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ABSTRACT

active in exchanging communication and data. IoT devices cannot enforce advanced security mecha-
nisms to protect themselves from cyberattacks. Furthermore, IoT devices could behave abnormally
when faulty or when a behavioral anomaly caused by surrounding factors is detected. Identifying
what could be an anomaly is challenging because an anomaly might be unknown beforehand. Even
though anomaly detection techniques are crucial to ensure the security of IoT devices, we must have
a quality testbed capable of testing different anomaly detection techniques. The testbed is always
an afterthought as effort often goes into anomaly detection techniques, neglecting the importance of
the testbed. In this systematic review, we propose testbed characteristics in the context of anomaly
detection and consider the testbed as a first-class citizen. We also discuss different anomaly detection
techniques that were tested on an implemented testbed or a dataset, how anomalies are generated,
and how anomaly detection techniques are evaluated. Dataset data creation, capture duration, and
analysis are also discussed. Finally, we highlight helpful tools that are used in the context of building
a testbed or creating a dataset that we came across in the literature.
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1 Introduction

Internet of Things (IoT) refers to the concept of enabling devices, “things,” to exchange data without human intervention
[1]. An example of such a device would be a sensor, an actuator, a computer, or an object that can monitor or interact
with the surrounding environment. Globally, IoT is estimated to have a $3.9 trillion to $11.1 trillion economic impact in
2025 [2]. Furthermore, it is expected that by 2025, there will be 27 billion IoT devices [3].

Because IoT technology is becoming increasingly popular, they have been vulnerable to cyber threats, including
unauthorized access and spying on occupants via their cameras to hijacking voice assistants such as Alexa [4]. It is
important to note that the distribution of IoT devices throughout the house poses a threat to the privacy and security of
the data being read by these devices [5]. The integrity of the data could be compromised if an intruder gains access to
the data and alters it. An intruder could, in a far worse scenario, have access to an IoT device that is responsible for
opening and closing the front door and enters the house. As mentioned in this paper [6], an attacker can also determine
whether a home is occupied by analyzing network traffic. Thus, it is imperative to detect anomalous behaviors to
maintain the integrity and privacy of the data.

To identify a cyber or physical threat, a system should monitor the data and detect when data are abnormal or anomalous.
According to Barnett and Lewis, “an outlier is an observation (or subset of observations) which appears to be inconsistent
with the remainder of that set of data” [7]. In the context of IoT devices, Cook et al. defined an anomaly as “the
measurable consequences of an unexpected change in the state of a system which is outside of its local or global norm”
[8].

The process of detecting an abnormal behavior is complex. Because of the lack of a clear definition of what is abnormal,
it is not as simple as detecting a static threshold [9]. A condition that is considered normal now may become abnormal
in the future due to changes in the environment affecting factors such as the outside temperature. Additionally, it is
possible that the observed data may show a trend or a seasonal change that would suggest an abnormal behavior, even
though it is not abnormal behavior. On the contrary, when a person is found lying on his/her kitchen floor, it must be
recognized as an anomaly because this is not part of the person’s routine, and emergency services must be notified [10].
What is normal for one individual might not be normal for another. This example illustrates how anomaly detection can
be challenging. Anomalies are, therefore, difficult to detect and define. Even though anomaly detection techniques are
useful for detecting anomalies in IoT devices, most of them are tailored to a particular application [8].

Scientists conducted several anomaly detection literature reviews in the past. Our contribution is that we discuss
anomaly detection algorithms in the context of the built environment and focus on the testbed. We consider it a
first-class citizen because having a quality testbed would help standardize the evaluation process and evaluate different
anomaly detection techniques thoroughly. We also discuss the metrics used to evaluate anomaly detection techniques,
different types of anomalies, and anomaly creation. Furthermore, we discuss smart home datasets in terms of creating
and collecting data, capture duration, and dataset analysis. We also highlighted helpful tools in that context.

This systematic review is divided into the following: Section 2 reexamines existing surveys and reviews that have been
published in the same domain. Section 3 provides background information about the types of anomalies, the techniques
to detect anomalies, and Reinforcement Learning (RL) in the context of anomaly detection. Section 4 discusses the
research methods followed in this systematic review and our contribution, outlines research questions, and filters criteria.
Section 5 investigates how testbeds are created according to several research papers, how an anomaly is created within
the environment, and how testbed devices and participating users are selected; Section 6 explains different anomaly
detection mechanisms in the literature along with their chosen anomaly detection algorithms; Section 7 discusses the
infrastructure dataset setup, network configuration, data collection, data capture duration, and dataset analysis. Section
8 lists several practical tools in the context of building/generating a testbed/dataset. Section 9 reviews the most common
anomaly detection evaluation metrics that we found in the literature.

2 Existing Surveys

Review and survey papers related to this study have been published, but their focus was on anomaly detection techniques,
leaving out the testbed that was used to test such anomaly detection techniques. We also included papers from different
fields of study, such as medical surveys, to investigate the issue of having the testbed as a second-class citizen.
Furthermore, review and survey papers differ in methodology, the study domain, or the types of feedback loops
considered. Using these reviews as a starting point, we highlight key aspects of our work and position our research in
relation to them. Table 1 summarizes the existing surveys.

2



A PREPRINT - NOVEMBER 1, 2023

Table 1: Summary of Existing Surveys
Paper Method Focus AD-T Testbed Dataset EM CUT

Cook et al. [11] Survey Time-Series Data
Himeur et al. [12] Review Energy Consumption in Buildings
Erhan et al. [13] Review Sensor System

Moustafa et al. [14] Survey Network Anomaly Detection
Gaddam et al. [15] Survey Sensor Faults and Outliers
da Costa et al. [16] Survey Intrusion Detection in IoT

Luo et al. [17] Systematic Survey Cyber-Physical Systems
Benkhelifa et al. [18] Review Intrusion Detection Systems
Fahim & Sillitti [19] Systematic Review Intelligent Inhabitant Environments

Taha & Hadi [20] Review Categorical Data
Fernando et al. [21] Survey Medical Data

No, it does not discuss this topic, Yes, it discusses this topic partially discusses this topic. "AD-T"=Anomaly Detection Techniques. "EM"=Evaluation Metrics. "CUT"=Commonly Used

Tools in the context of testbed and anomaly detection.

2.1 Intrusion Detection Surveys

The survey of Da Costa et al. [16] investigated intrusion detection techniques in computer networks with a focus on IoT.
In addition, a summary of datasets was presented along with their size in terms of the number of samples and the content
of the dataset. However, Da Costa et al. [16] did not include readings of IoT devices because they focused on network
anomaly detection. Benkhelifa et al. [18] presented a critical review that discussed current threats and practices of IoT,
different intrusion detection systems, and different detection techniques. They also proposed an IoT-IDS architecture
and provided a description of the proposed system. Although they investigated intrusion detection for IoT, they did not
consider anomalies that are not generated by cyberattacks.

2.2 Sensor-Focused Surveys

Erhan et al. [13] published a review that discusses anomaly detection techniques for sensor systems ranging from
time series and statistical analysis to supervised learning, RL, and Deep Learning (DL). They also investigated the
effect of the deployment of sensors in terms of different architectures, such as cloud, edge, and fog. Furthermore, they
presented four common sources of anomalies: environment, system, communication, and various attacks. One of the
most challenging aspects of sensor systems anomaly detection that Erhan et al. [13] presented is energy consumption, as
algorithms deployed at sensors will consume energy to perform computations to detect anomalies. Similarly, Gaddam
et al. [15] focused on presenting a survey about detecting sensor faults and outliers. They also presented a classification
of sensor failure detection and outlier identification techniques for IoT, along with the benefits and drawbacks of each
technique discussed. Even though Erhan et al. [13] and Gaddam et al. [15] investigated anomaly detection techniques
for IoT data, they did not discuss the process of developing a testbed and how the anomalies are generated.

2.3 Medical Surveys

Focusing on medical data, Fernando et al. [21] presented a systematic review that investigates anomaly detection
algorithms in medical data, including endoscopy images, heart sound anomalies, and epileptic seizures. Moreover, they
provided methods, evaluation results, and limitations for MRI-based anomaly detection. This thorough investigation of
anomaly detection techniques in medical data was evaluated on different datasets.

2.4 Data Type Driven Surveys

Cook et al. [11] discussed how IoT data differ from other domains’ data because the time series and environment
must be considered when analyzing and choosing the anomaly detection algorithm. Furthermore, they presented
several challenges in IoT anomaly detection, such as contextual information, dimensionality, noise, and stationarity.
They also mentioned current anomaly detection methods in univariate and multivariate time series data but did not
include evaluation metrics used to evaluate such algorithms. Taha & Hadi [20] published a review that focused on
anomaly detection methods in categorical data. Their paper reviewed different anomaly detection algorithms, such as
the Bayesian/conditional frequency and Shannon entropy, in detail, along with their complexity and required parameters.
Furthermore, they discussed three issues that face categorical data anomaly detection: the computational complexity
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Figure 1: Difference between the three types of anomalies: point, contextual, and collective [22][23].

of anomaly detection algorithms, the need for humans to intervene to describe the parameters for anomaly detection
algorithms, which is difficult in real-time applications, and the lack of categorical datasets. However, they focused on
categorical data only.

