodes in the cluster is N , and each value is encoded into
8bytes.
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FIGURE 11. Memory size needed for the first part of the
Algorithm (line 1-28).

FIGURE 12. Memory size needed for the second part of the
Algorithm (line 23-57).

• 8× (N (SRmax + 1
2N + 4)+ 1) bytes is the memory size

required by the Algorithm1 from line 1-28. Figure 11
shows the memory size needed by the CH in function of
SRmax and the number of nodes belonging to the cluster.

• 8(×6N + 1) bytes is the memory size required by the
Algorithm1 from line 23-57 if we assume that thematch-
ing sensors are at maximum equal to the number of
sensors in the cluster. Figure 12 shows the maximum
memory size needed by the CH in function of the number
of nodes belonging to the cluster.

The maximum memory size required by the CH is
8×Max(N (SRmax + 1

2N + 4)+ 1, 6N + 1) bytes, since the
values stored in the first part of the Algorithm (1-17), could
be cleared once the sensors have been matched (Algorithm 1,
line 17-28).

Nevertheless, the greater is the number of nodes belonging
to the same cluster, the better is the correlation among these
nodes, the fewer data a sensor will sample and transmit
which eventually leads to less energy consumption. There-
fore, the number of sensors belonging to the same cluster
should be maximized in function of its computational and
memory resources.

As for the limitation of our proposed algorithm, it is evident
when there is no or little correlation among the collected
measurements, the sampling rate of the sensors will be always
kept high. Since the role of this algorithm is to minimize the
sampling rate of the sensor node, it will not be as efficient as
it should be.

VI. CONCLUSION
We proposed in this paper a sampling and transmission
rate adaptation algorithm for cluster-based sensor networks.
This algorithm is deployed on the Cluster-Head (CH) and
it operates in rounds. The latter controls the sampling rate

of each individual sensor node by increasing it or decreas-
ing it according to its spatial correlation with other sensors
in the network. Moreover, we adopted and adapted a data
reconstruction algorithm that is implemented on the Sink
station. The latter can identify the ‘‘non-sampled’’ data that
are not collected due to a decrease in the sampling rate of a
specific sensor and it estimates them using an EM iterative
approach that is capable of capturing the temporal and spatial
correlation among the reported measurements. We presented
experimentation that we have conducted on real sensor data
of a network that was deployed at the Grand-St-Bernard pass
located between Switzerland and Italy. We have compared
our approach with a recent data reduction technique that
combines both adaptive sampling and transmission reduction.
The obtained results demonstrate that our proposal is better
at reducing the energy consumption of the sensor node, thus
extending the operational lifetime of the network while pre-
serving the integrity and the quality of the data.

For future work, we aim to tune better the Algo-
rithm deployed on the CH by incorporating other attributes
to determine the optimal sampling rate of each individual
sensor. Moreover, we will explore the possibility of adding
a compression phase between the CH and the workstation in
order to reduce more the amount of transmitted data.
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