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Forest ecosystems are of paramount importance to the sustainable existence of life on earth. Unique natural
and artificial phenomena pose severe threats to the perseverance of such ecosystems. With the advancement
of artificial intelligence technologies, the effectiveness of implementing forest monitoring systems based on
acoustic surveillance has been established due to the practicality of the approach. It can be identified that with
the support of Transfer Learning, Deep Learning (DL) algorithms outperform conventional Machine Learning
(ML) algorithms for forest acoustic classification. Further, a clear requirement to move the conventional
cloud-based sound classification to the edge is raised among the research community to ensure real-time
identification of acoustic incidents. This paper presents a comprehensive survey on the state-of-the-art forest
sound classification approaches, publicly available datasets for forest acoustics and the associated infrastructure.
Further, we discuss the open challenges and future research aspects that govern forest acoustic classification.
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1 INTRODUCTION
Forest monitoring systems are predominantly concerned with tracking deforestation and other
environmental aspects to identify necessary actions to preserve forest ecosystems. With the ad-
vancements in the Internet of things (IoT), deep learning (DL) and wireless sensor networks, a
surge of interest in sound classification-based forest surveillance systems can be identified. Sound
classification is a broad area of research that receives significant attention in numerous real-world
applications, including healthcare [59], smart city management [106], music genre identification
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[7] and domestic audio identification [29]. Similarly, Environmental Sound Classification (ESC) has
evolved as an active research area where extensive contributions have been made. Such intelligent
systems enable real-time monitoring of the forest environment by identifying illegal logging of
trees, wildfires, poaching, weather changes, and more.
Over time, various attempts have been made for effective surveillance of large forest areas

including satellite image processing [131], video recording surveillance [49], and motion and
vibration sensor data processing [99][89]. However, these approaches experience limitations such
as expensiveness, the requirement of advanced sensors and high-power consumption [117][98].
Acoustic surveillance being a more feasible solution, provides a different sensory dimension on
larger geographical boundaries [22]. Previously, environmental sound recognition was done by
utilising traditional machine learning (ML) approaches, which showed limited performances due
to high error-susceptibility and low ability in accurate data processing [110][24]. Overcoming
such challenges, DL approaches received high attention from the research community due to their
ability to extract features from raw data, better self-learning capabilities and precise results. IoT
architecture also plays a major role in the practical implementation of a forest acoustic classification
system and can be developed based on two major approaches. In the first approach, forest acoustics
are recorded in a forest environment and the audio files are transferred to a cloud server for the
processing to take place, while audio files are recorded and processed on-site using an edge device,
in the second approach. Both approaches become challenging due to the reasons like harsh weather
conditions, animal disturbances, unavailability of efficient bandwidth, and resource constraints.

Deploying the classification model on the edge device itself reduces the communication latency,
avoids flooding of raw data at the cloud level, improves security and increases the quality of data
due to near sensor processing [21][36]. At the moment, the edge paradigm is still in its early
stages, hence the number of available studies is limited. Therefore, deploying trained models on
edge devices for real-time acoustic surveillance requires considerations, which have not been
sufficiently addressed in previous studies. The requirement of high computational power, memory
constraints, and high energy consumption can be identified as the main challenges involved with
edge computing.

Survey papers which explain the general practices, including feature extraction, model selection,
training and evaluation for ESC can be identified [75][1][3][11]. Further, studies that present the
related work on implementing ML and DL models in edge devices, including the IoT aspects in
generic scope are available [117][75][124]. But none of the mentioned surveys provide a solid
comparison of, datasets available for forest sound classification, CNN and RNN-based models
used for ESC, hardware configurations used for ESC systems, utilised evaluation metrics, and
optimisation techniques used to deploy ML, DL models in edge devices. Thus, a survey paper which
provides an overview of the full pipeline for forest sound classification is not available. These
limitations motivated us to complete this survey, primarily focusing on the state-of-the-art DL
approaches for forest sound classification implemented on resource-constrained edge devices.

This survey paper is organised as follows. Section 1 provides an overview of the forest monitoring
systems. Section 2 emphasises the scope and the motivation of the survey including the evolution of
related techniques. Section 3 includes a comprehensive study on sound pre-processing techniques,
categorised under audio normalisation, data augmentation, and feature extraction. Publicly available
environment sound datasets and their limitations are addressed in Section 4. Section 5 and Section
6 focus on sound classification infrastructure which describes the evolution from ML to DL and
the different DL models available for sound classification under CNN and RNN. Section 7 provides
recommendations and discusses the open challenges and future research directions identified in
this domain. Finally, Section 8 concludes the survey paper with the intention of supporting future
researchers working in the forest acoustics domain.
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2 BACKGROUND
2.1 Real-World Environment Sound Classification
The classification of environmental sound events includes a number of areas, including ocean [76],
forest, and urban [66] acoustics as shown in Figure 1. Scientists and conservationists can delve into
the complex world of forest noises by utilizing cutting-edge methods for acoustic event recognition.
This gives them the opportunity to learn important information about the risks, hazards, and
non-threatening elements of the environment. The significance of forest acoustics is emphasized in
this section, as well as its substantial contributions to ecological study and conservation activities.
Acoustic recognition systems can efficiently detect activities like poaching, illicit logging, and

infiltration attempts in forest areas by using complex algorithms and models. Deep learning
algorithms used in gunshot detection systems make it possible to locate gunshots in tropical forests,
which helps to stop poaching and other wildlife crimes [1]. Conservationists can fight deforestation
operations using acoustic surveillance and monitoring techniques, which enable the detection and
identification of noises connected to unlawful tree cutting [79][6]. Additionally, the detection of
noises associated with vehicle movements and drones is made easier with the use of forest acoustics,
improving security measures and preserving the integrity of forested regions [45].
Forest acoustic recognition can be successfully utilized for locating and minimizing natural

hazards. By identifying the noises connected to wildfires, acoustic event recognition enables early
detection and prompt action [136]. Acoustic recognition techniques assist with climate assessment
and the foretelling of possible threats like flooding by monitoring environmental noises like rainfall
and wind patterns [12]. With the aid of these skills, researchers and forest authorities may gather
crucial data for the creation of manageable plans that will lessen the effects of natural dangers on
forest ecosystems.
Understanding non-threatening sounds, particularly animal vocalizations, is a component of

forest acoustics. For the purposes of biodiversity research and conservation activities, deep learning
algorithms can be utilized to distinguish and classify various animal sounds [132]. As a result, it is
feasible to recognize various species, monitor their habitats, and defend both those ecosystems and
the threatened wildlife that depends on them. Furthermore, sound categorization methods can be
used to successfully identify the climate patterns that present in forest environments [14].

Hence forest acoustics becomes an essential instrument for preserving and safeguarding ecosys-
tems. Its potential in threat detection, hazard mitigation, and sound classification of non-threatening
nature offers priceless insights for ecological study and conservation activities. Forest acoustics
equips researchers, environmentalists, and forest managers with the information and resources they
need to efficiently monitor, manage, and conserve our priceless forests by utilizing cutting-edge
acoustic detection techniques.

2.2 Scope and Motivation
Conducting a survey in the field of forest sound classification offers a vital opportunity for re-
searchers and environmentalists to actively contribute to the preservation and protection of such
ecosystems. By employing advanced algorithms and models, especially deep learning techniques,
forest acoustics holds the potential to accurately identify and categorize sound events linked to
illegal human activities, leading to swift intervention and enhanced security measures. The insights
gained through this survey will equip relevant parties with the information and resources necessary
for efficient monitoring, management, and conservation of forests. Leveraging state-of-the-art
acoustic detection techniques, researchers can gather rich data and develop actionable plans to
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Fig. 1. Overview of Environment Sound Classification

mitigate the illegal activities by humans and natural hazards. Thus the field of forest sound classifi-
cation emerges as a powerful tool that not only propels the advancement of ecological research but
also facilitates impactful conservation activities.
Motivated by prior remarks, this survey explores the standard and novel techniques discussed

in related literature, which can be used to develop forest acoustic classification systems. When
developing such systems, acoustic data availability, data preprocessing techniques, feature engi-
neering techniques, model selection, model evaluation, hardware configurations and optimisations
to support resource-constrained devices are of high importance. Figure 2 presents the overall
taxonomy for Forest Sound Classification (FSC) which structures the above aspects in a hierarchical
viewpoint. With the intention of identifying key areas to focus on in this survey, we carefully
explored survey papers that discuss the above-mentioned aspects and selected four highly related
survey papers for further analysis. Among the selected papers, none specialized in forest sound
classification but [11], [1] and [3] provide a sound review of standard techniques used in ESC.
Further, the work of [113] provides a proper explanation of feature representation techniques that
can be used for ESC. Table 1 presents a summary of the key contributions made by the considered
survey papers.

Fig. 2. Overall Taxonomy
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Table 1. Summary of existing surveys

Consideration [11]
(2022)

[1]
(2022)

[113]
(2020)

[3]
(2020)

Our
Paper

Datasets aq aq - - aq
Audio Normalisation - - - - aq
Data Augmentation - aq - a aq
Feature Extraction aq aq aq a aq
Traditional Machine Learning a a - - aq
CNN a a - a aq
RNN a a - a aq
Transfer Learning - - - a aq
Hardware Configurations - - - - aq
Resource-Constrained Edge Devices - - - - aq
Evaluation Metrics - - - - aqa Partially Discussed aq Well Discussed

We have identified that none of the explored surveys discusses or compares techniques utilised for
optimising DL models to function with constrained resources, hardware configurations best suited
to edge deployment, audio normalisation techniques and evaluation metrics. Also, expositions
including a sufficient amount of use cases for machine learning models, CNN models, RNN models
and transfer learning techniques used in FSC or ESC are not provided. These limitations motivated
us to explore the techniques used in related studies which can be utilised to deploy edge DL
models for FSC. This study stands out for comprehensively reviewing the entire pipeline of forest
sound classification. In contrast to existing survey papers that focus on specific aspects, our paper
provides a holistic analysis, covering all stages of the pipeline by exploring the state of the art
techniques presented in related studies. Through this comprehensive analysis, we not only bring
a novel contribution to the field but also establish concrete future directions and highlight open
challenges in the domain. Accordingly the contributions incorporated into this survey paper can
be summarized as follows,

• We present an overview and a comparison of sound pre-processing techniques used for audio
normalisation, data augmentation, and feature extraction.

• We review the publicly available environment sound datasets with their limitations, alongside
the requirement for a real-world benchmark dataset.

• We explain the effectiveness of DL over ML for ESC, aided with scenarios from related
literature.

