

Internet of Things Research and Teaching: Vision and Mission

Introducing the Internet of Things Garage

build-driven

experimental,

applied

'IoT Garage'
'IoT Laboratory'

History:

Principal Investigator:

PhD Students:

Nada Alhirabi <i>Designing Privacy by Design IoT Applications</i> [Since OCT 2018]	Lamya Alkhariji <i>Knowledge-Driven Privacy by Design for IoT</i> [Since DEC 2018]
Areej Alabbas* <i>Secure Service Placement for IoT</i> [Since JAN 2019]	Bayan Almuhander <i>Privacy-Aware Smart Home Data Management</i> [Since OCT 2019]
Atheer Jeraisy <i>Reusable Privacy Components for IoT</i> [Since APR 2019]	Dominic Fonseca <i>Low-Cost Reliable Multi-Sensor People Counting</i> [Since OCT 2020] [MPhil]
Asma Irfan <i>Adapting to Discomfort Towards Sustainable Built Environments</i> [Since JAN 2020]	Hakan Kayan <i>Context-Aware Security for Cyber-Physical Systems</i> [Since JAN 2020]
Naeima Hamed <i>Semantic Data Integration For Forest Observatory</i> [Since JAN 2020]	Yasar Majib <i>Context-Aware Security for Smart Homes</i> [Since OCT 2020]
Reem Aldhafiri <i>Cyber-Physical Privacy for Ageing</i> [Since OCT 2020]	Mark Butterworth <i>Low Power IoT Infrastructure for Harsh Environments</i> [Since OCT 2020]
Wael Alsafery <i>Layered Framework Towards Resilient Smart Buildings</i> [Since JAN 2021]	Omar Mousa <i>End-User Development for Linked-Data Observatories</i> [Since JAN 2021]
Yaser Awwad <i>Video Analytics for Anomaly Detection</i> [Since JUL 2021] [MPhil]	Abdulaziz Aljohani <i>Self-Configuring Anomaly Detection IoT Architecture</i> [Since JUL 2021]
Norah Albaazzi <i>Augmenting Anomaly Detection with Tiny Cameras</i> [Since JUL 2021]	Azhar Alsufyani <i>Context-Aware Knowledge-driven Cyber-Physical Security</i> [Since OCT 2021]

Suhas Devmane

Talking Buildings: Smart Building Pattern of life [Since OCT 2021]

Fatmah Alqarni

Learning Privacy and Laws Through AI-Mediated Exploration and Design

[Since APR 2022]

Rayan Binlajdam

Forest Health Index [Since OCT 2022]

Mohammed Alosaimi

Evaluation Framework for Anomaly Detection [Since OCT 2021]

Siyuan Li

Adaptive Mobile Sensing within Buildings [Since OCT 2022]

Kira Nurse

Tangible Interfaces for Assisting Young People with Neurodiversity

[Since OCT 2024]

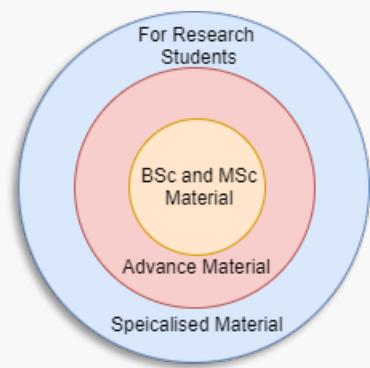
*

Annual Summary for 2023

Teaching Vision

CM2306 Communication Networks

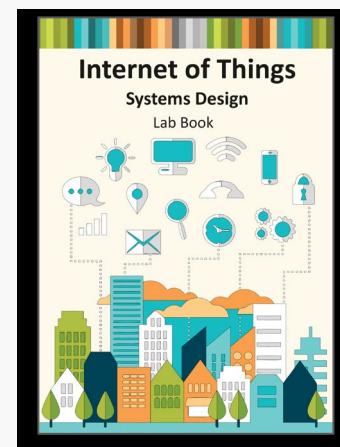
CMT223 Internet of Things: Systems Design


Content:

Architectures Sensing and Actuation Networking and Communications Data management and analytics Privacy and Security Human Factors and Interactions
Design Strategies and Prototyping

Applications and Use cases

Modularity and Complexity:


Advanced materials

Specialist materials

Labs and Practical:

Research with BSc and MSc students:

Dissemination and Community Engagement

Funding Support

EPSRC Edgy Organism

(Co-Investigator)

EPSRC PETRAS 2 Event Support Grant (PESG)

(Principle-Investigator)

EPSRC PETRAS Demonstrator

(Principle-Investigator)

Google Research Scholar Program

(Principle-Investigator)

CASPER Shield (CyberASAP Program)

(Principle-Investigator)

UK – Egypt Trans-National Education (TNE) Grant: Edge Analytics 2.0

(Co-Investigator)

Scalable Circular Supply Chains for the Built Environment

(Co-Investigator)

EPSRC PETRAS 2 (National Centre of Excellence for IoT Systems Cybersecurity)

(Co-Investigator)

Checking at the Edge

Partners

Building Research Establishment

Connected Places Catapult

Danu Gurang Field Center

Defence Science and Technology Laboratory

Digital Communities Wales

Government Communications Headquarters

His Majesty's Government Communications Centre

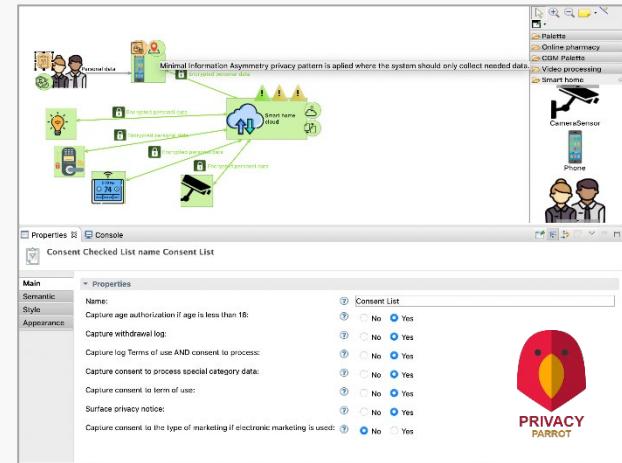
**Innovate
Trust**

METROPOLITAN
POLICE

My Data Fix

Ofcom Office of Communications

PETRAS National Centre for Cyber Security


Safehouse Technology

Vortex

Vortex IoT

Interactive Design Method for Augmenting Software Design Process Toward Privacy-Aware Internet of Things Application Designs

Partners and Relevant Projects

Outcomes

- [\[Journal\]](#)

Designing Privacy-Aware IoT Applications for Unregulated Domains

[PDF](#)

- [\[Journal\]](#)

PARROT: Interactive Privacy-Aware Internet of Things Application

Design Tool

[PDF](#) [BIB](#) [SOURCE](#) [VIDEO](#)

- [\[Journal\]](#)

Security and Privacy

Requirements for the Internet of Things: A Survey

[PDF](#) [BIB](#)

- [\[Demo\]](#)

Demo Abstract: PARROT: Privacy by

Design Tool for Internet of Things

[PDF](#) [BIB](#) [SOURCE](#) [VIDEO](#) [VIDEO](#)

- [\[Poster\]](#)