2.5 Smart Environment Surveys

Fahim & Sillitti [19] provided a systematic literature review that investigates the detection of anomalous behaviors in
intelligent inhabitant environments, intelligent transportation systems, smart objects, healthcare systems, and industrial
systems using both statistical and machine learning (ML) methods. Nonetheless, Fahim & Sillitti [19] covered
different applications of anomaly detection, but they did not include anomaly detection within a built-in environment.
Additionally, Himeur et al. [12] focused on power consumption anomaly detection within buildings. They also provided
a taxonomy of the anomaly detection schemes in energy consumption in terms of AI algorithms, application scenarios,
detection levels, and computing platforms. They claimed that most anomaly detection work published in this area is
detecting anomalies only when there is a surprising increase or decrease in power consumption; however, this is not
always the case because a slight difference could be an anomaly. They focused on power consumption, which leaves
out a broad range of IoT data.

2.6 Network Surveys

The focus of Moustafa et al. [14] was on network anomaly detection systems. They discussed methods used to detect
anomalies in such domain and presented benchmark datasets for evaluating decision engine approaches. Even though
they discussed multiple related datasets, they did not discuss how a testbed should be deployed to be able to evaluate
the presented anomaly detection techniques.

2.7 Cyber-Physical System Surveys

Luo et al. [17] reviewed state-of-the-art DL anomaly detection methods for cyber-physical systems rather than
conventional anomaly detection methods. Additionally, Luo et al. [17] present a taxonomy for types of anomalies,
detection techniques, implementation (whether it is a simulation, a testbed, or data from real-world systems), and
evaluation metrics. The focus of Luo et al. [17] was on cyber-physical systems.

3 Anomaly Detection

In this section, we highlight different anomaly detection types and techniques that we found in the literature. We also
compare different anomaly detection techniques and highlight key points for each presented technique.
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Table 2: Comparison Between Different Anomaly Detection Techniques
AD Techniques Labeled ML-model Example Key Points

S Yes SGB [24] Number of anomalies is much less than normal instances
SS Partially Ramp-OCSVM [25] More common than supervised AD due to the fact that they do not need anomalous labeles
US No GAN [26] Produces high false positive if a dataset has more anomalous samples than normal ones.
RL No DQN [27] Needs a thorough analysis of the anomaly and its relationship to the environment.

"AD"=Anomaly Detection, "S"=Supervised, "SS"=Semi-supervised, "US"=Unsupervised, "RL"=Reinforcement Learning, "SGB"=Stochastic Gradient Boosting

3.1 Anomaly Types

According to Chandola et al. [22], there are three main types of anomalies: point, contextual, and collective. A point
anomaly is the simplest type of anomaly that occurs when a single point is different in relation to other points within
the same data set. A contextual anomaly occurs when the pattern of the data changes and is considered as an anomaly
only in relation to its adjacent data, whereas it would be considered normal if it was taken outside that context of
data. Whenever a group of related data shows anomalous behavior in relation to the entire dataset, such an anomaly is
referred to as a collective anomaly. Even though individual data in a collective anomaly may not be considered an
anomaly on their own, their occurrence as a collection is anomalous. To explain and distinguish between the three
types of anomalies, let us take weather temperature as an example. If we have temperature readings between 16°C and
22°C for 30 days, but one of the readings is 45°C. In this case, 45°C would be considered a point anomaly. On the
other hand, if we have 10 consecutive days of warm weather in a winter month, that would be considered a collective
anomaly. Conversely, 45°C might be normal in some places where the weather is hot during summer months but would
be abnormal in other places and during other months; this condition would be considered a contextual anomaly. Figure
1 shows the difference between point, contextual, and collective anomalies.

3.2 Anomaly Detection Techniques

Detecting anomalies involves identifying rare events, items, or observations that deviate significantly from standard
behaviors or patterns. Anomaly detection techniques fall into three categories: supervised, semi-supervised, and
unsupervised. To perform supervised anomaly detection technique, data must be labeled as normal and abnormal, a
predicting module is trained against a given labeled data, and then the model would classify new data as normal or
abnormal based on the trained labeled data. This approach poses two issues. First, there could be far more normal data
than anomalous data in the training dataset, which creates an imbalanced classification [22]. Second, having an accurate
classification for the dataset is challenging [22]. Using labeled training data and unlabeled data, semi-supervised
anomaly detection technique builds more accurate models that require less effort to annotate compared to supervised
techniques [28]. Additionally, semi-supervised anomaly detection is efficient in cases where abnormal scenarios cannot
be easily modeled. An unsupervised anomaly detection technique detects anomalies in an unlabeled test set of data
solely based on its properties. Furthermore, the unsupervised anomaly detection technique assumes that a dataset has
far more normal than abnormal data; otherwise, this approach would produce many false alarms [22]. Each anomaly
detection technique identifies an anomaly using either a score or a label. A score is given to each data in each dataset
based on the anomaly detection technique, which indicates whether those data are considered an anomaly. As for the
label, each data would have a label that has two states, normal and anomalous.

Feature selection is an important aspect in terms of preparing training data for anomaly detection techniques. Feature
selection tends to clean the training data from unwanted features, making the predicting model more accurate, less
storage requirement, and decreasing computational overhead for the training process [29]. For supervised feature
selection, the process objective is to select subset features from a given data so that it could aid in classifying data
samples [29]. Unlike supervised feature selection, unsupervised feature selection uses all data as input for the feature
selection process, and the chosen learning algorithm is responsible for improving the feature selection with each
iteration [29]. Moreover, feature selection methods can be applied to supervised and unsupervised anomaly detection
techniques and to semi-supervised anomaly detection techniques [29].

RL is an ML paradigm that was adopted recently in the field of anomaly detection. The basic idea behind RL is that
an agent is interacting with an environment and trying to maximize the reward that an environment provides after
each action an agent takes, following the trial–and–error approach [30]. An example of applying RL to the field of
anomaly detection is the framework presented by Pang et al. [27]. They introduced a framework that uses RL to observe
unlabeled and few labeled data for detecting unknown anomalies. Additionally, the framework was evaluated against
semi-supervised and unsupervised anomaly detection methods such as DeepSAD [31], DevNet [32], iForest [33], and
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REPEN [34]. The previous methods were tested on four popular datasets: NB15 [35], Thyroid [36][37], HAR [38], and
Covertype [39].

On the contrary, Müller et al. [40] believe that applying RL to anomaly detection is yet to be considered efficient
for several reasons. First, RL is not fully embraced because it is dominated by simplistic and unrealistic evaluation
scenarios. Part of this is that anomaly detection in RL is less defined and formalized than in the other domains. Second,
most existing works are basically traditional anomaly detection problems presented as RL anomaly detection problems.
Furthermore, RL-proposed methods do not tackle RL-specific anomaly detection problems; instead, they reduce them
to classic ML tasks in which RL is only the data source. To tackle these issues, Müller et al. [40] proposed several
guidelines that would help to implement realistic and practical RL anomaly detection solutions. The first guideline is
analyzing anomalies deeply tied to the environment under inspection and exhibiting frequent change instead of simple
pattern recognition problems. Another surprising guideline is the absence of reward at the deployment stage, as Müller
et al. [40] believe this would help create a real-world scenario. Table 2 shows a comparison between the anomaly
detection techniques we discussed.

4 Research Method

The study approach we used follows the guidelines of David Budgen [41] and comprises the following consecutive
phases: developing a set of research questions; eliciting keywords from the developed research questions to generate
the search queries; selecting the databases where the search must be conducted; specifying filtering criteria such as
language and year of publication; skimming through titles and abstracts to eliminate irrelevant and duplicate research
papers; reviewing the papers in detail and developing extensive criteria throughout a comprehensive reading; adding
different tags to relevant research papers so that it is easier to comprehend what each paper has covered; and assessing
the remaining articles using the research questions that were developed at the start.

4.1 Research Questions

This systematic review aims to investigate the different anomaly detection techniques and testbed characteristics in the
built environment context. For that reason, the following questions were developed:

RQ 1 What are the different types of anomalies, and how are they generated?

RQ 2 What are the characteristics and properties of a smart home testbed that are useful in the context of developing
and testing anomaly detection techniques?

RQ 3 What are the evaluation criteria for anomaly detection techniques within a built environment?

RQ 4 How are smart home and anomaly detection datasets created and analyzed?