• We present a comparative review of state-of-the-art CNN and RNN architectures utilised in
related research work.

• We present a comparison of different approaches followed by researchers to deploy DLmodels
in edge devices.

• We provide a review of hardware technologies used in edge device implementations.
• Finally, the survey provides recommended approaches, open challenges and future research
directions for forest acoustic surveillance.

2.3 Methodology
For this literature survey,we conducted an extensive exploration of research articles, intending to
understand the current state-of-the-art techniques utilised in DL-based ESC for forest surveillance
and capture aspects that need the attention of future research. Our search was performed using the
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advanced search feature supported by the Google Scholar Platform due to the ability to search by
the published source with different keywords. The search was primarily focused on five mainstream
research sources, ACM, IEEE Xplore, Elsevier, MDPI and Springer due to the abundant related
literature in these databases and the high quality maintained in the published papers. The data
acquisition procedure employed for this survey is illustrated in Figure 3.

Fig. 3. The paper selection process for the survey

For the Google Scholar search query, we used keywords like “Environment Sound Classification”,
“Environment Sound Recognition”, “Deep Learning”, “Forest Sound” and names of different DL
techniques such as “LSTM”, “VGG”, “GRU” and “Inception”, where the source field is specified with
the aforementioned source list. Further, a time filter was used to capture only the studies after
2018. Thus, our comparisons will provide an overview of the current state of the ESC domain.
Due to the noise inherent in the search query, many research papers that cannot be used for this
survey were also returned. Hence, a screening phase was conducted to remove unusable papers
such as duplicates, and papers where keywords were only mentioned in the related works section
or references. In addition, we have selected papers written in the English language only. After the
complete selection process, 102 eligible research papers on ESC were identified for the survey, as
summarised in Figure 3. These studies include acoustic processing using DL in different settings
and environments, where we can explore possible techniques and infrastructure for forest sound
classification.

2.4 Evolution of DL Techniques
Deep learning (DL) is a rapidly growing approach in data engineering. It allows the analysis
of different data types and automated feature extraction from raw data [73]. We explored the
progressive evolution of DL techniques that are utilised for the ESC domain during the last few
years. Figure 4 presents a quantitative analysis of the usage of different DL models used in ESC for
the period starting from the year 2018 to the end of 2022. The search query employed in Google
scholar to obtain the information was “(technique name)” + "environmental sound" + "classification"
OR "recognition". However, all the obtained records for a given search may not be directly associated
with the considered scope due to the inherent noise in the querying process. Hence, we assumed
that this error would affect similarly to all the queries, when presenting the evolution of related
techniques in Figure 4.
We have considered two RNN-based and three CNN-based models which are widely used in

the ESC-based literature. At the time of writing, Google scholar reported 1230 and 3270 search
results when "RNN" and “CNN” was used as the technique name respectively. Hence, it becomes
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Fig. 4. Evolution of DL techniques

apparent that there is a higher interest in CNN-based approaches for the ESC domain. Further,
Visual Geometry Group (VGG), Inception, and Gated Recurrent Unit (GRU) techniques have shown
a similar and steady rise in usage since 2018. In 2020, a comparatively high rise in the usage of
Residual Network (Resnet) architecture can also be identified. However, there has been a higher
interest and rapid growth in the Long short-term memory (LSTM) technique for ESC, compared to
other techniques over time. In addition, these results include studies that have used DL techniques
for ESC on both cloud-based and edge-based implementations.

Furthermore, a scarcity of research work can be identified for edge-based environmental sound
classification using DL. To analyse the edge-based research in a quantitative manner, the above
mentioned query was extended with the keywords "edge" or “embedded”. Google scholar reported
521 and 1360 search results, when the new query was used with the technique names "RNN" and
"CNN", respectively. This is considerably low when compared to the search results obtained with
the original query. Thus, the requirement of conducting further research on the edge-based acoustic
classification domain can be clearly identified.

3 SOUND PRE-PROCESSING
3.1 Audio Normalisation
Audio samples are utilised to train the classifier and later classification decisions are made on
the real-time acquired audio samples. These audio samples contain different loudness levels and
may contain different interferences. Therefore, for the classifier to generate efficient and accurate
classification decisions, it requires normalised data samples [58]. Here, the same normalisation
techniques need to be followed in the real-time classification phase as well. Audio normalisation
is an effective pre-processing method to obtain more consistent data before passing it into the
learning models. Generally, this process changes the overall volume by a constant amount to reach
the amplitude to a target level. Since the same amount of gain is applied over the data, it does not
affect the signal-to-noise ratio and relative dynamics. Thus, audio normalisation does not change
the sound or compress the data.
Table 2 presents the usage of audio normalisation techniques including peak normalisation

(PN), root mean square (RMS), European Broadcast Union standard (EBUS), pre-emphasis filters
(PEF), sampling frequency (SF), the bit depth of audio (BDA) and log scaling (LS) normalisation for
environment sound pre-processing. Accordingly, it can be seen that techniques such as SF and PEF
are widely used for the audio normalisation of forest sounds. Using higher sample frequency, higher
number of samples of audio which are taken per second, generates more accurate representation
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of the original audio which is helpful to preserve the nuances and details of the original audio.
Pre-emphasis filters improve the overall quality and clarity of the audio by boosting the higher
frequency of audio signals. It can be used to detect and correct issues in the audios.

Table 2. Usage of audio normalisation techniques in forest observatory studies

Technique Dataset Studies Total

Sampling
Frequency

ESC [6], [37], [43], [130], [78], [77], [95], [48]

27

UrbanSound8K [26], [31], [2], [95], [77], [43], [52], [48]
Bird sound (Xeno-canto) [22], [137], [138]
DCASE2016 [52], [130]
Audioset [37], [43]
Forest sound [46]
Animal sounds [58]
BirdCLEF [65]
Bird Sound (CLO-43DS) [132]

Pre-Emphasis
Filters

UrbanSound8K [107], [57], [133], [102], [52]

10ESC [102], [107]
FSDKaggle18 [102], [107]
DCASE2016 [52]

Peak
Normalisation

DCASE2016 [58] 2UrbanSound8K [111]
Root Mean
Square

Chainsaw sound [79] 2UrbanSound8K [111]
Bit Depth of
Audio

Bird sound (Xeno-canto) [22] 2UrbanSound8K [77]
European
Broadcast
Union standard

UrbanSound8K [111] 1

Log Scaling Animal sounds [22] 1

Among many related studies, Shah et al. [111], have compared the usage of peak normalisation
(PN), root mean square (RMS) normalisation and European Broadcast Union (EBU) standard as audio
normalisation techniques. They have comparatively shown that the EBU normalisation technique
performs with the highest accuracy of 95% when coupled with data augmentation techniques. In
addition, pre-emphasis filters (PEF) are used to normalize the audio (BDA) samples to balance
the audio noise ratio and numerical complexities [102]. Sampling frequency (SF) and bit depth
of audio samples also play a vital role. Andreadis et al. [6], have analysed the trade-off between
computational cost and the quality of the input using two-bit depths (8 and 32) sampling at 16 kHz.
They have shown that the highest classification accuracy of 85.37% can be obtained with 32-bit
input. In contrast, an accuracy of 85.03% is gained with 8-bit audio samples. Authors have further
shown that the usage of 8-bit audio samples significantly reduces computational resources, while
the inference time of the classifier is reduced from 1089 ms to 232 ms when compared with the
32-bit approach.
Moreover, the usage of log scaling (LS) and z-score normalisation can also be identified in

the literature. Cartwright et al. [18], have used log scaling over the raw audio files before the
corresponding feature spectrograms are extracted. Further, they have compared the usage of per-
channel energy normalisation (PCEN) as an alternative to log scaling and provided evidence that
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PCEN increases the performance of the classifier by a considerable margin. Furthermore, z-score is
applied to normalise raw audio data in [132]. The authors have clipped the audio frames sampled
at 22.05 kHz to remove unnecessary parts and then applied z-score normalisation before extracting
Mel spectrograms.

3.2 Data Augmentation
Data augmentation is used to increase the dataset by forming new and slightly modified copies of the
existing data. Thus, augmentation helps to synthetically increase the number of data points during
sound data pre-processing [83] [73]. By generating a rich and sufficient dataset, data augmentation
techniques support the generalization of the classifier and prevent overfitting in the training phase,
which results in increased model performance [65]. Several techniques such as noise injection that
adds a random value to data, shifting time that shifts audio to left or right with a random second,
and changing pitch and speed are discussed in the related literature [37][83][85]. Thus, appropriate
techniques to augment the dataset should be selected based on the given data pattern.

Most of the related studies have applied data augmentation in environment sound classification
tasks for both urban and remote areas. Das et al. [31], have used pitch shift, time stretch, and pitch
shift combined with time stretch as audio data augmentation techniques on the UrbanSound8K
dataset. Nanni et al. [86], have used a single frame to create 10 more audio clips using techniques
like signal speed scaling (SSS) and pitch shifting by a random number, in their work on animal
sound processing. In addition, random time delays (RTD), time stretching, and pitch shifting have
been used to augment environment sound data [95].