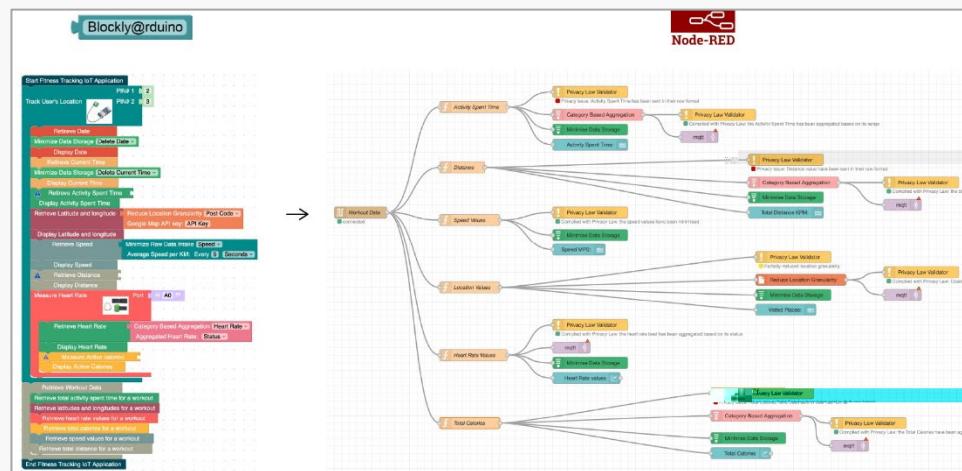
Privacy-Patterns

for IoT Application Developers

[PDF](#) [BIB](#) [SOURCE](#) [POSTER](#)

Augmenting Software Design Processes by Developing Knowledge-based AI Technique Towards Assisted Privacy-aware Internet of Things Application Designing

-
-
-


Partners and Relevant Projects

Outcomes

- [\[Journal\]](#) **Synthesising Privacy by Design Knowledge Toward Explainable Internet of Things Application Designing in Healthcare** [PDF](#) [BIB](#) [RESOURCES](#) [SOURCE](#)
- [\[Journal\]](#) **Semantics-based Privacy by Design for Internet of Things Applications** [PDF](#) [BIB](#) [RESOURCES](#) [SOURCE](#)
- [\[Poster\]](#) **Ontology Enabled Chatbot for Applying Privacy by Design in IoT Systems** [PDF](#) [BIB](#) [SOURCE](#) [POSTER](#)

Augmenting Software Engineers' Capabilities Towards Developing Privacy Law-Friendly Internet of Things Applications using End-User Development Paradigm.

Partners and Relevant Projects

Outcomes

- [Technical Report]

[PDF](#)

- [Journal]

and Privacy by Design Schemes for the Internet of Things: A Developer's Perspective

Privacy Laws

[PDF](#) [BIB](#) [RESOURCES](#) [SOURCE](#)

- [Demo]

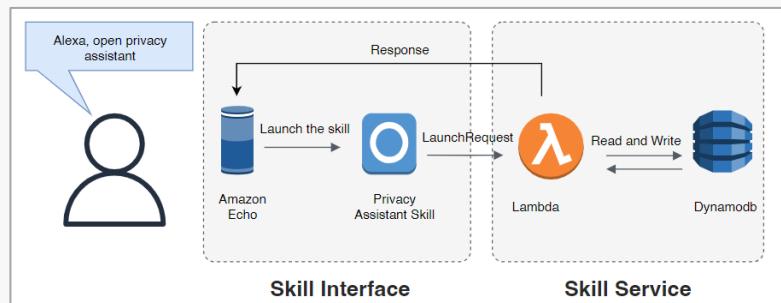
Canella: Privacy-Aware End-to-End

Integrated IoT Development Ecosystem

[PDF](#) [BIB](#) [SOURCE](#) [VIDEO](#)