4.2 Search Process

This systematic review has searched for related research papers from the following electronic databases shown in Table
3. Additionally, the literature review used three websites that help to find related research papers, as shown in Table 4.
For each website, a related research paper (we used [42] as a seed) was fed to the website as a seed; then, each website
generated a visual literature map that shows related references to the fed research paper after analyzing it. We chose the
aforementioned research paper as a seed because we needed more research papers that discuss implementing a testbed
in detail. This approach has introduced strongly related literature that covers the topic of developing and evaluating a
testbed. Table 5 shows the list of keywords used during the search process. Additionally, we used the following search
string along with the keywords:

- smart home OR building and testbed AND anomaly detection
- smart home testbed OR smart building testbed OR testbed

4.3 Filtering Criteria and Quality Assessment

After conducting an initial search, we came across 429 research papers that must be filtered. We started reading titles,
then abstracts, and conclusions to determine how related a certain paper is according to our literature review topic.
Additionally, we created two labels within Google Scholar: one for research papers that discuss testbeds and another for
papers that discuss anomaly detection for a built environment.
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Table 3: Digital Databases
No. Digital Database

1 IEEE Xplore
2 ACM Digital Library
3 Science Direct
4 Research Gate
5 Elsevier

Table 4: Websites
No. Websites

1 Research Rabbit
2 Connected Papers
3 LitMaps

Table 5: Keywords
No. Keyword

1 smart home testbed
2 smart building testbed
3 testbed
4 smart home anomaly detection
5 smart building anomaly detection
6 testbed anomaly detection

Testbed

User Selection

Anonymous user ID
User Role and Policies

Activity Day-time

(Sikder, 2021)

Device Selection

COTS

Customer Rating
Popularity
Availability
Price

(Jafari, 2015)

(Xue, 2020)

(Lei, 2018)

(Sridharan, 2018)

(Ren, 2019)

Infrastructure Selection

Physical

Infrastructure Simulation

Emulation

(Lundstr ̈ om, 2015)

(Nguyen, 2009)
(Alshammari, 2017)

(Bruneau, 2009)
(Synnott, 2014)
(Cassens, 2012)
(Golestan, 2019)
(Ding, 2019)
(PIVA, 2021)
(Alisic, 2020)
(Hossain, 2017)

(Behal, 2017)
(Mäkinen, 2017)
(Beuran, 2009)
(Bao, 2017)

In-the-lab

In-the-wild

(Alsuhli, 2019)
(Gaonkar, 2020)
(Benhaddou, 2019)
(Xu, 2018)
(Zhang, 2018)
(Miettinen, 2017)
(Bures, 2021)
(Yu, 2020)
(Xu, 2019)
(Li, 2015)
(Zhu, 2016)
(Ge, 2020)
(Cook, 2013)
(Nazerfard, 2010)
(Rashidi, 2011)
(Osiegbu, 2015)

Experiment Condition Controlled

Uncontrolled
Anomaly Creation

Building Malicious Apps

Using Built-in Tools
Changing Environmental Conditions
Anomaly Simulation

(Gimenez, 2021)
(Kang, 2020)
(Mirkovic, 2009)

Figure 2: Testbed characteristics in terms of infrastructure, device selection, user selection, experimental conditions,
and anomaly creation.

5 Testbeds

Having the testbed as a second-class citizen has always been the case when evaluating anomaly detection techniques.
For that reason, we are introducing testbed specifications, infrastructure configurations, user and device selection
criteria, and different approaches to creating anomalies as testbed characteristics that we summarize in Figure 2.

5.1 Testbed Design Specifications

Designing and implementing a testbed is not an arbitrary task. There should be guidelines to accomplish the testbed
design; as such, we are trying to form testbed development guidelines from the literature review we are conducting.
Siboni et al. [43] illustrated several testbed design specifications:

• Device under test: The testbed should adopt different types of devices, such as smartwatches and fitness
trackers. Even though Siboni et al. [43] were specific about wearable devices, this design requirement should
also apply to smart home testbed devices.

• Testing environments: The testbed should be able to mimic and simulate different environments, whether
static or dynamic, for instance.
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• Security testing: There should be a variety of security tests conducted on the testbed, each targeting a different
aspect of security. A vulnerability scan and penetration test should be conducted to assess and verify the
security level of IoT devices.

• Simulator array: The testbed should be able to simulate different scenarios to generate real-time data. For
instance, this design requirement could be accomplished using a simulation technique like a GPS simulator
to try the testbed in different locations. Another simulation scenario is the use of a network simulator to try
different wireless technologies such as Zigbee and Bluetooth.

• Communication channels: The testbed should support different communication technologies, wired and
wireless, such as Zigbee, Wi-Fi, Bluetooth, USB, and Ethernet.

• Protocol analysis: The testbed should be able to analyze different types of protocols such as IPv4, TCP, and
TLS.

• Operating system compatibility: The testbed should provide virtualization so that its devices can run their
software, which supports different types of operating systems.

• Data forensic analysis: The testbed should maintain stored device data, including data from backup and log
files, to conduct data forensic analysis.

• Management and report mechanisms: It is important that the testbed is equipped with management and
reporting mechanisms in order to be able to control and manage the testing flow. Tools for exploring and
analyzing data should be included in these report tools.

• User intervention and automation: The testbed should allow for user intervention and automation during all
testing phases.

• Testbed enhancement capability: The entire testbed should be implemented as a plug-in framework to
support future operations.

5.2 Infrastructure Deployment Configurations

This section discusses various testbed infrastructure deployment configurations that include physical (both in-the-wild
and in-the-lab), simulation, and emulation. We also summarize the differences between each testbed deployment that
Bhatia et al. [44] discussed in Table 6.

5.2.1 Physical:

In-The-Wild:

There are many ways to implement a testbed within the built-in environment in terms of the layout of the environment.
Sikder et al. [45] believe that different home layouts directly affect data generated from devices, as different layouts
would lead to different user activities. Furthermore, a small home layout might restrict some users’ activities. They ran
their experiment in different home layouts: single-bedroom apartments, double-bedroom homes, and duplex homes
with two, three, and four residents in each apartment or home. Additionally, they used a single smart home system
(SHS) where all smart devices are connected to a central hub, a multi-SHS where multiple hubs are used, such as
Amazon Alexa and Samsung SmartThings so that different devices are connected to different hubs, yet they all share
the same network access point. They found that the accuracy of their framework is better when multiple SHS platforms
are used in all different home layouts. Furthermore, a single-bedroom home has better accuracy than other layouts
except when adaptive training is used in a duplex home. Having high accuracy when multiple SHS platforms are used
shows the relationship between different smart home layouts and the accuracy of the detection algorithm. Following
the same layout approach, Lei et al. [46] evaluated their virtual security button (VSButton) prototype, which consists
of a Netgear R63000v2 Wi-Fi router, a motions detection module using a Lenovo X200 laptop and an Amazon Echo
Dot in three different layouts: a square room, a rectangle room, and a two-bedroom apartment where six participants
were involved in their study. Cook et al. [47] also conducted their smart home-in-a-box experiment in a three-bedroom
apartment where 20 participants were involved in the study. Each participant was given a smart home-in-a-box kit, and
they evaluated how long it takes a participant to install smart home devices.

In-The-Lab/Prototype: Jabbar et al. [48] have taken another approach in terms of testbed infrastructure deployment.
They designed a prototype for their smart home called IoT@Home, which consists of a master bedroom, two bedrooms
in addition to the master one, two toilets, a kitchen, a living room, and a porch using software called NX10. The smart
home’s details include sliding motions used to close and open the windows. A steel rod serves as the base for the
upper part of the windows. A motor is installed on the upper side of the doors to open and close the doors. A motion
sensor attached to the door provides automatic closing and opening functions. To enter the house, the owner scans the
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Table 6: Infrastructure Deployment Comparison

Characteristics Physical Simulation Emulation

Realism Optimal realism Lack of Realism as it relies on software More realistic as it uses real machines that run an OS,

while part of the testbed is virtualized such as routers

Easy to Reconfigure No Yes Moderate as part of the testbed depends on physical machines

Cost High Low Moderate as part of the testbed is virtualized

Scalable No Yes No

Examples CASAS, Aegis+ OpNet, NS-2 Emulab, DETER

access card with an RFID sensor located outside the house. To make water flow through the house, a water tank is also
installed in a high position outside so water can flow smoothly. An ultrasonic sensor is installed in the tank to detect
the level of the water in the tank. Additionally, the house circumference is 100 cm by 100 cm. In conclusion, smart
home layouts can differ in terms of their implementation, where researchers have used a real physical layout or built a
prototype smart home.

5.2.2 Simulation:

A smart home environment could also be simulated by monitoring smart home devices and then building a model that
simulates each device’s behavior. Pina et al. [49] followed this approach where they decided to use a temperature
sensor, presence sensor, light bulb, simple TV, joystick, and remote control that would be installed in different rooms
from E1 to E4 that have different layouts. Afterward, they used the Markov chain to simulate each device’s behavior
after monitoring its state and how it changes and communicates with other devices. Even though this approach might be
suitable in cases where budget is an issue, there is no guarantee that the simulated states will truly reflect how devices
communicate and behave in the real world.

5.2.3 Emulation:

To test their DDoS detection mechanism, Behal et al. [50] used the Common Open Research Emulator (CORE) to
increase the number of nodes in their testbed. In their emulated testbed, they deployed 16 virtual nodes and 4 soft routers
using CORE, and they used 75 physical nodes in three different groups of 25 computers each, 3 D-Link physical routers,
4 L2 switches, 2 L3 switches, and 1 2-processor 8-core Linux server that acts as the victim Web server. Although this
approach used software, CORE in this case, and hardware to build the testbed, the result of using such an approach is
not widely adopted in the testbed community.

5.3 Selection Criteria

As we discuss testbed requirements and characteristics in the context of a built-in environment, we must also discuss
users using the testbed, experiment conditions, and device selection.

5.3.1 User Criteria

In this section, we discuss user selection criteria in the context of the smart home environment so that the smart home
testbed can generate realistic data that reflects the user’s behavior. According to Sikder et al. [45], the following
selection criteria should be considered:

• Anonymous user ID: Each residence or user should be assigned an ID, and this ID should be used for all
communication with the user to maintain the user’s privacy.

• User role and policies: Each residence can choose a rule to their liking. For example, a user can choose to
turn on the light once a motion sensor detects a motion. Conversely, another user can choose to turn the light
differently once the door is open, for example. Different rules can be assigned by different users.