The sliding window is another technique used in both real-time acquisitions of sound and aug-
mentation of training datasets. This technique generates sound frames of known length from
audio streams because shorter sound signals can better capture acoustic phenomena [23]. It allows
overlapping between successive frames, thus, increasing the number of data frames. For instance,
a sliding window of 4000ms with 50ms hop length (3950 ms overlap) can be used to create 21
audio frames each of 4000ms duration from a 5000ms audio signal [6]. Similarly, Mporas et al. [79],
have used a sliding window of 20 ms with a 50% overlapping between successive audio frames.
Although windowing presents the above advantages to the classification procedure, determining
the best-suited window size to represent the relevant acoustic phenomena by the generated frames
is challenging.
Table 3 summarises the usage of audio augmentation techniques including time stretching

(TS), spec augmentation (SA), pitch shifting (PS), signal speed scaling (SSS), random time delays
(RTD), and sliding windowing (SW) in environment sound pre-processing. It can be observed that
techniques such as SW, PS and TS are widely used for sound data augmentation, while most of the
studies incorporate multiple augmentation techniques to overcome the lack of audio data available
for ESC and to prevent models from overfitting. SW generates multiple variations of an audio signal
by applying transformations to small, overlapping segments of the signal, rather than the entire
signal at once. PS generates multiple variations of audio through raising and lowering the pitch
and TS speeding and slowing down the audios to generate multiple audios. Both TS and PS can
preserve the timbre of the original audio signal while still making it sound different. SW, PS and
TS augmentation methods are resource intensive and efficient augmentation methods capable of
providing more complex and varied transformations to the audio signal which make researchers
use these techniques more frequently in data augmentation.
A comparison is presented by Wei et al. [127], while using the aforementioned augmentation

techniques they introduce an efficient technique called Mixed Frequency Masking (MFM), which
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Table 3. Usage of audio data augmentation techniques in environment sound processing

Technique Dataset Studies Total

Sliding Windowing

UrbanSound8K [115], [94], [133], [21], [53], [52], [34]

24

ESC [130], [108], [115], [6], [53], [21], [53]
Bird Sound (Xeno-Canto) [22], [138], [137]
DCASE [52], [130]
Chainsaw sound [79]
Animal sounds [68]
Forest sound [89]
TUT sound events [21]
Bird Sound (CLO-43DS) [132]

Time Stretching

ESC [83], [85], [69], [121], [95], [95], [48]

17

UrbanSound8K [120], [95], [31], [83], [69], [48]
Birds and cat sounds [86]
Audioset [67]
DCASE [121]

Pitch Shifting

UrbanSound8K [120], [21], [95], [31], [83], [69], [48]

16
ESC [83], [85], [69], [95], [21], [48]
Birds and cat sounds [86], [85]
TUT sound events [21]

Spec Augmentation

ESC [85], [121]

6
Bird, Cat [85]
DCASE [121]
UrbanSound8K [26]
BirdCLEF [65]

Random Time Delays ESC [85], [95], [95] 5Bird, Cat [85]
UrbanSound8K [95]

Signal Speed Scaling
ESC [85], [121] 4Bird, Cat [85]
DCASE [121]

outperforms other augmentation methodologies. Moreover, Mushtaq et al. [83], have compared
different sound augmentation techniques. They have shown that a combination of positive pitch
shift, negative pitch shift, slow time stretch, fast time stretch and silence trimming, outperforms
traditional techniques such as zoom range, width shift, fill mode, brightness range, rotation angle,
height shift, shear range and horizontal flip, for ESC-50 dataset. For the comparison, they have
used a novel Deep Convolutional Neural Network (DCNN) and state-of-the-art transfer learning
models including AlexNet, ResNet, DenseNet and VGG.

Apart from expanding the available data points as described above, actions are needed to increase
the quality of the available data as well. Mushtaq et al. [82], have described the use of silence
trimming functions available in the Librosa package [72], to increase the quality of the data points,
as significant portions of available audio files contain irrelevant low decibel sounds. The effect of
data efficiency on the pipeline efficiency of a classification system is discussed in [67]. They have
shown the impact of missing files and speed for data efficiency, and the importance of using smaller
features to obtain maximum efficiencies.
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3.3 Feature Extraction
A compact representation of audio signals are generated by applying feature extraction before
the model training, to reduce the computational complexities [113][35]. In audio data, feature
extraction mainly considers the time and frequency domain representation. We discuss the usage
of related techniques such as linear spectrogram, Mel-scale spectrogram, Mel Frequency Cepstral
Coefficients (MFCC), Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT)
spectrogram for feature extraction of environmental sounds.

Table 4 provides an overview of different feature extraction techniques used in related literature,
including linear spectrogram (LS), Mel-scale spectrogram (Mel), Mel Frequency Cepstral Coefficients
(MFCC), Continuous Wavelet Transform (CWT), Constant-Q Transform (CQT) spectrogram and
Zero Crossing Rate (ZCR) for forest environment sound pre-processing. Accordingly, it can be seen
that techniques such as MFCC and Mel-Scale Spectrogram are widely used for feature extraction of
environment sounds, due to the ability to perceive natural human hearing processes using the Mel
Scale.
The linear spectrogram is a simple feature extraction method that considers both time and

frequency domain features of audio data. Fourier Transform (FT) is used to generate the frequency
domain features because a given audio signal is a combination created by the super-imposition of
distinct audio signals with different frequencies and amplitudes [77]. Several feature extraction
methods based on the Fourier extraction of an acoustic signal are available in the literature. Amongst
them, a simple application of the Fourier spectrum is used in [107]. They have calculated the sum
of squared Fourier coefficients for a given analysis frame, which is termed the power spectra of the
signal and is used to represent the signal in the frequency domain. This study has used the power
spectra obtained for the signal with Dynamic Time Warping (DTW) and Feedforward Networks
(FFN) to generate classification decisions. Moreover, Andreadis et al. [6], have used the linear
spectrogram technique with a sub-framing size of 20 ms. They have calculated the spectrogram for
256 different frequency bands. In addition, a comparison between linear and log spectrograms is
presented in [33]. They have shown how less information available in linear spectrograms causes
lower accuracies when classification decisions are made. The clarity and the details included in a
linear spectrogram can be increased by converting the amplitudes to decibel scale.

Mel scale is a perpetual scale developed based on the way that humans recognize the sound and
it is the result of a non-linear transformation of the frequency scale [125]. Generally, a spectrogram
visualizes the frequencies of a signal varying with time. Mel spectrogram logarithmically renders
frequencies above a certain threshold. Among several studies, Hyder et al. [54], have presented
a comparison between the effectiveness of feature extraction with linear scaled, log scaled and
Mel-scaled filter banks when classification is done with a CNN model. Mel Frequency Cepstral
Coefficients (MFCC) are a set of features derived from the Mel spectrogram of a given audio signal.
This has been considered the dominant feature extraction method for audio analysis [100]. Although
a large set of MFCCs can be extracted from a given audio frame, generally, the first 8-13 MFCCs are
used in feature extraction as they generate a robust and accurate representation of the considered
audio [5]. Sharan et al. [112], have presented an analysis of linear scaled and log scaled MFCC
for environmental sound analysis. They have shown that high accuracies can be obtained using
noise-free audio data.

Several studies have compared different feature extraction techniques. In Das et al. [31], a compari-
son betweenMFCC, Mel Spectrogram, Chroma STFT, Chroma constant-Q transform (CQT), Chroma
CENS, Spectral Contrast and Tonnetz as feature extractors are presented. They have incorporated
CNN and LSTM against the UrbanSound8k dataset in their comparative study and show that the
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Table 4. Usage of feature extraction techniques of sound data

Technique Dataset Studies Total

Mel-Scale
Spectrogram

ESC [108], [6], [115], [130], [83], [43], [69],
[85], [82]

26

UrbanSound8K [82], [31], [115], [83], [43], [120], [69]
AudioSet [67], [50] , [43]
DCASE [130], [58]
Youtube-100M [50]
BIRDZ, Cat sound [85]
TUT sound [69]
Bird Sound (CLO-43DS) [132]
Bird Sound (Xeno-Canto) [138]

Mel
Frequency
Cepstral
Coefficients

UrbanSound8K [102], [57], [31], [53],[52], [120]

23
ESC [37], [53], [6], [102], [130]
Forest sound (private) [89], [107]
Environment Sound (private) [30], [64]
Chainsaw sound (private) [79], [46]
DCASE [130], [52]
Bird Sound (Xeno-Canto) [22]
Animal Sound [128]
AudioSet [37]
FSDKaggle2018 [102]

Linear
Spectrogram

ESC [108], [53], [6], [115]

13

UrbanSound8K [111], [31], [53], [115]
Bird Sound(Xeno-Canto) [137], [138]
Chainsaw sound (private) [46]
Forest sound (private) [89]
Own Dataset [61]

Constant-Q
Transform

ESC [37], [53]

6UrbanSound8K [31], [53]
Chainsaw sound (private) [46]
AudioSet [37]

Spectrogram
and Zero
Crossing
Rate

Chainsaw sound (private) [79]

4Forest sound (private) [89]
ESC [82]
UrbanSound8K [82]

Continuous
Wavelet
Transform

Chainsaw sound (private) [46]
3ESC [53]

UrbanSound8K [53]

best results are obtained with MFCCs. Another comparative study [134], presents a comparison
between Fourier spectrogram, Mel-scale spectrogram, CQT and MFCCs. They have shown that
raw FT which can achieve an accuracy of 77.38%, can be increased to 91.61% when combined
with Histograms of Oriented Gradients (HOG) local descriptor. Moreover, the effectiveness of
the Mel scale spectrogram (Mel), Log-Mel scale spectrogram (LM) and MFCC are addressed by
Peng et al. [94]. They have combined these feature extracting methods to generate, Mel-MFCC,
LM-MFCC and T-M (Mel-LM-MFCC) and conclude that LM-MFCC feature fusion can achieve
high performance against the ESC dataset using the GRU architecture. The trade-off between the
accuracy of the predictions and the computational and memory cost has become a vital factor
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when the classification model is implemented in a low-resourced edge device. Beneficially, MFCC
can be identified as a proper feature extraction methodology which does not require substantial
memory and computational cost [6]. Further, Andreadis et al. [6], have shown that the usage of
MFCC reduces the inferencing time of the model when compared with other feature extraction
methods such as linear spectrograms and Mel scale spectrogram when used with CNNs.
Continuous Wavelet Transform (CWT) scalogram is another feature extraction approach that

provides better time localization and is suited for non-stationary signals [119][60]. Copiaco et
al. [29], have proposed an FFT method to extract feature coefficients from the CWT Scalogram,
such that, the computational complexities can be reduced. This feature extraction method has
produced robust and high accuracy results compared to MFCC and Mel spectrogram. Another
novel technique is introduced by Okawa et al. [88], showing that the bit representation of audio
contains more properties than the integer-based waveform representations. In order to introduce
the noise robustness to feature extraction, Huang et al. [52], have proposed a fusion between MFCC
and Gammatone Frequency Cepstral Coefficients (GFCC). They have shown the effectiveness of the
fusion of MFCC and GFCC against UrbanSound8k and DCASE2016 while achieving high accuracies
for both datasets.

4 ENVIRONMENT SOUND DATASETS
4.1 Benchmark Dataset
A benchmark dataset consists of a variety of data, representing real-world scenarios. This will
reduce the biases that can be introduced to the datasets. Moreover, such a dataset can be utilized
as a general measure to determine the strengths and weaknesses of different methodologies with
rigorous evaluation. Although there are several public datasets available, they are inconsistent
in some scenarios and lack diversity. Figure 5 shows the major features of benchmark datasets
under three aspects, namely, different environmental factors included in the sound, the importance
of varying sound-related properties and microphone-related factors [84]. Changes in different
environmental conditions can introduce a variety of noise effects on audios which is a major
problem when creating a benchmark dataset. Thus, to improve the diversity of the dataset, it is
essential to collect audios under different weather conditions covering common forest scenarios
representing varying periods. Consequently, the properties of sounds are another considerable
factor for a high-quality benchmark dataset. Therefore, it is required to include a recording of
the same sound source with additional loudness levels, pitch levels and lengths. Moreover, using
different microphones and varying the position from the ground level to capture the sound can
improve the generality of a benchmark dataset.