Interaction Methods for Privacy Preferences Management in Shared Spaces

Partners and Relevant Projects



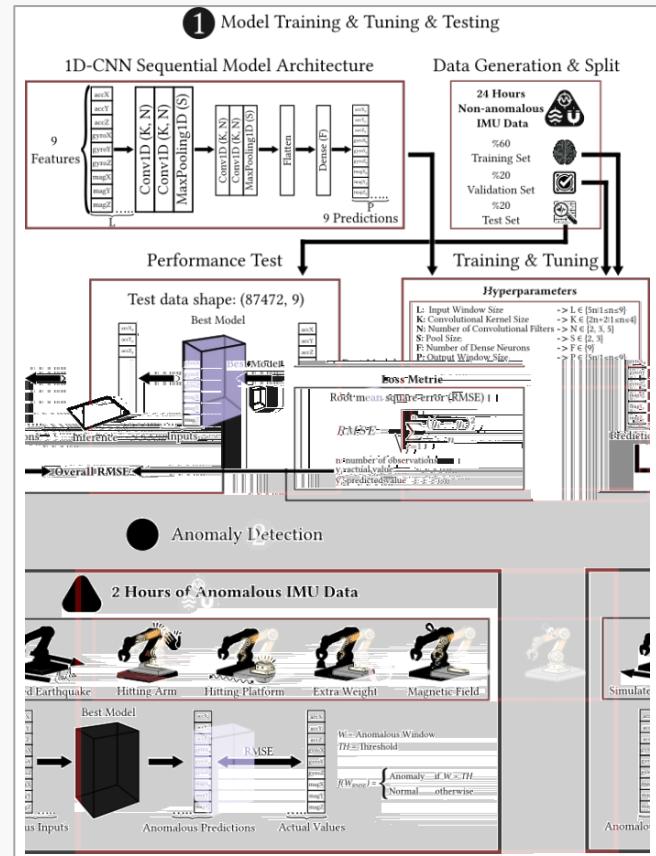
Outcomes

- [Technical Report] PrivacyCube: Tangible Privacy Interface for Improving Privacy Awareness in IoT [PDF](#)
- [Journal] Interactive Privacy Management: Toward Enhancing Privacy Awareness and Control in the Internet of Things, [PDF](#) [BIB](#) [SOURCE](#)
- [Demo] PriviFy: Configuring Privacy Preferences of IoT Devices using Tangible Interfaces [VIDEO](#)
- [Demo] Demo Abstract: PrivacyCube: A Tangible Device for Improving Privacy Awareness in IoT [VIDEO](#)

Privacy Considerations when Designing Smart Home Systems to Facilitate Independent Living for Ageing

Partners and Relevant Projects

Outcomes


- [\[Technical Report\]](#)
Understanding the Privacy Needs of Older Adults Using IoT Devices
- [\[Technical Report\]](#)
Voice-Enabled Privacy Assistant Towards Facilitating Successful Ageing in Smart Homes
- [\[Conference\]](#)
Enhancing Privacy Awareness and Digital Skills in Smart Home Device Users with Privacy Assistant: A Conversational Interface for Older Adults,
- [\[Demo\]](#)
Voice-Enabled Privacy Assistant Towards Facilitating Successful Ageing in Smart Homes,

Facilitating Novice Software Engineers to Learn Privacy by Design and Privacy Laws through AI-Mediated Exploration and Design

Tangible Interfaces for Assisting Young People with Neurodiversity Towards better Understanding Online Harms

-

Context-Aware Security for Industrial Cyber-Physical Edge Resources

Partners and Relevant Projects

Outcomes

- **[Technical Report]** Real-time Anomaly Detection in Industrial Robotic Arms via TinyML [PDF](#)
- **[Technical Report]** CASPER: Context-Aware IoT Anomaly Detection System for Industrial Robotic Arms [PDF](#)
- **[Journal]** IoT: An End-To-End Reconfigurable Multi-Protocol Anomaly Detection Pipeline for Internet of Things [PDF](#) [BIB](#) [SOURCE](#) [CODE](#) [CODE](#) [CODE](#)
- **[Journal]** Anomaly Detection System for Industrial Robotic Arms [PDF](#) [BIB](#) [SOURCE](#)
- **[Demo]** CASPER: Context-Aware Anomaly Detection System for Industrial Robotic Arms [PDF](#) [BIB](#) [SOURCE](#)

AnoML-

Cybersecurity

Context-Aware Security for Smart Homes using Cyber-Physical Behavioural Data Analysis

Partners and Relevant Projects

Outcomes

- [Technical Report]

Cyber Physical Anomaly Detection for Smart Homes: A

Survey [PDF](#)

- [Journal]

Cyber-Physical Anomaly Detection in Smart Homes

[PDF](#) [BIB](#) [SOURCE](#) [CODE](#) [DATA SET](#) [DATA SET](#)

Dataset for

- [Journal]

Detecting Anomalies within Smart Buildings using Do-It-Yourself Internet of

Things

[PDF](#) [BIB](#) [DATA SET](#) [SOURCE](#) [CODE](#)

Video Analytics towards Anomaly Detection on Edge for Smart Cities

Partners and Relevant Projects

Outcomes

- [Technical Report]
Edge Using Smart Cameras Under Low-Light Conditions [PDF](#)