• Activity day-time: Different time activities should be considered because an individual’s activity differs in
time. A working adult might have more activity on weekends than on weekdays. Hence, a change in daily
routine might not be malicious behavior.
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5.3.2 Device Criteria

One of the tasks to develop a testbed is to select devices for the testbed. As several devices come from the same category,
there should be a way to prefer one over the other. During the selection of IoT devices, Ren et al. [51] selected IoT
devices that fall into a broad range of categories based on popularity, customer rating, price, and availability for both
the UK and the US because the study wanted to compare between the two testbeds in terms of IoT device information
exposure in different locations.

5.3.3 Experiment Condition

Smart home experiments can take place in a controlled and uncontrolled environment. Ren et al. [51] conducted an
experiment on how much IoT device information is exposed by creating a testbed in a studio apartment. In their study,
36 participants were involved over the course of 6 months, so the testbed was examined in an uncontrolled environment
in the US only and in a controlled environment both in the US and the UK. In an uncontrolled setting, participants were
allowed to enter the lab and use the devices at any time of the day except when another experiment condition was taking
place. Conversely, controlled environments are restricted to certain times. One privacy violation discovered in this study
is that the door bill was recording and sending videos to the service provider without the consent of recorded individuals.
The exposed data were categorized into stored, sensor, and activity. Furthermore, Ren et al. [51] categorized parties
involved in IoT device shared data: first party, which are vendors; support party, which are companies who offer services
such as cloud services; and third party, which are analytical or advertising companies.

5.4 Anomaly Creation

This section discusses several techniques to create different types of anomalies within the smart home environment.

5.4.1 Building Malicious Apps:

One of the anomaly-creation methods is building a malicious app that mimics a cyberattack to evaluate the anomaly
detection algorithm proposed. Sikder et al. [45] followed this approach, creating threat scenarios at first for each attack
they would like to perform. In this article, five different threat attack scenarios were considered (impersonation attack,
false data injection, side channel attack, denial-of-service, and triggering a malicious app). For impersonation attack,
an app was built to leak the smart unlock code via SMS to the attacker so the attacker could impersonate the owner of
the smart home in this case. Another malicious app for impersonation attacks is where an unauthorized smart home
user replays a voice command captured from a valid user, impersonating a valid user. For false data injection, an app
was built to inject false data into sensors, and a voice command was injected into smart home devices. For side channel
attack, two malicious apps were built: one flickers light in a pattern while there is no user in the room, and the other is
a malicious app that sends a signal that would cause a smart speaker to perform an action that is legit but harmful. For
denial-of-service, an app was built to disable any running smart home task. For triggering a malicious app, an app
was built to change the state of a device that would lead to a malicious act on a smart device.

5.4.2 Using Built-in Tools:

Creating cyber anomalies within a testbed is crucial. One must be positive that any cyber anomalies within the
testbed do not spread to other networks or unintended devices. Several tools have been presented to accomplish
such a task. Gimenez et al. [52] generated several wireless technology attacks that were built using Mirage
(github.com/conchyliculture/mirag-e) ) open-source framework. For Zigbee technology, Zigbee scan and Zigbee
injection classes of anomalies. For Wi-Fi technology, de-authentication and rogue AP classes of anomalies were
generated. For Bluetooth Low Energy (BLE), a BLE scan class of anomalies was generated. Furthermore, each of the
previous anomalies was conducted for 2 minutes multiple times at different locations.

Dadkhah et al. [53] also presented Low Orbit Ion Cannon (LOIC) (github.com/NewEraCra-cker/LOIC) ), which
they used to generate DDoS attacks using HTTP, UDP, and TCP protocols. Real-Time Streaming Protocol (RTSP) brute
force attacks were performed using Nmap (nmap.org) scanner tool and Hydra (github.com/vanhauser-thc/thc-hydra) to
find URLs for RTSP cameras and watch the camera stream.

5.4.3 Changing Environmental Conditions:

Another method of creating an anomaly within a built environment is injecting anomalies by changing a factor
within the physical environment, such as temperature. Kang et al. [54] created a testbed using Mi Air Purifier 2S
and Mi Sterilization Humidifier to run an anomaly detection experiment. Mi Air Purifier 2S was turned on in their
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Table 7: Anomaly Detection Mechanism
Paper Anomaly Detection Algorithm Testbed Dataset CA PA DF

Sikder et al. [45] Markov Chain–based machine learning model
Ullah & Mahmoud [59] FFN

Kang et al. [54] (Not mentioned in the paper)
Hosseini et al. [60] Gaussian-based Kernel Density Estimation

Li et al. [61] LSTM Autoencoder
Liu et al. [62] AMCNN-LSTM (Attention Mechanism-Based CNN-LSTM Model)

Mudgerikar et al. [63] Random Forest
Djenouri et al. [64] The genetic algorithm and the bee swarm optimization

Mothukuri et al. [65] LSTM & GRU
Shafi et al. [66] E3ML & MLP &RNN &ADT

Yahyaoui et al. [67] OCSVM & DL
Gimenez et al. [52] Autoencoder neural network & temporal and spatial diagnosis
Heartfield et al. [4] Isolation Forest

Teh et al. [68] RFE & RFR for feature extraction and selection &PCA for AD
Sater & Hamza [69] Three LSTM layers

No, it does not discuss this topic, Yes, it does discuss this topic. "CA"=Cyber Anomaly. "PA"=Physical Anomaly. "DF"=Device Fault.

experiment, and Mi Sterilization Humidifier generated air mist as an environmental condition change (creating a
polluted environment) to inject anomalous values into the air purifier.

5.4.4 Simulation:

Even though one could argue that simulated anomalies lack realism, they are viable options in case creating actual
anomalies is difficult for budget reasoning. Said et al. [55] implemented an intrusion detection model in a smart
hospital IoT system to identify events that matter about patient health, environments, and cyber threats. Using Contiki
Cooja’s (github.com/contiki-ng) simulator, they implemented and tested the model. They used multiple simulation
parameters such as the number of nodes, topology, area, sending rate, simulation run time, and physical layer. The
proposed approach detects 93.4% of rank attacks and 60.8% of flood attacks, which is not a high detection rate for flood
attacks.

Similarly, Mirkovic et al. [56] implemented a DoS attack using a network simulator. In their paper, they compared the
use of a simulator and testbed settings in evaluating attack metrics by calculating acceptable, scientifically determined
thresholds for several QoS requirements. NS-2 was used to create a simple network, a client, a server, and an attacker.
Then, they generated several network traffic and DoS attacks on the simulator. They also ran a DoS attack on the
DETER testbed [57], and the result was that the testbed could handle much higher throughput than the NS-2 simulator
due to the failure of some transactions in the simulator.

Lundström et al. [58] presented an anomaly detection mechanism for human activity in smart homes that is trained on
simulated normal data using the Markov model-based approach. The model was created using prior knowledge from
data collected from different smart homes. Different abnormal data were also simulated to be tested on the proposed
approach. According to Lundström et al. [58], the proposed approach achieved a detection accuracy of 85% in detecting
anomalies.

6 Anomaly Detection Mechanism

In this section, we discuss several anomaly detection mechanisms that were applied on a testbed and on different
datasets in terms of anomaly detection algorithm used, dataset choices, devices used in testbeds, anomaly type, and
evaluation metrics. A summary of anomaly detection mechanisms is presented in Table 7

6.1 Testbed-based Anomaly Detection:

Sikder et al. [45] presented AEGIES+, a security context-aware framework that monitors different smart devices and
user activities to detect any abnormal behavior. The proposed framework took into consideration different features of
the smart home environment. The framework demonstrates how sensor devices within smart homes depend on each
other, even if it is not that obvious. For example, a smart light bulb could be configured only to be turned on once
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Figure 3: Testbed devices that were used in our primary selected studies where we could see common IoT devices and
sensors such as SmartThings contact sensor. These devices and sensors are from real-world testbeds, not from datasets.

someone is in the room that the light bulb is in. One way to do that is to have a motion sensor installed, and once it
detects a motion, it notifies the smart light bulb that there is someone in the room so it can be turned on. This shows
how sensors in the smart home environment depend on each other. Furthermore, users interact with sensors differently,
depicting whether a certain action is malicious. This is achieved by monitoring usual user activity and determining
whether a certain action is a common user behavior.

Sikder et al. [45] developed a testbed consisting of a Samsung SmartThings hub, Amazon Alexa, Google Home, Philips
Hue light bulb, Yale B1L lock with Z-Wave Push Button Deadbolt, FirstAlert2in-1Z-Wave Smoke Detector, and Carbon
Monoxide Alarm, Arlo by Netgear Security System, Ecobee 4 Smart Thermostat, Samsung6Series UN49MU6290F
LED Smart TV, Fibaro FGMS-001 Motion Sensor, and Samsung Multipurpose Sensor. The testbed was implemented
in single-bedroom apartments, double-bedroom homes, and duplex homes with two, three, and four residents in each
apartment or home. Furthermore, Sikder et al. [45] took into consideration different implementation goals that were
presented in 5.3.1 along with the home layout where the most common house layout in the US was chosen to emulate
real-life scenarios. They also considered user selection criteria as discussed in 5.3.1.

To test the AEGIES+, five different threat attack scenarios were created and presented in 5.4.1 using malicious apps
for each attack scenario, hence creating anomalies. Thereafter, True Positive (TP), True Negative (TN), False Positive
(FP), False Negative (FN), Accuracy, and F1-score metrics were used to calculate recall and evaluate the proposed
framework.