Fig. 5. Requirements for a benchmark dataset

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.



111:14 Meedeniya and Ariyarathne, et al.

4.2 Public Datasets
Studies focused on forest acoustic monitoring, generally develop new datasets by combining audio
data available in public datasets and their privately collected audio dataset. This section provides
an overview of publicly available datasets that govern the ESC domain which can be used for the
above purpose as well.

FreeSound An audio-based public dataset in a collaborative platform. It consists of more than
500,000 audio clips. In addition, FreeSound provides an API to access audio data in different
formats with complex search functionalities [42][41]. Datasets such as UrbanSound8K and
ESC-50 were created by extracting data from the FreeSound dataset. The dataset is available
at https://annotator.freesound.org/ and https://labs.freesound.org

BBC Sound Effects library A collection of 2400 acoustic data captured in different geographical
areas such as Europe, Asia, the Middle East and South America [13]. All the audio files are
easy to search due to the extensive metadata embedded and are available to download as
mp3 or WAV files via the online platform of the library. Many studies have extracted forest
acoustic surveillance data from this dataset to create their dataset [27][112]. The data can be
retrieved from https://www.epidemicsound.com/sound-effects.

ESC-50 A collection of 2000 short audio clips equally distributed among 50 classes, which are again
divided mainly into five major classes, (1) animal sounds, (2) human (non-speech) sounds,
(3) urban noises, (4) natural soundscapes and water sounds, (5) domestic sounds [97]. ESC
dataset is created by querying the Freesound database described above, considering classes
of selected ESC taxonomy. Five-second long recordings were extracted from the audio events,
while shorter events with less than 5 seconds were padded with silence and converted to a
unified format (44KHz, single channel). The size of the dataset is approximately 600MB and
is available at https://github.com/karolpiczak/ESC-50 [96]. Further, ESC-10, which is a less
complex subset of ESC-50, is frequently used in related literature. It consists of 10 classes
(dog, sneezing, clock ticking, crying baby, crowing rooster, rain, sea waves, fire crackling,
helicopter, chainsaw) chosen from the main 50 classes.

UrbanSound8K A subset of the main UrbanSound dataset, which contains 27 hours of audio with
18.5 hours of annotated sound events [103]. The UrbanSound dataset is created by querying
audios from the Freesound platform. UrbanSound8K dataset consists of 8732 audio clips
and is categorised under 10 main classes (air conditioner, playing children, car horn, dog
bark, engine handling, jackhammer, street music, siren, gunshot). The dataset contains nearly
1000 audio clips per class. Audios were selected considering three main aspects, (1) contain
sounds from urban environments (2) consider recordings only from real field recordings
(3) sufficiently large dataset. Audios available in UrbanSound8K are 4 seconds or less in
duration and are sufficient for classifying audios with considerable accuracy [27]. It should
be noted that to generate publishable results for the U8K dataset, studies must implement 10
fold cross-validation with the predefined folds of the dataset [48]. The dataset is available at
https://urbansounddataset.weebly.com/urbansound8k.html [104].

AudioSet A dataset consists of human-annotated 10-second audio clips from Youtube [44]. Dataset
is presented as a CSV file, which contains (1) Youtube video identifier (2) start time (3)
end time (4) labels of sound categories present in the audio. There are more than 2 million
sound clips distributed among 527 unique classes. The available data points are divided
as balanced, unbalanced training set and evaluation set. This dataset is available at http:
//research.google.com/audioset/ontology/index.html [8]

FreeSound Dataset 50K (FSD50K) A subset of the AudioSet dataset and consists of 51197 audio
clips distributed among 200 classes based on the AudioSet ontology labelled by humans
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[40]. Most of the audio clips in the dataset are produced by physical sound sources and
different production mechanisms. The dataset is available at https://annotator.freesound.org/
fsd/release/FSD50K/ [39].

SONYC-UST A dataset with 3068 audio records captured using the Sounds of New York City
(SONYC) sensor network [19]. All the audio samples are classified into 8 main classes and
extended to 23 fine-grained classes. An improved version of SONYC-UST named SONYC-
UST-V2 [17], is also publicly available with 18510 audio recordings captured from the same
sensor network. This has been used for the development and evaluation of machine listening
models for realistic urban noise monitoring [18]. The dataset can be retrieved from https:
//doi.org/10.5281/zenodo.3966543 [16].

FSC22 Dataset A dataset that contains 2025 audio samples, each with a duration of 5 seconds,
resulting in 2.81 hours of forest acoustics. The audios are retrieved from the FreeSound
Platform and distributed among 27 subclasses. Each subclass contains 75 manually selected
audio samples. The dataset is available at https://ieee-dataport.org/documents/fsc22-dataset
[10].

Table 5. Overview of public ESC datasets

Dataset Source Total
clips

Clip
length Classes Used

classes Related studies

ESC-50 [96] Free-
sound 2000 5s 50 22

[21], [95], [37], [78], [53], [6], [82], [77],
[102], [91], [25], [83], [43], [4], [130],
[115], [87], [48]

Urban-
Sound8K
[104]

Free-
sound 8732 4s or

less 10 3

[21], [95], [53], [111], [82], [77], [26],
[102], [91], [57], [31], [25], [106], [83],
[43], [52], [120],[85], [2], [34], [69],
[115], [87], [94], [133], [139], [48]

AudioSet [8] Youtube 2 Mil. 10s 527 17 [37], [67], [50], [135], [61], [43], [3], [63]

FSD50K [39] Free-
sound 51197 0.3s to

30s 200 13 [40]

SONYC-
UST-v2 [16]

SONYC
acoustic 18510 10s 23 9 [4], [18], [17]

Table 5 shows a comparison of the aforementioned publicly available ESC datasets. The summary
of ESC-10 and SONYC-UST is not included as they are direct subsets of ESC-50 and SONYC-UST-V2,
respectively. FSC22 which is a recently released dataset is not included because no studies have
been published based on it [10]. Further, the FreeSound database and the BBC Sound Effects Library
are not included, as they are platforms, where audio data can be retrieved to generate related
datasets.
Accordingly, these datasets contain acoustic events covering different phenomena that can be

observed naturally or artificially in forest ecosystems. However, they lack sounds like specific
animal sounds, engine sounds and forest fires, which are of high significance. Thus, researchers
have used datasets like BIRDZ [86][85], Xeno-Canto Archive [141][137][138], TUT Sound Events
[21][135][69], and Youtube-100M [50] to generate combined datasets to better suit their classification
requirements.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://annotator.freesound.org/fsd/release/FSD50K/
https://annotator.freesound.org/fsd/release/FSD50K/
https://doi.org/10.5281/zenodo.3966543
https://doi.org/10.5281/zenodo.3966543
https://ieee-dataport.org/documents/fsc22-dataset


111:16 Meedeniya and Ariyarathne, et al.

4.3 Challenges in Public Datasets
Generally, public datasets are generated considering a real-world application domain like ESC.
These datasets contain large volumes of audio data points according to common taxonomies [103]
while covering a broad scope of scenarios. However, these saturated datasets cannot be directly
used for the training and validation of classifier models in specific scenarios such as forest acoustic
monitoring and surveillance. Therefore, a significant amount of resources needs to be utilised to
extract data from public datasets and to annotate the data points according to a suitable taxonomy.

Public datasets aremostly created using two types of audio clips, (1) clips recorded bymicrophones
capturing the required scenario and (2) clips extracted from videos that contain the considered
scenario captured by different types of devices. Inherently, these audio clips are clearer and without
background noise when compared to the actual real-world scenarios. Further, the effect of aspects
such as different weather conditions, the varying distance between non-stationary sound sources
and the microphone, and different geographical factors are not properly implied in the publicly
available datasets. Due to the above-mentioned reasons, it becomes inconvenient to directly use
public datasets for forest acoustic monitoring and surveillance. Different approaches such as
synthetic data generation have been followed to incorporate the aforementioned factors into the
dataset that are used for training and validation to obtain more accurate and efficient decisions.

4.4 Synthetic Datasets
Collecting dedicated audio samples of real-world scenarios is challenging due to the high resource
requirement. Available public ESC datasets cover a broad spectrum and are hard to use for a given
sound classification application. For instance, ESC-50 or UrbanSound8K dataset cannot be directly
used for forest sound monitoring and surveillance. As a solution, synthetic sound generation
techniques are used to create sound clips with sufficient realisticity.

Among several studies, Mun et al. [80], have proposed a Generative Adversarial Network (GAN)
based technique to synthetically develop larger datasets. They have used GANs for each class
and iteratively generate new data points for each class. Also, they have utilized a Support Vector
Machine (SVM) hyperplane for each class to select only the suitable samples to be merged into the
original dataset. The overall accuracy of both the classification models has obtained significant
improvements with the combined dataset when compared to the results obtained with the original
dataset. In addition, GAN-based techniques are used to overcome the data scarcity issue [69].
Moreover, Elliott et al. [37], have used vector-quantized variational autoencoders (VQ-VAE) to

generate synthetic data for ESC. The authors have experimented with the VQ-VAE over the ESC-50
dataset and compared it with the other optimisation techniques such as curve tokenization and
amplitude reshaping. They have shown that VQ-VAE optimisation achieves the lowest performances
due to the heterogeneity of the ESC-50 dataset. Furthermore, a benchmark on sound event detection
system [122], has used the Domestic Environment Sound Event Detection (DESED) synthetic
soundscape evaluation set. It consists of audio clips with 10 seconds, which were created from the
Scraper [105] library. Scraper automatically mixes a selected set of foreground and background
audios randomly with the user’s requirement. Moreover, it controls the signal-to-noise ratio and
controls several other key characteristics. These synthetic soundscapes are annotated automatically
by Scraper. Serizel et al. [109], have shown that DESED relies on biases which restrict reaching
generalisation to real case conditions, even though the performance was improved [61].
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5 SOUND CLASSIFICATION INFRASTRUCTURE
5.1 Machine Learning vs Deep Learning
Present ESC classification studies are mainly based on ML and DL. Generally, ML uses algorithms
to learn data and make predictions without being explicitly programmed [81]. In contrast, DL
uses a complex structure of algorithms modelled as of the human brain, to learn and classify
the data. Most of the ML-based studies have used SVM and KNN for ESC with private datasets
[46][79]. Generally, ML algorithms endure the selectivity invariance problem, as they have limited
ability to process data in their original format [24]. With the advancement of DL techniques, DL
models such as CNN, LSTM, VGG, and MobileNet have been utilised for ESC [100]. However, by
nature, DL techniques require large volumes of data to train models and generate accurate and
efficient decisions [24]. Considering the comparative studies, Chen et al. [25], have compared the
performance of ML and DL approaches for environmental sound classification. Based on their
results, SVM showed an accuracy of 63.3%, while CNN and RNN showed maximum accuracies of
85.5% and 91.1%, respectively, with the UrbanSound8K dataset, indicating the superiority of DL
algorithms over ML algorithms. We have analysed over 100 unique implementations based on the
two major architectures CNN and RNN, for ESC and identified the best-performing models against
the most frequent datasets. Among CNN-based models, DenseNet has shown better performances
[82] [83] [91]. Moreover, among RNN-based models, LSTM has provided better results considering
the sequencing nature of audio data [31] [57].