Anomaly Detection on the

Sensing as a Service within Buildings Towards Data-Driven Collaborative Service Design

-
-
-

Partners and Relevant Projects

Outcomes

- [\[Journal\]](#)

Sensing within Smart Buildings: Survey,

[PDF](#)

[BIB](#)

[SOURCE](#)

**Self-Configuring Internet of Things Architecture for Context-Aware
Anomaly Detection**

-
-
-

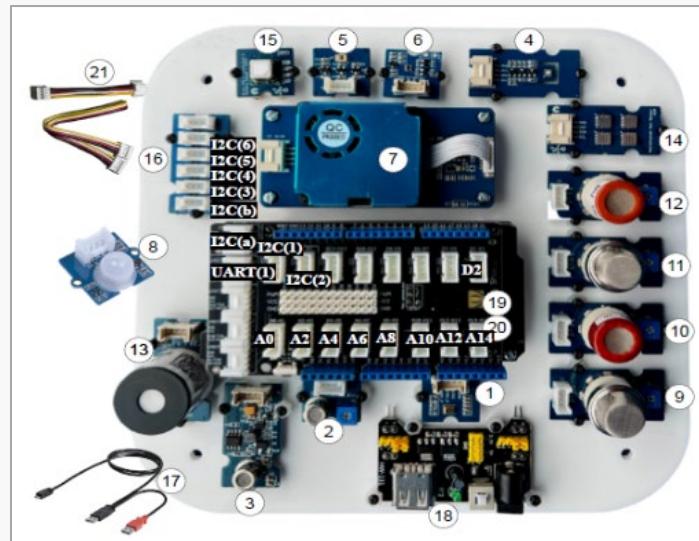
Partners and Relevant Projects

Explore the Role of Tiny Cameras Towards Augmenting Anomaly Detection within Built Environments

Context-Aware Knowledge-Driven Cyber-Physical Security at the Edge for Smart Homes

-
-
-
-
-

Partners and Relevant Projects


Outcomes

- [Technical Report]
Physical Security at Smart Home: A Review,

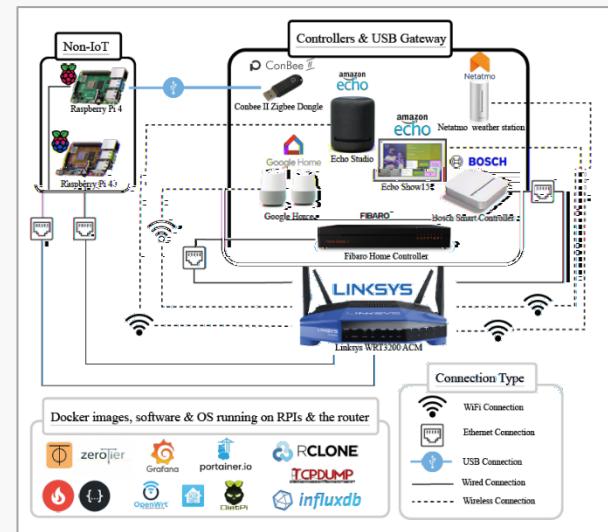
Knowledge-based Cyber
[PDF](#)

Talking Buildings: Making Buildings Talk using Adaptable Data Analytics

Partners and Relevant Projects

bre

Outcomes


- [\[Technical Report\]](#)
Towards A Sustainable Built Environment: A Review,
- [\[Technical Report\]](#)
Detection in Smart Buildings Using IoT Sensors

Human–Building Interaction

[PDF](#)

Dataset for Anomaly

Developing an Evaluation Framework for Anomaly Detection within Built Environments

Partners and Relevant Projects

- **[Technical Report]**
Evaluation Frameworks for Anomaly Detection within Built Environments: A Systematic Review, [PDF](#)
- **Testbeds and**