Yahyaoui et al. [67] presented a Reliable Event and Anomaly Detection Framework for the IoT (READ-IoT), which
detects abnormal events and anomalies where they mimic a fire incident and unauthorized access for a person. Using
Wing Python IDE, they developed event and anomaly detectors, then deployed them using docker containers in fog and
cloud environments. The ML components were developed using TensorFlow and scikit-learn libraries in Python. Each
cluster in the prototype consists of a cluster head and three sensors (Arduino Uno nodes): two motion detection nodes
based on PIR sensors (HCR501), one fire detection node based on temperature-humidity (DHT22 sensor), and a gas
sensor (MQ7 sensor). Sensor nodes communicate with their respective Raspberry Pi 3 nodes using Zigbee protocol,
which supports indoor and outdoor communication with a range of 75–100 and 300 m, respectively. An encryption
algorithm of 128 bits and a message integrity code were used to secure the communication. To test their anomaly
detection system (ADS), they used a network simulator called Castalia 3.2 (omnetpp.org/download-items/Castalia.htm)
to simulate normal traffic and inject malicious traffic. They used a simulator to test their approach and a KDD dataset.
Different deployment scenarios were considered for testing their event detection system, where the entire structure
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is implemented in the cloud, fog, hybrid, and READ-IoT. The result shows that READ-IoT has the least end-to-end
delay in detecting fire and unauthorized person events, thus making it the best performance approach. As for the
ADS, the proposed approach detected malicious traffic with an accuracy of over 90% and 98% using one-class support
vector machines (OCSVM) and DL, respectively. Yahyaoui et al. [67] also noted that the use of DL for training is
time-consuming and needs high bandwidth.

Kang et al. [70] built a testbed consisting of Mi Air Purifier 2S and Mi Sterilization Humidifier to test their anomaly
detection method for smart home devices. They divide anomalies into four main categories: abrupt, accumulated,
functional component, and human. An abrupt anomaly happens when a sudden change occurs, and an accumulated
anomaly happens when the data are within the normal range, but the overall readings of the data are not the same
as the usual readings of such a device. A functional component anomaly happens when a device is faulty and does
not perform its functions properly. Obviously, the human anomaly is an anomaly that is caused by humans. For
generating anomalies, Kang et al. [70] artificially injected anomalies into the air purifier in real time and monitored how
the threshold value changed according to the generated anomaly. Even though they evaluated the proposed anomaly
detection solution for smart homes, only two smart devices were used in their study.

The smart refrigerator was also tested for anomalies as presented by Hosseini et al. [60]. with a focus on the power
consumption of the smart refrigerator. Anomalies were divided into faults and abnormal behaviors. Two scenarios were
considered for faults: the door is not closed, and the door rubber seal is defective. To mimic those scenarios, the door
was left open during different periods, and the rubber seal was bent out of shape. Two scenarios were considered for
abnormal behaviors: opening and closing the refrigerator and having a full refrigerator. To mimic those scenarios, the
door was opened and closed many times of the day, and the refrigerator was filled with water at different temperatures
with different amounts, respectively. Hosseini et al. [60] used a Gaussian-based kernel density estimation as an
anomaly detection algorithm and were able to detect anomalies with 99% and 98% accuracy when smart and standard
refrigerators were used, respectively. A summary of testbed devices is presented in Figure 3.

6.2 Dataset-based Anomaly Detection

An edge-assisted anomaly detection framework called ADRIoT was introduced by Li et al. [61] According to the
proposed framework, the anomaly detection module has three layers: capturer, pre-processor, and detector. The
capturer layer simply captures incoming network packets. In the pre-processor layer, network traffic is vectorized and
fed to the ML algorithm. It also hides network characteristics by converting consecutive incoming network packets
into a sequential stream of data. The detector layer is where the proposed framework detects an anomaly. In this
layer, the raw network bytes are used as a feature for the ML algorithm. The framework uses long short-term memory
(LSTM) autoencoder and is evaluated using TP, TF, FP, FN, receiver operating characteristics (ROC), area under the
curve (AUC), and equal error rate (EER) evaluation metrics. The proposed framework was also evaluated with different
unsupervised anomaly detection algorithms: OCSVM, isolation forest, and robust covariance.

Furthermore, Li et al. [61] tested the proposed framework on the IoT traffic dataset that was published by Northeastern
University and Imperial College London [51]. The dataset was collected from two smart homes; one is in the US, and
the other is in the UK. This location diversity is beneficial because it illustrates how an IoT device would behave in
different locations. The dataset gathered traffic from the following IoT devices, where the same devices were used in
US and UK locations, along with the size of each pcap file for US and UK locations consecutively: Apple TV (44.8 and
66.9 MB), Nest thermostat (16.2 and 33.3 MB), Wemo Wi-Fi plug (55.7 and 47.8 MB), TP-Link Wi-Fi bulb (36.4 and
12.6 MB), TP-Link Wi-Fi plug (15.1 and 7.4 MB), Zmodo doorbell smart camera (147.9 MB and N/A), Echo Plus
speaker (56.5 and 35.6 MB), Roku smart TV (42.4 and 26.6 MB), Sengled IoT Hub (3.2 and 1.6 MB), and Echo Spot
speaker (45.6 and 87.6 MB). The dataset contains not only IoT traffic but also network payload.

Mudgerikar et al. [71] also presented an edge-assisted intrusion detection system called E-Spion. The anomaly detection
engine is divided into three distinct detection modules: Process White Listing Module (PWM), Process Behavior
Module (PBM), and System-call Behavior Module (SBM). PWM is the least expensive and uses a whitelisting-based
method. Their technology analyzes all benign processes operating on the device during the learning period and creates
a device-specific whitelist of all running processes. During the operation stage and in order to identify anomalous new
processes, the system collects and compares the names and PIDs of all running processes with the device whitelist.
PBM keeps track of the behavior of all running processes on the device and alerts you if one of them is acting strangely.
During the learning stage, PBM keeps track of several parameters for each running process on the device. After
gathering logs during the learning stage, they trained an ML classifier for each device to detect aberrant process behavior.
Eight metrics or features were extracted from the parameters and used in the PBM classification model. PBM is more
expensive than PWM, but it gives finer detection and can identify more complex malware that can masquerade as benign
processes instead of generating new dangerous processes. SBM keeps track of how each process on the device behaves
in response to the system calls it makes. On the one hand, SBM is the most expensive module, but on the other hand, it
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offers the most precise and accurate detection approach. SBM monitors 34 different types of system calls issued by
each active process. Mudgerikar et al. [71] track four metrics or features for each type of system call recorded: the
number of calls made (1), percentage of time consumed (2), total time taken (3), and average time taken per call (4).

Each network device must undergo four stages: initialization, learning, operation, and anomaly detection. For the
initialization on the edge server, a new empty device profile and public–private key pair are established when a new
device joins the network. Then, the private key is uploaded to the device, and this key pair is used to secure all sessions
between the edge and the device. For learning, the edge server obtains the device’s PWM, PBM, and SBM records and
creates a single three-layered baseline profile for it. The training dataset for these modules is made up of data acquired
from the PBM and PWM logs during the learning stage.

To evaluate their approach, Mudgerikar et al. [71] downloaded malware samples from IoTPOT [72], VirusTotal, and
Open Malware datasets. For anomaly detection, they tried different binary classifiers: naive Bayes, decision trees,
logistic regression, random forest (RF), K-nearest neighbor, and multilayer perception. The result was that the RF
classifier was the best in terms of detection intrusion, and tree-based classifiers were the fastest to build.

Ullah & Mahmoud [59] presented an anomaly detection framework in IoT networks using a generative adversarial
network (GAN). They used different types of GAN to generate synthetic data to balance the datasets on which they
wanted to test the framework and then applied the detector model. They tested the proposed framework on the following
datasets: KDD [73], NSLKDD [74], Bot-IoT [75], IoT-23 [76], IoT Network Intrusion [77], MQTT-IoT-IDS2020
[78], MQTT-set [79], which had an average detection rate of 99.05%, 98.85%, 97.70%, 97.30%, 94.52%, 98.66%
and 99.10%, respectively, when using binary class conditional GAN as a generative model and Feed Forward Neural
Network as a detector model.

Mothukuri et al. [65] proposed a federated learning (FL) anomaly detection approach that detects intrusion in IoT
networks where LSTM and gated recurrent unit neural network models can be trained on IoT networks without
transferring network data to a centralized server. The architecture of their proposed approach consists of a virtual
instance that was created using PySyft where they created a number of end devices and a central FL as a server so that
the ML parameters can be shared between end devices and the central FL server, preprocess of captured data where
pcap files are generated from network traffic and converted to CSV files to clean up unwanted features, FL training
where each client node executes training rounds with their data and shares the weights of their local ML models to the
central model, and an ensembler that enhances the accuracy of ML models by combining their outputs. The proposed
approach was evaluated on a Modbus-based dataset [80], which has the following attacks: man-in-the-middle, ping
DDoS flood, Modbus query flood, and SYN DDoS. Based on the evaluation metrics, they propose a version with FL
that achieves greater accuracy with fewer epochs than the non-FL version, where the average accuracy for the FL and
non-FL approach is 90.255%, whereas it is 86.134%, respectively. Figure 4 shows datasets and research paper that we
discussed in 6.2.