Accordingly, ML and DL present unique advantages and disadvantages according to the domain
they are deployed. Thus, both architectures have been extensively used in different studies that
cater to unique requirements. Figure 6 shows the frequency of using ML models such as KNN, SVM,
Bayesian Network and, DL models such as GRU, AlexNet, LSTM, VGG, ResNet, DenseNet based on
standard audio datasets such as AudioSet, DCASE (Detection and Classification of Acoustic Scenes
and Events), ESC-10, ESC-50, UrbanSound8K (U8K) for ESC. It is observable that the techniques
such as SVM, AlexNet, ResNet and DenseNet have been used widely for ESC in general. Since DL
techniques support classifying complex audio data with implicit feature engineering, it outperforms
ML approaches [115]. Therefore, this survey focuses on studies based on DL techniques for forest
surveillance through sound classification, and Section 6 describes them in detail.

Fig. 6. Usage of ML and DL models against audio datasets

5.2 Transfer Learning
A system’s ability to use previously learnt skills and knowledge to analyse a novel task can be
defined as Transfer Learning [92] [73]. With this approach, a model pre-trained on a general dataset
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can be specialised to a considered domain by training the model again over a problem-specific,
comparatively smaller dataset [55]. DL algorithms require large volumes of data, which is not
available for many environmental scenarios and the creation of such datasets requires more effort.
Therefore, learning schemas such as transfer learning plays a vital role in this domain [115][87].

For instance, Mushtaq et al. [83], have addressed the usage of ResNet, DenseNet, SqueezeNet,
AlexNet and VGG, which use transfer learning to obtain the required accuracies and efficiencies.
They have shown that a combination of ResNet and DenseNet generates the best performance
when coupled with meaningful data augmentation techniques. In addition, a comparison among
DL techniques such as ResNet, DenseNet, and ESResNet is presented in [87]. They have modified
the ResNet architecture and introduced a new classification model called SoundCLR using Transfer
Learning. SoundCLR achieved 93.6%, 99.75%, 88.01% accuracies for ESC-50, ESC-10 and Urban
Sound 8k, respectively. [48] studies the effect of using pre-trained weights learnt from imagenet
dataset for sound classification based on ESC50, ESC10 and U8K datasets. Their best performing
model ESResNet-Attention shows a significant improvement in accuracy when the pre-trained
weights were used, showing the importance of using transfer Learning for ESC. Further, Bhat et
al. [15], have proposed a new audio classification model called YAMNet based on MobilenetV1
architecture. YAMNet achieves a classification accuracy of 98.4% over a subset of the ESC-50 dataset.
Although Transfer Learning approaches present vital advantages to practically implementing

a DL model, they inherit severe challenges. For instance, the dataset used to pre-train the model
can contain certain biases and even backdoor data insertions to generate erroneous decisions [55].
Therefore, when using Transfer learning for ESC systems, proper precautions need to be taken to
guarantee the interpretability of the decisions.

5.3 Hardware Configurations
Selecting an optimal hardware specification for DL tasks is critical, as it affects the performance
and accuracy of the application. However, this decision predominantly depends on the factors such
as the task carried out, computational requirement, cost, power usage, and size of the data. The
studies explored in this survey were analysed to present different usages of hardware configurations
including CPU, GPU, and resource-constrained edge devices. Table 6 states the studies on ESC, that
have used CPU, GPU-based platforms, or resource-constrained edge devices. It can be seen that
many sound processing studies have used GPUs as their implementation platform.

Among the considered studies, only four studies have mentioned the usage of CPU for different
classification tasks. For instance, the work presented in [29], has used Intel Core i7-9850H CPU
@2.60GHz processor only for the feature extraction task but not for the model training. Gazneli et
al. [43], have presented a comparative study on model inference time on the Nvidia Tesla v-100
GPU and Intel(R) Xeon(R) CPU. They have shown promising performance on the GPU, compared
to the CPU. Hence, we can see that all the processors are not compatible with handling a given DL
task. Generally, CPUs are reasonable for inferencing tasks but not for data-intensive computation
tasks. Hence, most of the researchers have utilised GPUs for the DL-based sound classification.
GPUs are more appropriate for DL tasks, as they can take the advantage of parallel processing that
provides high-speed processing capability and improves productivity. From the identified literature
NVIDIA is the widely used GPU for DL tasks. A variety of NVIDIA GPUs is available with different
specifications such as core count, clock speed, memory size and power consumption. In the existing
literature, different types of GPU usages were identified including NVIDIA GeForce GTX 1080
[86][65][102][83][85], NVIDIA GeForce RTX 2080 [37][91][120], NVIDIA Tesla v100 [37][43][69],
NVIDIA GeForce 2070 super [22] and NVIDIA Tesla K40 [116]. Nevertheless, the hardware selection
mainly depends on the requirement and the budget.
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Furthermore, deploying DL models in resource-constrained edge platforms is an evolving ap-
proach due to the high interest in edge computing with IoT. Most of the time, researchers and
developers use edge-based implementations, to deploy models in resource-constrained environ-
ments. We have explored 19 such studies as stated in Table 6. Section 5.4 discusses the available edge
computing platforms which are experimented with in the prior studies. DL-based edge computing
is challenging and techniques to optimise the performance in these systems are further discussed
in Section 6.3.

Table 6. Hardware configurations used in the selected studies on ESC.

Implementation
Type Related studies

GPU [22], [116], [82], [86], [65], [67], [50], [102], [91], [31], [62], [83],
[61], [43], [120], [85], [4], [69], [115], [121], [94], [93]

CPU [29], [43], [101], [28]
Resource-constrained
edge devices

[89], [21], [36], [9], [37], [78], [6], [111], [56], [130], [20], [87], [15],
[78], [123], [126], [51], [32], [140]

5.4 Resource-Constrained Edge Devices
Edge intelligence is an evolving research area that enables real-time data analysis with the execution
of machine learning or deep learning algorithms. It has extended the potential of the Internet of
Things (IoT) by bringing computing services close to the physical location of the data sources. For
the implementation of forest monitoring systems, significant efforts have already been invested in
IoT combined with cloud computing [79][70][132]. Though it could be a straightforward solution,
from a practical perspective cloud processing will not be appropriate for every circumstance. It
comes with some bottlenecks including latency in critical data transferring, higher communication
costs, reduced bandwidth, privacy issues, and reliability problems [78][75][20]. Hence incorporating
intelligence on IoT edge devices which has been the current trend, will reduce the bottlenecks
to some extent. Unfortunately. IoT devices have limited computing power and less memory thus,
deploying an efficient DL model in an edge device could be challenging. Therefore, an optimal
choice of hardware need to be decided based on model accuracy, throughput, implementation cost,
and power consumption.

With the recent advancements in embedded technology, several computationally powerful hard-
ware components specialized in handling ML tasks have been introduced. For deploying a complex
algorithm on an embedded platform, DL developers had to deal with the proper choice of hard-
ware that fits the model design and memory constraints [75]. From the performance and accuracy
perspective, cloud-tested models tend to deviate when they are deployed on an edge device. Thus,
to achieve better performances, an efficient algorithm has to be coupled with an optimal hardware
choice. There are several hardware devices specialized for machine learning tasks including Mi-
crocontroller Units (MCU), Google edge TPUs (Tensor Processing Units), NVIDIA’s Jetson, and
FPGAs (Field-Programmable Gate Array) [117]. Analysing related work helps to understand the
performance of different models in diverse processing platforms and workarounds for increasing
performances. Table 7 includes the choice of hardware for implementing IoT devices that enabled
edge computing and the model behaviour in different platforms.
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Table 7. Usage of hardware components in DL-based edge computing

Paper Year Application Edge Device Hardware Specifi-
cation Model Acc Dataset Remarks

[78] 2023
Environment
sound classifi-
cation

Sony Sprensesnse
(ARM Cortex M4)

192kHz, 1.5MB
SRAM ACDNet 81.5% ESC-50

High performance, low
power, high-quality au-
dio input

[51] 2022 Bird Species
Recognition NVIDIA Jetson Nano 4 GB RAM, 128-core

GPU
Efficient
Net B3 95%

Xeno-
canto
archive

High performance, fast
inference time

[32] 2022
Speech back-
ground sound
classification

NVIDIA Jetson AGX
Xavier

32 GB RAM, 512-core
Volta GPU CNN 95.2%

noisy
speech
dataset

High performance, Fast
inference time

[37] 2021 Office sound
detection

Arduino Nano 33
BLE Sense

256kB of SRAM,
64MHz

BERT
Trans-
former

-
Office
sounds
dataset

Less power and memory
consumption at the edge

[6] 2021 Illegal logging
monitoring

32-bit ARM Cortex
MF4 chipset

256 kB of SRAM.,
1MB of flash memory,
64 MHz

CNN 85% ESC-50
Low power consump-
tion, better memory
management, better
performance

[126] 2021
Environment
sound recogni-
tion

MZ7035FA (Xil-
inx Zynq 7035
ARM+FPGA)

1GB DDR3, 256Mbit
flash Memory CNN 88.3% U8k High cost, better perfor-

mance

[140] 2021 Bat Species
identification

Google Coral TPU
(quad Cortex-A53,
Cortex-M4F)

4GB RAM, Google
Edge TPU coproces-
sor

CNN 97.3% custom
dataset

High performance, High
cost

[123] 2021 Urban sound
recognition

Zynq Z-7020 FPGA
(ARM Cortex-A9)

650 MHz, 512MB
DDR3, 128Mbit flash
memory

1D CNN 75.2% ESC-10 Low cost with a limited
amount of resources

[130] 2021 Office sound
classification

Raspberry Pi Zero
(ARMv6 CPU)

1GHz, 512MB of
RAM

BERT
Trans-
former

81.2% Custom
dataset

Low cost and low power
consumption

[21] 2020
Environment
sound classifi-
cation

STM3276RG Nucleo
(ARM Cortex M4)