**Low-Cost Adaptive Mobile Sensing within Buildings towards
Augmenting Smart Buildings**

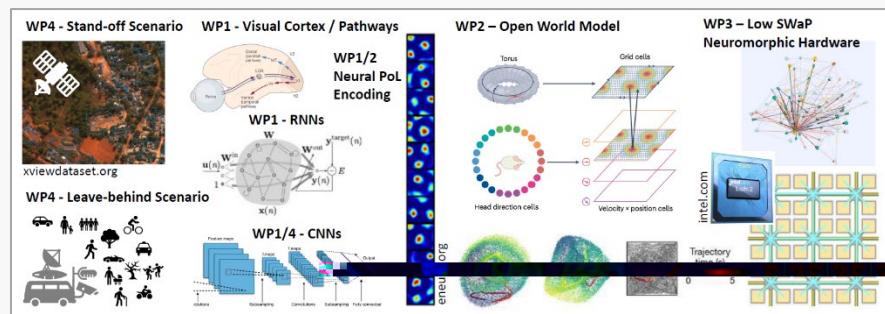
-
-
-

Partners and Relevant Projects

Resilient Build Environments (CASPER Shield)

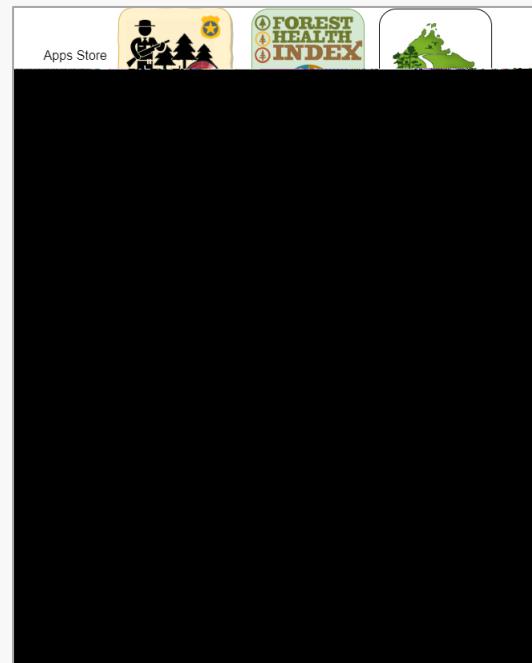
Motivation and Business Need:

Technical Challenge:



Market Opportunity and Competition:

VIDEO


Edgy Organism: Modelling Patterns of Life with 100mW

Partners and Relevant Projects

Semantic Data Integration Towards Forest Observatory-based App Ecosystem

Partners and Relevant Projects

Outcomes

- [Technical Report]
A Comparison of Open Data Observatories [PDF](#)
- [Technical Report]
Forest Observatory: A Resource Of Integrated Wildlife Data [PDF](#) [BIB](#) [RESOURCES](#) [VIDEO](#)
- [Conference]
FOO: An Upper-Level Ontology for the Forest Observatory, [PDF](#) [BIB](#) [SOURCE](#) [RESOURCES](#)
- [Journal]
Interface for Smart City Internet of Things Data Marketplaces: A Case Study [PDF](#) [BIB](#) [SOURCE](#) [VIDEO](#)

Query

DATA OBSERVATORIES

Dynamically Orchestrate-able Low Power Internet of Things Infrastructure for Sustainable Wildlife Conservation

Partners and Relevant Projects

Making Linked Data Accessible through End-User Development for Bioscience Researchers in the Context of Micro Observatories