7 Datasets

Having IoT devices in a controlled environment facilitates monitoring and observing how devices communicate and
behave under different test scenarios. In this section, we discuss different infrastructure setups, data creation, data
collection, capture duration, and methods of dataset analysis.

7.1 Infrastructure Setup

When designing an infrastructure for a dataset, one must consider if the dataset infrastructure will be implemented
physically or virtually. For example, Vigoya et al. [81] implemented a virtual infrastructure by building four client nodes,
each having four processes where each process represents a temperature sensor. Each sensor (process) has an MQTT
client, which sends its temperature data to a central MQTT broker using the MQTT publisher–subscriber approach.
Similarly, Koroniotis et al. [75] also implemented a virtual infrastructure that follows the MQTT publisher–subscriber
approach, which is implemented over TCP/IP using Node-Red to simulate IoT devices.

On the contrary, Dadkhah et al. [53] followed another approach in terms of infrastructure setup for their dataset where
they built a physical infrastructure using two network interface cards: one is connected to the gateway while the other is
connected to a NETGEAR GS308 switch, which all IoT devices that require Ethernet are connected to it. Vera Plus
smart hub is connected to the switch, acting as an Internet gateway for Wi-Fi IoT devices. Furthermore, Philips Hue
Bridge, SmartThings Hub, and Fibaro Home Center Lite have been used to facilitate the communication of Zigbee and
Z-Wave devices and sensors. These two examples of infrastructure show how different dataset creation can be in terms
of infrastructure. Additionally, it illustrates the possibility of creating a data structure with limited resources.
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Figure 4: This figure shows datasets that are used by our primary research papers. We highlight each paper with an oval
around the authors’ names. In addition, the figure shows the link between each research paper and the datasets it uses.

7.2 Network Configuration

Different IoT device testing dictates different network configurations. Some devices only communicate through Zigbee
protocol, and others communicate through Wi-Fi and voice commands. This heterogeneity directly contributes to the
choice of network configurations. Even though having different wireless communication technologies is beneficial
in terms of including a different range of IoT devices, it mostly comes with the burden of having a hub for each
wireless communication technology, such as Zigbee. Moreover, some devices within the same wireless communication
technology require different hubs, as does Bosch Twinguard, which requires a Bosch smart home controller. Therefore,
types of devices and their communication settings must be considered when building the network configuration of a
dataset environment.

7.3 Data Collection

The goal of the dataset has an important role in selecting what type of IoT data to collect, as some datasets are only
interested in cyberattacks, and others extend their interests to different types of generated data. According to Dadkhah
et al. [53], ideally and to observe how IoT devices behave under different scenarios, six statuses must be taken into
consideration:

Power: During the power state, all devices must be unplugged from the network, then the network is rebooted. After
that, each device is connected to the network on an individual basis, and the MAC address associated with each device
is noted, and the network traffic for each device is captured individually as well. Moreover, the capture process should
continue until no remaining packet from that device is received. This process would provide an idea of how each device
behaves individually.

Idle: During the idle state, an assumption that devices will not communicate with each other during the idle stage must
be established. As a result, this stage should usually take place during the night or during holidays. This process would
help to identify if a device is making unwanted communication. Ideally, the data captured in the idle stage should match
the data captured in the power state for each device.
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Interactions: During the interactive state, each device’s communication with other devices must be captured. It is also
important to mention that some devices have more than one way of communication. For instance, a Philips Hue smart
light can be turned on and off through voice command using a voice assistant device (such as Echo Dot) and the Philips
Hue app. Thus, different control conditions must be considered as well.

Scenarios: During this state, the scenario intended for the dataset is performed, and network traffic is captured.

Active: During this stage. all IoT device network traffic is captured, including communications between devices, when
there are people interacting with the devices either actively or passively.

Attacks:During attacks, a series of cyberattacks are performed on the devices, and the network is captured during
attacks. Several tools can be used to generate cyberattacks, which we discussed in 5.4.2 Section.

Network traffic capture can be achieved using one of the network sniffer tools such as Wireshark and Tcpdump.
However, some protocols might require additional hardware or software to be captured, such as the Zigbee protocol.

7.4 Data Creation

Data creation must start once the dataset environment is set up and configured with the required tools. During data
creation, several scenarios are generated and followed to achieve the dataset’s goal, whether for a smart home dataset or
otherwise. For instance, Dadkhah et al. [53] generated six different scenarios that cover several activities.

Coming home: The initial setup for this scenario is that the Ring alarm is armed, and devices are off because no one
is home. Then, once a participant enters the lab, the Ring alarm, the Netatmo camera, and ArloQ motion detection
are alerted. The participant enters the passcode to disarm Ring and voice commands Google Nest Mini to turn on
the Philips Hue lights and Globe lamp. Similarly, the participant voice-commands Alexa to turn on the Atomi Coffee
Maker and to play music over the Sonos speaker. Finally, the participant starts the Roomba vacuum cleaner using the
associated mobile app to start the cleaning process.

Leaving home: The initial setup for this scenario is that all devices are turned on to simulate the presence of people in
the home. Then, the participant voice-commands Alexa to turn off the Atomi Coffee Maker and stop the music that was
playing over the Sonos speaker. Similarly, voice commands Google Nest Mini to turn off the Philips Hue lights and
Globe lamp. Finally, the Roomba vacuum cleaner to its home base to stop the cleaning process.

Home intrusion (during the day): The participant enters the lab; Ring alert, Netatmo camera, ArloQ, and HeimVision
camera motion detection are triggered. The D-Link Water Sensor is also triggered to indicate that the intruder has
spilled some sort of liquid. Once the Ring alarm goes off, the participant leaves the lab, which will also trigger Netatmo
and ArloQ motion detection. This attack scenario occurs with lights on.

Home intrusion (during the night): The participant enters the lab; Ring alert and Netatmo camera are triggered.
ArloQ and HeimVision camera sound detection are triggered. The D-Link Water Sensor is also triggered to indicate
that the intruder has spilled some sort of liquid. Once the Ring alarm goes off, the participant leaves the lab, which
will also trigger Netatmo and ArloQ motion detection. This attack scenario occurs with lights off to evaluate the night
vision capability of the Netatmo camera and the sound detection capability of ArloQ and HeimVision because they do
not support night vision.

Owner error: This scenario is to simulate homeowner errors like entering the wrong password for a security lock.
The participant enters the lab, which triggers a Netatmo camera and the ArloQ motion detection. Then, the participant
enters an incorrect password for the Ring alarm thrice every 30 seconds, setting the alarm off.

IoT vs Non-IoT: This scenario is to test how well IoT devices integrate with Non-IoT devices. To do so, a participant
asks Alexa to play music over a Sonos speaker, let LG TV play a YouTube video, surf social media using a phone,
browse the Amazon website from a computer, and ask Google to turn the Philips Hue lights on.

Another approach to generating synthetic data is using simulation. Moustafa and Slay [82] used a network traffic
simulator called IXIA PerfectStorm, which simulates different types of cyberattacks. Furthermore, Vigoya et al. [81]
discussed three ways of generating anomalous traffic: interception, which could be achieved by deleting sent traffic
packets; modification, which could be achieved by changing sensor readings that are sent randomly (for instance,
Vigoya et al. [77] have changed temperature samples sent to the MQTT broker); and duplication, which could be
achieved by sending more data than planned in the first place (for instance, Vigoya et al. [77] sent more tokens than
planned).
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Figure 5: Data capture duration for 6 different datasets.

Table 8: Formulas of Statistical-based Methods

Statistical-based Methods Formula No.
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7.5 Data Capture Duration

Data capture duration differs from one dataset to another. In this section, we try to estimate the minimum requirement
for dataset capture duration depending on well-known different datasets that were published. (Dadkhah, 2022)
[53] stated that the experiments conducted on the IoT devices took 3 months to create the CIC IoT 2022 dataset
(www.unb.ca/cic/datasets/iotdatas-et-2022.html). He specifically stated that he captured 30 days of idle network traffic
and 30 days of active network traffic (see section 7.3 for more illustrations about different statuses). Furthermore,
(Moustafa, 2021) [83] created an IoT dataset called TON IoT (research.unsw.edu.au/projects/toniot-datasets) that has a
data capture of approximately 27 days. Even though (Moustafa, 2021) [83] did not specify the exact capture duration,
we were able to estimate a data capture duration by calculating the difference between the first and second capture
timestamps. Similarly, (Koroniotis, 2019) [75] published Bot-IoT (research.unsw.edu.au/projects/bot-iot-dataset) dataset
that has a capture duration of approximately 20 days, where we investigated the first and last capture timestamps to
estimate the capture duration.

(Vigoya, 2020) [81] created a dataset (DAD) (github.com/dad-repository/dad) that captured network traffic for 7 days.
During those 7 days, different types of anomalies were generated within 5 days, which leaves 2 days with normal
network activity. Additionally, each day of the capture duration has a summary of the attack performed, if any; otherwise,
it will state that no attack has taken place.

On a shorter duration period, (Moustafa and Slay, 2015) [82] captured traffic for 2 days, where they simulated traffic,
using IXIA PerfectStorm, for 16 hours on the first day and 15 hours on the second day, which generated 100 GB of
traffic in total for their UNSW-NB15 dataset (research.unsw.edu.au/projects/unsw-nb15-dataset). (Frazão, 2019) [80]
also captured network traffic for a short period. His experiment captured network traffic for 1 hour and 30 minutes with
1, 5, and 15 minutes of attack times. The reason behind the varying capture duration is that he wanted to see how each
ML classifier would behave with different capture duration. Figure 5 presents a summary of capture duration.
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7.6 Data Analysis

After creating the dataset, the data captured must be analyzed so that the dataset can be used in different applications
that are tailored to user needs. In this section, we discuss two techniques of dataset analysis.