34.3 kB of RAM Us-
age, 80MHz VGGish 68% U8k

Efficient processing capa-
bility and better power
management

[111] 2019 Urban sound
monitoring

Raspberry Pi 4(quad-
core Cortex-A72) 1.5GHz, 4GB of RAM 2D CNN 95% U8k

High accuracy, High cost,
high power consump-
tion,

[56] 2017 Illegal logging
detection

Raspberry Pi 3 Model
B (quad-core ARM
Cortex-A53)

1.2 GHz,1 GB of RAM CNN 92% Custom
dataset

High cost, high power
consumption, better per-
formance

As reported in Table 7, general-purpose microcontrollers usually come with limited compu-
tational resources such as small RAM sizes and slow clock speeds. Consequently, classification
models with sufficient accuracy are often too large for the edge device. The basic specifications of
some common energy-efficient MCUs like STM3276RG have 32-bit ARM Cortex M4F CPUs and
typically run-on clock speeds below 200MHz. Hence deploying DL models on such MCUs will
require extensive model optimization techniques. In the above studies, they have experimented
with different model compression techniques like Pruning [78], Quantization [21][37][6][78], and
Knowledge Distillation [21][78]. The goal of utilizing those techniques is to improve energy effi-
ciency by reducing computing complexity, data volume, and hardware resources required during
the execution of the networks [71]. Moreover, Raspberry Pi is a powerful MCU with a variety of
models capable of running complex tasks. It shows significant performances and high accuracy
in DL tasks when compared with the other MCUs. But the limitation is, it is relatively expensive
and also consumes high power. In addition to the reported MCUs, FPGAs are power-efficient
edge devices, highly suitable for computationally intensive algorithms like CNNs [123]. With the
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technical advancement, high-powered specialized edge devices with Graphics Processing Unit
(GPU) support are introduced, addressing the scarcity of computational capability at the edge.
For instance, Google’s Coral TPU and Nvidia’s Jetson are powerful edge devices that are capable
of delivering high accuracy while achieving high performance. They also offer fast inferencing
time for DL algorithms with the trade-offs of high-power consumption and inflated cost. Hence
to achieve the maximum benefits, a proper choice of hardware should be made according to the
requirement.

5.5 Evaluation Metrics
Performance analysis of a classification system plays a vital role and supports fine-tuning the model.
Generally, a confusion matrix provides a summary of prediction results on a classification problem
[73]. The number of correct and incorrect predictions are summarized with count values and split by
each class. The metrics True Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN) are used when evaluating the model [118]. These parameters are used to derive the complex
evaluationmetrics. Accuracy [79][68][70][95][53], is themost usedmetric among other performance
measures including F1 – Score [74][64][109][38][132], precision [22][58][34][122][137], recall
[36][82][141][130][69], AUC [135][25][61][50][93] and MAP [65][43][127][67][63].

Fig. 7. Usage of evaluation metrics in ESC

Moreover, Error rate [83][58], Unweighted Average Recall (UAR) [34][59], Weighted Average
Recall (WAR) [117], Specificity [22][132], True Positive Rate [46], Identification Rate [107], Matthew
Correlation Coefficient [82], False Discovery Rate[82], Fowlkes-Mallows Index [82], Miss Rate [82],
Kappa Score [82][69], Mean Reciprocal Rank [65], dPrime [50], Youden’s Index, Likelihoods and
Discriminant Power [118] can be identified in the literature. Figure 7 shows the number of related
studies that have utilised a given evaluation metrics for the top frequent metrics identified from
the considered studies.

6 DEEP LEARNING MODELS FOR AUDIO CLASSIFICATION
Deep Learning gives birth to many state-of-the-art audio processing systems [77][100]. This section
explores ESC studies implemented based on CNN or RNN, which are the main architectures used
in DL. We also describe the studies that are specifically developed for resource-constrained edge
environments. We represented the accuracy of each study with a gradient-based colour code,
which provides additional depth and nuance to the representation. This visual differentiation aids
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in understanding the performance obtained by the related studies and identifying the outliers.
Therefore, by leveraging gradient-based color codes that varying levels of intensity, we can interpret
the significance of the related studies.

6.1 Related Work on Convolutional Neural Network-based Models
Convolutional Neural Network is a major DL architecture utilised in different applications to
derive classification decisions [29]. Usually, CNN takes input and assigns meaningful and learnable
weights to develop the final classifier model [108] [73]. CNN is generally developed with multiple
convolution layers, interleaved with pooling layers, followed by a dense layer [100]. Table 8 and
Table 9 present state-of-the-art approaches for ESC using the existing CNN models and novel CNN
models, respectively.

Studies stated in Table 8 and Table 9 have considered sounds observable in an environment in
general. It can be observed that the feature extraction techniques such as Log Mel Spectrogram
(LM) [61][26][91], MFCC [52][50][91][57], Short-time Fourier transform (STFT) [141][135][48] are
widely used, while some studies focus on combined feature extraction to obtain higher accuracies
[52][141]. Most of the studies have used pitch-shifting [26][91][48], time-stretching [26][91][48],
noise addition [52], mixup [26], FFT [135][57], framing and overlap [57] for data augmentation to
generate higher accuracies. Therefore, it can be seen that many studies have addressed ESC with
CNN-based models together with data pre-processing techniques.

Among several related studies, a comparison of the effectiveness of using Xception, MobileNetV2
and DenseNet for ESC against a baseline CNNmodel is presented in [26]. The authors have discussed
the usage of cyclic learning rate and adam optimizer with decoupled weight decay to optimise the
model performance. The Xception model achieves the highest overall accuracy of 81% with the
UrbanSound8k dataset, while the baseline CNN model, DenseNet and MobileNetV2 achieved 79%,
75.9% and 73.3%, respectively. Further, the study emphasised that these models achieved average
accuracies due to the data overfitting.

In another study, Palanisamy et al. [91], has addressed the use of Inception, ResNet and DenseNet
to identify acoustic phenomena in the environment using GTZAN, ESC-50 and UrbanSound8K
datasets. They have shown that the CNN models with pre-trained weights performed significantly,
over CNN models with random weights. In addition, the authors have developed an ensemble based
on the three DL models. Except for the pre-trained single DenseNet with the GTZAN dataset, all
other combinations have shown that the ensemble models increase the accuracy by a significant
margin. Finally, the authors have compared the accuracy of DenseNet with random weights, pre-
trained weights and pre-trained ensembles against the state-of-the-art classifiers. The results show
that the pre-trained ensemble version of DenseNet outperforms other state-of-the-art models for
the datasets ESC-50 and UrbanSound8K while achieving reasonable accuracies for the GTZAN
dataset.

Moreover, Nanni et al. [85], have presented a deep and empirical analysis of the usage of CNN in
ESC using datasets, BIRDZ, CAT, and ESC-50. Additionally, they have shown the effect of different
data augmentation and feature extraction methodologies to achieve high performance. In the
study, a comparison is performed among AlexNet, GoogleNet, VGG, ResNet and Inception and the
authors have used the sum rule to create ensemble models. For each considered combination of
datasets, feature extraction methodologies and data augmentation techniques, ensemble versions
outperformed by a significant margin.
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Table 8. Overview of studies using existing CNN Model for ESC

Study Year Dataset Model Accuracy Speciality
[26] 2021 UrbanSound8K Xception 0.81 Endure data overfitting, thus, showed average

performances.DenseNet 0.75
MobileNetV2 0.73

[115] 2021 ESC-10 ResNet 0.78 Showed the effectiveness of self-supervised
transfer learning for audio classification.UrbanSound8K 0.76

[83] 2021 ESC-50 DenseNet 0.97

Presented a comparative study on audio data
augmentation.

ResNet 0.96
VGG 0.96
AlexNet 0.88

UrbanSound8K ResNet 0.99
DenseNet 0.99
VGG 0.99
AlexNet 0.93

[48] 2021 ESC-10 ESResNet(Pre-
trained) 0.97 Presents the importance of multiple input

channels, evaluation procedure and the usage
of pre trained weights from imagenet.ESResNet(Pre-

trained) 0.97

ESResNet 0.94

ESC-50 ESResNet(Pre-
trained) 0.91

ESResNet 0.83

UrbanSound8K ESResNet(Pre-
trained) 0.85

ESResNet 0.82
[121] 2021 ESC-10 ResNet 0.91 Proposed a self-supervised learning-based

classifier for ESC.AlexNet 0.78
GoogleNet 0.63

[82] 2020 ESC-10 DenseNet 0.99 Introduced novel audio feature extraction
techniques and augmentation methodsUrbanSound8K 0.97

[52] 2020 UrbanSound8K DCASE-
2016 0.85 Also proposed a novel CNN model,

D-2-DenseNet.DenseNet 0.84

[127] 2020 FSDKaggle2018 ResNet 0.93
Proposed a simple and effective augmenta-
tion method named Mixed Frequency Masking,
which is not sensitive to parameters.

[91] 2020 ESC-50 DenseNet 0.92 Used transfer learning and ensemble models.
Integrated Gradients are used to realize the
learning of the spectrogram shapes by the CNN

GTZAN 0.90
UrbanSound8K 0.87

[2] 2019 UrbanSound8K GoogleNet 0.93 Presented a comparison between 1D CNN and
2D CNN.VGG 0.70

[61] 2018 AudioSet VGG
(CNN8) 0.89 Showed the effectiveness of CNN models for all

DCASE tasks. Task 2 results are shown here.AlexNet
(CNN4) 0.85

[141] 2018 Private dataset MobileNet 0.70
Showed the importance of noise reduction in
sound preprocessing and the usage of different
colour maps for spectrogram images.

[50] 2017 Youtube-100M ResNet-50 0.92 Used transfer learning to experiment with
large-scale datasets. Showed that
regularization can reduce the gap between the
models trained on smaller datasets.

Inception
V3 0.91

VGG 0.91
AlexNet 0.89
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Table 9. Overview of studies with novel CNN models for ESC

Study Year Dataset Model Accuracy Speciality
[102] 2021 UrbanSound8K CFClean 0.94 Showed the importance of envelope

function, segmentation and normalisation.
Discussed the inefficiency of
regularisation for the problem.

CF 0.85
ESC-50 CFClean 0.87

CF 0.45
[85] 2021 ESC-50 FusionGlobal 0.88

Discussed the effectiveness of using
ensembles of CNNs with data
augmentation.