Partners and Relevant Projects

Outcomes

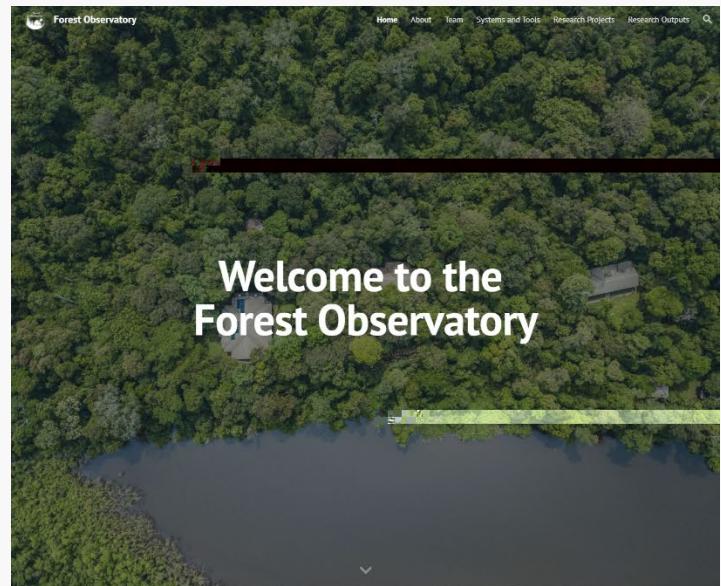
- [\[Technical Report\]](#)
ForestQB: Enhancing Linked Data Exploration through Graphical and Conversational UIs Integration,
- [\[Technical Report\]](#)

Scalable Circular Supply Chains for the Built Environment

-
-
-
-

Partners and Relevant Projects

- [\[Conference\]](#)


Construction Supply Chains,

Tracking Material Reuse Across

[PDF](#) [BIB](#) [SOURCE](#)

DATA OBSERVATORIES

Forest Observatory

Welcome to the Forest Observatory

Vision and Mission

We aim to further scientific research through technology development, contribute to long-term conservation and climate change monitoring, and develop a better understanding of our environment.

Systems and Tools [Explore](#)

Forest Observatory Platform

Low-cost Near Vertical Incidence Skywave, (NVIS) Toolkit

CameraTrap.ai

Research Projects [Explore](#)

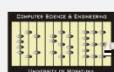
Data Modelling and Knowledge Engineering

End-User Development for Data Discovery and Visualisation

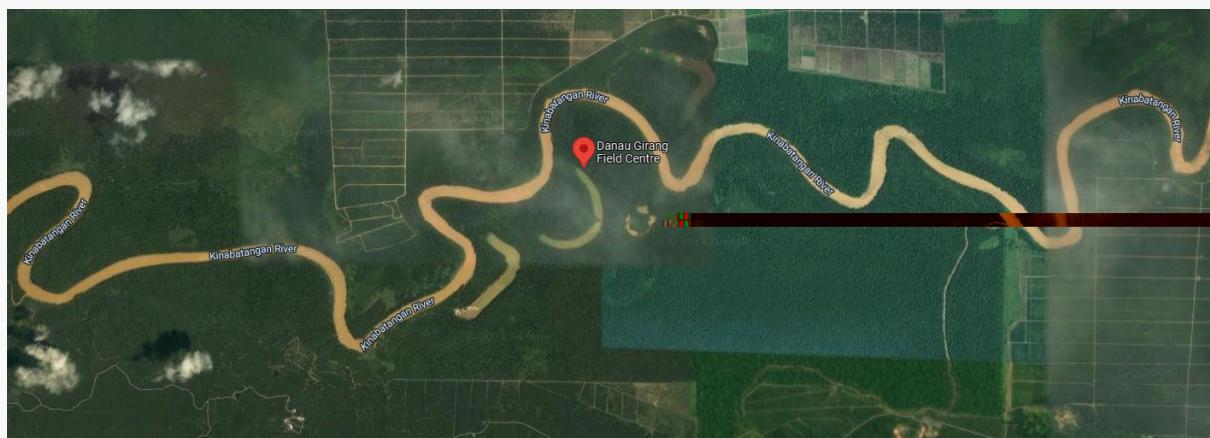
Internet of Things Infrastructure for Harsh Environments

Scoping Workshop: Sustainable IoT Infrastructure for Wildlife

Tracking Poachers using BLE Beacons

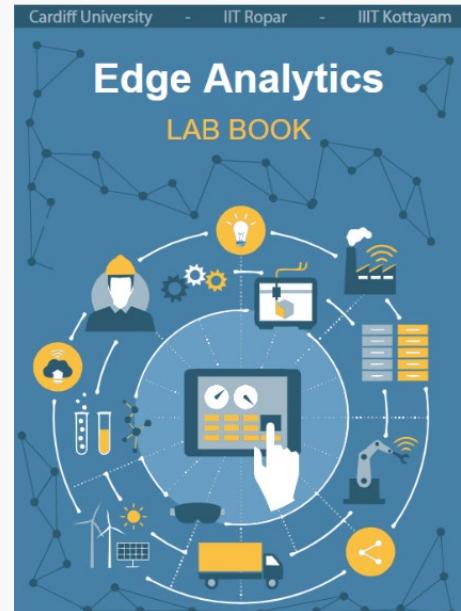


Tracking Poachers using GPS/SMS


About [Explore](#)