7.6.1 Feature Analysis

Analyzing network features helps in giving insight into the traffic pattern and whether the traffic is malicious or not.
Tavallaee et al. [84] analyzed the well-known KDD CUP 99 dataset features into three categories:

Basic feature: This category has all fields that are extracted from the TCP/IP connection, which has information such
as IP and MAC addresses.

Traffic feature: A feature computed on the basis of window intervals is included in this category, which can be further
divided into two subcategories: same-host features, which measure protocol behavior, service, and other statistics about
connections with the same destination host as the current connection over the past 2 seconds, and same-service features,
which check only connections that have been connected to the same server in the past 2 seconds.

Content feature: For cyberattacks, R2L and U2R attacks do not have frequent sequential intrusion patterns like DoS
and probing attacks. Because DoS and probe attacks involve many connections in a short period, R2L and U2R attacks
typically involve only one connection. Thus, more in-depth features are needed to detect these kinds of attacks, e.g.,
the number of unsuccessful login attempts, which is in the payload part of the packet. Such features are referred to as
content features.

Biglar Beigi et al. [85] also discussed distinct flow-based features thoroughly:

• Source and destination IP addresses: One of the primary advantages of their use is the possibility of
quantifying the number of distinct connections. However, it does not provide a definitive conclusion as a
feature.

• Source and destination port: Botnet traffic was often recognized by source and destination ports, but this is
not the case anymore due to the frequent change of source and destination ports.

• Protocol: It reduced the volume of flows that needed to be processed by filtering out non-related traffic.
Furthermore, a certain protocol might be an indication of malicious traffic, such as Internet Relay Chat (IRC),
because it is rarely used for non-malicious purposes.

• Duration: This feature could help identify malicious traffic. For example, most botnets initiate a single-way
connection and maintain very short communication sessions before attempting a multidirectional connection.

• First packet length: In addition to revealing the underlying protocol’s characteristics, the first packet in the
flow is useful in detecting malicious traffic.

• Flow size features: Communication patterns are mainly intended to be represented by such features.

• Ratio between the number of incoming packets over the number of outgoing packets: It has been noted
in studies examining the breakdown of Internet traffic that there is an even distribution between inbound and
outbound traffic for various protocols. This would help identify further traffic characterization [86].

• Packet exchange: The number of network packets exchanged between two entities could help to identify
malicious traffic. For instance, bots are always trying to keep communication alive by sending many packets.

• Reconnect: Some malicious entities might try to disconnect and reconnect again to break the detection process
using feature extraction. To overcome this problem, a certain number of reconnections are only allowed within
a certain interval of time.

• Number and percentage of small or null packets exchanged: Studies have shown that certain malicious
traffic might exchange small network packets. For instance, IRC hosts exchange small messages with the C&C
server [87][88].

• Average packet or bits per second, average inter-arrival time of packets: This feature helps identify similar
communication patterns.

Different network features are useful for certain applications. We have seen some useful network features in the context
of malicious traffic. In the context of IoT device classification, Sivanathan et al. [89] extracted DNS queries, NTP
queries, port numbers, and cipher suits for each device within the testbed they developed and used these features to
identify the devices in the network. This shows how different features can be used for different applications. As a
final thought, extracting more features does not always guarantee a high accuracy anomaly detection rate, according to
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Figure 6: 207 Features extracted from 10 different datasets that show the most common extracted features in big font
size, while the least extracted features are in small font size.

Revathi & Malathi [90]. In their paper, they applied RF, naive Bayes, and SVM, among other classifiers, one with 41
features and another with only 13 features, where they used a correlation feature selection (CFS) subset to filter down
the features. The result was that some classifiers had a high accuracy detection rate with fewer features. For instance,
the RF classifier had an accuracy of 98.9% with only 13 features, whereas it achieved an accuracy of 97.6% with 41
features in detecting probe attacks. Figure 6 shows the most common features extracted from the following datasets:
UNSW-NB15 [35], CIC IoT 2022 [53], Bot-IoT [75], MQTT-IoT-IDS2020 [78], DAD [81], TON_IoT [83], CIC IoT
2023 [91], IoT-deNAT [92], IOT Sentinel [93], IoTSense [94].

7.6.2 Statistical Data Analysis

An efficient way to predict and understand IoT device behavior is through mathematical modeling. Using proven
approach techniques, it is essential to mathematically model the real environment to generate a dataset as realistic as
possible [81]. The benefit of using a statistical-based analysis method is that it analyzes features individually, which
eliminates the feature redundancy issue. Li et al. [95] discussed several statistical-based analysis methods that are
summarized along with their formulas in Table 8:

• Low variance: This method filters out features with low variance.
• T-score [96]: It is used for binary classification to determine whether a feature causes a statistically significant

difference between two classes.
• Chi-square score [97]: This method helps to determine how independent a feature is of the class label.
• Gini index [98]: Different classes of samples can be separated using this method.
• CFS [99]: It evaluates how a certain feature fits in relation to the data.

8 Commonly Used Tools and Techniques

In this section, we discuss several commonly used tools in the context of developing a testbed and creating a dataset
that are summarized in Table 9.

8.1 Simulation

Moustafa & Slay [35] used a hardware network simulation called IXIA PerfectStorm (keysight.com/gb/en/
products/network-test/network-test-hardware/perfectstorm.html) for the simulation of network traf-
fic and cyberattacks. According to their documentation, combining multiple simultaneous wired and wireless users with
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Table 9: Summary of Commonly Used Tools and Techniques
Name Purpose References

Argus Network Feature Extraction [100][101][82][14][75]
Bro-IDS Network Analyzer [14][82]
Tcpdump Packet Capture & Analyzer [102][103][75][82][104][105][89][106]

Dpkt Network Feature Extraction [53][75][107][82]
IXIA PerfectStorm Hardware Network Simulator [14][108][82]

MATLAB Programming & Numeric Computing [109][110][111][112][113][114][106] [114][112][115]
Nmap Network Scanner [116][43][117][53][118][75][103][119][10]
Hydra Password Cracker [75][53][119]
Mirage Security Analysis [52]

OpenWRT OS for Routers [120][121][105][122][123][89]
CICFlowmeter Network Feature Extraction [59][124][125][126][65][127]

LOIC Network Stress Tool [53] [103]
TSfresh Time-Series Feature Extraction [128][129][130]

Wireshark Packet Capture & Analyzer [131][43][107] [10] [117][132]
Tshark Packet Capture & Analyzer [4][100] [75][133][133]

PyTorch Implementing AD Algorithm [65][134][69][62][30]
PySyft Implementing AD Algorithm [65][134][69][62]

both application traffic and current attacks is possible with PerfectStorm Fusion. Furthermore, thousands of real-life
end-user environments are simulated and tested using stateful applications and malicious traffic such as DoS and botnets.
The workloads include data, video, voice, storage, and network applications.

8.2 Network Feature Extraction

We have previously discussed how important extracting features is for a dataset. Similarly, Frazão et al. [80] extracted
network features using MATLAB (mathworks.com), where they extracted 68 network features, including packet
timestamps, inter-packet arrival times, binary features defining which protocols were involved, and every field of the
Ethernet, ARP, IP, ICMP, UDP, TCP and MODBUS over TCP headers. MATLAB can also be used to simulate an
IoT environment using MATLAB Simulink features as presented by Al Farooq et al. [135]. According to MATLAB’s
website, both the model-based design and multi-domain simulation are supported by Simulink. Argus (openargus.org)
is another network extraction tool that was used by Koroniotis et al. [75] to extract the record start time, record last
time, standard deviation of aggregated records, class label: 0 for normal traffic, 1 for attack traffic, and traffic category
among other network features. Likewise, Moustafa & Slay [35] extracted three categories of network features: basic,
content, and time using Argus. In addition to auditing IP traffic, Argus provides network activity audit technology for
all network traffic, according to their website. Along with Argus, Moustafa & Slay [35] used a network extraction tool
called Bro-IDS (zeek.org) to extract network features and match the extracted features with the extracted features
from Argus. Their website states that Bro-IDS can be configured to act as an IDS and detect well-known attacks. It
is also important to know that Bro-IDS has been renamed Zeek. Dpkt (dpkt.readthedocs.io) is another feature
extraction tool written in Python for creating and parsing network packets, which supports basic TCP/IP protocols.
Dadkhah et al. [53] extracted 48 features from each device in their experiment that include packet size, protocol,
epoch timestamp, and Ethernet frame size, among other features, using dpkt. According to Teh et al. [68], Tsfresh
(tsfresh.readthedocs.io/en/latest/) is a widely used ML library for time series feature extraction that is
written in Python. Ouyang et al. [129] also used Tsfresh in the context of power consumption to extract features from
the power consumption data of 54,174 customers. Furthermore, Liu et al. [128] used Tsfresh along with LSTM to
present a sensor fault classification method that is based on feature extraction.