FusionGlobal-
CO 0.88

BIRDZ FusionGlobal-
CO 0.97

FusionGlobal 0.96
[69] 2021 UrbanSound8K CNN based 0.98

Used conditional augmentation while
training.ESC-10 CNN based 0.96

TUT Acoustic CNN based 0.73
[83] 2021 ESC-50 CNN7 0.96

Presented a comparative study on audio
data augmentation.

CNN9 0.95
UrbanSound8K CNN7 0.95

CNN9 0.87

[111] 2019 UrbanSoun8K 2D CNN 0.95
ESC in real-time on an embedded system. Devel-
oped a fusion method with normalisation and
augmentation.

[2] 2019 UrbanSoun8K 1D CNN 0.89 Compared 1D CNN and 2D CNN.

6.2 Related Work on Recurrent Neural Network-based Models
Recurrent Neural Network (RNN) models the time-bound dependencies in input data and thus can
overcome the limited context size of CNN [100] [73]. Also, vanishing or exploding gradients can be
identified as major issues in RNNs and many alterations to RNNs have been introduced to resolve
this issue. LSTM [47], which uses a gating mechanism and memory cells to solve the gradient issue
can be identified as an improvement under RNN. LSTM has been effectively employed in ESC.
Table 10 summarises the related studies on RNN-based models. Similar to CNN-based models, these
studies have used MFCC [57][128] and Mel Spectrogram [135] and combined extractors [31][25]
for feature extraction.

Among several studies, Wu and Lee [135], have implemented an LSTM architecture with three
LSTM layers each having 2048 units for classifying audio files available in the AudioSet [57] database,
which produced a classification accuracy of 86.6%. Moreover, Das et al. [31], have compared the
usage of different feature extraction methodologies with CNN and LSTM to generate classifications
based on the urbansound8k dataset. They have shown that LSTM with MFCC and Chroma STFT
produces a state-of-the-art accuracy of 98.81%. In another study Banuroopaa et al. [57], have used
two stacked LSTM layers accompanied by two time distributed layers, a flattening layer and a
dense layer to produce classification decisions based on the urbansound8k dataset. They have used
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Table 10. Overview of studies based on RNN for ESC

Study Year Dataset Model Accuracy Speciality

[57] 2022 UrbanSound8K LSTM 0.98 Presented a novel audio fingerprinting method
based on MFCC for sound classification.

[31] 2020 UrbanSound8K LSTM 0.98 Compared CNN and LSTM and showed that
LSTM performs better.

[94] 2020 UrbanSound8K GRU-AWS 0.94 Analysed the usage of the Attention Weight
Similar (AWS) model for improvements.

[25] 2019 UrbanSound8K LSTM 0.91 Compared CNN, RNN and SVM for audio clas-
sification with combined feature extraction.

[133] 2019 UrbanSound8K GRU 0.83 Introduced GRU for Audio Scene Classification
(ASC). Compared RNN and GRU.

[135] 2018 AudioSet GRU 0.87 Compared CNN, RNN and MLP and considered
model complexity reduction.LSTM 0.86

[30] 2017 LITIS Rouen DGRU 0.94
More experiments are needed to identify the
performance of Deep GRU for tasks such as
DCASE.

GRU 0.92
Baseline 0.91
LSTM 0.89

MFCC for feature extraction and enhanced the LSTM model with different activation functions
such as Softmax to generate an overall accuracy of 98.8%.

Moreover, the GRU architecture was introduced to capture dependencies of different time scales
at each recurrent unit. GRU is similar to LSTM in many aspects, however, it does not comprise
separate memory cells [28]. For instance, GRU has two gates that are reset and updated, while LSTM
has three gates that are input gate, output gate and forget gate. GRU is less complex than LSTM
because it has less number of gates. If the dataset is small then GRU is preferred otherwise LSTM
is preferred. GRU uses fewer training parameters and therefore uses less memory and executes
faster than LSTM whereas LSTM is more accurate on a larger dataset. The study by Wu and King
[129], has presented a comparison between LSTM and GRU. , they have shown that both models
provide similar performances, but GRU requires only a few parameters. They have proposed a
simplified version of LSTM, which outperforms both conventional LSTM and GRU architectures.
Another similar study by Yang et al. [133], have used GRU for ESC with the UrbanSound8K dataset,
where feature extraction is done by MFCC. Similarly, Peng et al. [94], have tested different feature
extraction methods for audio tagging using GRU. They have shown that a combination of MFCC
and Log-Mel Spectrogram performs better with GRU at an accuracy of 92%. Additionally, they
have empirically shown that by introducing attention weight similar models, the accuracy can be
further improved to 94.3%. Furthermore, a comparison between LSTM and GRU is presented in
[30]. GRU achieves an accuracy of 92.85% while outperforming LSTM with an accuracy of 89.04%.
In their work, an improved version of deep GRU has shown an accuracy of 94.92% for the same
audio tagging requirement over the LITIS Rouen dataset.

6.3 Edge-based Reduced Complexity Models
Audio classification using DL can achieve high performances and accuracies when the models are
deployed in resource-rich cloud environments. However, in real-world scenarios such as forest
acoustic surveillance, it is practical to implement the classifier model at the edge device itself, due
to the challenges in transferring audio data in real-time to a cloud server with the low networking
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Table 11. Comparison of ESC with reduced complexity models

Study Year Model Param.
in Mil. Matric ESC-

10
ESC-
50 U8K AudioSet

[43] 2022 EAT-S 5.3 MAP - 0.95 0.88 0.40
EAT-M 25.5 - 0.96 0.90 0.42

[77] 2022 ACDNet (Pruning) 0.13 Acc. 0.92 0.75 0.70
AClNet (Pruning) 0.13 0.90 0.72 0.67 -
ACDNet (XNOR-NET) 1.05 0.82 0.31 - -
AClNet (XNOR-NET) 1.05 0.80 0.31 - -
ACDNet (Baseline) 4.74 0.96 0.87 0.84 -
AClNet (XNOR-NET) 10.63 0.95 0.85 0.79 -

[135] 2018 AlexNet (BN) with GAP 2.59 AUC - - - 0.91
AlexNet (BN) with 64 FC 3.07 - - - 0.84
ResNet-50 24.58 - - - 0.91
AlexNet 56.09 - - - 0.89
AlexNet(BN) 56.11 - - - 0.92

infrastructure available in such environments. This section explores related studies on edge-based
classification models.
Although CNN models perform better when compared with RNN and Multilayer Perceptron

(MLP) for the large-scale audio classification domain, it is not practical to use them in resource-
constrained edge devices due to the layered complexity of CNN models. Several studies have
proposed approaches to reduce such model complexities as summarised in Table 11. These studies
have used evaluation metrics including mean average precision (MAP), accuracy and Area Under
the Curve (AUC).

Among the studies, Gazneli et al. [43], have introduced two End-to-end Audio Transformer (EAT)
models named EAT-S and EAT-M, where the complexities are small and medium, respectively.
The study has compared the performance of both the models for three data sets UrbanSound8K,
AudioSet and ESC-50, against other state-of-the-art models. With larger network sizes, EAT-M
performs better with a close margin to the EAT-S model. Due to the high accuracies achieved
for EAT-S models that resemble the MobileNet architecture, it becomes a viable candidate for
edge deployment in resource constrict environments. Further, they have analysed different data
augmentation approaches to enhance the functionality of the proposed architecture.

Moreover, pruning and XNOR-NET techniques have been used to reduce the model complexity
of ACDNet and AclNet, which can be deployed in resource constraint edge devices [77]. They
have shown that derivations can be made from ACDNet and AClNet which produce comparable
accuracies with suitable size parameters to be deployed in an edge environment, by using XNOR-
NET. However, when the number of classes considered is increased, the accuracy of the XNOR-NET
version of the baseline models takes a significant drop. The derivations made using pruning
combined with proper quantization techniques also satisfy the size requirement for edge and their
drop of accuracy was significantly low compared to that of XNOR-NET versions.
Another study by Wu and Lee [135], has presented a model that reduces the complexity using

global average pooling and bottleneck (BN) layers as AlexNet(BN). Their model achieved an accuracy
of 92.7% with 56.11 million parameters without any optimizations, which is closely followed by
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ResNet-50 at an accuracy of 91.4% with 24.58 million parameters. Additionally, they have shown
that the parameters of AlexNet(BN) can be reduced with global average pooling by 1/22 factor,
which results in an accuracy of 91.6% at 2.59 Million parameters. Further, they have validated the
performance of the proposed architecture against the TUT Acoustic Scenes 2016 database, where
AlexNet (BN), AlexNet(BN) with global average pooling, LSTM and a 3-Layer MLP registers have
shown the accuracy of 87.4%, 85.9%, 82.8% and 78.2%, respectively.

Among other studies on edge-based ESC, CNN approaches discussed by Copiaco et al. [29], have
considered domestic sound classification using a private dataset. They have compared different
parameters of AlexNet, ResNet, and Xception and proposed an improved version of AlexNet called
MAlexNet-33. This model has outperformed edge-suitable neural networks such as MobileNet-V2,
SqueezeNet, NasNet and ShuffleNet from F1-Score while achieving the lowest average execution
time. From another point of view, a Bidirectional Encoder Representations from Transformers
(BERT) based transformer proposed by Elliott et al. [37], has outperformed a CNN using 99.85%
fewer parameters, that can execute on a microcontroller. Another specially designed network to
identify urban and noise sounds to be used in hearing aids is proposed by Ting et al. [120]. The
proposed model has a significantly low number of parameters and can be easily deployed in edge
cases. With a reduced number of parameters, the UrbanSound8K and HANS dataset has shown
an accuracy of 83.3% and 75.27%, respectively, using an Inception block with Dense connectivity.
Furthermore, an approach to identifying tree-cutting sound events using edge devices with low-
power and the memory-constrained setting is presented by Andreadis et al. [6]. They have shown
an accuracy of 85% using a CNN-based model with the ESC50 dataset.

7 DISCUSSION
7.1 Study Contribution and Lessons Learned
In this survey, we have explored the trends of recent studies on DL-based ESC at the Edge. With
a discussion of the main sound processing approaches, we presented a comprehensive study on
sound pre-processing techniques including normalisation, augmentation, and feature extraction of
sound data. Moreover, this study reviewed publicly available environmental sound datasets with
their limitations and emphasised the requirement for a real-world benchmark dataset. Importantly,
we explored the literature that has applied DL techniques in ESC and analysed their advantages
and disadvantages. Therefore, this survey directs the researchers and developers in ESC to identify
the recommended approaches, open challenges and future research directions mainly in forest
acoustic surveillance applications.