Funders and Partners

Internet of Things Network for Forest Observatory



Danau Girang Field Centre (DGFC) and surrounded area. Researchers conduct research usually 2-4 miles from the river bank and 20 miles each side along the river (5.430443299150367, 118.0396091749387)

(From Left to Right) both the rechargeable battery pack and the sensor attached to a tree, rechargeable battery pack, sensor installed on top of the DGFC main building roof

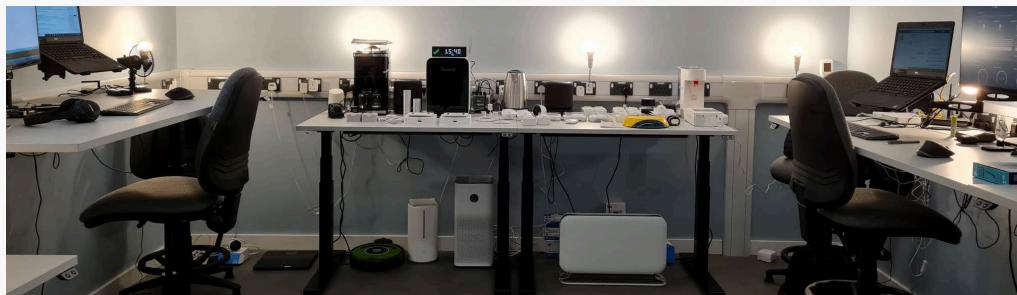
UK – Egypt Trans-National Education (TNE) (Edge Analytics 2.0)

-
-
-
-
-
-

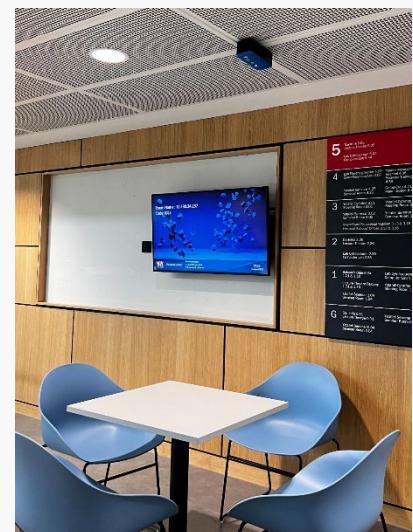
Partners and Relevant Projects

Durham
University

جامعة الجلالة
GALALA UNIVERSITY


BRITISH
COUNCIL

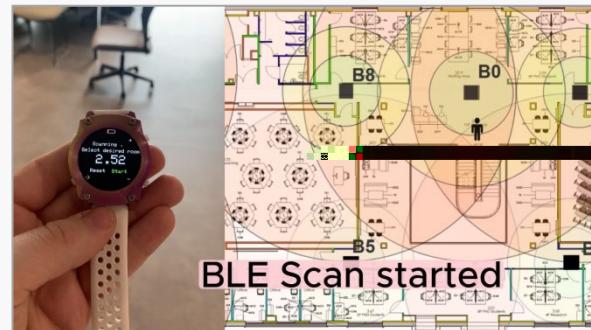
partnered with
Coventry
University


RESEARCH INFRASTRUCTURE

Smart Home Lab

RESEARCH INFRASTRUCTURE

Abacws Smart Building Testbed



Incubator Projects

Indoor Navigation System using Smart watch and BLEs

BSc

VIDEO

Robot Assistant to Prevent and Manage Falls

BSc

VIDEO

PETRAS in Lego Demonstrator

Funded

VIDEO

gitlab.com/IOTGarage

bit.ly/2JMoSd4

@IOTGarageNews