8.3 Network Capture and Analyzing

Wireshark (wireshark.org) is a well-known useful tool that is intended to capture and analyze network traffic. It
supports hundreds of protocols to be analyzed and provides online and offline analyzing capabilities. Its interface is easy
to read, and network capture can be filtered using port numbers, protocols, and IP addresses, among other attributes.
Ren et al. [136] used Wireshark to capture network traffic in their project. According to their paper, Wireshark does not
support all encrypted protocols. Tshark (wireshark.org/docs/man-pages/tshark.html) is the terminal version
of Wireshark, which becomes handy in case the use of GUI is not feasible. Similarly, TCPDump (tcpdump.org) is
another packet analyzer and network capture tool that is widely used nowadays. Hamza et al. [105] captured local and
remote network traffic consisting of malicious and benign traffic for 16 days using TCPDump and stored pcap files
on a hard disk that is attached to the network gateway. Similarly, CICFlowmeter (unb.ca/cic) is a network analyzer
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and generator that the Canadian Institute for Cybersecurity developed. It can generate bidirectional traffic and can
capture up to 80 different features, such as duration and length of packets. Additionally, a user can select what features
to be captured and can add new features. CICFlowmeter has been used by Ullah & Mahmoud [137] to extract network
features from pcap files of five different datasets.

8.4 Router Management

To maximize the experience of having full control of routers and access points, Bhatt & Morais [121] configured the
router they used in their research using OpenWRT (openwrt.org). OpenWRT is an embedded Linux operating system
whose file system is fully writable and has a package management feature rather than creating a single, static firmware,
as mentioned on their website. Additionally, Pessoa & Duarte-Figueiredo [138] used OpenWRT to change the firmware
of the TPLink1043nd v2.1 access point to enable OpenFlow connections.

8.5 Cyber Anomalies

To perform cyber anomalies and test the security of their testbed, Dadkhah et al. [53] performed DoS attack using
LOIC, which is a network stress tool that performs cyberattacks. Likewise, Bhuyan et al. [103] used LOIC to generate
a distributed DoS attack. Security analysis of wireless communications is made easier with Mirage, a powerful and
modular framework that is based on Romain Cayre’s research on IoT security. The tool provides hackable wireless
protocol stacks such as Zigbee, BLE, and Wi-Fi. Using Mirage, Gimenez et al. [52] performed different types of attacks
such as DoS, injection, and probe. Hydra is another cyber anomaly tool that helps crack passwords by performing
dictionary attacks. Similarly, Koroniotis et al. [75] performed a dictionary attack on their SSH service. Furthermore,
Rose et al. [119] created malicious pcap files performing different attacks, using Hydra to perform brute force attacks
to test their framework. Another well-known security tool is Nmap, an open-source security auditing and network
discovery tool. It can find hosts within a network, services each host is running, and ports available. Furthermore, Nmap
can be used to perform cyberattacks by running malicious scripts through the Nmap scripting engine. As an example
of using Nmap, Siboni et al. [43] used Nmap to perform a network mapping attack. Even though Nmap can work
on different operating systems, they modified Nmap to work on Android as the experiment was conducted on a Sony
smartwatch. For vulnerability scanning, Tekeoglu & Tosun [107] used Nmap to scan for vulnerability on a FireTV stick,
which shows severe threats. First, a vulnerability was found in the FireTV stick server running on port 49986 with a
10 (out of 10) severity score against Format String Attack on URI. Another vulnerability was also found with a
7.5 (out of 10) score of severity on the same port called CERN httpd CGI name heap overflow, which allows an
attacker to stop a code on the server or even run a malicious code on the server.

8.6 Anomaly Detection Algorithms Implementation

Applying anomaly detection models is a part of the anomaly detection process; thus, we also list tools that help
implement an anomaly detection model. Sater & Hamza [69] used PyTorch (pytorch.org) to implement the stacked
LSTM as an anomaly detection algorithm. PyTorch is an open-source ML framework that is used for DL utilizing
GPUs and CPUs. Similarly, PySyft (openmined.github.io/PySyft/index.html) is another open-source tool that
is used to provide secure and private DL in Python. Mothukuri et al. [65] used PySyft along with PyTorch to implement
their FL approach.

9 Evaluation Metrics

For every anomaly detection technique presented, there must be an evaluation criterion that gives an indication of how
efficient an anomaly detection technique is. In this section, we present the most common evaluation metrics that are
used to evaluate different anomaly detection techniques as summarized in Table 10. Furthermore, we summarize value
interpretations that yield a quality anomaly detection technique in Figure 7 and formulas of discussed evaluation metrics
in Table 11

• TP is when an anomaly is correctly predicted by a model.

• TN is when the absence of an anomaly is correctly predicted by a model.

• FP is when an anomaly is incorrectly predicted by a model.

• FN is when the absence of an anomaly is incorrectly predicted by a model.

• Accuracy measures how accurate a model’s prediction is. Accuracy is inefficient if a dataset is imbalanced
[139].
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Table 10: Anomaly Detection Evaluation Metrics Summary
Paper TP TN FP FN Accuracy Precision Recall F1-Score Threshold Runtime ROC AUC EER MCC PPV MAE MSE RMSE BA

Sikder et al. [45]
Ullah & Mahmoud [59]

Kang et al. [54]
Hosseini et al. [60]

Li et al. [61]
Liu et al. [62]

Mudgerikar et al. [63]
Djenouri et al. [64]

Mothukuri et al. [65]
Shafi et al. [66]

Yahyaoui et al. [67]
Gimenez et al. [52]
Heartfield et al. [4]

Teh et al. [68]
Sater & Hamza [69]

Has not been used, Has been used.

• Precision measures the ratio of predicted anomalies to the total data samples [139].

• Recall measures how many anomalies (TP) were classified by the model [139].

• F1-Score measures the accuracy of a model, using precision and recall, especially when the dataset is
imbalanced [60].

• Threshold is a value that distinguishes between two binary classes, in our case, normal or abnormal. Less
than a threshold is a normal instance, whereas any value over it is an anomaly.

• Runtime is the time it takes a model to completely run and finish, which is also known as computational time.

• ROC provides a graphical representation of a model’s performance using the TPR, represented as a y-axis in a
graph, and FP rate (FPR), represented as an x-axis in a graph [139].

• AUC measures the area under the ROC curve. Essentially, it measures how much area under the ROC has
been covered [139].

• EER is an intersection point between the TPR and FPR on the ROC graph where FPR and FN rate (FNR)
values are equal [139].

• Matthews Correlation Coefficient (MCC) measures how accurate a model is in terms of anomaly prediction
taking into consideration all four evaluation metrics: TP, TF, FP, and FN. Furthermore, MCC yields a high
score if most of both negative and positive data samples are correctly predicted [140].

• Predictive positive value (PPV) measures the proportion of positive anomalies that are actually positive [141]

• Mean absolute error (MAE) evaluates how closely the predicted anomalies match the actual anomalies [139].

• Mean squared error (MSE) is similar to MAE, but it is more sensitive to anomalies because errors are
squared [139].

• Root mean squared error (RMSE) is a measure of the average of squared errors squared [139].

• Balanced accuracy (BA) measures how accurate the prediction of a model is when the dataset is imbalanced
[69].

10 Conclusion

In the end, we reviewed and presented guidelines based on scientific background to design a testbed, choose a testbed
layout, select users and devices, and define the experimental condition for the testbed. Additionally, different anomaly-
creation methods were presented. We have also reviewed multiple anomaly detection mechanisms in terms of the
detection algorithm used, whether it was tested on a testbed or a dataset, and the types of anomalies generated.

Furthermore, we discussed the type of infrastructure to create a dataset and what network configuration to choose
because different wireless communication protocols might need different hubs to manage them; hence, the budget of
the implementation will go up. In terms of data collection, we provided six different statuses in which data are collected
during power, idle, interaction, scenarios, active, and attacks. To generate the data, different traffic scenarios must be
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Figure 7: Evaluation metrics and their value interpretations, where it shows whether a lower value or a higher value
yields a quality anomaly detection technique.

Table 11: Anomaly Detection Evaluation Metrics Formulas

Evaluation Metric Formula No.

Accuracy TP+TN
TP+TN+FP+FN (1)

Precision TP
TP+FP (2)

Recall TP
TP+FN (3)

F1-Score 2× Precision×Recall
Precision+Recall (4)

ROC TPR = TP
TP+FN FPR = FP

FP+TN (5)

MCC (TP×TN)−(FP×FN)√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(6)

PPV TP
TP+FP (7)

MAE 1
n

∑n
i=1 |yi − ŷi| (8)

MSE 1
n

∑n
i=1(yi − ŷi)

2 (9)

RMSE
√

1
n

∑n
i=1(yi − ŷi)2 (10)

BA TPR+TNR
2 (11)
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considered and followed, as we explained with examples of smart home scenarios that might differ depending on the
goal of the dataset. Additionally, a different capture duration was presented to assess the minimum requirement for
capturing data for a dataset. Dataset analysis is an important aspect of the dataset creation process, which consists
of feature extraction and statistical analysis. Several network feature types were presented with examples of distinct
network features and their descriptions. Statistical-based analysis methods with low variance, T-score, chi-squared
score, Gini index, and CFS were discussed in detail.

A set of useful tools, in terms of capturing and analyzing network traffic such as Wireshark, extracting network features
such as CICFlowmeter, and performing cyberattacks such as Mirage, was presented along with their websites and
references. We also highlighted the most common anomaly detection evaluation metrics used in the literature.
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