Accordingly, the practical implementation of forest monitoring systems that are based on acoustic
analysis, introduces unique challenges according to the architecture of the system. Initially, a suitable
audio dataset for ESC should be identified. If the already existing datasets are not sufficient or not
suitable, audio samples need to be recorded or synthetically generated with the available resources
[37][80][122]. The next challenge would be the selection of the model architecture to develop the
classifier. Generally, the domain knowledge and the level of feature engineering expertise required
for building an ML model are comparatively high compared to the DL approach [55]. Following
the DL approach, a variety of state-of-the-art models that are based on CNN and RNN can be used.
The next process would be deciding whether to use Transfer Learning or complete end-to-

end model development according to the time and resource availability. Importantly, different
optimisation techniques to fine-tune the classifier and its deployment in the real world need to be
explored. Finally, considering the application domain, the model can be deployed in resource-rich
cloud environments with the support of configured GPUs or in an edge device under constrained
power and computational resources. The aforementioned process of design, development and
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Fig. 8. Recommended techniques to use in an acoustic monitoring system

deployment of an acoustic surveillance solution is presented in Figure 8, where the associated
state-of-the-art techniques and methodologies governing all of the above aspects are discussed
in this survey. This can be referred to as guidance by researchers and developers when making
decisions on the development of ESC solutions.

Further, Table 12 summarises the models used, and classification accuracies obtained using main
public datasets for ESC. Here the terms CEL, SCL and HL denote Cross-Entropy Loss, Supervised
Contrastive Loss, and Hybrid Loss, respectively. It can be seen that some studies have obtained
different accuracy for the same dataset by applying the same DL model. The main reason for these
differences could be the use of rich pre-processing techniques. Consider the classifiers presented
by Mushtaq et al. [82], Mushtaq et al. [83] and Nasiri et al. [87], which are based on DenseNet,
VGG and ResNet, respectively. These studies outperform the results obtained by Chhikara et al.
[26], Abdoli et al. [2] and Nanni et al. [85], respectively for the same model and dataset, by a
significant margin. For instance, considering the results of the ESC with UrbanSound8K dataset
using DenseNet, the obtained highest accuracy is 97.18% [82] and the lowest accuracy is 75.9% [26].
Therefore, it is interesting to analyse the reasons for the differences in the results.

Accordingly, Mushtaq et al. [82], have introduced two novel feature aggregation techniques and
employ fine-tuning techniques over the Transfer Learning based models. Moreover, the studies
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by Mushtaq et al. [82][83], have used novel data augmentation techniques to achieve significantly
higher classification accuracies. In addition, the work presented by Nasiri et al. [87], has used a
hybrid loss function to train deep learning models, instead of singly relying on the cross-entropy
loss function or contrastive loss function. Therefore, the usage of such advanced techniques for
feature extraction, data augmentation andmodel training aspects of an ESC system, can be identified
as the foremost reason for state-of-the-art classifiers [82][83][87], to outperform the traditionally
developed classifiers [26][85][2], by a significant margin.

7.2 Open Challenges and Future Research Directions
7.2.1 Requirement of a suitable dataset.
A standard benchmark dataset is a fundamental requirement when building a classification system,
and the same specificity is required to be implied in the considered dataset. Considering the domain
of ESC, standardised datasets with proper taxonomies are abundantly identified as described in
Section 4.3. However, in forest acoustic monitoring and surveillance such benchmark datasets with
proper taxonomies are not publicly available. Most of the related studies have created their datasets
using extracted data from the available ESC datasets and recorded audio samples capturing specific
scenarios. Such datasets are specifically used for the considered study and do not generalize for
other research scopes. Therefore, it is challenging to create an appropriate dataset for forest sound
classification, as the datasets need large volumes of unbiased data, and all the data is required to
be manually tagged by inspection. Hence, the requirement for a proper dataset with a common
taxonomy for forest acoustics can be identified as an open challenge that requires future research
considerations.

7.2.2 Demand for resources and power.
Deploying complex classification algorithms on the edge has been impeded because the edge-based
sound classification systems need to satisfy requirements including computational capability, mem-
ory management, power consumption, and cost. Thus, strategies and techniques to implement
sustainable and reliable systems, which can satisfy the above non-functional requirements become
important. In particular, sufficient computational power is critical to provide an accurate classifi-
cation decision by processing the data in real-time. Therefore, an optimal selection of hardware
specifications should be decided by considering the aspects such as computational capacity, accu-
racy, and throughput. Importantly, the model size directly affects the complexity of the algorithm
[90]. Several strategies such as knowledge distillation and quantization have been suggested, which
compress the model allowing it to execute on a constrained platform [75]. However, it may cause
a loss of accuracy in return. In addition, neural architecture search based implementations can
be applied, which automatically finds the optimal architectures with low losses [114]. Hence, in
future investigations, more focus should be given to designing models with a reduced size, while
preserving performance and accuracy. Moreover, edge computing consumes considerably higher
power which is challenging to accommodate in a forest environment. Solar energy harvesting
might not be the best option during rainy or snowy seasons. Consequently, future work is required
to develop practical systems that can operate with minimal power and resource consumption.

7.2.3 Real-time notification system.
At present, one of the fundamental requirements of a forest acoustic monitoring system is to
identify and prevent illegal activities from being carried out in forest environments. Therefore,
monitoring systems are required to provide accurate updates on such activities at the earliest,
hence proper strategies need to be implemented to ensure real-time operation. When considering
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Table 12. Approaches used with main public datasets for ESC

ESC-50 UrbanSound8K UrbanSound8K
Study CNN based ACC Study CNN based ACC Study RNN based ACC
[82] DenseNet 0.98 [82] DenseNet 0.97 [57] LSTM 0.98

AlexNet 0.88 AlexNet 0.93
ResNet 0.96 ResNet 0.99
VGG 0.96 VGG 0.99

[83] DenseNet 0.97 [83] ResNet 0.99 [139] APNet 0.65
ResNet 0.96 DenseNet 0.99 APNet(R prot.) 0.68
VGG 0.96 VGG 0.99 APNet (R. ch.) 0.69
CNN7 0.96 CNN7 0.95 Openl3 0.67
CNN9 0.95 AlexNet 0.93
AlexNet 0.88 CNN9 0.87

[91] DenseNet 0.92 [91] DenseNet 0.87 [94] GRU-AWS 0.94
[87] ResNet-50 (CEL) 0.92 [87] ResNet-50 (CEL) 0.91

ResNet-50 (SCL) 0.92 ResNet-50 (SCL) 0.86
ResNet-50 (HL) 0.93 ResNet-50 (HL) 0.86
DenseNet 0.91 DenseNet 0.85

[4] CNN based 0.89 [69] CNN based 0.98 [133] GRU 0.83
[85] FusionGlobal 0.88 [111] 2D CNN 0.95 [21] GRU 0.68

FusionGlobal-CO 0.88
[102] CFClean 0.87 [102] CFClean 0.94

CF 0.45 CF 0.85
[78] ACDNet 0.87 [2] GoogleNet 0.93

1D CNN 0.89
VGG 0.70

[77] ACDNet 0.87 [77] ACDNet 0.84
[6] CNN based 0.85 [26] Xception 0.81

MobileNetv2 0.73
DenseNet 0.75

[43] ResNet 0.83 [43] ResNet 0.82
[37] Transformer based 0.81 [52] DenseNet 0.84
[115] Resnet 0.78 [115] Resnet 0.76
[53] Conv-3 0.54 [53] Conv-3 0.74

Conv-5 0.50 Conv-5 0.69
[95] CNN based 0.44 [95] CNN based 0.78

[120] Resnet 0.73
Inception 0.75
DenseNet 0.76

Study Edge-Based ACC Study Edge-Based ACC
[43] EAT-S 0.95 [43] EAT-S 0.88

EAT-M 0.96 EAT-M 0.90
[77] ACDNet (Baseline) 0.87 [77] ACDNet (Baseline) 0.84

ACDNet (Pruning) 0.75 ACDNet (Pruning) 0.70
AclNet (Baseline) 0.85 AclNet (Baseline) 0.79
AclNet (Pruning) 0.72 AclNet (Pruning) 0.67

the cloud-based approaches, the recorded audio data needs to be transferred to the cloud over a
network [56]. This transmission needs to be done in real-time without any losses, thus accurate
and instant information can be notified to the relevant authorities. However, data transmission
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becomes challenging due to the low infrastructure available in forest environments. On the other
hand, when considering the edge-based approaches, the classification decision is derived at the
edge itself and only the alerts need to be transferred over a network to the relevant authorities
[6]. Generally, alerts are not frequently generated. Even, when alerts are generated, the size of the
alerts is comparatively small compared to the size of audio frames that needs to be transferred over
the network. Hence, ensuring real-time function in an edge-based approach can be comparatively
less challenging. However, the amount of research conducted dedicated to ensuring this real-time
operation is significantly low in the literature. Therefore, addressing real-time operations can be
identified as a new research direction and an open challenge for the forest acoustic monitoring and
surveillance domain.

7.2.4 Explainable DL model.
Explainable AI (XAI) is an evolving area of research that focuses on producing explainable DL mod-
els that can be understandable by humans while maintaining a high level of learning performance.
It helps to improve the trust and manage the emerging generation of partners effectively. Inter-
pretability of an explainable system indicates the extent to which a cause and effect can be observed
within a system. The term explainability indicates the extent to which the internal mechanics of
a machine or deep learning system can be explained in human terms. Using interpretability and
explainability, the users can understand the impact of different inputs on the generated classifi-
cation decisions. Since the forest acoustic observation systems are deployed in forest reserves to
monitor abnormal activities such as illegal tree logging and poaching, such applications need to
function in real-time with high interpretability and explainability. Currently, up to the authors’
knowledge, there are very limited state-of-the-art models for ESC that have addressed explainability
considerations in their studies. As a notable effort, Zinemanas et al. [139], have presented a novel
approach to ensure the interpretability of DL models named Audio Prototype Network (APNet).
They have implemented a similarity measuring and weight assigning layer in their network to
increase the interpretability of the proposed model. Thus, further research is required to saturate
the interpretability and explainability aspects of forest acoustic monitoring systems.

8 CONCLUSION
Forest ecosystems play a vital role in the sustainable existence of life on earth. Acoustic surveillance
systems support authorities to manage artificial and natural scenarios that cause unfavourable
effects on such environments. This survey paper explored the main approaches to developing forest
sound classification systems at the edge, including sound pre-processing techniques, available
standard datasets, state-of-the-art DL models, different hardware configurations and evaluation
metrics. Finally, we provided recommended techniques for the environment sound classification
domain and discussed the challenges with future research directions, which will be helpful for the
researchers and developers of this domain.
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